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OUTLINE
1 Compilers for the 21st Century: Introduction
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RESEARCH IN PROGRAMMING AND COMPILER TECHNOLOGIES

Current:
C, C++, Rust, Java, Python, MATLAB, R, ...

What will the new and disruptive programming technologies of the 21st
century be?
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RESEARCH IN PROGRAMMING AND COMPILER TECHNOLOGIES

1 What do programmers want?
2 How are architectures evolving?

Multiple cores and many cores on a chip
GPUs, accelerators, and heterogeneous parallel architectures
Wider vector processing units
Deep memory hierarchies
Reduced precision
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HIGH-PERFORMANCE COMPILATION: WHAT DO YOU WANT TO

PROGRAM?

Scientific and engineering simulations
Eg: Solving partial differential equations numerically

Embedded vision (Eg: Autonomous/self-driving cars)
Smartphones — HPC in data centers and cloud drives a number of
smartphone technologies
Scientific and Engineering simulations
Data Analytics
Deep Learning
Generative AI, LLMs
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QUESTIONS TO THINK ABOUT

What will the new programming technologies for the emerging domains
be?

Current: C, C++, Rust with OpenMP, MPI, CUDA, OpenCL
Future: New languages, compilers, libraries, and DSLs
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QUESTIONS TO THINK ABOUT

What will the new programming technologies for AI be?
PyTorch is dominant today; JAX is another high-level one. OpenAI Triton is
mid-level.
Just scratches the surface
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THE NEED FOR HIGH PERFORMANCE

More/Larger Data
Instagram — 60 million photos / day
YouTube — 100 hours of video uploaded every minute

Need for a fast/real-time response in some domains
More complex algorithms
Science/Engineering simulations/modeling: Time to solution
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PROGRAMMING MODERN HARDWARE EFFECTIVELY

Compute speed: Eg.: 16 multiply-adds per cycle (AVX-512 unit for fp32)
Synchronization (2 cores 0.25 µs, 8 cores 1.25 µs, 2x8 cores 1.54 µs)
Memory bandwidth ( 10 GB/s per core, 500 GB/s per socket)
High-Performance Programming and Compilation

Exploiting locality (caches, registers)
Exploit single core hardware well (vectorization, ...)
Multi-core parallelism
Reduce synchronization and communication as much as possible

Good scaling without good single thread performance is a great waste of
resources (power, equipment cost)
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A CLASSIFICATION OF VARIOUS APPROACHES

1 Manual low-level (C, C++) with parallel programming models (OpenMP,
CUDA, MPI) with the best optimizing compilers

2 Library-based: C, C++, Python with libraries/packages: MKL, ScaLAPACK,
CuBLAS, CuDNN, Cutlass, CuB

3 Mid-level: Triton, CuTile, Pallas
4 Ultra-high level languages and models including embedded DSLs:

Tensorflow, PyTorch, JAX, R, MATLAB, Halide, Spiral

General goal: Obtain productivity of the last class and the performance of the
first
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EXAMPLE: UNSHARP MASK – AN IMAGE PROCESSING PIPELINE

(C) Bernie Saunders, CC BY-NC-ND 3.0



UNSHARP MASK: COMPUTATION

for (i = 0; i <= 2; i++)
for (j = 2; j <= (R + 1); j++)
for (k = 0; (k <= (C + 3)); k++)
blurx[i][j-2][k] = img[i][j-2][k]*0.0625f + img[i][j-1][k]*0.25f
+ img[i][j][k]*0.375f + img[i][j+1][k]*0.25f + img[i][j+2][k]*0.0625f;

for (i = 0; (i <= 2); i++)
for (j = 2; (j <= (R + 1)); j++)
for (k = 2; (k <= (C + 1)); k++)
blury[i][j][k-2] = blurx[i][j-2][k-2]*0.0625f + blurx[i][j-2][k-1]*0.25f

+ blurx[i][j-2][k]*0.375f + blurx[i][j-2][k+1]*0.25f + blurx[i][j-2][k+2]*0.0625f;

for (i = 0; (i <= 2); i++)
for (j = 2; (j <= (R + 1)); j++)
for (k = 2; (k <= (C + 1)); k++)
sharpen[i][j][k-2] = img[i][j][k]*(1 + weight) + blury[i][j-2][k-2]*(-weight);

for (i = 0; i <= 2; i++)
for (j = 2; j <= R + 1; j++)
for (k = 2; k <= C + 1; k++) {
_ct0 = img[i][j][k];
_ct1 = sharpen[i][j-2][k-2];
_ct2 = (std::abs((img[i][j][k] - blury[i][j-2][k-2])) < threshold)? _ct0: _ct1;
mask[i][j-2][k-2] = _ct2;

}

Iin

blurx

blury

sharpen

masked

A sequential version in C: 18.6 ms / frame
(using GCC with opts, quad-core Nehalem, 720p video)
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UNSHARP MASK - A NAIVE OPENMP VERSION

for (i = 0; i <= 2; i++)
#pragma omp parallel for
for (j = 2; j <= (R + 1); j++)

#pragma ivdep
for (k = 0; k <= C + 3; k++)
blurx[i][j-2][k] = img[i][j-2][k]*0.0625f + img[i][j-1][k]*0.25f
+ img[i][j][k]*0.375f + img[i][j+1][k]*0.25f + img[i][j+2][k]*0.0625f;

for (i = 0; i <= 2; i++)
#pragma omp parallel for
for (j = 2; j <= R + 1; j++)

#pragma ivdep
for (k = 2; k <= C + 1; k++)
blury[i][j][k-2] = blurx[i][j-2][k-2]*0.0625f + blurx[i][j-2][k-1]*0.25f

+ blurx[i][j-2][k]*0.375f + blurx[i][j-2][k+1]*0.25f + blurx[i][j-2][k+2]*0.0625f;

for (i = 0; i <= 2; i++)
#pragma omp parallel for
for (j = 2; j <= R + 1; j++)

#pragma ivdep
for (k = 2; k <= C + 1; k++)
sharpen[i][j][k-2] = img[i][j][k]*(1 + weight) + blury[i][j-2][k-2]*(-weight);

for (i = 0; i <= 2; i++)
#pragma omp parallel for private(_ct0,_ct1,_ct2)
for (j = 2; j <= R + 1; j++)

#pragma ivdep
for (k = 2; k <= C + 1; k++) {
_ct0 = img[i][j][k];
_ct1 = sharpen[i][j-2][k-2];
_ct2 = (std::abs((img[i][j][k] - blury[i][j-2][k-2])) < threshold)? _ct0: _ct1;
mask[i][j-2][k-2] = _ct2;

}

Iin

blurx

blury

sharpen

masked

20.2 ms / frame on 1 thread, 18.02 ms / frame on 4 threads

13/122



UNSHARP MASK - A BETTER OPENMP VERSION

#pragma omp parallel for
for (j = 2; j <= (R + 1); j++)
for (i = 0; i <= 2; i++)

#pragma ivdep
for (k = 0; (k <= (C + 3)); k++)
blurx[i][j-2][k] = img[i][j-2][k]*0.0625f + img[i][j-1][k]*0.25f
+ img[i][j][k]*0.375f + img[i][j+1][k]*0.25f + img[i][j+2][k]*0.0625f;

#pragma omp parallel for
for (j = 2; (j <= (R + 1)); j++)
for (i = 0; i <= 2; i++)

#pragma ivdep
for (k = 2; (k <= (C + 1)); k++)
blury[i][j][k-2] = blurx[i][j-2][k-2]*0.0625f + blurx[i][j-2][k-1]*0.25f

+ blurx[i][j-2][k]*0.375f + blurx[i][j-2][k+1]*0.25f + blurx[i][j-2][k+2]*0.0625f;

#pragma omp parallel for
for (j = 2; (j <= (R + 1)); j++)
for (i = 0; i <= 2; i++)

#pragma ivdep
for (k = 2; (k <= (C + 1)); k++)
sharpen[i][j][k-2] = img[i][j][k]*(1 + weight) + blury[i][j-2][k-2]*(-weight);

#pragma omp parallel for private(_ct0,_ct1,_ct2)
for (j = 2; j <= R + 1; j++)
for (i = 0; i <= 2; i++)

#pragma ivdep
for (k = 2; k <= C + 1; k++) {
_ct0 = img[i][j][k];
_ct1 = sharpen[i][j-2][k-2];
_ct2 = (std::abs((img[i][j][k] - blury[i][j-2][k-2])) < threshold)? _ct0: _ct1;
mask[i][j-2][k-2] = _ct2;

}

Iin

blurx

blury

sharpen

masked

18.6 ms / frame on 1 thread, 15.03 ms / frame on 4 threads
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OPTIMIZING UNSHARP MASK

1 Write with OpenCV library (with Python bindings)

@jit("float32[::](uint8[::],␣int64)", cache = True, nogil = True)
def unsharp_cv(frame, lib_func):
frame_f = np.float32(frame) / 255.0
res = frame_f
kernelx = np.array([1, 4, 6, 4, 1], np.float32) / 16
kernely = np.array([[1], [4], [6], [4], [1]], np.float32) / 16
blury = sepFilter2D(frame_f, -1, kernelx, kernely)
sharpen = addWeighted(frame_f, (1 + weight), blury, (-weight), 0)
th, choose = threshold(absdiff(frame_f, blury), thresh, 1, THRESH_BINARY)
choose = choose.astype(bool)
np.copyto(res, sharpen, ’same_kind’, choose)
return res

Performance: 35.9 ms / frame
2 Write in a dynamic language like Python and use a JIT (Numba) — performance: 79 ms / frame
3 A naive C version parallelized with OpenMP: 18.02 ms / frame
4 A version with sophisticated optimizations (fusion + overlapped tiling): 8.97 ms / frame (in

this course, we will study how to get to this, and build compilers/code generators that can
achieve this automatically)

Video demo
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UNSHARP MASK - A HIGHLY OPTIMIZED VERSION

Note: Code below is indicative and not meant for reading. Zoom into soft copy or browse
source code repo listed in references.

#pragma omp parallel for schedule(static)

for (int _T_i1 = 0; (_T_i1 <= ((R + 1) / 32)); _T_i1 = (_T_i1 + 1))
{

int _ct0 = (((R + 1) < ((32 * _T_i1) + 31))? (R + 1): ((32 * _T_i1) + 31));

int _ct1 = ((2 > (32 * _T_i1))? 2: (32 * _T_i1));

int _ct4 = (((R + 1) < ((32 * _T_i1) + 31))? (R + 1): ((32 * _T_i1) + 31));

int _ct5 = ((2 > (32 * _T_i1))? 2: (32 * _T_i1));

int _ct8 = (((R + 1) < ((32 * _T_i1) + 31))? (R + 1): ((32 * _T_i1) + 31));

int _ct9 = ((2 > (32 * _T_i1))? 2: (32 * _T_i1));

int _ct12 = (((R + 1) < ((32 * _T_i1) + 31))? (R + 1): ((32 * _T_i1) + 31));

int _ct13 = ((2 > (32 * _T_i1))? 2: (32 * _T_i1));

for (int _T_i2 = -1; (_T_i2 <= ((C + 3) / 256)); _T_i2 = (_T_i2 + 1))
{

int _ct2 = (((C + 3) < ((256 * _T_i2) + 261))? (C + 3): ((256 * _T_i2) + 261));

int _ct3 = ((0 > (256 * _T_i2))? 0: (256 * _T_i2));

int _ct6 = (((C + 1) < ((256 * _T_i2) + 260))? (C + 1): ((256 * _T_i2) + 260));

int _ct7 = ((2 > ((256 * _T_i2) + 1))? 2: ((256 * _T_i2) + 1));

int _ct10 = (((C + 1) < ((256 * _T_i2) + 259))? (C + 1): ((256 * _T_i2) + 259));

int _ct11 = ((2 > ((256 * _T_i2) + 2))? 2: ((256 * _T_i2) + 2));

int _ct14 = (((C + 1) < ((256 * _T_i2) + 258))? (C + 1): ((256 * _T_i2) + 258));

int _ct15 = ((2 > ((256 * _T_i2) + 3))? 2: ((256 * _T_i2) + 3));

for (int _i0 = 0; (_i0 <= 2); _i0 = (_i0 + 1))
{

for (int _i1 = _ct1; (_i1 <= _ct0); _i1 = (_i1 + 1))
{
#pragma ivdep

for (int _i2 = _ct3; (_i2 <= _ct2); _i2 = (_i2 + 1))
{
blurx[_i0][((-32 * _T_i1) + _i1)][((-256 * _T_i2) + _i2)] = (((((img[(((_i0 * ((R + 4) * (C + 4))) + ((-2 + _i1) * (C + 4))) + _i2)] * 0.0625f) + (img[(((_i0 * ((R + 4) * (C + 4))) + ((-1 + _i1) * (C + 4))) + _i2)] * 0.25f)) + (img[(((_i0 * ((R + 4) * (C + 4)))

+ (_i1 * (C + 4))) + _i2)] * 0.375f)) + (img[(((_i0 * ((R + 4) * (C + 4))) + ((1 + _i1) * (C + 4))) + _i2)] * 0.25f)) + (img[(((_i0 * ((R + 4) * (C + 4))) + ((2 + _i1) * (C + 4))) + _i2)] * 0.0625f));
}

}
}

for (int _i0 = 0; (_i0 <= 2); _i0 = (_i0 + 1))
{

for (int _i1 = _ct5; (_i1 <= _ct4); _i1 = (_i1 + 1))
{
#pragma ivdep

for (int _i2 = _ct7; (_i2 <= _ct6); _i2 = (_i2 + 1))
{
blury[_i0][((-32 * _T_i1) + _i1)][((-256 * _T_i2) + _i2)] = (((((blurx[_i0][((-32 * _T_i1) + _i1)][(-2 + ((-256 * _T_i2) + _i2))] * 0.0625f) + (blurx[_i0][((-32 * _T_i1) + _i1)][(-1 + ((-256 * _T_i2) + _i2))] * 0.25f))

+ (blurx[_i0][((-32 * _T_i1) + _i1)][((-256 * _T_i2) + _i2)] * 0.375f)) + (blurx[_i0][((-32 * _T_i1) + _i1)][(1 + ((-256 * _T_i2) + _i2))] * 0.25f)) + (blurx[_i0][((-32 * _T_i1) + _i1)][(2 + ((-256 * _T_i2) + _i2))] * 0.0625f));
}

}
}

for (int _i0 = 0; (_i0 <= 2); _i0 = (_i0 + 1))
{

for (int _i1 = _ct9; (_i1 <= _ct8); _i1 = (_i1 + 1))
{
#pragma ivdep

for (int _i2 = _ct11; (_i2 <= _ct10); _i2 = (_i2 + 1))
{
sharpen[_i0][((-32 * _T_i1) + _i1)][((-256 * _T_i2) + _i2)] = ((img[(((_i0 * ((R + 4) * (C + 4))) + (_i1 * (C + 4))) + _i2)] * (1 + weight)) + (blury[_i0][((-32 * _T_i1) + _i1)][((-256 * _T_i2) + _i2)] * -(weight)));

}
}

}

for (int _i0 = 0; (_i0 <= 2); _i0 = (_i0 + 1))
{

for (int _i1 = _ct13; (_i1 <= _ct12); _i1 = (_i1 + 1))
{
#pragma ivdep

for (int _i2 = _ct15; (_i2 <= _ct14); _i2 = (_i2 + 1))
{
float _ct16 = img[(((_i0 * ((R + 4) * (C + 4))) + (_i1 * (C + 4))) + _i2)];
float _ct17 = sharpen[_i0][((-32 * _T_i1) + _i1)][((-256 * _T_i2) + _i2)];
float _ct18 = ((std::abs((img[(((_i0 * ((R + 4) * (C + 4))) + (_i1 * (C + 4))) + _i2)] - blury[_i0][((-32 * _T_i1) + _i1)][((-256 * _T_i2) + _i2)])) < threshold)? _ct16: _ct17);
mask_flip[((((_i1-2) * (3 * C)) + ((_i2 - 2) * 3)) + (_i0))] = _ct18;

}
}

}
}

}

Iin

blurx

blury

sharpen

masked

15.5 ms / frame on 1 threads, 8.97 ms / frame on 4 threads 16/122



DOMAIN-SPECIFIC LANGUAGES (DSL)

The example motivates a domain-specific language + compiler approach
High-performance domain-specific language + compiler: productivity
similar to ultra high-level or high-level but performance similar to manual or
even better!
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DOMAIN-SPECIFIC LANGUAGES (DSL)

DSLs
Exploit domain information to improve programmability, performance, and
portability
Expose greater information to the compiler and programmer specifies less
abstract away many things from programmers (parallelism, memory)

DSL compilers
can “see” across routines – allow whole program optimization
generate optimized code for multiple targets
Programmers say what to execute and not how to execute
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BIG PICTURE: ROLE OF COMPILERS

General-Purpose
Improve existing general-purpose
compilers (for C, C++, Python, ...)
Programmers say a LOT
LLVM/Polly, GCC/Graphite

Domain-Specific
Build new domain-specific
languages and compilers
Programmers say WHAT they
execute and not HOW they execute
SPIRAL, Halide, Tensorflow,
Pytorch, ...

Both approaches share infrastructure
Important to pursue both
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OUTLINE
1 Compilers for the 21st Century: Introduction

Compilers for AI
2 Control Flow Analysis
3 Data Flow Analysis
4 Static Single Assignment and SSA Transformations
5 Mid-level Transformations

Data Dependences, Transformations, Parallelization
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COMPILERS FOR AI

Compilers are language translators: they translate programming languages
to instructions hardware can execute
One of the pillars of Computer Systems
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COMPILERS - THE EARLY DAYS

Pascal

ALGOL

ADA

PL/8

C

IBM 801

S/370

Motorola 68000

Power

PowerPC

M languages, N targets⇒M ∗N compilers! Not scalable!
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COMPILERS EVOLUTION - M + N

Ada

Fortran

C

C++

Go

IR

x86

x86-64

Power

ARM

PTX/NVIDIA

With an common IR, we have M + N + 1 compilers!
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WHAT DOES AN IR LOOK LIKE?

A representation convenient
to analyze and transform
Round-trippable form that
you can parse and print
Low-level IRs are
three-address code-like
IRs have used expressions
trees, 3-address code,
graphs.
Static Single Assignment: a
property of IRs that makes
it convenient; most IRs now
use SSA

define void @foo(ptr nocapture %a) {
entry:

br label %for.body

for.body: ; preds = %for.body, %entry
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%arrayidx = getelementptr inbounds i32, ptr %a, i64 %indvars.iv
%0 = load i32, ptr %arrayidx, align 4
%1 = add i32 %0, 2
%inc = add nsw i32 %0, 1
store i32 %inc, ptr %arrayidx, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, 64
br i1 %exitcond, label %for.end, label %for.body

for.end: ; preds = %for.body
ret void

}
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MODERN COMPILERS - LLVM IR-BASED

C

C++ Clang AST

Objective-C

Rust HIR/MIR

opt

Swift SIL

Julia Julia AST

TensorFlow/JAX XLA HLO

LLVM IR

PyTorch

FX, Torch IR, Triton

opt

LLVM Machine IR

x86

x86-64

Power

ARM

PTX

...

target desc.

LLVM: modular, reusable, open-source, but too low-level, not extensible for
higher-order languages.
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COMPILERS FOR AI

AI programming
frameworks

. . . ?

Compiler infrastructure?

Explosion of AI chips and
accelerators

Space in between is ruled by hand-written libraries. Not scalable.
The right tools weren’t available until recently.
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HOW DO YOU PROGRAM AI HARDWARE?

High, mid, and low-level
abstractions

High: PyTorch, JAX, ...

Mid: OpenAI Triton, cuTile

Low: CUDA, C/C++,
CUTLASS, ...

All three approaches need/use
compilers in different ways

They also share/rest on the
same underlying infrastructure

Eg: Triton, MLIR, LLVM, PTX
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PYTHON-BASED PROGRAMMING FRAMEWORKS: TODAY

Where does performance in
Python-based frameworks
come from?
Largely from libraries
written in C, C++, CUDA,
and even assembly
Compilers exist: XLA,
TorchInductor, TensorRT

Limited in many ways:
“semi-compilers”,
fragmented infra,
performance
Still evolving

class SelfAttentionLayer(nn.Module):
def __init__(self, feature_size):

super(SelfAttentionLayer, self).__init__()
self.feature_size = feature_size

# Linear transformations for Q, K, V from the same source.
self.key = nn.Linear(feature_size, feature_size)
self.query = nn.Linear(feature_size, feature_size)
self.value = nn.Linear(feature_size, feature_size)

def forward(self, x, mask=None):
# Apply linear transformations.
keys = self.key(x)
queries = self.query(x)
values = self.value(x)

# Scaled dot-product attention.
scores = torch.matmul(queries, keys.transpose(-2, -1))

/ torch.sqrt(torch.tensor(self.feature_size, dtype=torch.float32))

# Apply mask (if provided).
if mask is not None:

scores = scores.masked_fill(mask == 0, -1e9)

# Apply softmax.
attention_weights = F.softmax(scores, dim=-1)

# Multiply weights with values.
output = torch.matmul(attention_weights, values)

return output, attention_weights
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OPENING MULTI-LEVEL DOORS TO PROGRAMMING AI HARDWARE

1 High-level Python-based programming
frameworks (e.g. PyTorch, JAX),

2 Compiler support for (1) that could be
turned off/on (e.g. torch.compile),

3 Mid/low-level programming support (e.g.,
CUDA, CUTLASS, CuTile, Triton)

4 Low-level MLIR dialects that expose their
hardware intrinsics/virtual ISA on top of
which both (2) compilers and (3) low-level
frameworks rest,

5 Ability to use inline virtual ISA.
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COMPILER AUTO-PARALLELIZATION IS ALREADY HERE!

Recent PyTorch 2 ASPLOS
paper
PyTorch 2: Faster Machine
Learning Through Dynamic
Python Bytecode Transformation
and Graph Compilation, Ansel
et al. (Meta), ASPLOS 2024.
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HOW IS HARDWARE EVOLVING? (1/2)

Multiple cores (early 2000s)
Wider SIMD (early 2000s)
Many cores (late 2000s)
Heterogeneity (2000s/2010s)
Tensor/matmul cores (mid 2010s)
Low-precision compute instructions
(late 2010s/2020s)

From 2000s to now
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HOW IS HARDWARE EVOLVING? (2/2)

Example: NVIDIA H100 chip
80 GB of GPU DRAM
3.35 TB/s of memory bandwidth (HBM3).
990 TFLOPS for fp16 tensor operations, 1.98 PFLOPS for int8.
50 MB of L2 cache.
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HOW ARE PROGRAMMING FRAMEWORKS EVOLVING?

Programmer productivity
Write less and do more
Hardware usability
Deliver performance
Deliver portability

AI programming frameworks
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COMPILERS FOR AI

AI programming
frameworks

. . . ?

Compiler infrastructure?

Explosion of AI chips and
accelerators

MLIR infrastructure: open-sourced by Google in 2019
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MLIR

ML in MLIR: Multi-level
Characteristics

Loops and multi-dimensional arrays (tensors) had to be first class citizens
Had to be extensible (types, operations, attributes)
Had to enable building both general-purpose and domain-specific compilers
and even more.
Had to be open-source with a permissive license
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MULTI-DIMENSIONALITY EVERYWHERE: CNN CONVOLUTION

for (n = 0; n < N; n++) // Samples in a batch.
for (o = 0; o < Oc; o++) // Output feature channels.
for (i = 0; i2 < Ic; i++) // Input feature channels.
for (y = 0; i3 < Y; i3++) // Layer height.
for (x = 0; i4 < X; i4++) // Layer width.
for (kh = 0; i5 < Kh; i5++) // Convolution kernel height.
for (kw = 0; i6 < Kw; i6++) // Convolution kernel width.
output[n, o, y, x] += input[n, i, y+kh, x+kw] * weights[o, i, kh, kw];

X

Y

X

Y

Kw

Ic

Kh

Oc Oc
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MLIR: MULTI-LEVEL INTERMEDIATE REPRESENTATION

1. Ops (general purpose to domain spe-
cific) on tensor types / graph form

%patches = "tf.reshape"(%patches, %minus_one, %minor_dim_size)
: (tensor<? x ? x ? x ? x f32>, index, index) −> tensor<? x ? x f32>

%mat_out = "tf.matmul"(%patches_flat, %patches_flat){transpose_a : true}
: (tensor<? x ? x f32>, tensor<? x ? x f32>) −> tensor<? x ? x f32>

%vec_out = "tf.reduce_sum"(%patches_flat) {axis: 0} : (tensor<? x ? x f32>) −> tensor<? x f32>

2. Loop-level / mid-level form

for (i = 0; i < N; i++)

for (k = 0; k < N; k++)

for (i = 0; i < N; i++)

S1

S2

for (j = 0; j < N; j++)

S1

for (j = 0; j < N; j++)

S2

0 <= i <= N−1

0 <= j <= N−1

0 <= k <= N−1

i

j

k

affine.for %i = 0 to 8 step 4 {
affine.for %j = 0 to 8 step 4 {
affine.for %k = 0 to 8 step 4 {
affine.for %ii = #map0(%i) to #map1(%i) {
affine.for %jj = #map0(%j) to #map1(%j) {
affine.for %kk = #map0(%k) to #map1(%k) {

%5 = affine.load %arg0[%ii, %kk] : memref<8 x 8 x vector<64 x f32>>
%6 = affine.load %arg1[%kk, %jj] : memref<8 x 8 x vector<64 x f32>>
%7 = affine.load %arg2[%ii, %jj] : memref<8 x 8 x vector<64 x f32>>
%8 = arith.mulf %5, %6 : vector<64xf32>
%9 = arith.addf %7, %8 : vector<64xf32>
affine.store %9, %arg2[%ii, %jj] : memref<8 x 8 x vector<64xf32>>

}
}

}
}

}
}

3. Low-level form: closer to hardware
%v1 = memref.load %a[%i2, %i3] : memref<256 x 64 x vector<16 x f32>>
%v2 = memref.load %b[%i2, %i3] : memref<256 x 64 x vector<16 x f32>>
%v3 = addf %v1, %v2 : vector<16 x f32>
memref.store %v3, %d[%i2, %i3] : memref<256 x 64 x vector<16 x f32>>

37/122



MODERN COMPILER TOPICS IN THIS COURSE

1 Foundations: SSA, Dominance, Basic concepts for control flow analysis and
data flow analysis

2 Compiler optimizations for parallelism and locality
3 Affine abstraction/Polyhedral framework (only the basics)
4 MLIR
5 Practice: Building compilers using MLIR
6 Practice: Building compilers and optimizers for AI frameworks (basic

overview, pointers)
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BASIC BLOCKS AND CONTROL FLOW GRAPH

A basic block is a maximal straight-line code sequence that has a single entry
point that is at its first instruction, and a single exit point that is at its last
instruction.

Whenever the first instruction is executed, the rest of the instructions are
executed exactly once, and in sequence.
No code within it is the target of any jump instruction
Only the last instruction cause control to leave the basic block

A control flow graph is a directed graph where the nodes are basic blocks and
the edges represent transfer of program control
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DOMINATORS

A node d in a flow graph dominates node n, written d dom n, if every path
from the initial node of the control flow graph to n goes through d
The node x strictly dominates y, if x dominates y and x ̸= y
x is the immediate dominator of y, if x is the closest strict dominator of y
A dominator tree shows all the immediate dominator relationships
How do you find the dominators?

What can you say about a node’s predecessors’ dominators and its dominators?
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ALGORITHM TO FIND DOMINATORS

Input : CFG (V,E)
Output: Dom(n) ∀n ∈ V

1 Dom(s)← {s}
2 for each n ∈ V − {s} do
3 Dom(n)← V
4 while changes to Dom(n) occur do
5 for each n ∈ V − {s} do
6 IN(n)← ∩p∈pred(n)Dom(p)
7 for each n ∈ V − {s} do
8 Dom(n)← {n} ∪ IN(n)

42/122



Dominator Example

Y.N. Srikant Control Flow Analysis



DFS ON CFG, BACK EDGES, NATURAL LOOPS

A DFS will yield tree edges, forward edges, cross edges, and retreating edges
— what are these?
A back edge in a CFG is an edge whose head dominates the tail (definition is
not the same as the one used for depth first search in graphs)
A natural loop of a back edge is the set of nodes comprising the head node of
the back edges and the nodes that can reach the tail of the back edge without
going through the head node

It is intuitively the region of the program that may be executed
iteratively/repeatedly with the back edge being used for looping and with the
head of the back edge as the only entry point to this region
It is intuitively the loop body of a for loop or a similar iterative construct (while,
do/while)
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Dominators, Back Edges, and Natural Loops

Y.N. Srikant Control Flow Analysis



Dominators, Back Edges, and Natural Loops
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Depth-First Numbering Example 1

Y.N. Srikant Control Flow Analysis



Depth-First Numbering Example 2
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CONTROL FLOW GRAPH REDUCIBILITY

A control flow graph is reducible if all its retreating edges are back edges
A control flow graph is reducible if if it can be reduced to a single node by
repeatedly applying T1 and T2 transformations

T1: Eliminate a self loop
T2: Merge a single entry node into its parent

Are your flow graphs reducible?
What about structured programming?
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Control flow Analsis, Frances Allen, 1970.
http://dl.acm.org/citation.cfm?id=808479
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Reducibility - Example 1

Y.N. Srikant Control Flow Analysis



Reducibility - Example 2

Y.N. Srikant Control Flow Analysis
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Data-flow analysis

These are techniques that derive information about the
flow of data along program execution paths
An execution path (or path) from point p1 to point pn is a
sequence of points p1,p2, ...,pn such that for each
i = 1,2, ...,n − 1, either

1 pi is the point immediately preceding a statement and pi+1
is the point immediately following that same statement, or

2 pi is the end of some block and pi+1 is the beginning of a
successor block

In general, there is an infinite number of paths through a
program and there is no bound on the length of a path
Program analyses summarize all possible program states
that can occur at a point in the program with a finite set of
facts
No analysis is necessarily a perfect representation of the
state

Y.N. Srikant Data-flow Analysis



Uses of Data-flow Analysis

Program debugging
Which are the definitions (of variables) that may reach a
program point? These are the reaching definitions

Program optimizations
Constant folding
Copy propagation
Common sub-expression elimination etc.

Y.N. Srikant Data-flow Analysis



Data-Flow Analysis Schema

A data-flow value for a program point represents an
abstraction of the set of all possible program states that
can be observed for that point
The set of all possible data-flow values is the domain for
the application under consideration

Example: for the reaching definitions problem, the domain
of data-flow values is the set of all subsets of of definitions
in the program
A particular data-flow value is a set of definitions

IN[s] and OUT [s]: data-flow values before and after each
statement s
The data-flow problem is to find a solution to a set of
constraints on IN[s] and OUT [s], for all statements s

Y.N. Srikant Data-flow Analysis



The Reaching Definitions Problem

We kill a definition of a variable a, if between two points
along the path, there is an assignment to a
A definition d reaches a point p, if there is a path from the
point immediately following d to p, such that d is not killed
along that path
Unambiguous and ambiguous definitions of a variable

a := b+c
(unambiguous definition of ’a’)

...
*p := d

(ambiguous definition of ’a’, if ’p’ may point to variables
other than ’a’ as well; hence does not kill the above
definition of ’a’)

...
a := k-m

(unambiguous definition of ’a’; kills the above definition of
’a’)

Y.N. Srikant Data-flow Analysis



The Reaching Definitions Problem(2)

We compute supersets of definitions as safe values
It is safe to assume that a definition reaches a point, even
if it does not.
In the following example, we assume that both a=2 and
a=4 reach the point after the complete if-then-else
statement, even though the statement a=4 is not reached
by control flow
if (a==b) a=2; else if (a==b) a=4;

Y.N. Srikant Data-flow Analysis



The Reaching Definitions Problem (3)

The data-flow equations (constraints)

IN[B] =
⋃

P is a predecessor of B

OUT [P]

OUT [B] = GEN[B]
⋃

(IN[B]− KILL[B])

IN[B] = φ, for all B (initialization only)

If some definitions reach B1 (entry), then IN[B1] is
initialized to that set
Forward flow DFA problem (since OUT [B] is expressed in
terms of IN[B]), confluence operator is ∪
GEN[B] = set of all definitions inside B that are “visible”
immediately after the block - downwards exposed
definitions
KILL[B] = union of the definitions in all the basic blocks of
the flow graph, that are killed by individual statements in B

Y.N. Srikant Data-flow Analysis



Reaching Definitions Analysis: An Example - Pass 1
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Reaching Definitions Analysis: An Example - Pass 2
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Reaching Definitions Analysis: An Example - Final

Y.N. Srikant Data-flow Analysis



An Iterative Algorithm for Computing Reaching
Definitions

for each block B do { IN[B] = φ; OUT [B] = GEN[B]; }
change = true;
while change do { change = false;

for each block B do {

IN[B] =
⋃

P a predecessor of B

OUT [P];

oldout = OUT [B];

OUT [B] = GEN[B]
⋃

(IN[B]− KILL[B]);

if (OUT [B] 6= oldout) change = true;
}

}

GEN, KILL, IN, and OUT are all represented as bit
vectors with one bit for each definition in the flow graph

Y.N. Srikant Data-flow Analysis



Reaching Definitions: Bit Vector Representation

Y.N. Srikant Data-flow Analysis



Use-Definition Chains (u-d chains)

Reaching definitions may be stored as u-d chains for
convenience
A u-d chain is a list of a use of a variable and all the
definitions that reach that use
u-d chains may be constructed once reaching definitions
are computed
case 1: If use u1 of a variable b in block B is preceded by
no unambiguous definition of b, then attach all definitions
of b in IN[B] to the u-d chain of that use u1 of b
case 2: If any unambiguous definition of b preceeds a use
of b, then only that definition is on the u-d chain of that use
of b
case 3: If any ambiguous definitions of b precede a use of
b, then each such definition for which no unambiguous
definition of b lies between it and the use of b, are on the
u-d chain for this use of b

Y.N. Srikant Data-flow Analysis



Use-Definition Chain Construction

Y.N. Srikant Data-flow Analysis



Use-Definition Chain Example

Y.N. Srikant Data-flow Analysis



Available Expression Computation

Sets of expressions constitute the domain of data-flow
values
Forward flow problem
Confluence operator is ∩
An expression x + y is available at a point p, if every path
(not necessarily cycle-free) from the initial node to p
evaluates x + y , and after the last such evaluation, prior to
reaching p, there are no subsequent assignments to x or y
A block kills x + y , if it assigns (or may assign) to x or y
and does not subsequently recompute x + y .
A block generates x + y , if it definitely evaluates x + y , and
does not subsequently redefine x or y

Y.N. Srikant Data-flow Analysis



Available Expression Computation(2)

Useful for global common sub-expression elimination
4 ∗ i is a CSE in B3, if it is available at the entry point of B3
i.e., if i is not assigned a new value in B2 or 4 ∗ i is
recomputed after i is assigned a new value in B2 (as
shown in the dotted box)

Y.N. Srikant Data-flow Analysis



Available Expression Computation (3)

The data-flow equations

IN[B] =
⋂

P is a predecessor of B

OUT [P], B not initial

OUT [B] = e_gen[B]
⋃

(IN[B]− e_kill[B])

IN[B1] = φ

IN[B] = U, for all B 6= B1 (initialization only)

B1 is the intial or entry block and is special because
nothing is available when the program begins execution
IN[B1] is always φ
U is the universal set of all expressions
Initializing IN[B] to φ for all B 6= B1, is restrictive

Y.N. Srikant Data-flow Analysis



Available Expression Computation - An Example
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Available Expression Computation - An Example (2)

Y.N. Srikant Data-flow Analysis



An Iterative Algorithm for Computing Available
Expressions

for each block B 6= B1 do {OUT [B] = U − e_kill[B]; }
/* You could also do IN[B] = U;*/
/* In such a case, you must also interchange the order of */
/* IN[B] and OUT [B] equations below */
change = true;
while change do { change = false;

for each block B 6= B1 do {

IN[B] =
⋂

P a predecessor of B

OUT [P];

oldout = OUT [B];

OUT [B] = e_gen[B]
⋃

(IN[B]− e_kill[B]);

if (OUT [B] 6= oldout) change = true;
}

}
Y.N. Srikant Data-flow Analysis



Initializing IN[B] to φ for all B can be restrictive

Y.N. Srikant Data-flow Analysis



Live Variable Analysis

The variable x is live at the point p, if the value of x at p
could be used along some path in the flow graph, starting
at p; otherwise, x is dead at p
Sets of variables constitute the domain of data-flow values
Backward flow problem, with confluence operator

⋃
IN[B] is the set of variables live at the beginning of B
OUT [B] is the set of variables live just after B
DEF [B] is the set of variables definitely assigned values in
B, prior to any use of that variable in B
USE [B] is the set of variables whose values may be used
in B prior to any definition of the variable

OUT [B] =
⋃

S is a successor of B

IN[S]

IN[B] = USE [B]
⋃

(OUT [B]− DEF [B])

IN[B] = φ, for all B (initialization only)

Y.N. Srikant Data-flow Analysis



Live Variable Analysis: An Example

Y.N. Srikant Data-flow Analysis



Definition-Use Chains (d-u chains)

For each definition, we wish to attach the statement
numbers of the uses of that definition
Such information is very useful in implementing register
allocation, loop invariant code motion, etc.
This problem can be transformed to the data-flow analysis
problem of computing for a point p, the set of uses of a
variable (say x), such that there is a path from p to the use
of x , that does not redefine x .
This information is represented as sets of (x , s) pairs,
where x is the variable used in statement s
In live variable analysis, we need information on whether a
variable is used later, but in (x , s) computation, we also
need the statment numbers of the uses
The data-flow equations are similar to that of LV analysis
Once IN[B] and OUT [B] are computed, d-u chains can be
computed using a method similar to that of u-d chains

Y.N. Srikant Data-flow Analysis



Data-flow Analysis for (x,s) pairs

Sets of pairs (x,s) constitute the domain of data-flow values
Backward flow problem, with confluence operator

⋃
USE [B] is the set of pairs (x , s), such that s is a statement
in B which uses variable x and such that no prior definition
of x occurs in B
DEF [B] is the set of pairs (x , s), such that s is a statement
which uses x , s is not in B, and B contains a definition of x
IN[B] (OUT [B], resp.) is the set of pairs (x , s), such that
statement s uses variable x and the value of x at IN[B]
(OUT [B], resp.) has not been modified along the path from
IN[B] (OUT [B], resp.) to s

OUT [B] =
⋃

S is a successor of B

IN[S]

IN[B] = USE [B]
⋃

(OUT [B]− DEF [B])

IN[B] = φ, for all B (initialization only)

Y.N. Srikant Data-flow Analysis



Definition-Use Chain Example
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Definition-Use Chain Construction
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Very Busy Expressions or Anticipated Expressions

An expression B op C is very busy or anticipated at a point
p, if along every path from p, we come to a computation of
B op C before any computation of B or C
Useful in code hoisting and partial redundancy elimination
Code hoisting does not reduce time, but reduces space
We must make sure that no use of B op C (from X,Y, or Z
below) has any definition of B or C reaching it without
passing through p
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Very Busy Expressions or Anticipated Expressions (2)

Sets of expressions constitute the domain of data-flow
values
Backward flow analysis with

⋂
as confluence operator

V_USE [n] is the set of expressions B op C computed in n
with no prior definition of B or C in n
V_DEF [n] is the set of expressions B op C in U (the
universal set of expressions) for which either B or C is
defined in n, prior to any computation of B op C

OUT [n] =
⋂

S is a successor of n

IN[S]

IN[n] = V_USE [n]
⋃

(OUT [n]− V_DEF [n])

IN[n] = U, for all n (initialization only)
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Anticipated Expressions - An Example
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Data-Flow Problems: A Summary - 1

The Reaching Definitions Problem
Domain of data-flow values: sets of definitions
Direction: Forwards
Confluence operator: ∪
Initialization: IN[B] = φ

Equations:

IN[B] =
⋃

P is a predecessor of B

OUT [P]

OUT [B] = GEN[B]
⋃

(IN[B]− KILL[B])
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Data-Flow Problems: A Summary - 2

The Available Expressions Problem
Domain of data-flow values: sets of expressions
Direction: Forwards
Confluence operator: ∩
Initialization: IN[B] = U
Equations:

IN[B] =
⋂

P is a predecessor of B

OUT [P]

OUT [B] = e_gen[B]
⋃

(IN[B]− e_kill[B])

IN[B1] = φ
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Data-Flow Problems: A Summary - 3

The Live Variable Analysis Problem
Domain of data-flow values: sets of variables
Direction: backwards
Confluence operator: ∪
Initialization: IN[B] = φ

Equations:

OUT [B] =
⋃

S is a successor of B

IN[S]

IN[B] = USE [B]
⋃

(OUT [B]− DEF [B])
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Data-Flow Problems: A Summary - 4

The Anticipated Expressions (Very Busy Expressions) Problem
Domain of data-flow values: sets of expressions
Direction: backwards
Confluence operator: ∩
Initialization: IN[B] = U
Equations:

OUT [B] =
⋂

S is a successor of B

IN[S]

IN[B] = V_USE [B]
⋃

(OUT [B]− V_DEF [B])
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The SSA Form: Introduction

A new intermediate representation
Incorporates def-use information
Every variable has exactly one definition in the program
text

This does not mean that there are no loops
This is a static single assignment form, and not a dynamic
single assignment form

Some compiler optimizations perform better on SSA forms
Conditional constant propagation and global value
numbering are faster and more effective on SSA forms

A sparse intermediate representation
If a variable has N uses and M definitions, then def-use
chains need space and time proportional to N.M
But, the corresponding instructions of uses and definitions
are only N + M in number
SSA form, for most realistic programs, is linear in the size of
the original program
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A Program in non-SSA Form and its SSA Form
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SSA Form: A Definition

A program is in SSA form, if each use of a variable is
reached by exactly one definition
Flow of control remains the same as in the non-SSA form
A special merge operator, φ, is used for selection of values
in join nodes
Not every join node needs a φ operator for every variable
No need for a φ operator, if the same definition of the
variable reaches the join node along all incoming edges
Often, an SSA form is augmented with u-d and d-u chains
to facilitate design of faster algorithms
Translation from SSA to machine code introduces copy
operations, which may introduce some inefficiency
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Program 2 in non-SSA Text Form
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Program 2 in non-SSA and SSA Form
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Program 3 in non-SSA and SSA Form
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Conditions on the SSA form

After translation, the SSA form should satisfy the following
conditions for every variable v in the original program.

1 If two non-null paths from nodes X and Y each having a
definition of v converge at a node p, then p contains a
trivial φ-function of the form v = φ(v , v , ..., v), with the
number of arguments equal to the in-degree of p.

2 Each appearance of v in the original program or a
φ-function in the new program has been replaced by a new
variable vi , leaving the new program in SSA form.

3 Any use of a variable v along any control path in the
original program and the corresponding use of vi in the
new program yield the same value for both v and vi .
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Conditions on SSA Forms

Condition 1 in the previous slide is recursive.
It implies that φ-assignments introduced by the translation
procedure will also qualify as assignments to v
This in turn may lead to introduction of more φ-assignments
at other nodes

It would be wasteful to place φ-functions in all join nodes
It is possible to locate the nodes where φ-functions are
essential
This is captured by the dominance frontier
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The Join Sets and φ Nodes

Given S: set of flow graph nodes, the set JOIN(S) is
the set of all nodes n, such that there are at least two
non-null paths in the flow graph that start at two distinct
nodes in S and converge at n

The paths considered should not have any other common
nodes apart from n

The iterated join set, JOIN+(S) is

JOIN(1)(S) = JOIN(S)
JOIN(i+1)(S) = JOIN(S ∪ JOIN(i)(S))

If S is the set of assignment nodes for a variable v , then
JOIN+(S) is precisely the set of flow graph nodes, where
φ-functions are needed (for v )
JOIN+(S) is termed the dominance frontier, DF (S), and
can be computed efficiently
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JOIN Example -1

variable i : JOIN+({B1,B7}) = {B2}
variable n: JOIN+({B1,B5,B6}) = {B2,B7}
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JOIN Example - 2
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Dominators and Dominance Frontier

Given two nodes x and y in a flow graph, x dominates y
(x ∈ dom(y)) , if x appears in all paths from the Start node
to y
The node x strictly dominates y , if x dominates y and
x 6= y
x is the immediate dominator of y (denoted idom(y)), if x
is the closest strict dominator of y
A dominator tree shows all the immediate dominator
relationships
The dominance frontier of a node x , DF (x), is the set of all
nodes y such that

x dominates a predecessor of y
(p ∈ preds(y) and x ∈ dom(p))
but x does not strictly dominate y (x /∈ dom(y)− {y})

Y.N. Srikant Program Optimizations and the SSA Form



Dominance frontiers - An Intuitive Explanation

A definition in node n forces a φ-function in join nodes that
lie just outside the region of the flow graph that n
dominates; hence the name dominance frontier
Informally, DF (x) contains the first nodes reachable from x
that x does not dominate, on each path leaving x

In example 1 (next slide), DF (B1) = ∅, since B1 dominates
all nodes in the flow graph except Start and B1, and there is
no path from B1 to Start or B1
In the same example, DF (B2) = {B2}, since B2 dominates
all nodes except Start, B1, and B2, and there is a path from
B2 to B2 (via the back edge)
Continuing in the same example, B5, B6, and B7 do not
dominate any node and the first reachable nodes are B7,
B7, and B2 (respectively). Therefore,
DF (B5) = DF (B6) = {B7} and DF (B7) = {B2}
In example 2 (second next slide), B5 dominates B6 and B7,
but not B8; B8 is the first reachable node from B5 that B5
does not dominate; therefore, DF (B5) = {B8}
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DF Example - 1

Y.N. Srikant Program Optimizations and the SSA Form



DF Example - 2
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Computation of Dominance Frontiers - 2

1 Identify each join node x in the flow graph
2 For each predecessor, p of x in the flow graph, traverse the

dominator tree upwards from p, till idom(x)
3 During this traversal, add x to the DF -set of each node met

In example 1 (second previous slide), consider the join
node B2; its predecessors are B1 and B7

B1 is also idom(B2) and hence is not considered
Starting from B7 in the dominator tree, in the upward
traversal till B1 (i.e., idom(B2)) B2 is added to the DF sets
of B7, B3, and B2

In example 2 (previous slide), consider the join node B8; its
predecessors are B4, B6, and B7

Consider B4: B8 is added to DF (B4)
Consider B6: B8 is added to DF (B6) and DF (B5)
Consider B7: B8 is added to DF (B7); B8 has already been
added to DF (B5)
All the above traversals stop at B3, which is idom(B8)
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DF Algorithm

{
for all nodes n in the flow graph do
DF (n) = ∅;
for all nodes n in the flow graph do {
/* It is enough to consider only join nodes */
/* Other nodes automatically get their DF sets */
/* computed during this process /*

for each predecessor p of n in the flow graph do {
t = p;
while (t 6= idom(n)) do {

DF (t) = DF (t) ∪ {n};
t = idom(t);

}
}

}
}
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Minimal SSA Form Construction 1

1 Compute DF sets for each node of the flow graph
2 For each variable v , place trivial φ-functions in the nodes of

the flow graph using the algorithm place-phi-function(v)
3 Rename variables using the algorithm

Rename-variables(x,B)

φ-Placement Algorithm
The φ-placement algorithm picks the nodes ni with
assignments to a variable
It places trivial φ-functions in all the nodes which are in
DF (ni), for each i
It uses a work list (i.e., queue) for this purpose
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φ-function placement Example
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The function place-phi-function(v) - 1

function Place-phi-function(v ) // v is a variable
// This function is executed once for each variable in the flow graph
begin

// has-phi(B, v ) is true if a φ-function has already
// been placed in B, for the variable v
// processed(B) is true if B has already been processed once
// for variable v
for all nodes B in the flow graph do

has-phi(B, v ) = false; processed(B) = false;
end for
W = ∅; // W is the work list
// Assignment-nodes(v ) is the set of nodes containing
// statements assigning to v
for all nodes B ∈ Assignment-nodes(v ) do

processed(B) = true; Add(W ,B);
end for
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The function place-phi-function(v) - 2

while W 6= ∅ do
begin

B = Remove(W );
for all nodes y ∈ DF (B) do

if (not has-phi(y , v )) then
begin

place < v = φ(v , v , ..., v) > in y ;
has-phi(y , v ) = true;
if (not processed(y )) then
begin processed(y ) = true;

Add(W , y );
end

end
end for

end
end
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SSA Form Construction Example - 1
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SSA Form Construction Example - 2
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Minimal SSA Form Construction 2

Renaming Algorithm
The renaming algorithm performs a top-down traversal of
the dominator tree
A separate pair of version stack and version counter are
used for each variable

The top element of the version stack V is always the
version to be used for a variable usage encountered (in the
appropriate range, of course)
The counter v is used to generate a new version number

The alogorithm shown later is for a single variable only; a
similar algorithm is executed for all variables with an array
of version stacks and counters
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The Renaming Algorithm

An SSA form should satisfy the dominance property:
the definition of a variable dominates each use or
when the use is in a φ-function, the predecessor of the use

Therefore, it is apt that the renaming algorithm performs a
top-down traversal of the dominator tree

Renaming for non-φ-statements is carried out while visiting
a node n
Renaming parameters of a φ-statement in a node n is
carried out while visiting the appropriate predecessors of n
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The function Rename-variables(x,B)

function Rename-variables(x ,B) // x is a variable and B is a block
begin

ve = Top(V ); // V is the version stack of x
// variables are defined before use; hence no renaming can
// happen on empty stack
for all statements s ∈ B do

if s is a non-φ statement then
replace all uses of x in the RHS(s) with Top(V );

if s defines x then
begin

replace x with xv in its definition; push xv onto V ;
// xv is the renamed version of x in this definition
v = v + 1; // v is the version number counter

end
end for
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The function Rename-variables(x,B)

for all successors s of B in the flow graph do
j = predecessor index of B with respect to s
for all φ-functions f in s which define x do

replace the j th operand of f with Top(V );
end for

end for
for all children c of B in the dominator tree do

Rename-variables(x , c);
end for
repeat Pop(V ); until (Top(V ) == ve);

end
begin // calling program

for all variables x in the flow graph do
V = ∅; v = 1; push 0 onto V ; // end-of-stack marker
Rename-variables(x ,Start);

end for
end
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Renaming Variables Example 0.1
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Renaming Variables Example 0.2
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Renaming Variables Example 0.3
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Renaming Variables Example 0.4
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Renaming Variables Example 0.5
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Renaming Variables Example 0.6
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Renaming Variables Example 0.7
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Renaming Variables Example 0.8
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Translation to Machine Code - 1
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Translation to Machine Code - 2
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Translation to Machine Code - 3

The parameters of all φ-functions in a basic block are supposed
to be read concurrently before any other evaluation begins
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Optimization Algorithms with SSA Forms

Dead-code elimination
Very simple, since there is exactly one definition reaching
each use
Examine the du-chain of each variable to see if its use list is
empty
Remove such variables and their definition statements
If a statement such as x = y + z (or x = φ(y1, y2)) is
deleted, care must be taken to remove the deleted
statement from the du-chains of y and z (or y1 and y2)

Simple constant propagation
Copy propagation
Conditional constant propagation and constant folding
Global value numbering
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Simple Constant Propagation

{ Stmtpile = {S|S is a statement in the program}
while Stmtpile is not empty {

S = remove(Stmtpile);
if S is of the form x = φ(c, c, ..., c) for some constant c

replace S by x = c
if S is of the form x = c for some constant c

delete S from the program
for all statements T in the du-chain of x do

substitute c for x in T; simplify T
Stmtpile = Stmtpile ∪ {T}

}

Copy propagation is similar to constant propagation
A single-argument φ-function, x = φ(y), or a copy
statement, x = y can be deleted and y substituted for
every use of x
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The Constant Propagation Framework - An Overview

m(y) m(z) m′(x)

UNDEF UNDEF

UNDEF c2 UNDEF

NAC NAC

UNDEF UNDEF

c1 c2 c1 + c2

NAC NAC

UNDEF NAC

NAC c2 NAC

NAC NAC

any u UNDEF = any

any u NAC = NAC

c1 u c2 = NAC, if c1 6= c2

c1 u c2 = c1, if c1 = c2
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Conditional Constant Propagation - 1

SSA forms along with extra edges corresponding to d-u
information are used here

Edge from every definition to each of its uses in the SSA
form (called henceforth as SSA edges)

Uses both flow graph and SSA edges and maintains two
different work-lists, one for each (Flowpile and SSApile ,
resp.)
Flow graph edges are used to keep track of reachable
code and SSA edges help in propagation of values
Flow graph edges are added to Flowpile, whenever a
branch node is symbolically executed or whenever an
assignment node has a single successor
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Conditional Constant Propagation - 2

SSA edges coming out of a node are added to the SSA
work-list whenever there is a change in the value of the
assigned variable at the node
This ensures that all uses of a definition are processed
whenever a definition changes its lattice value.
This algorithm needs only one lattice cell per variable
(globally, not on a per node basis) and two lattice cells per
node to store expression values
Conditional expressions at branch nodes are evaluated
and depending on the value, either one of outgoing edges
(corresponding to true or false) or both edges
(corresponding to ⊥) are added to the worklist
However, at any join node, the meet operation considers
only those predecessors which are marked executable.
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CCP Algorithm - Contd.

// G = (N ,Ef ,Es) is the SSA graph,
// with flow edges and SSA edges, and
// V is the set of variables used in the SSA graph
begin

Flowpile = {(Start → n) | (Start → n) ∈ Ef };
SSApile = ∅;
for all e ∈ Ef do e.executable = false; end for
//v .cell is the lattice cell associated with the variable v
for all v ∈ V do v .cell = >; end for
// y .oldval and y .newval store the lattice values
// of expressions at node y
for all y ∈ N do

y .oldval = >; y .newval = >;
end for

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Contd.

while (Flowpile 6= ∅) or (SSApile 6= ∅) do
begin

if (Flowpile 6= ∅) then
begin

(x , y ) = remove(Flowpile);
if (not (x , y ).executable) then
begin

(x , y ).executable = true;
if (φ-present(y )) then visit-φ(y )

else if (first-time-visit(y )) then visit-expr (y );
// visit-expr is called on y only on the first visit
// to y through a flow edge; subsequently, it is called
// on y on visits through SSA edges only
if (flow-outdegree(y ) == 1) then

// Only one successor flow edge for y
Flowpile = Flowpile ∪ {(y , z) | (y , z) ∈ Ef };

end
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CCP Algorithm - Contd.

// if the edge is already marked, then do nothing
end
if (SSApile 6= ∅) then

begin
(x , y ) = remove(SSApile);
if (φ-present(y )) then visit-φ(y )

else if (already -visited(y )) then visit-expr (y );
// A false returned by already -visited implies
// that y is not yet reachable through flow edges

end
end // Both piles are empty

end
function φ-present(y ) // y ∈ N
begin

if y is a φ-node then return true
else return false

end
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CCP Algorithm - Contd.

function visit-φ(y ) // y ∈ N
begin

y .newval = >; //‖y .instruction.inputs‖ is the number of
// parameters of the φ-instruction at node y
for i = 1 to ‖y .instruction.inputs‖ do

Let pi be the i th predecessor of y ;
if ((pi , y ).executable) then
begin

Let ai = y .instruction.inputs[i];
// ai is the i th input and ai .cell is the lattice cell
// associated with that variable
y .newval = y .newval u ai .cell ;

end
end for
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CCP Algorithm - Contd.

if (y .newval < y .instruction.output .cell) then
begin

y .instruction.output .cell = y .newval ;
SSApile = SSApile ∪ {(y , z) | (y , z) ∈ Es };

end
end

function already -visited(y ) // y ∈ N
// This function is called when processing an SSA edge
begin // Check in-coming flow graph edges of y

for all e ∈ {(x , y ) | (x , y )∈ Ef }
if e.executable is true for at least one edge e

then return true else return false
end for

end
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CCP Algorithm - Contd.

function first-time-visit(y ) // y ∈ N
// This function is called when processing a flow graph edge
begin // Check in-coming flow graph edges of y

for all e ∈ {(x , y ) | (x , y )∈ Ef }
if e.executable is true for more than one edge e

then return false else return true
end for
// At least one in-coming edge will have executable true
// because the edge through which node y is entered is
// marked as executable before calling this function

end
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CCP Algorithm - Contd.

function visit-expr (y ) // y ∈ N
begin

Let input1 = y .instruction.inputs[1];
Let input2 = y .instruction.inputs[2];
if (input1.cell == ⊥ or input2.cell == ⊥) then

y .newval = ⊥
else if (input1.cell == > or input2.cell == >) then

y .newval = >
else // evaluate expression at y as per lattice evaluation rules

y .newval = evaluate(y );
// It is easy to handle instructions with one operand

if y is an assignment node then
if (y .newval < y .instruction.output .cell) then
begin

y .instruction.output .cell = y .newval ;
SSApile = SSApile ∪ {(y , z) | (y , z) ∈ Es };

end
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CCP Algorithm - Contd.

else if y is a branch node then
begin

if (y .newval < y .oldval) then
begin

y .oldval = y .newval ;
switch(y .newval)

case ⊥: // Both true and false branches are equally likely
Flowpile = Flowpile ∪ {(y , z) | (y , z) ∈ Ef };

case true: Flowpile = Flowpile ∪ {(y , z) | (y , z) ∈ Ef and
(y , z) is the true branch edge at y };

case false: Flowpile = Flowpile ∪ {(y , z) | (y , z) ∈ Ef and
(y , z) is the false branch edge at y };

end switch
end

end
end
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CCP Algorithm - Example - 1
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CCP Algorithm - Example 1 - Trace 1
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CCP Algorithm - Example 1 - Trace 2
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CCP Algorithm - Example 1 - Trace 3
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CCP Algorithm - Example 2
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CCP Algorithm - Example 2 - Trace 1
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CCP Algorithm - Example 2 - Trace 2
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CCP Algorithm - Example 2 - Trace 3
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CCP Algorithm - Example 2 - Trace 4
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CCP Algorithm - Example 2 - Trace 5
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CCP Algorithm - Example 2 - Trace 6
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CCP Algorithm - Example 2 - Trace 7
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CCP Algorithm - Example 2 - Trace 8
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CCP Algorithm - Example 2 - Trace 9
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CCP Algorithm - Example 2 - Trace 10
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CCP Algorithm - Example 2 - Trace 11
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CCP Algorithm - Example 2 - Trace 12

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 13
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Value Numbering with SSA Forms

Global value numbering scheme
Similar to the scheme with extended basic blocks
Scope of the tables is over the dominator tree
Therefore more redundancies can be caught

For example, an assignment a10 = u1 + v1 in block B9 (if
present) can use the value of the expression u1 + v1 of block
B1, since B1 is a dominator of B9

No d-u or u-d edges needed
Uses reverse post order on the DFS tree of the SSA graph
to process the dominator tree

This ensures that definitions are processed before use

Back edges make the algorithm find fewer equivalences
(more on this later)
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Value Numbering with SSA Forms

Variable names are not reused in SSA forms
Hence, no need to restore old entries in the scoped
HashTable when the processing of a block is completed
Just deleting new entries will be sufficient

Any copies generated because of common subexpressions
can be deleted immediately
Copy propagation is carried out during value-numbering
Ex: Copy statements generated due to value numbering in
blocks B2, B4, B5, B6, B7, and B8 can be deleted
The ValnumTable stores the SSA name and its value
number and is global; it is not scoped over the dominator
tree (reasons in the next slide)
Value numbering transformation retains the dominance
property of the SSA form

Every definition dominates all its uses or predecessors of
uses (in case of phi-functions)
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Example: An SSA Form

Y.N. Srikant Program Optimizations and the SSA Form



Dominator Tree and Reverse Post order

Y.N. Srikant Program Optimizations and the SSA Form
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ITERATION SPACES AND DEPENDENCES

for (t = 0; t < T; t++)
for (i = 1; i < N+1; i++)

A[t+1][i] = f(A[t][i+1], A[t][i], A[t][i-1]);

1 Iteration Domains

Every statement has a domain or an index set – instances that have to be
executed
Each instance is a vector (of loop index values from outermost to innermost)
DS = {[t, i] | 0 ≤ t ≤ T − 1, 1 ≤ i ≤ N}

2 Dependences

A dependence is a relation between domain instances that are in conflict (more
on next slide)
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LEXICOGRAPHIC ORDERING

Lexicographic ordering: ≻, ≺, x⃗ ≻ y⃗, ≻ 0⃗
Transformations as a way to provide multi-dimensional timestamps
Code generation: Scanning points in the transformed space in
lexicographically increasing order
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DOMAINS, DEPENDENCES, AND TRANSFORMATIONS

for (i=1; i<=N-1; i++)
for (j=1; j<=N-1; j++)
A[i][j] = f(A[i-1][j], A[i][j-1]);
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Figure: Original space (i, j)

Domain: {[i, j] | 1 ≤ i, j ≤ N − 1}
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Transformation: T(i, j) = (i + j, j)
Dependences: (1,0) and (0,1) now become (1,0) and (1,1) resp.
Inner loop is now parallel 53/122



DOMAINS, DEPENDENCES, AND TRANSFORMATIONS

for (i=1; i<=N-1; i++)
for (j=1; j<=N-1; j++)
A[i][j] = f(A[i-1][j], A[i][j-1]);

i

j

N-1

N-1

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

3

Figure: Original space (i, j)

i + j

j

2N-2

N-1

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3 4 5 6 7 8

1

2

3

Figure: Transformed space (i + j, j)

Transformation: T(i, j) = (i + j, j)
Dependences: (1,0) and (0,1) now become (1,0) and (1,1) resp.
Inner loop is now parallel 53/122



DEPENDENCES: ANOTHER EXAMPLE

for (t = 0; t < T; t++)
for (i = 1; i < N+1; i++)
A[i] = f(A[i+1], A[i], A[i-1]);

Compute the dependences
Transitivity in dependences?
Remove transitively covered dependences.
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DEPENDENCES: YET ANOTHER EXAMPLE

for (i = 0; i < N; i++)
for (j = 1; j < i; j++)
A[j] = A[j] - A[j]/A[i];

Compute the dependences.
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DEPENDENCE REPRESENTATIONS

1 Distance vectors: constant dependences
2 Dependence levels: depth at which a dependence is carried
3 Direction vectors: direction of the dependence along each dimension
4 Dependence as presburger formulae, relations on integer sets with affine

constraints and existential quantifiers
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DEPENDENCE TESTING

GCD test, GCD tightening of constraints
Guassian elimination, Fourier-Motzkin elimination (super-exponential)
complexity
Omega test
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CHARACTERIZING REUSE

Reuse through multi-dimensional array accesses
1 Self reuse
2 Group reuse

In space or in time?
1 Spatial reuse (self or group)
2 Temporal reuse (self or group)

Under what conditions does an access exhibit spatial or temporal reuse along
a specific outer loop?

This topic is well-covered in the Dragon textbook.

Degree of temporal reuse: Dimensionality of the iteration space minus rank of
the access function
Eg: for (i, j, k), access A[i + j][j][j] has an access function of rank two in an
iteration space of dimensionality three→ one degree of temporary reuse.
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REPRESENTATION OF ARRAY ACCESSES

1 Linear Algebraic representation of “regular” accesses
2 Affine access functions can be analyzed by the compiler easily for reuse,

dependences, optimization, and parallelization
3 Refer to the definition of affine functions earlier
4 Handling compositions of mod and floordiv functions in accesses requires

additional techniques to determine spatial and temporal reuse
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LOOP NESTS: SOME DEFINITIONS

Perfectly nested loop nest: A sequence of successively nested loops (from
outermost to innermost) where every loop other than the innermost one has a
single loop as the only statement in its body.
Imperfectly nested: not perfectly nests.

// Perfectly nested.
for (t = 0; t < T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
S(t, i, j);

// (t, i, j) is imperfectly nested, but
// (t, i) is perfectly nested.
for (t = 0; t < T; t++) {
for (i = 1; i < N+1; i++) {
S1(t, i);
for (j = 1; j < N+1; j++)
S2(t, i, j);

}
}
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AFFINE TRANSFORMATIONS

Examples of affine functions of i, j: i + j, i− j, i + 1, 2i + 5
Not affine: ij, i2, i2 + j2, a[j]

i0 1 2 3 . . . N − 1

j

0

1

2

3

...
M− 1

Figure: Iteration space

// O(N) synchronization if j is parallelized.
for (i = 0; i < N; i++)
for (j = 0; j < M; j++)

A[i+1][j+1] = f(A[i][j]);

t1 = i− j1 2 3−3 −2 −1 . . .. . . 0 N − 1−M + 1

t2 = j

0

1

2

3

...
M− 1

Figure: Transformed space

// Synchronization-free.
#pragma omp parallel for private(t2)
for (t1=-M+1; t1<=N-1; t1++)
for (t2 = max(0,-t1); t2 <= min(M-1,N-1-t1); t2++)
A[t1+t2+1][t2+1] = f(A[t1+t2][t2]);

Transformation: (i, j)→ (i− j, j)
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AFFINE TRANSFORMATIONS
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t1 = i− j1 2 3−3 −2 −1 . . .. . . 0 N − 1−M + 1

t2 = j

0
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3

...
M− 1

Figure: Transformed space

Affine transformations are attractive because:
Preserve collinearity of points and ratio of distances between points
Code generation with affine transformations has thus been studied well
(CLooG, ISL, OMEGA+)
Model a very rich class of loop re-orderings
Useful for several domains like dense linear algebra, stencil computations,
image processing pipelines, deep learning
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FINDING GOOD AFFINE TRANSFORMATIONS

(i, j) Identity
(j, i) Interchange

(i + j, j) Skew i (by a factor of one w.r.t j)
(i− j,−j) Reverse j and skew i
(i, 2i + j) Skew j (by a factor of two w.r.t i)
(2i, j) Scale i by a factor of two

(i, j + 1) Shift j
(i + j, i− j) More complex

(i/32, j/32, i, j) Tile
. . .

One-to-one functions

Can be expressed using matrices: T(i, j) = (i + j, j) =
[

1 1
0 1

](
i
j

)
.

Unimodular and non-unimodular transformations
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DEPENDENCES

Dependences are determined pairwise between conflicting accesses

for (t = 0; t < T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],

A[t%2][i][j+1], A[t%2][i][j-1]);

Dependence notations
Distance vectors: (1,-1,0), (1,0,0), (1,1,0), (1,0,-1), (1,0,1)
Direction vectors
Dependence relations as integer sets with affine constraints and existential
quantifiers or Presburger formulae — powerful

Consider the dependence from the write to the third read:
A[(t + 1)%2][i][j]→ A[t′%2][i′ − 1][j′]
Dependence relation: {[t, i, j]→ [t′, i′, j′] | t′ = t + 1, i′ = i + 1, j′ = j, 0 ≤ t ≤
T − 1, 0 ≤ i ≤ N − 1, 0 ≤ j ≤ N}
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PRESERVING DEPENDENCES

for (t = 0; t < T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],

A[t%2][i][j+1], A[t%2][i][j-1]);

For affine loop nests, these dependences can be analyzed and represented
precisely
Next step: Transform while preserving dependences

Find execution reorderings that preserve dependences and improve
performance
Execution reordering as a function: T(⃗i)
For all dependence relation instances (⃗s→ t⃗),
T(⃗t)− T(⃗s) ≻ 0⃗,
i.e., the source should precede the target even in the transformed space

What is the structure of T?
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VALID TRANSFORMATIONS

for (t = 0; t < T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],

A[t%2][i][j+1], A[t%2][i][j-1]);

Dependences: (1, 0, 0), (1, 0, 1), (1, 0,−1), (1, 1, 0), (1,-1,0)

Validity: T(⃗t)− T(⃗s) ≻ 0⃗, i.e., T(⃗t− s⃗) ≻ 0⃗
Examples of invalid transformations

T(t, i, j) = (i, j, t)
Similarly, (i, t, j), (j, i, t), (t + i, i, j), (t + i + j, i, j) are all invalid transformations

Valid transformations
(t, j, i), (t, t + i, t + j), (t, t + i, t + i + j)
However, only some of the infinitely many valid ones are interesting
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GENERATING LOOPS AFTER TRANSFORMATION

Fourier-Motzkin elimination can be used to generate code
Successively eliminate old loop variables, and then new loop variables from
innermost to outermost, generating bounds for the loop being eliminated at
each step.
Replace old loop IVs with new ones in the loop body

More powerful techniques exist to generate more efficient code (fewer/no
redundancy in loop bound checks, conditional guards)
Work out for this example transformation: (i, j)→ (i + j, j).
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PARALLELISM AND DEPENDENCE CARRYING

Carrying or satisfying a dependence
Loop-carried dependence
A loop is parallel if does not carry any dependences.
For each dependence, determine the depth at which it is carried
For constant distance vectors, the depth of the first non-zero dependence
component is the depth at which the dependence is satisfied
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SYNCHRONIZATION-FREE OR COMMUNICATION-FREE

PARALLELISM

Number of degrees of synchronization-free parallelim
m: Dimensionality of the iteration space
D: Dependence matrix – columns are distance vectors
m - rank(D) degrees of synchronization-free parallelism
For any perfect loop nest that has only constant dependences, we can always
obtain at least m− 1 degrees of parallelism.
How do you determine or maximize synchronization-free parallelism? Find T
(transformation matrix) that satisfies certain properties.

Find t⃗ ̸= 0⃗ such that t⃗.d⃗i = 0, ∀d⃗i (dependence distance vector).
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WAVEFRONT PARALLELISM

Synchronization required after execution of a parallel loop
A single outer sequential loop with N iterations containing all inner parallel
loops will lead to O(N) synchronization

Refer illustration earlier in this chapter: (i + j, j) mapping for an example
Connection to DoAcross parallelism, as opposed to DoAll parallelism?
It’s possible to parallelize using barrier-style synchronization or
point-to-point synchronization (between specific pairs of processors)
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TILING (BLOCKING)

Partition and execute iteration space in blocks
A tile is executed atomically
Benefits: exploits cache locality & improves parallelization in the presence of synchronization
Allows reuse in multiple directions
Reduces frequency of synchronization for parallelization: synchronization after you execute
tiles (as opposed to points) in parallel

j

i

N-2

T-1

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

3

j

i

N-2

T-1

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

3

(i, j)→ (i/50, j/50, i, j); (i, j)→ (i/50 + j/50, j/50, i, j)
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VALIDITY OF TILING (BLOCKING)

Validity of tiling
There should be no cycle between the tiles
Sufficient condition: All dependence components
should be non-negative along dimensions that are
being tiled
Dependences: (1,0), (1,1), (1,-1)

for (i=1; i<T; i++)
for (j=1; j<N-1; j++)
A[(i+1)%2][j] = f(A[i%2][j-1],

A[i%2][j], A[i%2][j+1]);

Figure: Iteration space

Figure: Invalid tiling Figure: Valid tiling
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TILING (BLOCKING)

Affine transformations can enable tiling
First skew: T(i, j) = (i, i + j)

Then, apply (rectangular) tiling: T(i, j) = (i/64, (i + j)/64, i, i + j)
i and i + j are also called tiling hyperplanes
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Figure: Transformed space (i, i + j)
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BACK TO 3-D EXAMPLE

for (t = 0; t < T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],

A[t%2][i][j+1], A[t%2][i][j-1]);

What is a good transformation here to improve parallelism and locality?
Demo

Skewing: (t, t + i, t + j)
Tiling: (t/64, (t + i)/64, (t + j)/1000, t, t + i, t + j)
Tile wavefront: (t/64 + (t + i)/64, (t + i)/64, (t + j)/1000, t, t + i, t + j)
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Tile wavefront: (t/64 + (t + i)/64, (t + i)/64, (t + j)/1000, t, t + i, t + j)
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BACK TO 3-D EXAMPLE

for (t = 0; t < T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
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OTHER TRANSFORMATIONS AND OPTIMIZATIONS

Loop Fusion
Loop Distribution
Vectorization
Explicit copying (Packing)
Unroll-and-Jam, Register Tiling
Complementary/enabling transformations for Parallelism

Privatization, Scalar expansion, Array Expansion
Trade-off between parallelism and memory usage

Reductions - parallelization and vectorization
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LOOP FUSION: VALIDITY

A fine (or finer) grained interleaving of the execution of multiple loop nests
Validity: fusion is valid if, for every loop being fused, there are no
dependences from the first nest body to the second nest body that have a
negative component on the loop being fused while not being carried by any
outer loops
Data Dependence Graph (DDG) needed to model “inter-statement”
dependences to analyze the above conditions

Statements (IR operations or groups of IR operations) are nodes of this graph
Each edge corresponds to a dependence from the source node to the target node
Directed graph, can have multiple edges between nodes and self edges.
Each edge has information on the source and target memory accesses involved
in the dependence and additional information.
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FUSION: EXAMPLE

// Original code.
// Produces B[i] using another array A.
for (i = 0; i < N - 1; i++)
B[i] = A[i] + A[i + 1];

// Consumes B[i] to create C[i].
for (i = 0; i < N - 1; i++)
C[i] = B[i];

// Fused code.
for (i = 0; i < N - 1; i++) {
B[i] = A[i] + A[i + 1];
C[i] = B[i];

}

// Fusion not valid without shifting the second nest forward by one.
for (i = 0; i < N; i++)
B[i] = A[i];

// Consumes B[i] to create C[i].
for (i = 0; i < N - 1; i++)
C[i] = B[i] + B[i + 1];

Fusion can be enabled other transformations: shifting,
permutation/interchange
Fusion can be partial as well, i.e., not fusing all loops
For partial fusion, consider dependence components up until the loops being
fused.
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FUSION: OTHER EXAMPLES

// Original code.
// Produces B using another array A.
for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
B[i][j] = A[i][j];

// Consumes B to create C. Fusion is valid.
// Dependence carried on the fused ‘i‘ loop.
for (i = 0; i < N; i++)
for (j = 0; j < N - 1; j++)
C[i][j] = B[i][j] + B[i - 1][j + 1];

// Original code.
// Produces B using another array A.
for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
B[i][j] = A[i][j];

// Consumes B to create C.
for (i = 1; i < N; i++)
for (j = 0; j < N - 1; j++)
C[i - 1][j] = B[i][j] + B[i - 1][j];
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LOOP FUSION AND DISTRIBUTION: COSTS/BENEFITS

Benefits
1 Improves cache locality: producer-consumer reuse, input reuse
2 Improves register reuse
3 Eliminates intermediate arrays and reduces memory consumption
4 Reduces code size, less control overhead

Disadvantages
1 Reduces effective cache capacity available for each of components fused: cache

capacity misses
2 Increases the risk of conflict misses
3 Can lead to loss of parallelism, loss of tilability, or loss of vectorizability
4 Increases hardware prefetch stream utilization; can lead to lower prefetching

performance
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LOOP DISTRIBUTION

Loop distribution is the inverse of fusion
Two operations/statements part of the same strongly connected component
of the data dependence graph can’t be distributed
Distribution at the inner level or partial distribution: consider only a part of
the DDG, discarding dependences carried on outer loops that aren’t being
considered for distribution.
Maximal distribution: distribute out all strongly connnected components of a
loop nest.
Disadvantages of fusion are the benefits of distribution
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VECTORIZATION

A fine-grained parallelization: single instruction on multiple data (SIMD)
Vectorization, SIMDization used synonymously today
An efficient form of parallelization with minimal additional hardware
resources
Reduction in the number of instructions executed
The instructions that form a vector can come from a loop body
(“superword-level parallelism”) or from a loop (“loop vectorization”)
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LOOP VECTORIZATION: EXAMPLES

// Vectorizable loop.
for (i = 0; i < N; i++)
C[i] = A[i] + B[i];

// Non-vectorizable loop.
for (i = 2; i < N; i++)
A[i] = A[i - 1] + A[i - 2];

// A loop doesn’t have to be parallel to be vectorizable.
// Loop i is vectorizable despite not being parallel and despite
// carrying a short loop dependence. No dependence cycle.
for (i = 0; i < N; i++) {
C[i + 1] = A[i] * B[i];
D[i] = C[i] + X[i];

}
// Vectorizing a loop body like this can also be viewed as tiling by vector
// width, distributing the intra-tile loops, and vectorizing them.
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LOOP VECTORIZATION: VALIDITY

A loop can be vectorized only if there is no dependence cycle betweeen the
instructions that spans less than the “vector width” iterations.
Contiguity: Data being loaded for a vector may need to be contiguous in
memory; depends on hardware
Alignment: data may have to be aligned depending on the hardware –
modern general-purpose processors typically don’t have an alignment
requirement
Performance of aligned vs unaligned memory operations
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VECTORIZATION: EXAMPLE

// Original code.
affine.for %i = 0 to 4096 {
affine.for %j = 0 to 4096 {
affine.for %k = 0 to 4096 {
%lhs = affine.load %A[%i, %k] : memref<4096x4096xf32>
%rhs = affine.load %B[%k, %j] : memref<4096x4096xf32>
%in = affine.load %C[%i, %j] : memref<4096x4096xf32>
%product = arith.mulf %lhs, %rhs : f32
%acc = arith.addf %in, %product : f32
affine.store %acc, %C[%i, %j] : memref<4096x4096xf32>

}
}

}

// Interchanged %j to innermost and vectorized 8-way along the %j loop.
affine.for %i = 0 to 4096 {
affine.for %k = 0 to 4096 {
affine.for %j = 0 to 4096 step 8 {
%lhs = affine.load %A[%i, %k] : memref<4096x4096xf32>
%v_lhs = vector.splat %lhs : vector<8xf32>
%v_rhs = affine.vector_load %B[%k, %j] : memref<4096x4096xf32>
%product = arith.mulf %v_lhs, %v_rhs : vector<8xf32>
%in = affine.vector_load %C[%i, %j] : memref<4096x4096xf32>
%acc = arith.addf %in, %product : vector<8xf32>
affine.vector_store %acc, %C[%i, %j] : memref<4096x4096xf32>

}
}

}
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EXPLICIT COPYING OR PACKING

Typically performed in conjunction with tiling
Pack data being accessed by a ‘tile’ into a contiguous buffer that fits in
cache/fast memory
‘Compute’ tile reads from packed input buffers and writes out to a packed
buffer; unpack output buffer.
Benefits

1 Eliminates conflicts misses and thus improves cache locality
2 Reduces TLB misses
3 Improves prefetching performance (fewer hardware prefetch streams used)

Packing involves overhead (copy-in and copy-out)
Reference: see packing scheme for high-performance matrix-matrix
multiplication in this illustration:
Analytical Modeling is Enough for High Performance BLIS, Low et al., ACM
TOMS 2016.
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UNROLL-AND-JAM OR REGISTER TILING

Improves register reuse
Multi-dimensional unroll-and-jam (multiple loops) can be performed to
simultaneously exploit register reuse along multiple dimensions
Can be thought of as tiling for register locality except that the tiles are small
(variables being reused to fit in registers ideally) and the tile is fully unrolled.
Improves the compute to load/store operation ratio – extremely important
for high-performance on modern architectures
Sufficient: if it is valid to make a loop the innermost loop, it is valid to
unroll-and-jam it.
More precise: unroll-and-jam is valid iff stripminng the loop by the
unroll-and-jam factor and bringing the intra-tile loop to the innermost
position is valid
Multi-dimensional unroll-and-jam (multiple loops)
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UNROLL-AND-JAM OR REGISTER TILING (CONTINUED)

For a matrix-matrix multiplication in the canonical ijk form, work out the
improvement in compute to load/store ratio when unroll-and-jamming i and
j loops with factors Ui and Uj respectively.
Assume a register budget of 16 registers in one case and 32 registers in
another.
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REDUCTIONS

Reductions can be parallelized
Reductions can be vectorized
s = 0;
for (i = 0; i < N; i++)
s += A[i];
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A COMPOSITION OF TRANSFORMATIONS

for (i = 1 i < N; i++)
// S1.
B[i] = A[i];

for (i = 1; i < N; i++)
// S2.
C[i - 1] = B[i] + B[i - 1]

Original ordering: TS1(i) = (0, i), TS2(i) = (1, i)
Fused + Tiled + Innermost loop distribution

Produce a chunk of A and consume it before a new chunk is produced
Transformation: TS1(i) = (i/32, 0, i) , TS2(i) = (i/32, 1, i).
for (t1=0;t1<=floord(N-1,32);t1++) {
for (t3=max(1,32*t1;t3<=min(N-1,32*t1+31);t3++)
B[t3] = A[t3];

for (t3=max(1,32*t1);t3<=min(N-1,32*t1+31);t3++)
C[t3 - 1] = B[t3] + B[t3 - 1];

}

Provides cache locality while also providing parallelism and vectorization.
Either locality or parallelism/vectorizability would have otherwise been lost
with only fusion or only parallelizing without any fusion.
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ALGORITHMS TO FIND TRANSFORMATIONS

The history
A data locality optimizing algorithm, Wolf and Lam, PLDI 1991: Improve
locality through unimodular transformations

Characterize self-spatial, self-temporal, and group reuse
Find unimodular transformations (permutation, reversal, skewing) to transform to
permutable loop nests with reuse, and subsequently tile them

Several advances on polyhedral transformation algorithms through 1990s and
2000s: Feautrier [1991–1992], Lim and Lam (Affine Partitioning) [1997–2001],
Pluto [2008–2015]
The Present

Polyhedral framework provides a powerful mathematical abstraction (away
from the syntax)
A number of new techniques, open-source libraries and tools have been
developed and are actively maintained
Affine abstractions and infrastructure in MLIR
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MLIR

Open-sourced by Google in Apr 2019
ML in MLIR: Multi-level
Ability to represent code at multiple levels in a unified way
First class abstractions for multi-dimensional arrays (tensors), loop nests,
affine maps/sets, and more
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MLIR: MULTI-LEVEL INTERMEDIATE REPRESENTATION

1. Ops on tensor types form
%patches = "tf.reshape"(%patches, %minus_one, %minor_dim_size)

: (tensor<? x ? x ? x ? x f32>, index, index) −> tensor<? x ? x f32>
%mat_out = "tf.matmul"(%patches_flat, %patches_flat){transpose_a : true}

: (tensor<? x ? x f32>, tensor<? x ? x f32>) −> tensor<? x ? x f32>
%vec_out = "tf.reduce_sum"(%patches_flat) {axis: 0} : (tensor<? x ? x f32>) −> tensor<? x f32>

2. Loop-level/mid-level form

for (i = 0; i < N; i++)

for (k = 0; k < N; k++)

for (i = 0; i < N; i++)

S1

S2

for (j = 0; j < N; j++)

S1

for (j = 0; j < N; j++)

S2

0 <= i <= N−1

0 <= j <= N−1

0 <= k <= N−1

i

j

k

#map0 = affine_map<(d0) −> (d0)>
#map1 = affine_map<(d0) −> (d0 + 4)>
affine.for %i = 0 to 8 step 4 {
affine.for %j = 0 to 8 step 4 {
affine.for %k = 0 to 8 step 4 {
affine.for %ii = #map0(%i) to #map1(%i) {
affine.for %jj = #map0(%j) to #map1(%j) {
affine.for %kk = #map0(%k) to #map1(%k) {

%5 = affine.load %lhs[%ii, %kk] : memref<8 x 8 x f32>
%6 = affine.load %rhs[%kk, %jj] : memref<8 x 8 x f32>
%7 = affine.load %out[%ii, %jj] : memref<8 x 8 x f32>
%8 = arith.mulf %5, %6 : f32
%9 = arith.addf %7, %8 : f32
affine.store %9, %out[%ii, %jj] : memref<8 x 8 x f32>

}
}

}
}

}
}

3. Low-level form: closer to hardware
%v1 = memref.load %a[%i2, %i3] : memref<256 x 64 x vector<16 x f32>>
%v2 = memref.load %b[%i2, %i3] : memref<256 x 64 x vector<16 x f32>>
%v3 = arith.addf %v1, %v2 : vector<16 x f32>
memref.store %v3, %d[%i2, %i3] : memref<256 x 64 x vector<16 x f32>>
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MLIR DESIGN PRINCIPLES

1 Round-trippable textual format
2 Ability to represent code at multiple levels
3 Unified representation for all the levels
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MLIR - BASIC CONCEPTS

SSA, typed, three address
Module/Function/Block/Operation structure
Operations can hold a “region”, which is a list of
blocks

func.func @test(%arg: i32) {
%x = call @thing_to_call(%arg) : (i32) −> i32
cf.br ^bb1

^bb1:
%y = arith.addi %x, %x : i32
return %y : i32

}
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SSA REPRESENTATION

Functional SSA representation
No ϕ nodes
Instead, blocks take arguments

func.func @condbr_simple() -> (i32) {
%cond = "foo"() : () -> i1
%a = "bar"() : () -> i32
%b = "bar"() : () -> i64
cf.cond_br %cond, ^bb1(%a : i32), ^bb2(%b : i64)

^bb1(%x : i32):
%w = "foo_bar"(%x) : (i32) -> i64
cf.br ^bb2(%w: i64)

^bb2(%y : i64):
%z = "abc"(%y) : (i64) -> i32
return %z : i32

}
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MLIR OPERATIONS

Operations always have a name and source location info
Operations may have:

Arbitrary number of SSA results and operands
Attributes: guaranteed constant values
Block operands: e.g. for branch operations
Regions: discussed later
Custom printing/parsing - or use the more verbose generic syntax
%size = tensor.dim %T, 1 : tensor<1024x? x f32>
// Dimension to extract is a guaranteed integer constant, an attribute .
%x = memref.alloc() : memref<1024x64xf32>
%y = affine.load %x[%a, %b] : memref<1024x64xf32>
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OPERATIONS WITH REGIONS

An MLIR Region is a list of blocks
Operations in MLIR can have nested regions

%2 = xla.fusion (%0 : tensor<f32>,
%1 : tensor<f32>) : tensor<f32> {

^bb0(%a0 : tensor<f32>, %a1 : tensor<f32>):
%x0 = xla.add %a0, %a1 : tensor<f32>
%x1 = xla.relu %x0 : tensor<f32>
return %x1

}

func.func @loop_nest_unroll(%arg0: index) {
affine.for %arg1 = 0 to 100 step 2 {
affine.for %arg2 = 0 to #map1(%arg0) {

%0 = "foo"() : () −> i32
}

}
return

}

Can be used to represent:
functional control flow
fusion nodes
closures/lambdas
structured looping/conditional constructs (for, if , while)
Parallelism abstractions like OpenMP
Launch/dispatch kernel abstractions gpu.launch
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DIALECTS IN MLIR

A collection of operations and types suitable for a specific task
Typically correspond to a programming model, frontend, or a backend
Example dialects: TensorFlow dialect, LLVM dialect, Affine dialect, NVIDIA
GPU dialect
You can have a mix of dialects
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CURRENT DIALECTS IN MLIR
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AFFINE EXPRESSIONS IN MLIR

Affine for functions is linear + constant
Addition of identifiers, multiplication with a constant, floordiv, mod, ceildiv
with respect to a positive constant

Examples of affine functions of i, j:
i + j, 2i− j, i + 1, 2i + 5,
i/128 + 1, i%8, (i + j)/8,
((d0 ∗ 9216 + d1 ∗ 128) mod 294912) floordiv 147456
Not affine: ij, i/j, j/N, i2 + j2, a[j]
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AFFINE MAPS

An affine map maps zero or more identifiers to one or more result affine
expressions

#map1 = (d0) → ((d0 floordiv 4) mod 2)

#map2 = (d0) → (d0 − 4)

#map3 = (d0) → (d0 + 4)

#map4 = (d0, d1) → (d0 ∗ 16 − d1 + 15)

#map5 = (d0, d1, d2, d3) → (d2 − d0 ∗ 16, d3 − d1 ∗ 16)

Why affine maps? What can they express?
Loop IV mappings for nearly every useful loop transformation, data layout
transformations, placement functions / processor mappings / distributions:
block, cyclic, block-cyclic, multi-dimensional array subscripts, loop bound
expressions, conditionals

107/122



WHERE ARE AFFINE MAPS USED IN MLIR?

1 IV remappings: to map old IVs to new IVs
(i, j) Identity
(j, i) Interchange

(i, i + j) Skew j
(2i, j) Scale i by two

(i, j + 1) Shift j
(⌊ i

32⌋, ⌊
j

32⌋, i, j) Tile (rectangular)
. . .

2 Loop bounds
3 Memref access subscripts
4 As an attribute for any operation

#map = (d0) −> (2*d0 − 1)

affine.for %i = 0 to #map(%N) {
affine.for %j = 0 to 3 {

%v = affine.load %0[%i + %j] : memref<100xf32>
"op1"(%v) : (f32) −> ()

}
}
%w = "op"(%s, %t) {map: affine_map<(d0, d1) −> (d1, d0)>}
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POLYHEDRAL STRUCTURES IN THE IR

1 Affine expressions
Eg: (d0 + 1) mod 2

2 Affine maps
Eg: (d0, d1)→ (d1, d0/128, d0 mod 128)

3 Integer sets
Eg: {(d0, d1)[s1] : d0 ≥ 0, d0 ≤ s1, d1 == 512}

4 Affine apply operation (affine.apply)
%a = affine.apply (d0, d1) -> (d0 + d1) (%i, %j)

5 Affine ‘for‘ operation (affine.for)
6 Affine ‘if‘ operation (affine.if)
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TYPES RELEVANT FOR DENSE MATRICES/TENSORS

1 tensor A value that is a multi-dimensional array of elemental values
%d = "tf.Add"(%e, %f) : (tensor<?x42x?xf32>, tensor<?x42x?xf32>) −> tensor<?x42x?xf32>

2 memref A buffer in memory or a view on a buffer, has a layout map, memory
space qualifier, symbols bound to its dynamic dimensions
%N = affine.apply (d0) −> (8 * (d0 ceildiv 8)) (%S)
%M = affine.apply (d0) −> (2 * d0) (%N)
#tmap = affine_map<(d0, d1) −> (d1 floordiv 32, d0 floordiv 128, d1 mod 32, d0 mod 128)>
#shift = affine_map<(d0, d1)[s0, s1] −> (d0 + s0, d1 + s1)>
%A = memref.alloc() : memref<1024x64xf32, #tmap, 0>
%B = memref.alloc(%M, %N)[%x, %y] : memref<?x?xf32, #tmap, 1>
%C = memref.alloc(%M, %M)[%x, %y] : memref<?x?xf32, #shift, 1>
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INTEGER SETS

An integer set is primarily used for conditionals
It is also powerful as an attribute to specify constraints on symbols (esp.
shape symbols)

// An example two-dimensional integer set with two symbols.
#set = affine_set<(d0, d1)[s0, s1]

: d0 >= 0, -d0 + s0 - 1 >= 0, d1 >= 0, -d1 + s1 - 1 >= 0>

affine.if #set(%i, %j)[%M, %N] {
%v = affine.load %A[%i] : memref<256xf32>

}
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ANALYSES AND TRANSFORMATIONS: WHAT’S CURENTLY PRESENT

Several techniques are available:
GCD test

2i + 4j− 8k− 1 = 0 → No solution
GCD tightening:

16i ≥ 16j− 15, 16i ≤ 16j → i = j
Gaussian elimination

i = j− 1, 0 ≤ j ≤ i
Fourier-Motzkin elimination: eliminate a variable from a system of linear
inequalities

i ≤ j + 1, j = k, k ≤ 16, i ≥ 32

FlatAffineConstraints
Fast Presburger library (FPL)
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GENERALIZED SLICING-BASED LOOP FUSION

A generalized slicing-based loop fusion approach
Can trade off redundant computation for locality / memory minimization
Post fusion, forwarding of ‘affine.store‘ to affine.load, elimination of
intermediate arrays can be performed
Fixed size local buffers are created when possible to pass intermediate data

affine.for %i = 0 to 64 {
%v = affine.load %in[%i] : memref<64xf32>
affine.store %v, %out[%i floordiv 4, %i mod 4]

: memref<16x4xf32>
}

affine.for %i = 0 to 16 {
affine.for %j = 0 to 4 {

%w = affine.load %out[%i, %j] : memref<16x4xf32>
"foo"(%w) : (f32) −> ()

}
}

affine.for %i = 0 to 16 {
affine.for %j = 0 to 4 {

%v = affine.load %in[4 * %i + %j] : memref<64xf32>
"foo"(%v) : (f32) −> ()

}
}
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6 MLIR
MLIR Representation
Polyhedral Notions in MLIR
Analyses and Transformations

7 Backend Optimizations
Register Allocation
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COMPILER BACKEND

1 Instruction Selection
2 Instruction Scheduling
3 Register Allocation
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REGISTER ALLOCATION

Machines have a limited number of registers
Register Allocation: Determine which variables should be allocated registers
and assign them registers
Objectives

Minimize “spilling”
Efficiency: time complexity, performance in practice

117/122



REGISTER ALLOCATION: DEFINITIONS

A variable is live from its definition to its last use
Two variables cannot be allocated the same register if they are both
simulataneously live
Such simultaneously live variables are said to interfere
Spilling saves a values from a register to memory; a register is freed
A variables that has not been updated can be spilled without a store to
memory
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LIVE RANGES AND INTERFERENCE GRAPH

Perform analysis to compute liveness information
From live ranges, construct an interference graph
Variables are nodes of the graph (each node has a live range)
An edge between nodes iff the associated variables’ live ranges interfere
Color the interference graph such that no two adjacent vertices have the same
color
k registers: find a k-colouring for the interference graph
Registers are colours
NP-complete problem in general
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CHAITIN’S ALGORITHM: REGISTER ALLOCATION BY GRAPH

COLORING

1 While ∃ vertices with < k neighbours in G:
Pick any vertex n such that deg(n) < k and put it on the stack
Remove n and all edges incident to it from G

2 If G is non-empty with deg(v) ≥ k, ∀v ∈ G then:
Pick vertex v (using a heuristic), spill live range of v
Remove vertex v and edges from G, put v on the “spill list”
Go to step 1

3 If the spill list is not empty, insert spill code, then rebuild the interference
graph and try to allocate, again

4 Otherwise, successively pop vertices off the stack and colour them in the
lowest colour not used by some neighbour.
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LINEAR SCAN ALGORITHM

Linearization of basic blocks
Approximate register allocation as the coloring of interval graphs
Live interval A sequence of instructions, outside of which a variable v is
never live.
The algorithm

1 Walk intervals in the sorted increasing order of start points
2 Maintain a pool of available registers, determine expired intervals, free registers,

and allocate from the pool
3 When no registers are available, spill the interval that has the latest finish point

(other heuristics possible)

Complexity: O(VlogR): V variables, R registers
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RECENT WORK

Copy Coalescing
Register allocation under SSA: interference graphs are chordal graphs.
Chordal graphs can be coloured efficiently
Register allocation has to be solved in combination with instruction
scheduling and code generation
Classic phase ordering problem between register allocation and instruction
scheduling
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