Introduction to Modern Compilers
Dept of CSA
Indian Institute of Science
udayb@iisc.ac.in

https://www.csa.iisc.ac.in/~udayb

https://www.csa.iisc.ac.in/~udayb

COMPILERS FOR Al

» Compilers are language translators: they translate programming languages to
instructions hardware can execute

» Everything is compiled (directly or indirectly): operating systems, databases,
compilers, ...

» Compilers can be for programming languages, programming models or
frameworks embedded in existing languages

» Why and when do we need new compilers?

COMPILERS - THE EARLY DAYS

| Motorola 68000 |

COMPILERS - THE EARLY DAYS

Pascal IBM 801
Fortran S/370
ADA 'Motorola 63000
PL/8 Power
C PowerPC

» M languages, N targets = M +x N compilers! Not scalable!

COMPILERS EVOLUTION - M + N

x86

@ IR Power
| PTX/NVIDIA |

> With an common IR, we have M + N + 1 compilers!

WHAT DOES AN IR LOOK LIKE?

> A representation convenient
to analyze and transform

» Round-trippable form that oty 01 @foolptr nocapture %) {
you can parse and print or tabel %lor. body
for.body: ; preds = %for.body, %entry
> LOW'IQVEI IRS are %sindvars.iv = phi i64 [0, %entry 1, [%indvars.iv.next, %for.body]
. %arrayidx = getelementptr inbounds i32, ptr %a, 164 %indvars.iv
three-address code-like %0 = load 132, ptr %arrayidx, align 4
. %1 = add i32 %0, 2
» IRs have used expressions %inc = add nsw i32 %0, 1
store 132 %inc, ptr %arrayidx, align 4
treeS, 3-add1‘ess COde, %indvars.iv.next = add nuw nsw i64 Sindvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, 64
graphs. br il %exitcond, label %for.end, label Sfor.body
: : : . for.end: ; preds = %for.body
> Static Single Assignment: a e

property of IRs that makes
it convenient; most IRs now
use SSA

MODERN COMPILERS - LLVM IR-BASED

/

Objective-C

DL target desc. L --
HIR/MIR LIVM IR} = @@ - - - {Power]

opt

\ N
SiL N
op \ AN
PTX
Julia |>{ Julia AST 0 !
[Juia j—~{Julia AST] DFIR Y

4
[TensorFlow Graph | -[XLAHLO] [LabVIEW]

» LLVM: modular, reusable, open-source — even better: M +n + 1

COMPILERS FOR Al

Explosion of Al chips and

ML/AI accelerators
programming o
frameworks
Compiler infrastructure?

[]
> Space in between is ruled by hand-written libraries. Not scalable.

» The right compiler tools weren’t available until 2019.

EﬁE @(-w' i

A PYTHON-BASED Al FRAMEWORK

class SelfAttentionLayer(nn.Module):
def __init__(self, feature_size):
super(SelfAttentionLayer, self).__init__()
self.feature_size = feature_size

» Where does performance in
Linear transformations for Q, K, V from the same source.
Python-based_ frameworks self.key = nn.Linear(feature_size, feature_size)

self.query = nn.Linear(feature_size, feature_size)
come from? self.value = nn.Linear(feature_size, feature_size)
. . def forward(self, x, mask=None):
> Largely from hbrarles # Apply linear transformations.
. . keysA= self.key(x)
written in C, C++, CUDA, queries = self.query(x)

values = self.value(x)

and even assembly # Scaled dot-product attention.

scores = torch.matmul(queries, keys.transpose(-2, -1))

> Compﬂers eXiSt: XLA, / torch.sqrt(torch.tensor(self.feature_size, dtype=torch.float32))
TorchInductor # Apply mask (if provided).
(torch.compile), TensorRT O res M oschres. masked_fill(nask == 0, -169)
» Limited in many ways # Apply softmax. o
attention_weights = F.softmax(scores, dim=-1)

> . .
Stlu EVOIVHIg # Multiply weights with values.

output = torch.matmul(attention_weights, values)

return output, attention_weights

HOW IS HARDWARE EVOLVING?

From 2000s to now

» Multiple cores
» Wider SIMD

» Many cores

> Heterogeneity
» Tensor/matmul cores

]
BE

HOW IS HARDWARE EVOLVING?

From 2000s to now

Multiple cores
Wider SIMD

Many cores

Heterogeneity

Tensor/matmul cores

]
]

vVvyVvVvyypy

Low-precision compute instructions BE
L

HOW ARE PROGRAMMING FRAMEWORKS EVOLVING?

ML/AI programming frameworks

» Programmer productivity

» Write less and do more .
» Hardware usability <)

» Deliver performance

» Deliver portability

BIG PICTURE: ROLE OF COMPILERS

General-purpose: Evolutionary Domain-specific: Revolutionary
» Improve existing general-purpose » Build new domain-specific
compilers (for C, C++, Rust, ...) languages and compilers
» Programmers have a lot of control » Programmers say WHAT and not
and complexity HOW they execute
» Limited improvements but wide » Dramatic speedups
impact :

el ffR)

» Important to pursue both

COMPILERS FOR Al

Explosion of Al chips and

ML/AI accelerators
programming =
frameworks ‘ -
N

1 2

O

o
?

Compiler infrastructure?

£ 9o may

» I was visiting Google in 2018 — to tackle TensorFlow compilation for TPUs

COMPILERS FOR Al

Explosion of Al chips and

ML/AI accelerators
programming ‘ i
frameworks -
‘ P
Compiler infrastructure?

2

90 ma

» Realization that a brand new IR was needed

COMPILERS FOR Al

Explosion of Al chips and
ML/AI accelerators

programming =
frameworks

T

O
Y MLIR

?

» MLIR infrastructure: open-sourced by Google in 2019

Do mas 0%,

MLIR

MLIR

» Requirements
» Loops and multi-dimensional arrays (tensors) had to be first class citizens
> Had to be extensible (types, operations, attributes)
» Had to enable building both general-purpose and domain-specific compilers
and even more.
» Had to be open-source with a permissive license

» ML in MLIR: Multi-level

MULTI-DIMENSIONALITY EVERYWHERE: CNN CONVOLUTION

for (n = 0; n < N; n++) // Samples in a batch.
for (0 = 0; o < Oc; o++) // Output feature channels.
for (i = 0; 12 < Ic; i++) // Input feature channels.

for (y = 0; i3 < Y; 1i3++) // Layer height.
for (x = 0; i4 < X; i4++) // Layer width.

for (kh = 0; i5 < Kh; i5++) // Convolution kernel height.

for (kw = 0; i6 < Kw; i6++) // Convolution kernel width.

output[n, o, y, x] += input[n, i, y+kh, x+kw] * weights[o, i, kh, kw];

MLIR: MULTI-LEVEL INTERMEDIATE REPRESENTATION

1. Ops (general purpose to domain spe-
cific) on tensor types / graph form

2. Loop-level / mid-level form

for (i = 05 < N3 i+4)
for (= 03§ < N; j++)
for (k=0 k < N; k++)
st

3. Low-level form: closer to hardware

%patches = "tf.reshape"(%patches, %minus_one, %minor_dim_size)

: (tensor<?x? x ? x ? x £32>, index, index) —> tensor<? x ? x 32>
%mat_out = "tf. matmul"(%patches_flat, %patches_flat){transpose_a : true}

: (tensor<? x ? x 32>, tensor<? x ? x £32>) —> tensor<? x ? x 32>
%vec_out = "tf.reduce_sum"(%patches_flat) {axis: 0} : (tensor<? x ? x 32>) —> tensor<? x £32>

affine.for %i=0 to 8 step 4 {
affine.for %j =0 to 8 step 4 {
affine.for %k =0to 8 step 4 {
affine.for %ii = #map0(%i) to #map1(%i) {
affine.for %jj = #map0(%j) to #map1(%j) {
affine. for %Kk = #map0(%K) to #map1(%k) {

%5 = affine.load %arg0[%ii, %kk] : memref<8 x 8 x vector<64 x f32>>
%6 = affine.load %argl[%kk, %jj] : memref<8 x 8 x vector<64 x f32>>
%7 = affine.load %arg2[%ii, %jj] : memref<8 x 8 x vector<64 x f32>>
%8 = arith.mulf %5, %6 : vector<64xf32>

%9 = arith.addf %7, %8 : vector<64xf32>

affine.store %9, %arg2[%ii, %jj] : memref<8 x 8 x vector<64xf32>>

%v1 = memrefload %a[%i2, %i3] : memref<256 x 64 x vector<16 x f32>>
%v2 = memref.load %b[%i2, %i3] : memref<256 x 64 x vector<16 x £32>>
%v3 = addf %v1, %v2 : vector<16 x 32>

memref.store %v3, %d[%i2, %i3] : memref<256 x 64 x vector<16 x f32>>

POLYHEDRAL FRAMEWORK

for (t =0; t <T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
AL(t+1)%2][11[j] = fO(Alt%2][i+1]1[j], A[t%2][i][j1, A[t%2][i-11[j],
A[t%2][1][j+1], A[t%2][i][j-11);

1. Domains

» Every statement has a domain or an index set — instances that have to be
executed
» Each instance is a vector (of loop index values from outermost to innermost)
Ds ={[t,i,j]|0<t<T-1,1<i,j<N}
2. Dependences

» A dependence is a relation between domain / index set instances that are in
conflict (more on next slide)

3. Schedules
» are functions specifying the order in which the domain instances should be

executed
» Specified statement-wise and typically one-to-one

> T((,)) = (i+jj)or {lij] = [i+ /gl | -}

DOMAINS, DEPENDENCES, AND SCHEDULES

for (tl=2;tl<=2xN-2;tl++) {

for (i=1; i<=N-1; i++) #pragma omp parallel for
for (j=1; j<=N-1; j++) for (t2=max(1,tl-N+1);t2<=min(N-1,t1-1);t2++) {
AT = ALL- 1]”] + A1) }a[(tl-tZ)][tZ] = a[(t1-t2) - 1]1[t2] + a[(tl-t2)]1[t2 - 1];
}

]
N} @
2| e
1F@--
0 1 2 3 - N-1 i

Original space (i,)

» Domain: {[i,j] | 1 <i,j<N-1}

DOMAINS, DEPENDENCES, AND SCHEDULES

for (t1=2;tl<=2xN-2;tl++) {

for (i=1; i<=N-1; i++) #pragma omp parallel for
for (j=1; j<=N-1; j++) for (t2=max(1,tl-N+1);t2<=min(N-1,t1-1);t2++) {
A[11[]] = A[i- 1][]] + A[L][j-11); }a[(tl-tZ)][tZ] = a[(tl-t2) - 1][t2] + a[(tl-t2)][t2 - 1];
}

J

N-1f - @

3 R J

2

1

0 1 2 3 e N-1 i

Original space (i,)

»> Dependences:
1. {[1,]] [z+1]]|1§ §N 20<]<N—1}—(10)

DOMAINS, DEPENDENCES, AND SCHEDULES

for (t1=2;tl<=2*N-2;tl++) {
for (i=1; i<=N-1; i++) #pragma omp parallel for
for (j=1; j<=N-1; j++) for (t2=max(1,tl-N+1);t2<=min(N-1,t1-1);t2++) {
ALiTL3] = Ali- 1”]] + A1) }a[(tl-tZ)][tZ] = al(tl-t2) - 1][t2] + al(t1-t2)][t2 - 1];

0 1 2 3 - N-1 i
Original space (i,)

»> Dependences:
LA = [+1)) 1<
[1<i

—2,0<j<N-1}— (10
2. i,/ = [i,7+1]

i<N
<N—-10<j<N-=2Y'—(0,1)

DOMAINS, DEPENDENCES, AND SCHEDULES

for (t1=2;tl<=2*N-2;tl++) {

for (i=1; i<=N-1; i++) #pragma omp parallel for
for (j=1; j<=N-1; j++) for (t2=max(1,tl-N+1);t2<=min(N-1,t1-1);t2++) {
ALiTL3] = Ali- 1”]] + A1) }a[(tl-tZ)][tZ] = a[(tl-t2) - 11[t2] + a[(t1-t2)1[t2 - 11;
}
]]

Original space (i,) Transformed space (i + j, f)

» Schedule: T(i,j) = (i +7,))
» Dependences: (1,0) and (0,1) now become (1,0) and (1,1) resp.

DOMAINS, DEPENDENCES, AND SCHEDULES

for (t1=2;tl<=2*N-2;tl++) {

for (i=1; i<=N-1; i++) #pragma omp parallel for)
for (j=1; j<=N-1; j++) for (t2=max(1,tl-N+1);t2<=min(N-1,t1-1);t2++) {
AT S ALL-ATLSY + AL L -11); }a[(tl-tZ)][tZ] = al(tl1-t2) - 1][t2] + al(t1-t2)][t2 - 1];
}

0> 0—>0—>0—>0

e E/E/i

Original space (i,) Transformed space (i + j,)

» Schedule: T(i,j) = (i +7,))
» Dependences: (1,0) and (0,1) now become (1,0) and (1,1) resp.

P Tnner loon ic hotar arallel

MODERN COMPILER TOPICS IN THIS COURSE

Compiler optimizations for parallelism and locality

Affine abstraction/Polyhedral framework (only the basics)
MLIR

Practice: Building compilers using MLIR

S e e

Practice: Building compilers and optimizers for Al frameworks (basic
overview, pointers)

6. Foundations: SSA, Dominance, Basic concepts for control flow analysis, data
flow analysis, ...

	Polyhedral Framework

