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ABSTRACT
To achieve high performance on multi-cores, modern loop opti-
mizers apply long sequences of transformations that produce com-
plex loop structures. Downstream optimizations such as register
tiling (unroll-and-jam plus scalar promotion) typically provide a
significant performance improvement. Typical register tilers pro-
vide this performance improvement only when applied on simple
loop structures. They often fail to operate on complex loop struc-
tures leaving a significant amount of performance on the table. We
present a technique called compact multi-dimensional kernel ex-
traction (COMDEX) which can make register tilers operate on ar-
bitrarily complex loop structures and enable them to provide the
performance benefits. COMDEX extracts compact unrollable ker-
nels from complex loops. We show that by using COMDEX as a
pre-processing to register tiling we can (i) enable register tiling on
complex loop structures and (ii) realize a significant performance
improvement on a variety of codes.

1. INTRODUCTION
Register tiling [8, 13] is a well-known technique that increases

register locality and the amount of available Instruction Level Par-
allelism (ILP), while simultaneously decreasing the loop overhead
and computational redundancy within the loop body. In its simplest
one-dimensional form, this technique reduces to loop unrolling,
where a loop body is replicated a fix number of times. Quality
of code is generally improved by unrolling as it enables the elim-
ination of redundant computations, the reuse of values via regis-
ters, and the increased scheduling flexibility between instances of
replicated loop body. Register tiling applies this loop unrolling
technique to two or more dimensions of loop structures, and en-
ables higher levels of register locality and ILP. This technique, also
known as unroll-and-jam [5, 19] followed by scalar promotion [4,
6], can often result in significant (2x or more) speedups.
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Though register tiling is one of the most profitable loop trans-
formations for improving register locality and instruction level par-
allelism (ILP) [7, 8, 15], it is often not applied because register
tilers usually can handle only simple rectangular loops as inputs.
Unfortunately, there is an increasingly large set of loops that have
complex (deep imperfectly nested) loop structures. The complexity
comes from two sources. First, many applications spend significant
amount of time in imperfectly nested loops. Examples are matrix
factorizations such as LUD and Cholesky, finite difference methods
such as FDTD and ADI, and matrix operations from BLAS level-3.
The second source of complexity is from the use of long sequence
of loop transformations to optimize locality and coarse-grained par-
allelism for multi-cores [9, 3]. Though the original source pro-
gram might have a simpler loop strcuture, the result of these long
sequence of transformations is a complex imperfectly nested loop
strcuture.

The loops that would benefit from register tiling are often buried
deep inside these complex loop nests. Register tilers that attempt
to work directly on such complex loop nests often fail to separate
out or extract the unrollable loops and end up not applying register
tiling at all – as shown in our experimental evaluation (cf. Sec-
tion 5). This paper proposes a technique that enables register tilers
to handle complex inputs and successfully bring their performance
benefits to programs optimized for multi-cores. We refer to the task
of extracting a loop nest with simple rectangular bounds as kernel
extraction, and the extracted loop nest, a kernel. We propose the
use of kernel extraction as an explicit transformation which extracts
unrollable kernels and transforms them so that scalar promotion is
profitable. Kernel extraction can be viewed as an enabling transfor-
mation that makes register tilers more robust against complex code
structures (imperfect loop nests, if-conditions, etc.).

To successfully reap the benefits of register tiling, kernel extrac-
tors need to have at least the following three features: (i) support
for complex imperfect loop nests as input, (ii) compact code size
after kernel extraction and (iii) support for coarse-grain parallelism
enabling transformations As discussed earlier support for complex
loops as inputs is essential. The code size after kernel extraction is
becoming increasingly important as accelerators with small, ded-
icated local-memory are becoming prevalent. The third feature –
support for coarse-grain parallelism enabling transformations – is
a subtle but important one. At a high level, to achieve scalable par-
allelization on multi-cores we need coarse-grained parallel units.
The transformations (e.g., loop skewing) used for extracting this
coarse-grained parallelism require the use of a particular model of
loop tiling [3]. We would like the kernel extractor to work with this
tiling model so that it can be used on loops optimzied for coarse-
grained parallelism. This issue is further discussed in Section 2.3.
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Input loop nest structure
Support for (coarse-grain) parallelism

enabling transformations
(e.g., skewing of tiles)

Code size after kernel extraction

TLOG [18] Perfect No Compact – minimal
Jimenez et al. [13] Perfect Yes Long – exponential

PrimeTile [10] Imperfect No Long – exponential
COMDEX Imperfect Yes Compact – minimal

Table 1: Comparison of kernel extraction methods. Imperfect loop nests appear in several important scientific applications and sup-
port for them is essential. Support for (coarse-grain) parallelism enabling transformations are required for scalable parallelization
on multi-cores [3]. Compact code size is preferred in compilation for accelerators with small local stores/I-Cache. COMDEX, the
method proposed in this paper, achieves the best in all the desired features.

Table 1 compares our method (COMDEX) with the previous
methods for kernel extraction on each of the three features.
COMDEX supports all the three features. Whereas none of the
previous methods support more than one desirable feature. The
limitations of TLOG [18] and PrimeTile [10] are partly due to their
intertwining of the extraction of unrollable loop nests with the tiled
code generation technique and partly due to their use of unconven-
tional tiling models (see Section 6 for more details). By separat-
ing out kernel extraction as an independent transformation and by
carefully combining it with conventional tiling models, COMDEX
supports transformations of tiles. By using appropriate slices of
the iteration space to extract kernels, COMDEX supports imper-
fect loop nests and compact code size. The code size after kernel
extraction in PrimeTile [10] and the scheme of Jimenez et al. [13],
grows exponentially with the number of loops tiled. Whereas in
COMDEX (as in TLOG [18]), the code size growth is minimal –
just another version of the extracted kernel and an if-else condition.
The contributions of this paper are listed below.

• A kernel extraction technique, COMDEX, that can support
imperfect loop nests, (parallelism enabling) transformations
of tiled loops, and produces compact code after kernel ex-
traction. To the best of our knowledge, COMDEX is the first
kernel extractor with all these features.

• An implementation of the kernel extractor in the IBM XL
compiler, and performance and code size comparison of
COMDEX with several other techniques.

The next section provides the background on kernel extraction
for register tiling. Section 3 first describes the issues involved in
extracting kernels for imperfect loop nests and supporting trans-
formations of tiles. Section 4 introduces the notion of generalized
inset describes our kernel extraction algorithm. Section 5 describes
the implementation of our technique and evaluates it on a variety of
scientific kernels. We outline related work on Section 6 and provide
conclusions and directions for future work in Section 7.

2. BACKGROUND: REGISTER TILING AND
KERNEL EXTRACTION

Register tiling involves three distinct phases: (i) tiling or block-
ing the loops that needs to be unrolled (ii) fully unrolling the loops
(iii) applying scalar promotion to the unrolled loop body. The
unrolling phase consists of unrolling multiple loops and jamming
or combining all the unrolled iterations. Such unrolling exposes
ILP that can be exploited by the instruction scheduler down the
line. The unrolling also exposes opportunities for scalar promo-
tion where invariant array references are promoted to scalars which
are then assigned to registers by a register allocator. Together the

three phases improve ILP and register locality. A good overview of
unroll-and-jam and scalar promotion can be found in [1].

The sufficient legality condition for register tiling of a set of
loops is the same as that of regular tiling [23], viz., full permutabil-
ity of the loops. In this paper, we assume that the loops have been
appropriately transformed earlier so that register tiling is legal. For
our experiments, we use a scheme that is based on Bondhugula
et al. [2, 3] to find an initial compound transformation which op-
timizes for cache locality / coarse-grained parallelism and makes
rectangular tiling valid on the transformed loop nest. Given a loop
nest for which register tiling is legal, we address the issues involved
in generating the register tiled code, viz., extracting an unrollable
kernel from it and transforming it so that scalar replacement can be
applied. The rest of this section introduces the concepts involved
in register tiling and kernel extraction.

2.1 Full tiles and kernels
Figure 1(a) shows a 2D loop nest typically found in stencil com-

putations. The parallelogram shaped iteration space (for a smaller
program size) is shown in Figure 2. Figure 2 also shows two lev-
els of tiling: an outer-level of 4× 4 tiling (marked as cache tiles)
and inner-level of 2× 2 tiling (marked as register tiles). We dis-
tinguish here two types of register tiles, viz., partial and full. Full
tiles are those that are completely contained in the iteration space.
Partial tiles are partly contained in the iteration space. The origins
— lexicographically earliest iteration point — of these tiles are re-
spectively called as full tile origin and partial tile origin. Since the
full tiles are completely contained in the iteration space, the loops
that iterate over the points in them can have simple constant bounds
which check whether the iterations lie within a given tile. This is
the key property that is exploited to extract a kernel.

We call the loops that enumerate tile origins as tile-loops and
those that enumerate points within a tile as point-loops. We would
like to fully unroll the 2×2 register tiles to expose ILP and exploit
register locality. Unrollers require loops with constant number of
iterations, i.e., the difference between the lower and upper bounds
of a given loop is a constant. We call a loop nest in which each
loop has a constant number of iterations, a kernel. We call kernel
extraction the process of separating out the kernel from a loop nest
with complex bounds.

2.2 Kernel extraction using inset
Figure 1(b) shows the tiled-loop nest (generated using HiTLOG

[11, 18]). As observed earlier, the bounds of the loops that enumer-
ate the iterations contained in the full tiles have constant number
of iterations and are the ones that constitute a kernel – a loop nest
that can be directly unrolled. Based on this key observation, we
can reduce the problem of extracting the kernel to that of splitting a
given set of point-loops into two sets of loops: one enumerating the



1 for (i = 1; i <= Ni; i++)

2 for (j = i+1; j <= i+Nj; j++)

3 S1(i,j);

(a) A 2D iteration space commonly found in stencil computations is shown above.

1 iTLB = -Si+2; iTLB = diTLB/Sie*Si;
2 for (iT = iTLB; iT <= Ni; iT += Si)

3 jTLB = iT-Sj+2; jTLB = djTLB/Sje*Sj;
4 for (jT = jTLB; jT <= iT+Nj+Si -1; jT += Sj)

5 for (i= max(iT ,1);i<=min(iT+Si -1,Ni);i++)

6 for (j= max(jT,i+1);j<=min(jT+Sj -1,i+Nj);j++)

7 S1 ;

(b) Single level tiled code is shown above. Variables iTLB and jTLB are used to shift the lower bounds to the nearest tile
origins. Si, Sj refer to the tile sizes along the i and j directions, respectively.

1 iTLB = -Si+2; iTLB = diTLB/Sie*Si;
2 for (iT = iTLB; iT <= Ni; iT += Si)

3 jTLB = iT-Sj+2; jTLB = djTLB/Sje*Sj;
4 for (jT = jTLB; jT <= iT+Nj+Si -1; jT += Sj)

5 // ----- is (iT,jT) a full tile origin?

6 if ( iT -1 >=0 && -iT+Ni -Si+1 >=0 && -iT+jT-Si >=0 && iT-jT+Nj-Sj+1 >=0 ) {

7 // ------- Unrollable kernel ---------

8 for (i = iT ; i<=iT+Si -1 ; i++ )

9 for (j = jT ; j<=jT+Sj -1 ; j++ )

10 S1 ;

11 } else { // ----- partial tiles --------------

12 for (i= max(iT ,1);i<=min(iT+Si -1,Ni);i++) {

13 for (j= max(jT,i+1);j<=min(jT+Sj -1,i+Nj);j++) {

14 S1 ;

15 }

(c) Code after kernel extraction. Variables iTLB and jTLB are used to shift the lower bounds to the nearest tile origins. Si, Sj

refer to the tile sizes along the i and j directions, respectively.

Figure 1: Original and tiled loops (generated using parameterized outset method [18]) are shown in (a) and (b) respectively. We
call the loops that enumerate tile origins as tile-loops and those that enumerate points within a tile as point-loops. In (c) note the
separation of the kernel with simple rectangular bounds using the inset based condition to check for full tiles.
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(a) Two level tiling of a 2D iteration space.
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(b) Inset for 2×2 register tiles.

Figure 2: (a) Two level tiling of the 2D iteration space shown in Figure 1. 4×4 cache tiles and 2×2 register tiles are shown. (b) The
inset for the 2× 2 register tiles is shown. The inset is constructed by shifting in the lines that define upper bounds of the iteration
space. Note that the inset contains all the full tile origins and none of the partial tile origins.

iterations in full tiles and the other enumerating iterations in partial
tiles. The loops that enumerate the iterations of the full tiles consti-
tute the kernel. In the following discussion we refer to this splitting
as the separation of full and partial tiles.

For the case of perfect loop nests, Renganarayanan et al. [18] in-
troduced a polyhedral set called inset which can be used to separate
the partial and full tiles. The key property of an inset that helps in
the separation is that it contains all the full tile origins and none
of the partial or empty tile origins. The inset for the 2× 2 regis-
ter tiling is shown in Figure 2(b). It can be efficiently constructed
by shifting inside the lines that define the upper bounds of the it-
eration space. The intuition behind the inset is the following: any
point x contained in the inset will be at least s−1 points away from
the boundary in a given direction, where s is the tile size along the
given direction. Hence, if x is a tile origin, the corresponding tile
will be completely contained in the iteration space, and hence a full
tile.

Figure 1(c) shows the code with the separation of full and par-
tial tiles. The condition in line 6, which checks whether a given
tile origin (iT,jT) is a full-tile origin, is generated using the inset.
Note the simple bounds and the constant number of iterations of
the loops in the kernel (lines 8 and 9). If a tile origin corresponds
to a full-tile then the kernel is executed. If it is not a full tile origin,
then the original set of point-loops with complex bounds are exe-
cuted. The kernel can be fully unrolled and the array references in
the unrolled body can be promoted to scalars. Since full tiles are
the majority, a majority of the iterations will enjoy the benefits of
unrolling and scalar promotion.

2.3 Support for coarse-grained parallelism en-
abling transformations

One of the effective ways of extracting coarse-grained paral-
lelism is to first tile the iteration-space and then execute these tiles
in parallel [3]. However, inter-tile dependencies might prevent par-
allel execution of the tiles. In such a case the tiles (i.e., the tile-
graph or tiled-loops) are transformed (typically skewed) to expose
a wave-front style parallelism between tiles. Such transformations
(e.g., skewing) of the tiles and a scheme to generate the trans-
formed tiled-loops are currently known only when the classic (also
referred as conventional) tiling model [12, 23] is used. It is not
known how to transform the tiles and generate transformed tiled-
loops for the unconventional tiling models used by TLOG [18] or
PrimeTile [10]. Further, both TLOG and PrimeTile require the use
of unconventional tiling models, for all the levels tiling and, more
importantly, for the separation of partial and full tiles. Hence the
partial/full tile separation scheme proposed by TLOG or PrimeTile
cannot be directly applied to the case where we need the classic
tiling model to expose coarse-grained parallelism.

The partial vs. full tile separation technique introduced by Ren-
ganarayanan et al. [18] is limited to perfect loop nests. In this pa-
per, we develop a generalized inset which can handle imperfect
loop nests. Using this generalized inset on slices of the iteration
spaces, we are able to extract one or more kernels from a given im-
perfect loop nest. Our scheme uses the classic tiling model [12, 23]
which allows arbitrary transformations (including those required
for coarse grain parallelism) of tiled loops. To use the general-
ized inset with this model, we generate a mapping that maps the
tile origins in the conventional model to those required by the in-
set. The next section introduces the issues involved in extracting
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Figure 3: Outline of kernel extraction usage. Note that except for the kernel extraction, the rest are all provided by standard
polyhedral loop optimization tools.

kernels from imperfect loop nests using a popular example, viz.,
imperfect matrix multiplication computation.

3. KERNEL EXTRACTION FROM TILED
IMPERFECT LOOP NESTS

We model the kernel extraction as a transformation independent
of the other transformations (including tiling) and separate from
code generators. It is designed to be used as a pre-processor to the
register tiler. This independence from other transformations and
support for standard code generators allows us to smoothly inte-
grate COMDEX into a production compiler. A user would typi-
cally apply all the parallelism and locality optimizations, including
multiple levels of tiling, and then use kernel extraction on the re-
sulting loop structure. After kernel extraction, the user can apply
standard unrolling and scalar promotion to the kernel. This typical
usage is outlined in Figure 3. Techniques such as TLOG [18] and
PrimeTile [10] require that the multi-level tiling and tiled loop gen-
eration stages (marked as stages 2 and 3, respectively, in Figure3)
be performed by their custom code generators using tiling models
that do not support transformations. On the other hand, COMDEX
does not have this requirement and can work well with the tradi-
tional polyhedral tiling and loop generation model/tools. It is this
ability that allows COMDEX to support coarse-grain parallelism
enabling transforms such as skewing of tiles.

The input to the kernel extraction algorithm is a multi-level tiled
(possibly imperfect) loop nest. The output is another (imperfect)
loop nest where the kernel is separated out with an if-else condi-
tion as shown in Figure 1(c). The kernel extraction algorithm can
be applied to multiple (sub) loop nests in a given imperfect loop
nest. In such a case, the resulting loop nest would have multiple
kernels separated out. We have found this to be useful in several
benchmarks.

Here we use the imperfect matrix multiplication computation as
an introductory example. For such a simple computation, typical
register tilers use loop distribution to make it perfectly nested and
then apply unroll and jam. However, there are several important
computations with imperfect loops nests for which loop distribution
cannot be used to make them perfectly nested. For such cases we
need more powerful techniques, such as the one proposed in this
paper, to enable register tiling.

Consider the imperfect matrix multiplication code shown in Fig-
ure 4(a). There are two statements, S1 (initializing elements C to 0)
and S2 (computing the result). Let us apply one level of tiling for
registers. We first embed the 2D domain of S1 into 3D with k = 0,
and then apply tiling to the domains. We can view statement S1
(due to the embedding of k = 0) as executing only in the first iter-
ation of the k loop. The tiled domains are then processed by the
Quilleré et al. loop generation algorithm [16], which partitions the
domains into a disjoint union of domains. The important property
of this partitioning is that the resulting set of domains are disjoint,
and for every combination of statements we can identify a unique
domain that contains its iterations. We refer to the Quilleré et al.
loop generation algorithm [16] as QRW-algorithm and the corre-
sponding partitioning, with the property mentioned above, as the
QRW-partitioning.

The loop nest resulting from the QRW-algorithm (and partition-
ing) is shown in Figure 4(b). The resulting loop nest can also be
viewed as a tree as shown in Figure 4(c). We use this tree repre-
sentation as the input to our kernel extraction algorithm. Let us
consider extracting the kernel from the point-loops in lines 9, 10,
and 11 shown in Figure 4(b) (this corresponds the statement S2 con-
tained in the rightmost branch of the tree in Figure 4(c)). The kernel
extraction involves three important steps, viz., (i) computing the it-
eration space slice, (ii) constructing the inset, and (iii) generating



1 for i = 1 ... N
2 for j = 1 ... N
3 C[i,j] = 0; // S1
4 for k = 1 ... N
5 C[i,j] += A[i,j] * B[j,k]; // S2

(a) Pseudo code for imperfect Matrix Matrix Multiplica-
tion (MMM)

1 for iT, jT
2 for kT = 0
3 for i, j
4 for k = 0
5 S1(i,j)
6 for k = 1:Sk -1
7 S2(i,j,k)
8 for kT = 1: kTiles
9 for i

10 for j
11 for k
12 S2(i,j,k)

(b) Pseudo code of imperfect MMM after one level of
tiling.

iT

jT

kT=0 kT=1:kTiles

i

j

i

j

k=kT*Sk:(kT+1)*Sk - 1k=0 k=1:Sk-1

S1(i,j) S2(i,j,k) S2(i,j,k)

(c) AST after QRW-portioning

Figure 4: Imperfectly nested Matrix Matrix Multiplication.

the full-tile condition. These steps are outlined below.
To start with, we need to identify the set of iterations that are

executed by this (lines 9-11 in Figure 4(b)) branch of the tree. We
call this the iteration space slice of the branch. Note that the execu-
tion of the S1 on the first iteration of the k loop results in splitting
of the k loop and its corresponding tile loop kT. This splitting is
reflected in the domains of the branches. The key idea is to use this
splitting or QRW-partitioning to derive the iteration space slice that
correspond to the branch we are interested in (lines 9-11 in Fig-
ure 4(b)). We take the domain of the branch and project it on to the
point-loop dimensions corresponding to indices i,j and k. This
projection yields the desired iteration space slice.

We use the iteration space slice to compute the inset with the ap-
propriate tile sizes. A formal definition of the concepts of iteration
space slice and inset are given in the next section. Once the inset
is computed we use it to generate a condition that checks whether
a given tile origin is contained in the inset. If it is contained, then
it is a full-tile origin. The inset is used to generate an if-else condi-
tion as shown in in Figure 1(c) which separates the kernel (full-tile
loops with simple bounds) from the partial-tile loops. A formal de-
scription of the kernel extraction algorithm and an illustration of it
on an example are given in the next section.

4. KERNEL EXTRACTION ALGORITHM
We represent the domain of each statement Si in the imperfect

loop nest by a polyhedron Pi and the domain of the iteration space
of the imperfect loop nest by P =∪n

i=1Pi, where for i = 1 . . .n : Pi is
the domain of statement Si. We apply a sequence of statement-wise
affine transformations [3] to optimize for cache locality and coarse-
grained parallelism. The result of this transformation is a set of
transformed domains for each statement. The union of these trans-

formed domains is then processed by the polyhedral loop genera-
tor, which uses the QRW-algorithm. Recall that the resulting loops
have the QRW-partition property: the resulting set of domains are
disjoint, and for every combination of statements we can identify a
unique domain that contains its iterations.

We denote this disjoint union of domains, produced from QRW-
partitioning by D =∪x

j=1D j where each domain D j is a single poly-
hedron and corresponds to the set of iterations where a unique set
of statements are executed. The projection of the each D j onto
the point-loop dimensions gives the slice of the original iteration
space which would contain all the full-tile origins. Formally, for
any D j for j = 1 . . .x, the iteration space slice, X j , is defined as
X j = projectOnto(D j,~k), where projectOnto() projects the domain
D j onto the dimensions given by~k.

4.1 Generalized inset
We exploit the QRW-partition property to define the generalized

inset. The key insight behind our generalized inset is the following:
given a set of statements, there is a unique domain associated with
them after QRW-partitioning and the inset of these statements can
be directly computed on the iteration space slice induced by the
QRW-partition. In contrast to the inset for perfect loop nests [18],
we do not use the original iteration space domain, instead we use
the domains induced by the QRW-partitions to compute the inset.

The notion of inset used here is based on Renganarayanan et
al. [18]. An iteration space slice X is represented by a polyhedron
defined as

X = {~z | Q~z≥ (~q+B~p)} (1)

where,~z is a d−dimensional vector, q is a constant vector of size
m, ~p is a vector of size n containing the symbolic parameters of



Algorithm 1 Kernel extraction (COMDEX) algorithm.
Inputs:
Sin : an AST representation of a multi-level tiled imperfect loop
nest; n: number of loops tiled; pLoops : set of point loop numbers;
tLoops : vector of tile loop numbers;~s: vector of register tile sizes.
Outputs:
Sout : an AST with the extracted kernel; kLoops : list of kernel
loops

1. Extract domains. Extract the set of statements enclosed by
the pLoops. Let Di be the domain of these statements and D′

be the union of these domains.

2. Compute iteration space slice. Let D be the projection of the
D′ on to the n inner most dimensions, which correspond to
the original iteration space dimensions. This projection gives
us a slice of the original iteration space, that corresponds to
the region of iterations executed by the point-loops.

3. Compute inset. Compute the inset for D using the tile sizes
~s. Let Inset denote the compute inset.

4. Compute mapping. Scale tile-loop indices (ti) to map them
from tile space numbers to iteration space coordinates. For
i = 1 . . .n : ti = ti× si.

5. Generate full-tile condition. Generate an if condition, using
the inset, that checks whether the scaled tile-loop indices be-
long to the Inset or not.

6. Generate kernel loops. For i = 1 . . .n : extract the pair of
bounds in pLoops[i] that has exactly si iterations. Construct
the kernel loop nest, say kLoops with these bounds for point-
loops.

7. Insert if-condition and kernel into AST. Delete the original
point-loops (pLoops) from Sin. In its place, insert the if-
condition with the kernel (kLoops) as the true branch and
the original point-loops (pLoops) as the false branch. Return
kLoops and the modified AST.

the iteration space, and B is a m× n matrix. The rectangular tiling
related to the kernel extraction is defined by the d dimensional con-
stant vector~s. The generalized inset Xin is defined as

Xin = {~z | Q~z≥ (~q+B~p)−Q′~s′} (2)

where, ~s′ =~s−~1 and Q′ is defined as follows

Q′i j =
{

Qi j, if Qi j < 0
0, if Qi j ≥ 0 . (3)

Given an iteration space slice X , the generalized inset corre-
sponding to it can be computed directly based on Eq. 3, in time
linear in the number of constraints that define X . The correctness
of the generalized inset Xin follows from the correctness of the in-
set [18] for perfect loop nests and the QRW-partition property that
the slice X contains all the iterations related to the given set of
statements.

4.2 Mapping between tiling models
As discussed earlier, support for transformation of tiled loops

is required to enable coarse-grained parallelization. Motivated by
this we use the conventional tiling model to tile the loops. In the
conventional tiling model [12, 23] the the tile-loops enumerate tile

origins in the dense tile space coordinates. On the other hand, the
full-tile condition computed using the inset is defined on the orig-
inal iteration space coordinates. Our scheme generates the tiled
loop nest using conventional tiling model (and hence support par-
allelism enabling transformations) and then maps the tile origins
from the dense tile space coordinates to the original iteration space
coordinates.

Let t1, t2, . . . tn be the tile origins in the dense tile space coordi-
nates, enumerated by a set of n tile-loops. The full-tile condition
derived from inset is constructed by taking a conjunction of the lin-
ear constraints that define the inset. Let f (i1, i2, . . . , in, p1, . . . , pm)≥
0 be one such constraint, where ik : k = 1 . . .n are the index vari-
ables in the iteration space coordinates and pk : k = 1 . . .m are the
program parameters. The required mapping is achieved by scal-
ing each ik by the appropriate tile size sk. That is, each constraint
f (i1, i2, . . . , in, p1, . . . , pm)≥ 0 is transformed to
f (s1i1,s2i2, . . . ,snin, p1, . . . , pm) ≥ 0. For a full-tile condition, this
mapping can be directly computed with the constraints that define
the inset and the tile sizes.

4.3 The COMDEX algorithm
The basic COMDEX algorithm for extracting a kernel from an

abstract syntax tree (AST) representation of the imperfect loop nest
is given in Algorithm 1. The steps of the algorithm and possible
extensions are discussed below.

Domain extraction. In this step, we first extract the statements
that are enclosed in the given point-loops. These statements could
possibly contain if conditions. We compute the domains Di (or
iteration spaces) of these statements and then use their union, D′, as
the representative domain of all the statements. By using the union
we are guaranteed that the full tiles belonging to all the branches in
the body of the point-loops will be accounted for.

Iteration space slice computation. In this step, we compute the
slice of the original iteration space which corresponds to the itera-
tions that will be executed by the given point-loops. We compute
this by projecting the domain D′ on to the n inner most dimensions.
This projection, D, is then used to compute the inset.

Inset computation. The tile sizes ~s and the domain D are used
to compute the inset Xin using Eq. 3. Here the inset is computed
assuming all the dimensions are tiled. We use degenerate cases
of tiling, such as a tile size of 1 or a tile size that is equal to the
maximum number of iterations along the particular dimension, to
achieve partial tiling. The standard polyhedral code generators re-
move any extra point/tile loops that result from such degenerate
tilings. Hence there are no run-time overheads due to this.

Mapping generation. The inset based condition to check for full
tiles expects the tile origins to be in original iteration space coor-
dinates. However, the tile origins enumerated by tile-loops from
conventional tiling models are in the (dense) tile space numbers.
We need to map these to the iteration space coordinates. This is
achieved by scaling each of the tile-loop index by the appropriate
tile size.

Full-tile condition generation. Here we exploit the property of
the inset that a tile origin corresponds to a full-tile origins if and
only if it belongs to the inset. We generate a condition that checks
whether a given tile origins belongs to the inset or not, by gen-
erating a set of linear conditions on the tile-loop indices. These
linear constraints are a direct translation of the constraints that de-
fine the inset polyhedron Xin. Hence, they can be constructed very
efficiently.

Kernel loops generation. In this step, we go through each of the
point-loops in pLoops and we extract the pair of bounds for each
loop with a constant number of iterations that are exactly equal to



the tile size along the corresponding dimension. We then create the
kernel loop nest using new loops with the constant iteration bounds.

Kernel insertion. Using the full-tile if-condition constructed in
step 5, and the kernel loops generated in the previous step, we build
a sub-tree for the if-else block with the full-tile check as the if-
condition, and the kernel loops as the true branch and the original
point-loops as the false branch. The sub-tree in the input AST that
corresponds to the point-loops is replaced by this new if-else block.

4.4 Algorithm walk-through on example
Consider the example imperfect loop structure shown in the left

box of Figure 5. Two levels of tiling are shown. The iCT, jCT,

and kCT loops correspond to the cache level tile-loops and the
iRT, jRT, kRT1, and kRT2 loops correspond to the register level
tile-loops. The kRT1 and kRT2 loops create an imperfect loop nest
structure and the if condition around statement S3 further compli-
cates the structure. Let us consider extracting the kernel for the
point-loops i2,j2, and k2 that contain the statements S2 and S3

and the if condition. The code with the extracted kernel is shown
in Figure 5(b).

Our algorithm first extracts the iteration spaces or domains of
the statements S2 and S3. We take the union of the two domains.
In this case, the if condition makes the domain of S3 a subset of
the domain of S2. We project the domain onto the 3 inner-most
dimensions (corresponding to the point-loops) to extract the slice
of the iteration space that corresponds to the iterations executed
by the point-loops i2,j2, and k2. We construct the inset us-
ing this domain and the register tile sizes s1,s2 and s3. We then
generate an if condition that checks whether a given tile origin
– a (iRT,jRT,kRT2) iteration – is a full tile origin, i.e., whether
(iRT,jRT,kRT2) belongs to the inset. We generate a new set of
point-loops for the kernel with constant (tile size) iterations. We
then generate an if condition with the kernel loops in the true branch
and the original point-loops in the false branch, and replace the
original set of point-loops with this new if condition (and the con-
taining loops). This last step of replacement can be seen by observ-
ing the changes between the code in lines 9-12 of Figure 5(a) and
lines 6-17 of Figure 5(b).

5. IMPLEMENTATION AND EXPERIMEN-
TAL EVALUATION

We have implemented the COMDEX kernel extraction technique
as a part of the polyhedral optimization system of the IBM XL pro-
duction compiler. The polyhedral optimization system performs
automatic parallelization and locality optimization using a refine-
ment of the scheme proposed by Bondhugula et al. [2, 3]. The opti-
mization scheme uses a script to specify and drive the optimizations
— a script is automatically generated for each program and then the
compiler applies the optimizations in the script. Such a scheme fa-
cilitates automatic and/or user driven tuning of the parameters of
the transformations (e.g., tile sizes, unroll factors) and the order
in which transformations are applied. We have implemented the
kernel extraction technique as a command usable via the scripting
interface. This facilitates auto-tuning of the register tile sizes and
the order of the inter- and intra-tile loops.

5.1 Evaluation
We evaluate the performance gains due to COMDEX based reg-

ister tiling by comparing it with the three different schemes, viz.,
XLSMP, AutoPoly, and PrimeTile. XLSMP denotes the XLC com-
piler’s automatic parallelization option which includes a rich set of
traditional loop optimizations, including register tiling. AutoPoly

Name Description Loop nest
structure

Program
size used

STRMM
Product of

triangular and
square matrices

Perfect nest 3000

TMM Triangular matrix
product Perfect nest 3000

DSYRK Symmetric rank k
update Perfect nest 3000

DSYR2K Symmetric rank 2k
update Perfect nest 3000

STRSM Matrix equation
solver

Imperfect
nest 3000

SSYMM Symmetric matrix
matrix operation

Imperfect
nest 2000

TRISOLV Multiple triangular
solver

Imperfect
nest 3000

LUD Lower Upper
Decomposition

Imperfect
nest 2000

Table 2: Summary of benchmarks used for evaluation.
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Figure 7: Performance improvement of COMDEX based regis-
ter tiling. Note that the register tiler was unable to realize this
performance improvement without kernel extraction, since the
unroller and scalar promotion passes were turned on with the
autopoly optimization mode too, but were not applied due to
the complexity of the loop structure.



1 // iCT ,jCT ,kCT : cache tile loops

2 // iRT ,jRT ,kRT : register tile loops

3 // i, j, k : point -loops

4 for iCT , jCT , kCT

5 for iRT , jRT

6 for kRT1 = lb1 ... ub1

7 for i1, j1, k1

8 S1;

9 for kRT2 = lb2 ... ub2

10 for i2, j2, k2

11 S2;

12 if (f(i2,j2,k2)) S3;

(a) Example imperfect loop nest structure.

1 for iCT , jCT , kCT

2 for iRT , jRT

3 for kRT1 = lb1 ... ub1

4 for i1, j1, k1

5 S1;

6 for kRT2 = lb2 ... ub2

7 if ( FULL -TILE(iRT ,jRT ,kRT2) ) {

8 for i2 = lb1 ... lb1 + S1

9 for j2 = lb2 ... lb2 + S2

10 for k2 = lb3 ... lb3 + S3

11 S2;

12 if (f(i2 ,j2,k2)) S3;

13 } else {

14 for i2,j2,k2 //orig point -loops

15 S2;

16 if (f(i,j,k)) S3;

17 }

(b) Example after kernel extraction.

Figure 5: Example imperfect loop nest structure before (a) and after kernel extraction (b). Note that (in (b)) the point-loops (i,j,k)
of the kernel have constant iterations well suited for unrolling. iCT,jCT,kCT refer to the cache tile-loops and iRT, jRT, kRT1,

kRT2 refer to register tile-loops. The short hand construct for iCT, jCT, kCT is used to represent a sequence of nested loops.
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Figure 8: Single thread performance comparison of kernel ex-
traction + register tiling: PrimeTile vs. COMDEX. Note that
for some benchmarks COMDEX produced kernels are 2x or
more faster PrimeTile.
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Figure 9: Comparison of the size of the code after kernel ex-
traction: PrimeTile vs. COMDEX. The kernels extracted by
COMDEX are a factor of 11x to 19x smaller than those ex-
tracted by PrimeTile.
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Figure 6: Execution time speedup of autopoly and autopoly+ext over XLsmp is shown for eight kernels. The baseline XLsmp
corresponds to the automatic parallelization and optimization of the XL compiler. The autopoly corresponds to polyhedral automatic
parallelization system of the XL compiler. The autopoly+ext corresponds to the addition of kernel extraction based register tiling to
autopoly.

denotes the polyhedral automatic parallelizer and locality optimizer
implemented in the XL compiler framework. PrimeTile [10] is the
state-of-the-art kernel extractor for imperfect loop nests. Further,
we also evaluate the compactness of the code size after kernel ex-
traction by comparing COMDEX with PrimeTile.

To highlight the importance of transformation of tiles to obtain
coarse-grained parallelism, and the benefits of applying register
tiling to these coarse-grain parallel loops, we compare the perfor-
mance of XLSMP, AutoPoly and AutoPoly with COMDEX on a
quad core Power5 machine.

For our evaluation, we use a variety of kernels from scientific
computations and matrix operations such as BLAS. All the kernels
used for experiments have non-rectangular iteration spaces and half
of them are perfect loop nests and the rest are imperfect loop nests.
Table 2 provides a summary of the benchmarks and their character-
istics. All the progams were compiled with XLC version 10.1 with
-O3 -qhot -qsmp=auto option and were executed on a quad core
Power5 machine.

Figure 7 shows the speedup obtained purely from register tiling
using the COMDEX technique. This graph highlights the amount
of performance left on the table without kernel extraction, since,

the unrolling and scalar replacement passes were present in the
AutoPoly optimization mode too, but were not applied due to the
complex loop structure.

Figure 8 compares the single thread performance of register tiling
using COMDEX to that of PrimeTile [10]. Note that for 6 out of
7 benchmarks COMDEX out performs PrimeTile — for some ker-
nels COMDEX is 2x or more better than PrimeTile.

Figure 9 compares the code size (in terms of number of lines)
after kernel extraction. The code generated by COMDEX is very
compact and is around a factor of 11x to 19x smaller than the code
generated by PrimeTile. The increase in code size of a kernel ex-
tracted by COMDEX is very minimal, in fact, it increases exactly
by the number kernel loops (equal to the number of loops tiled)
plus two, one for the if condition and another for the else statement.
Other than this, the unrolling of the loops will introduce copies of
statements equal to the unroll factor. But, this will be incurred by
any unroller/register tiler.

The speedup of Autopoly and AutoPoly + COMDEX with re-
spect to XLSMP is shown in Figure 6. The first set of three bars
for each benchmark shows the single thread performance and the
second set of bars shows the performance for 4 threads. The sin-



gle thread performance for AutoPoly and AutoPoly + COMDEX
are normalized with respect to the single thread performance of
XLSMP and similarly the 4 thread performance for AutoPoly and
AutoPoly + COMDEX are normalized with respect to 4 thread
XLSMP performance. Note that the coarse-grain parallelization
done by AutoPoly (via skewing of tiles) is more scalable and per-
forms better than the fine-grain parallelization done by XLSMP.
This highlights the importance of coarse-grain parallelization using
transformation of tiles and performance benefits of regsiter tiling of
these coarse-grained parallel loops.

In summary, the experimental results presented in this section
show that COMDEX can successfully enable register tiling for com-
plex codes and bring substantial performance improvements. Fur-
ther, it can generate very compact code and support parallelism en-
abling transformations, which is shown here to provide scalable
parallel performance.

6. RELATED WORK
Several aspects of register tiling have been studied: legality con-

dition [4, 5, 20], efficient generation of register tiled code [20], cost
models [20, 24, 17] and empirical searches for selecting unroll fac-
tors [22, 14]. Through their pioneering work on multi-level tiling,
Carter et al. [7, 8, 15] showed the significant benefits of register
tiling in the context of sequential as well as parallel applications.

However, there has been limited work on kernel extraction for
register tiling. Some techniques [10, 18, 13], as a part of tiled
loop generation, can separate out unrollable kernels. Table 1 com-
pares these techniques with ours. Imperfect loop nests appear in
several important scientific applications. Techniques proposed by
TLOG [18] and Jimenez et al. [13] are not applicable to them. Fur-
ther, TLOG and PrimeTile [10] do not support transformations on
tiled loops. As discussed in Section 1 and evidenced through the
experimental results in Section 5, these transformations are impor-
tant to achieve scalable parallel performance. The limitations of
TLOG [18] and PrimeTile [10] are partly due to their intertwining
of the extraction of unrollable loop nests with the tiled code gener-
ation technique and partly due to their use of unconventional tiling
models.

Vasilache [21] proposes a one-dimensional kernel extractor that
works on a given loop and extracts the pair of lower and upper
bounds with constant iteration difference. In simple cases, one can
repeatedly apply this one dimensional extractor to extract a multi-
dimensional kernel. For more complex loop structures, it is not
clear how this technique can be automatically applied to multiple
dimensions. Further, similar to other dimension by dimension ap-
proaches such as PrimeTile, the size of the code after kernel extrac-
tion, increases exponentially with the number of loops tiled.

In comparison, COMDEX supports transformations of tiles by
separating out kernel extraction as an independent transformation
and by carefully combining it with conventional tiling models. Fur-
ther, it supports imperfect loops nests and compact code size by
using appropriate slices of the iteration space to extract kernels.

7. CONCLUSIONS AND FUTURE WORK
Register tilers work well with simple loop structures. However,

modern loop optimizers produce complex loop structures which
are hard for register tilers to process. In this paper, we have pro-
posed a separate transformation, COMDEX, which extracts simple
unrollable kernels from complex loop structures. We have shown
that by using COMDEX as a pre-processing to loop unrolling and
scalar promotion, we can achieve significant performance improve-
ment even for fairly complex loop structures. Further, we have

also shown that COMDEX can support coarse-grain parallelism en-
abling transformations, which are essential for scalable paralleliza-
tion. Extensive experimental results demonstrate the advantages
of COMDEX over previous techniques in terms of performance as
well as code size.

As immediate future work, we plan to integrate the kernel extrac-
tion based register tiling with an empirical optimization approach
to select kernels to register tile and to select the unroll factors. An
empirical selection of the order of tile- and point-loops is another
promising direction for locality optimization. Kernel extraction
techniques are also applicable in other contexts such as vectoriza-
tion/SIMDization that benefit from loops with simple bounds.
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