
Introduction to Modern Compilers

Dept of CSA
Indian Institute of Science

udayb@iisc.ac.in

https://www.csa.iisc.ac.in/∼udayb

https://www.csa.iisc.ac.in/~udayb

COMPILERS FOR AI

▶ Compilers are language translators: they translate programming languages to
instructions hardware can execute

▶ Everything is compiled (directly or indirectly): operating systems, databases,
compilers, ...

▶ Compilers can be for programming languages, programming models or
frameworks embedded in existing languages

▶ Why and when do we need new compilers?

COMPILERS - THE EARLY DAYS

Pascal

Fortran

ADA

PL/8

C

IBM 801

S/370

Motorola 68000

Power

PowerPC

▶ M languages, N targets ⇒ M ∗ N compilers! Not scalable!

COMPILERS - THE EARLY DAYS

Pascal

Fortran

ADA

PL/8

C

IBM 801

S/370

Motorola 68000

Power

PowerPC

▶ M languages, N targets ⇒ M ∗ N compilers! Not scalable!

COMPILERS EVOLUTION - M + N

Ada

Fortran

C

C++

Go

IR

x86

x86-64

Power

ARM

PTX/NVIDIA

▶ With an common IR, we have M + N + 1 compilers!

WHAT DOES AN IR LOOK LIKE?

▶ A representation convenient
to analyze and transform

▶ Round-trippable form that
you can parse and print

▶ Low-level IRs are
three-address code-like

▶ IRs have used expressions
trees, 3-address code,
graphs.

▶ Static Single Assignment: a
property of IRs that makes
it convenient; most IRs now
use SSA

define void @foo(ptr nocapture %a) {
entry:

br label %for.body

for.body: ; preds = %for.body, %entry
%indvars.iv = phi i64 [0, %entry], [%indvars.iv.next, %for.body]
%arrayidx = getelementptr inbounds i32, ptr %a, i64 %indvars.iv
%0 = load i32, ptr %arrayidx, align 4
%1 = add i32 %0, 2
%inc = add nsw i32 %0, 1
store i32 %inc, ptr %arrayidx, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, 64
br i1 %exitcond, label %for.end, label %for.body

for.end: ; preds = %for.body
ret void

}

MODERN COMPILERS - LLVM IR-BASED

C

C++ Clang AST

Objective-C

Rust HIR/MIR

opt

Swift SIL

Julia Julia AST

TensorFlow Graph XLA HLO

LLVM IR

LabVIEW

DFIR

opt

LLVM Machine IR

x86

x86-64

Power

ARM

PTX

...

target desc.

▶ LLVM: modular, reusable, open-source — even better: M + n + 1

COMPILERS FOR AI

ML/AI
programming
frameworks

. . . ?

Compiler infrastructure?

Explosion of AI chips and
accelerators

▶ Space in between is ruled by hand-written libraries. Not scalable.
▶ The right compiler tools weren’t available until 2019.

A PYTHON-BASED AI FRAMEWORK

▶ Where does performance in
Python-based frameworks
come from?

▶ Largely from libraries
written in C, C++, CUDA,
and even assembly

▶ Compilers exist: XLA,
TorchInductor
(torch.compile), TensorRT
▶ Limited in many ways
▶ Still evolving

class SelfAttentionLayer(nn.Module):
def __init__(self, feature_size):

super(SelfAttentionLayer, self).__init__()
self.feature_size = feature_size

Linear transformations for Q, K, V from the same source.
self.key = nn.Linear(feature_size, feature_size)
self.query = nn.Linear(feature_size, feature_size)
self.value = nn.Linear(feature_size, feature_size)

def forward(self, x, mask=None):
Apply linear transformations.
keys = self.key(x)
queries = self.query(x)
values = self.value(x)

Scaled dot-product attention.
scores = torch.matmul(queries, keys.transpose(-2, -1))

/ torch.sqrt(torch.tensor(self.feature_size, dtype=torch.float32))

Apply mask (if provided).
if mask is not None:

scores = scores.masked_fill(mask == 0, -1e9)

Apply softmax.
attention_weights = F.softmax(scores, dim=-1)

Multiply weights with values.
output = torch.matmul(attention_weights, values)

return output, attention_weights

HOW IS HARDWARE EVOLVING?

▶ Multiple cores
▶ Wider SIMD
▶ Many cores
▶ Heterogeneity
▶ Tensor/matmul cores

▶ Low-precision compute instructions

From 2000s to now

HOW IS HARDWARE EVOLVING?

▶ Multiple cores
▶ Wider SIMD
▶ Many cores
▶ Heterogeneity
▶ Tensor/matmul cores
▶ Low-precision compute instructions

From 2000s to now

HOW ARE PROGRAMMING FRAMEWORKS EVOLVING?

▶ Programmer productivity
▶ Write less and do more
▶ Hardware usability
▶ Deliver performance
▶ Deliver portability

ML/AI programming frameworks

BIG PICTURE: ROLE OF COMPILERS

General-purpose: Evolutionary
▶ Improve existing general-purpose

compilers (for C, C++, Rust, ...)
▶ Programmers have a lot of control

and complexity
▶ Limited improvements but wide

impact

Domain-specific: Revolutionary
▶ Build new domain-specific

languages and compilers
▶ Programmers say WHAT and not

HOW they execute
▶ Dramatic speedups

▶ Important to pursue both

COMPILERS FOR AI

ML/AI
programming
frameworks

. . . ?

Compiler infrastructure?

Explosion of AI chips and
accelerators

▶ I was visiting Google in 2018 — to tackle TensorFlow compilation for TPUs

COMPILERS FOR AI

ML/AI
programming
frameworks

. . . ?

Compiler infrastructure?

Explosion of AI chips and
accelerators

▶ Realization that a brand new IR was needed

COMPILERS FOR AI

ML/AI
programming
frameworks

. . . ?

Explosion of AI chips and
accelerators

▶ MLIR infrastructure: open-sourced by Google in 2019

MLIR

▶ Requirements
▶ Loops and multi-dimensional arrays (tensors) had to be first class citizens
▶ Had to be extensible (types, operations, attributes)
▶ Had to enable building both general-purpose and domain-specific compilers

and even more.
▶ Had to be open-source with a permissive license

▶ ML in MLIR: Multi-level

MULTI-DIMENSIONALITY EVERYWHERE: CNN CONVOLUTION

for (n = 0; n < N; n++) // Samples in a batch.
for (o = 0; o < Oc; o++) // Output feature channels.

for (i = 0; i2 < Ic; i++) // Input feature channels.
for (y = 0; i3 < Y; i3++) // Layer height.

for (x = 0; i4 < X; i4++) // Layer width.
for (kh = 0; i5 < Kh; i5++) // Convolution kernel height.

for (kw = 0; i6 < Kw; i6++) // Convolution kernel width.
output[n, o, y, x] += input[n, i, y+kh, x+kw] * weights[o, i, kh, kw];

X

Y

X

Y

Kw

Ic

Kh

Oc Oc

MLIR: MULTI-LEVEL INTERMEDIATE REPRESENTATION

1. Ops (general purpose to domain spe-
cific) on tensor types / graph form

%patches = "tf .reshape"(%patches, %minus_one, %minor_dim_size)
: (tensor<? x ? x ? x ? x f32>, index, index) −> tensor<? x ? x f32>

%mat_out = "tf.matmul"(%patches_flat, %patches_flat){transpose_a : true}
: (tensor<? x ? x f32>, tensor<? x ? x f32>) −> tensor<? x ? x f32>

%vec_out = "tf.reduce_sum"(%patches_flat) {axis: 0} : (tensor<? x ? x f32>) −> tensor<? x f32>

2. Loop-level / mid-level form

for (i = 0; i < N; i++)

for (k = 0; k < N; k++)

for (i = 0; i < N; i++)

S1

S2

for (j = 0; j < N; j++)

S1

for (j = 0; j < N; j++)

S2

0 <= i <= N−1

0 <= j <= N−1

0 <= k <= N−1

i

j

k

affine . for %i = 0 to 8 step 4 {
affine . for %j = 0 to 8 step 4 {

affine . for %k = 0 to 8 step 4 {
affine . for %ii = #map0(%i) to #map1(%i) {

affine . for %jj = #map0(%j) to #map1(%j) {
affine . for %kk = #map0(%k) to #map1(%k) {

%5 = affine.load %arg0[%ii, %kk] : memref<8 x 8 x vector<64 x f32>>
%6 = affine.load %arg1[%kk, %jj] : memref<8 x 8 x vector<64 x f32>>
%7 = affine.load %arg2[%ii, %jj] : memref<8 x 8 x vector<64 x f32>>
%8 = arith.mulf %5, %6 : vector<64xf32>
%9 = arith.addf %7, %8 : vector<64xf32>
affine . store %9, %arg2[%ii, %jj] : memref<8 x 8 x vector<64xf32>>

}
}

}
}

}
}

3. Low-level form: closer to hardware
%v1 = memref.load %a[%i2, %i3] : memref<256 x 64 x vector<16 x f32>>
%v2 = memref.load %b[%i2, %i3] : memref<256 x 64 x vector<16 x f32>>
%v3 = addf %v1, %v2 : vector<16 x f32>
memref.store %v3, %d[%i2, %i3] : memref<256 x 64 x vector<16 x f32>>

POLYHEDRAL FRAMEWORK

for (t = 0; t < T; t++)
for (i = 1; i < N+1; i++)

for (j = 1; j < N+1; j++)
A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],

A[t%2][i][j+1], A[t%2][i][j-1]);

1. Domains
▶ Every statement has a domain or an index set – instances that have to be

executed
▶ Each instance is a vector (of loop index values from outermost to innermost)

DS = {[t, i, j] | 0 ≤ t ≤ T − 1, 1 ≤ i, j ≤ N}
2. Dependences

▶ A dependence is a relation between domain / index set instances that are in
conflict (more on next slide)

3. Schedules
▶ are functions specifying the order in which the domain instances should be

executed
▶ Specified statement-wise and typically one-to-one
▶ T((i, j)) = (i + j, j) or {[i, j] → [i + j, j] | . . . }

DOMAINS, DEPENDENCES, AND SCHEDULES

for (i=1; i<=N-1; i++)
for (j=1; j<=N-1; j++)
A[i][j] = A[i-1][j] + A[i][j-1]);

for (t1=2;t1<=2*N-2;t1++) {
#pragma omp parallel for

for (t2=max(1,t1-N+1);t2<=min(N-1,t1-1);t2++) {
a[(t1-t2)][t2] = a[(t1-t2) - 1][t2] + a[(t1-t2)][t2 - 1];

}
}

i

j

N-1

N-1

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

3

Original space (i, j)

▶ Domain: {[i, j] | 1 ≤ i, j ≤ N − 1}

DOMAINS, DEPENDENCES, AND SCHEDULES

for (i=1; i<=N-1; i++)
for (j=1; j<=N-1; j++)
A[i][j] = A[i-1][j] + A[i][j-1]);

for (t1=2;t1<=2*N-2;t1++) {
#pragma omp parallel for

for (t2=max(1,t1-N+1);t2<=min(N-1,t1-1);t2++) {
a[(t1-t2)][t2] = a[(t1-t2) - 1][t2] + a[(t1-t2)][t2 - 1];

}
}

i

j

N-1

N-1

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

3

Original space (i, j)

▶ Dependences:
1. {[i, j] → [i + 1, j] | 1 ≤ i ≤ N − 2, 0 ≤ j ≤ N − 1} — (1,0)
2. {[i, j] → [i, j + 1] | 1 ≤ i ≤ N − 1, 0 ≤ j ≤ N − 2} — (0,1)

DOMAINS, DEPENDENCES, AND SCHEDULES

for (i=1; i<=N-1; i++)
for (j=1; j<=N-1; j++)
A[i][j] = A[i-1][j] + A[i][j-1]);

for (t1=2;t1<=2*N-2;t1++) {
#pragma omp parallel for

for (t2=max(1,t1-N+1);t2<=min(N-1,t1-1);t2++) {
a[(t1-t2)][t2] = a[(t1-t2) - 1][t2] + a[(t1-t2)][t2 - 1];

}
}

i

j

N-1

N-1

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

3

Original space (i, j)

▶ Dependences:
1. {[i, j] → [i + 1, j] | 1 ≤ i ≤ N − 2, 0 ≤ j ≤ N − 1} — (1,0)
2. {[i, j] → [i, j + 1] | 1 ≤ i ≤ N − 1, 0 ≤ j ≤ N − 2} — (0,1)

DOMAINS, DEPENDENCES, AND SCHEDULES

for (i=1; i<=N-1; i++)
for (j=1; j<=N-1; j++)
A[i][j] = A[i-1][j] + A[i][j-1]);

for (t1=2;t1<=2*N-2;t1++) {
#pragma omp parallel for

for (t2=max(1,t1-N+1);t2<=min(N-1,t1-1);t2++) {
a[(t1-t2)][t2] = a[(t1-t2) - 1][t2] + a[(t1-t2)][t2 - 1];

}
}

i

j

N-1

N-1

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

3

Original space (i, j)

i + j

j

2N-2

N-1

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3 4 5 6 7 8

1

2

3

Transformed space (i + j, j)

▶ Schedule: T(i, j) = (i + j, j)
▶ Dependences: (1,0) and (0,1) now become (1,0) and (1,1) resp.
▶ Inner loop is now parallel

DOMAINS, DEPENDENCES, AND SCHEDULES

for (i=1; i<=N-1; i++)
for (j=1; j<=N-1; j++)
A[i][j] = A[i-1][j] + A[i][j-1]);

for (t1=2;t1<=2*N-2;t1++) {
#pragma omp parallel for

for (t2=max(1,t1-N+1);t2<=min(N-1,t1-1);t2++) {
a[(t1-t2)][t2] = a[(t1-t2) - 1][t2] + a[(t1-t2)][t2 - 1];

}
}

i

j

N-1

N-1

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

3

Original space (i, j)

i + j

j

2N-2

N-1

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3 4 5 6 7 8

1

2

3

Transformed space (i + j, j)

▶ Schedule: T(i, j) = (i + j, j)
▶ Dependences: (1,0) and (0,1) now become (1,0) and (1,1) resp.
▶ Inner loop is now parallel

MODERN COMPILER TOPICS IN THIS COURSE

1. Compiler optimizations for parallelism and locality
2. Affine abstraction/Polyhedral framework (only the basics)
3. MLIR
4. Practice: Building compilers using MLIR
5. Practice: Building compilers and optimizers for AI frameworks (basic

overview, pointers)
6. Foundations: SSA, Dominance, Basic concepts for control flow analysis, data

flow analysis, ...

	Polyhedral Framework

