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@ Compilers for the 21st Century: Introduction
@ Compilers for Al
© Control Flow Analysis
© Data Flow Analysis
© Static Single Assignment and SSA Transformations
© Mid-level Transformations
@ Data Dependences, Transformations, Parallelization
@ Locality
o Affine Transformations
@ Parallelism
@ Tiling, Fusion, Vectorization
@ Other Complementary Transformations
O MLIR
@ MLIR Representation
@ Polyhedral Notions in MLIR
@ Analyses and Transformations
€ Backend Ontimizations



RESEARCH IN PROGRAMMING AND COMPILER TECHNOLOGIES

o Current:
e C, C++, Rust, Java, Python, MATLAB, R, ...
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@ Current:
e C, C++, Rust, Java, Python, MATLAB, R, ...

@ What will the new and disruptive programming technologies of the 21st
century be?



RESEARCH IN PROGRAMMING AND COMPILER TECHNOLOGIES

© What do programmers want?
@ How are architectures evolving?

Multiple cores and many cores on a chip

GPUs, accelerators, and heterogeneous parallel architectures
Wider vector processing units

Deep memory hierarchies

Reduced precision



HIGH-PERFORMANCE COMPILATION: WHAT DO YOU WANT TO
PROGRAM?

@ Scientific and engineering simulations
e Eg: Solving partial differential equations numerically

Embedded vision (Eg: Autonomous/self-driving cars)

Smartphones — HPC in data centers and cloud drives a number of
smartphone technologies

Scientific and Engineering simulations
Data Analytics

Deep Learning

Generative Al, LLMs



QUESTIONS TO THINK ABOUT

@ What will the new programming technologies for the emerging domains
be?

e Current: C, C++, Rust with OpenMP, MPI, CUDA, OpenCL
o Future: New languages, compilers, libraries, and DSLs




QUESTIONS TO THINK ABOUT

e What will the new programming technologies for Al be?
e PyTorch is dominant today; JAX is another high-level one. OpenAl Triton is
mid-level.
@ Just scratches the surface




THE NEED FOR HIGH PERFORMANCE

@ More/Larger Data

o Instagram — 60 million photos / day
e YouTube — 100 hours of video uploaded every minute

@ Need for a fast/real-time response in some domains
@ More complex algorithms

@ Science/Engineering simulations/modeling: Time to solution



PROGRAMMING MODERN HARDWARE EFFECTIVELY

e Compute speed: Eg.: 16 multiply-adds per cycle (AVX-512 unit for {p32)
@ Synchronization (2 cores 0.25 ys, 8 cores 1.25 s, 2x8 cores 1.54 ps)
@ Memory bandwidth (10 GB/s per core, 500 GB/s per socket)



PROGRAMMING MODERN HARDWARE EFFECTIVELY

e Compute speed: Eg.: 16 multiply-adds per cycle (AVX-512 unit for {p32)
@ Synchronization (2 cores 0.25 ys, 8 cores 1.25 s, 2x8 cores 1.54 ps)
@ Memory bandwidth (10 GB/s per core, 500 GB/s per socket)

e High-Performance Programming and Compilation

e Exploiting locality (caches, registers)

e Exploit single core hardware well (vectorization, ...)

e Multi-core parallelism

e Reduce synchronization and communication as much as possible

@ Good scaling without good single thread performance is a great waste of
resources (power, equipment cost)



A CLASSIFICATION OF VARIOUS APPROACHES

@ Manual low-level (C, C++) with parallel programming models (OpenMP,
CUDA, MPI) with the best optimizing compilers
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A CLASSIFICATION OF VARIOUS APPROACHES

@ Manual low-level (C, C++) with parallel programming models (OpenMP,
CUDA, MPI) with the best optimizing compilers

@ Library-based: C, C++, Python with libraries/packages: MKL, ScaLAPACK,
CuBLAS, CuDNN, Cutlass, CuB

@ Mid-level: Triton, CuTile, Pallas
© Ultra-high level languages and models including embedded DSLs:
Tensorflow, PyTorch, JAX, R, MATLAB, Halide, Spiral

@ General goal: Obtain productivity of the last class and the performance of the
first



EXAMPLE: UNSHARP MASK — AN IMAGE PROCESSING PIPELINE

(C) Bernie Saunders, CC BY-NC-ND 3.0




UNSHARP MASK: COMPUTATION

for (i =0; i <= 2; i++)
for (j =2; j <= (R+1); j++)

for (k = 0; (k <= (C + 3)); k++)
blurx[i][j-2]1[k] = img[i][]j-2]1[k]*0.0625f + img[i][j-1][k]*0.25f I
+ img[i][j]1[k]*0.375f + img[i][j+1]1[k]*0.25f + img[i][]j+2][k]*0.0625F; in
for (i = 0; (i <= 2); i++) l
for (j =2; (j <= (R+1)); j++)
for (k = 2; (k<= (C + 1)); ki+) blur,
blury[i][j]1[k-2] = blurx[i][j-2][k-2]%0.0625f + blurx[i][j-2][k-1]*0.25f
+ blurx[i][j-2]1[k]1*0.375F + blurx[i][j-2]1[k+11%0.25f + blurx[i][j-2][k+2]1%0.0625f;
for (i =0; (i <= 2); i++) blur,
for (j =2; (j <= (R+ 1)); j++)
for (k = 2; (k <= (C + 1)); k++) l
sharpen[il[j][k-2] = img[i][j]l[k 1 + weight) + blury[i][j-2]1[k-2 -weight);
pen[i][j]1[k-2] g[1][3] k] ( ght) y[i103-2]11k-2]*( ght) sharpen
for (i =0; i <= 2; i++)
for (j = 2; j <= R+ 1; j++) l
for (k = 2; k<= C+ 1; k++) {
_ct0 = img[i][j1LK]; masked
_ctl = sharpen[i][j-2][k-2];
= (std::abs((img[i]1[j]1[k] - blury[i][j-2][k-2])) < threshold)? _ct0: _ctl;

_ct2 =
mask[i][j-2]1[k-2] = _ct2;

A sequential version in C: 18.6 ms / frame
(using GCC with opts, quad-core Nehalem, 720p video)



UNSHARP MASK - A NAIVE OPENMP VERSION

for (i =0; i <= 2; i++)
#pragma omp parallel for
for (j =2; j <= (R+ 1); j++)
#pragma ivdep
for (k = 0; k <= C + 3; k++) I
blurx[i][j-2]1[k] = img[il[j-2][k]*0.0625f + img[i][j-1][k]*0.25f in
1031

+ img[1]1Tj1[K]*0.375F + img[i][j+1]1[K]*0.25F + img[i][j+2][K]*0.0625f;
for (i =0; i <= 2; i++) l
#pragma omp parallel for
for (j =2; j <=R+1; j++) blurx
#pragma ivdep
for (k = 2; k <= C + 1; k++)
blury[i1[j1[k-2] = blurx[i][j-2][k-2]1%0.0625f + blurx[i][j-2][k-1]1%0.25f
+ blurx[i][j-2]1[k]*0.375f + blurx[i][j-2]1[k+1]1%0.25f + blurx[i][j-2][k+2]%0.0625f;
for (i = 0; 1 <= 2; i++) blury
#pragma omp parallel for
for (j =2; j <= R+ 1; j++)
#pragma ivdep
for (k =2; k<=C+ 1

5 k++)
sharpen[i][j1[k-2] = img[i][j]1[k]*(1 + weight) + blury[il[j-2][k-2]*(-weight); sharpen
for (i =0; i <= 2; i++)
#pragma omp parallel for private(_ct0,_ctl,_ct2)
for (j =2; j <=R+ 1; j++)
#pragma ivdep

for (k = 2; k <= C + 1; k++) {
_ctd = img[i][j1[k]; mﬂSkEd
,ctl = sharpen[i][]j-2][k

(std: abs((lmg[l][]][k] - blury[i][j-2]1[k-2])) < threshold)? _ct@: _ctl;
mask[l][] 2][k-2] = _ct2;
}

20.2 ms / frame on 1 thread, 18.02 ms / frame on 4 threads



UNSHARP MASK - A BETTER OPENMP VERSION

#pragma omp parallel for
for (j =2; j <= (R+ 1); j++)
for (i = 0; i <= 2; i++)
#pragma ivdep
for (k = 0; (k
blurx[i]l[j-2
+ img[i][j]

<= (C +3)); k++) Jls
10Kkl = img[i][j-2]1[k]*0.0625f + img[i][j-1]1[k]*0.25f in
[k1%0.375f + img[i][j+1][k]*0.25f + img[i][j+2][k]*0.0625f;

#pragma omp parallel for l
for (j =2; (j <= (R+1)); j++) bl
for (i = 0; i <= 2; i++)
#pragma ivdep Ury
for (k = 2; (k <= (C + 1)); k++)
qury[l][ 1[k-2] = blurx[i][j-2]1[k-2]1%0.0625f + blurx[i][]j-2]1[k-1]1%0.25f
+ blurx[i][j-2]1[k]*0.375f + blurx[i][j-2]1[k+1]1%0.25f + blurx[i][j-2][k+2]*0.0625f;
#pragma omp parallel for blury
for (j =2; (j <= R+ 1)); j++)
for (i = 0; i <=2; i++)
#pragma ivdep
for (k = 2; (k <= (C + 1)); k++)
sharpen[i][j]1[k-2] = img[i][j]1[k]*(1 + weight) + blury[i][j-2][k-2]*(-weight); shtzrpen
#pragma omp parallel for private(_ct0,_ctl,_ct2)
for (j = 2; ] <= R + 1; j++)
for (1 =0; i <= 2; i++)
#pragma ivdep
for 2; k<= C+ 1; k++) {
ing[11 3] [K]; masked

sharpen[i][j-2][k

(std: abs((lmg[l][]][k] - blury[i][j-2]1[k-2])) < threshold)? _ct@: _ctl;
mask[l][] 2][k-2] = _ct2;

}

18.6 ms / frame on 1 thread, 15.03 ms / frame on 4 threads
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OPTIMIZING UNSHARP MASK

@ Write with OpenCV library (with Python bindings)

@jit("float32[::]1(uint8[::]1,,int64)", cache = True, nogil = True)
def unsharp_cv(frame, lib_func):
frame_f = np.float32(frame) / 255.0
res = frame_f
kernelx = np.array([1, 4, 6, 4, 1], np.float32) / 16
kernely = np.array([[1], [4], [6], [4], [1]], np.float32) / 16
blury = sepFilter2D(frame_f, -1, kernelx, kernely)
sharpen = addWeighted(frame_f, (1 + weight), blury, (-weight), 0)
th, choose = threshold(absdiff(frame_f, blury), thresh, 1, THRESH_BINARY)
choose = choose.astype(bool)
np.copyto(res, sharpen, ’'same_kind’, choose)
return res

Performance: 35.9 ms / frame
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@jit("float32[::]1(uint8[::]1,,int64)", cache = True, nogil = True)
def unsharp_cv(frame, lib_func):
frame_f = np.float32(frame) / 255.0
res = frame_f
kernelx = np.array([1, 4, 6, 4, 1], np.float32) / 16
kernely = np.array([[1], [4], [6], [4], [1]], np.float32) / 16
blury = sepFilter2D(frame_f, -1, kernelx, kernely)
sharpen = addWeighted(frame_f, (1 + weight), blury, (-weight), 0)
th, choose = threshold(absdiff(frame_f, blury), thresh, 1, THRESH_BINARY)
choose = choose.astype(bool)
np.copyto(res, sharpen, ’'same_kind’, choose)
return res

Performance: 35.9 ms / frame

© Write in a dynamic language like Python and use a JIT (Numba) — performance: 79 ms / frame



OPTIMIZING UNSHARP MASK

@ Write with OpenCV library (with Python bindings)

@jit("float32[::](uint8[::],,int64)", cache = True, nogil = True)
def unsharp_cv(frame, lib_func):
frame_f = np.float32(frame) / 255.0
res = frame_f
kernelx = np.array([1, 4, 6, 4, 1], np.float32) / 16
kernely = np.array([[1], [4], [6], [4], [1]], np.float32) / 16
blury = sepFilter2D(frame_f, -1, kernelx, kernely)
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np.copyto(res, sharpen, ’'same_kind’, choose)
return res

Performance: 35.9 ms / frame
© Write in a dynamic language like Python and use a JIT (Numba) — performance: 79 ms / frame

@ A naive C version parallelized with OpenMP: 18.02 ms / frame



OPTIMIZING UNSHARP MASK

@ Write with OpenCV library (with Python bindings)

@jit("float32[::]1(uint8[::]1,,int64)", cache = True, nogil = True)
def unsharp_cv(frame, lib_func):
frame_f = np.float32(frame) / 255.0
res = frame_f
kernelx = np.array([1, 4, 6, 4, 1], np.float32) / 16
kernely = np.array([[1], [4], [6], [4], [1]], np.float32) / 16
blury = sepFilter2D(frame_f, -1, kernelx, kernely)
sharpen = addWeighted(frame_f, (1 + weight), blury, (-weight), 0)
th, choose = threshold(absdiff(frame_f, blury), thresh, 1, THRESH_BINARY)
choose = choose.astype(bool)
np.copyto(res, sharpen, ’'same_kind’, choose)
return res

Performance: 35.9 ms / frame
© Write in a dynamic language like Python and use a JIT (Numba) — performance: 79 ms / frame
@ A naive C version parallelized with OpenMP: 18.02 ms / frame

© A version with sophisticated optimizations (fusion + overlapped tiling): 8.97 ms / frame (in
this course, we will study how to get to this, and build compilers/code generators that can
achieve this automatically)

@ Video demo



UNSHARP MASK - A HIGHLY OPTIMIZED VERSION

Note: Code below is indicative and not meant for reading. Zoom into soft copy or browse
source code repo listed in references.

Iin

|

blur,

!

blur,

!

sharpen

!

masked

15.5 ms / frame on 1 threads, 8.97 ms / frame on 4 threads



DOMAIN-SPECIFIC LANGUAGES (DSL)

@ The example motivates a domain-specific language + compiler approach



DOMAIN-SPECIFIC LANGUAGES (DSL)

@ The example motivates a domain-specific language + compiler approach

e High-performance domain-specific language + compiler: productivity
similar to ultra high-level or high-level but performance similar to manual or
even better!



DOMAIN-SPECIFIC LANGUAGES (DSL)

DSLs

@ Exploit domain information to improve programmability, performance, and
portability

DSL compilers



DOMAIN-SPECIFIC LANGUAGES (DSL)

DSLs
@ Exploit domain information to improve programmability, performance, and
portability
@ Expose greater information to the compiler and programmer specifies less
@ abstract away many things from programmers (parallelism, memory)
DSL compilers
@ can “see” across routines — allow whole program optimization
@ generate optimized code for multiple targets

@ Programmers say what to execute and not how to execute



BIG PICTURE: ROLE OF COMPILERS

General-Purpose Domain-Specific
e Improve existing general-purpose @ Build new domain-specific
compilers (for C, C++, Python, ...) languages and compilers
@ Programmers say a LOT @ Programmers say WHAT they
e LLVM/Polly, GCC/Graphite execute and not HOW they execute

@ SPIRAL, Halide, Tensorflow,
Pytorch, ...



BIG PICTURE: ROLE OF COMPILERS

General-Purpose Domain-Specific

e Improve existing general-purpose @ Build new domain-specific
compilers (for C, C++, Python, ...) languages and compilers

@ Programmers say a LOT @ Programmers say WHAT they

e LLVM/Polly, GCC/Graphite execute and not HOW they execute

e Limited improvements, not e SPIRAL, Halide, Tensorflow,
everything is possible Pytorch, ...

e Broad impact @ Dramatic speedups, Automatic

parallelization

e Narrower impact and adoption



BIG PICTURE: ROLE OF COMPILERS

EVOLUTIONARY approach REVOLUTIONARY approach
e Improve existing general-purpose @ Build new domain-specific
compilers (for C, C++, Python, ...) languages and compilers
@ Programmers say a LOT @ Programmers say WHAT they
e LLVM/Polly, GCC/Graphite execute and not HOW they execute

@ SPIRAL, Halide, Tensorflow,

i g




BIG PICTURE: ROLE OF COMPILERS

EVOLUTIONARY approach REVOLUTIONARY approach
e Improve existing general-purpose @ Build new domain-specific
compilers (for C, C++, Python, ...) languages and compilers
@ Programmers say a LOT @ Programmers say WHAT they
e LLVM/Polly, GCC/Graphite execute and not HOW they execute

@ SPIRAL, Halide, Tensorflow,
¢ ! &A! PYtorCh

@ Both approaches share infrastructure
@ Important to pursue both




@ Compilers for the 21st Century: Introduction
@ Compilers for Al
© Control Flow Analysis
© Data Flow Analysis
© Static Single Assignment and SSA Transformations
© Mid-level Transformations
@ Data Dependences, Transformations, Parallelization
@ Locality
o Affine Transformations
@ Parallelism
@ Tiling, Fusion, Vectorization
@ Other Complementary Transformations
O MLIR
@ MLIR Representation
@ Polyhedral Notions in MLIR
@ Analyses and Transformations
€ Backend Ontimizations



COMPILERS FOR Al

e Compilers are language translators: they translate programming languages
to instructions hardware can execute

@ One of the pillars of Computer Systems



COMPILERS - THE EARLY DAYS

| Motorola 68000 |

PL/8 Power




COMPILERS - THE EARLY DAYS

e M languages, N targets = M * N compilers! Not scalable!



COMPILERS EVOLUTION - M + N

€]

m/
| PTX/NVIDIA |

e With an common IR, we have M + N + 1 compilers!




WHAT DOES AN IR LOOK LIKE?

A representation convenient
to analyze and transform
Y Round_trippable fOI'm that define void @foo(ptr nocapture %a) {

entry:
you can parse and print or Labet wlor. body

for.body: ; preds = %for.body, %entry
o LOW'leVel IRS are %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
. %arrayidx = getelementptr inbounds i32, ptr %a, 164 %indvars.iv
three-address COde-llke %0 = load i32, ptr %arrayidx, align 4
. %1 = add i32 %0, 2
@ IRs have used expressions %inc = add nsw i32 %0, 1
store 132 %inc, ptr %arrayidx, align 4
treeS, 3—add1‘eSS COde, %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%sexitcond = icmp eq i64 %indvars.iv.next, 64
graphs. br il %exitcond, label %for.end, label %for.body
@ Static Single Assignment: a "o 7 preds = %for. body
ret void
}

property of IRs that makes
it convenient; most IRs now
use SSA



MODERN COMPILERS - LLVM IR-BASED

Clang AST x86
, /
/
Objective-C
opt
HIR/MIR
SIL

- x86-64
, -
K -
FI target desc.
LLVM IR LLVM Machlne IR
[Julia}~{Julia AST ”/

|}?)/( Torch IR, Triton |
[TensorFlow /JAX |- XLA HLO| @

higher-order languages

J
e LLVM: modular, reusable, open-source, but too low-level, not extensible for



COMPILERS FOR Al

Explosion of Al chips and
Al programming accelergtors
frameworks @3 %

N

L

: . Compiler infrastructure?

9
?

LE & o s &

@ Space in between is ruled by hand-written libraries. Not scalable.

@ The right tools weren’t available until recently.



PyTorch-

Triton

CUDA

High, mid, and low-level
abstractions

High: PyTorch, JAX, ...
Mid: OpenAl Triton, cuTile

Low: CUDA, C/C++,
CUTLASS, ...

All three approaches need /use
compilers in different ways
They also share/rest on the
same underlying infrastructure
Eg: Triton, MLIR, LLVM, PTX




HOW DO YOU PROGRAM Al HARDWARE?

@ High, mid, and low-level
abstractions

@ High: PyTorch, JAX, ...

@ Mid: OpenAl Triton, cuTile

@ Low: CUDA, C/C++,
CUTLASS, ...

@ All three approaches need /use
compilers in different ways

@ They also share/rest on the
same underlying infrastructure

@ Eg: Triton, MLIR, LLVM, PTX

PyTorch- Triton CUDA



PYTHON-BASED PROGRAMMING FRAMEWORKS: TODAY

class SelfAttentionLayer(nn.Module):
def __init__(self, feature_size):

o Where does performance ln super(SelfAttentionLayer, self).__init__()
self.feature_size = feature_size
Python-based frameworks , _
# Linear transformations for Q, K, V from the same source.

? self.key = nn.Linear(feature_size, feature_size)
come from‘ self.query nn.Linear(feature_size, feature_size)
self.value nn.Linear(feature_size, feature_size)

° Largely from hbrarles def forward(self, x, mask=None):

written in C, C++, CUDA, # Apply Unear {ronsTornations.

queries = self.query(x)
and even assembly values = self.value(x)
o Compilers exist: XLA’ # Scaled dot-product atten‘gion.
scores = torch.matmul(queries, keys.transpose(-2, -1))
TOI'ChIndUCtOT, TensorRT / torch.sqrt(torch.tensor(self.feature_size, dtype=torch.float32))
3 3 3 . # Apply mask (if provided).
° lelted n many Ways' if mask is not None:
”semi—compﬂers", scores = scores.masked_fill(mask == 0, -1e9)
1 # Apply softmax.
fragmented 1nfra, attention_weights = F.softmax(scores, dim=-1)
performance # Multiply weights with values.
° Stlll evolving output = torch.matmul(attention_weights, values)

return output, attention_weights



OPENING MULTI-LEVEL DOORS TO PROGRAMMING Al HARDWARE

@ High-level Python-based programming
frameworks (e.g. PyTorch, JAX),

@ Compiler support for (1) that could be
turned off/on (e.g. torch.compile),

© Mid/low-level programming support (e.g.,
CUDA, CUTLASS, CuTile, Triton)

© Low-level MLIR dialects that expose their
hardware intrinsics/virtual ISA on top of
which both (2) compilers and (3) low-level
frameworks rest,

© Ability to use inline virtual ISA.




COMPILER AUTO-PARALLELIZATION IS ALREADY HERE!

GPU Inference (float32)

w 200
o —— Torchinductor
3 150 AvFuser ;
E —— NNC
‘6 100 4 = PyTorch/XLA
5 —— ONNXRT
£ 504{— ™M J
S Hidet /
= 0
10x  9x  8x 7x 6x 5x 4x 3x 2x 1x  Ox
@ Recent PyTorch 2 ASPLOS Spesdup areater wran
paper GPU Inference (float16)

—— Torchinductor

PyTorch 2: Faster Machine

150 nvFuser
Learning Through Dynamic e o ﬂ?
. 50— ™M
Python Bytecode Transformation 2 =

10x  9x 8x 7x 6x 5x ax 3x 2x 1x 0;

Number of models
=
o
3

B

and Graph Compilation, Ansel Speedup grster than
et al. (Meta), ASPLOS 2024. . CPU Inference
e
s 100 — ?\m‘m
£

10x  9x 8 7x 6x 5x 4x 3x 2x 1x  Ox
Speedup greater than



HOW IS HARDWARE EVOLVING? (1/2)

From 2000s to now

Multiple cores (early 2000s)
Wider SIMD (early 2000s)
Many cores (late 2000s)
Heterogeneity (2000s/2010s)

Tensor/matmul cores (mid 2010s)

Low-precision compute instructions )
(late 2010s/2020s) LE]



HOW IS HARDWARE EVOLVING? (2/2)

Example: NVIDIA H100 chip
@ 80 GB of GPU DRAM
@ 3.35 TB/s of memory bandwidth (HBM3).
@ 990 TFLOPS for fp16 tensor operations, 1.98 PFLOPS for int8.
@ 50 MB of L2 cache.



HOW ARE PROGRAMMING FRAMEWORKS EVOLVING?

Al programming frameworks

TN
@ Programmer productivity r
@ Write less and do more .
@ Hardware usability O
@ Deliver performance
@ Deliver portability ¢

£
3



COMPILERS FOR Al

Explosion of Al chips and
Al programming accelergtors
frameworks ‘}“L 2
)

nr\

: . Compiler infrastructure?
?

LE & & /ey

@ MLIR infrastructure: open-sourced by Google in 2019



COMPILERS FOR Al

Explosion of Al chips and

Al programming acceleritors
frameworks g\} E
» 8
N * &
” ]
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@ MLIR infrastructure: open-sourced by Google in 2019



MLIR

MLIR

e ML in MLIR: Multi-level
@ Characteristics
e Loops and multi-dimensional arrays (tensors) had to be first class citizens
e Had to be extensible (types, operations, attributes)
e Had to enable building both general-purpose and domain-specific compilers
and even more.
e Had to be open-source with a permissive license



MULTI-DIMENSIONALITY EVERYWHERE: CNN CONVOLUTION

for (n =0; n < N; n++) // Samples in a batch.
for (o = 0; o < Oc; o++) // Output feature channels.
for (i = 0; i2 < Ic; i++) // Input feature channels.

for (y = 0; i3 < Y; i3++) // Layer height.
for (x = 0; 14 < X; i4++) // Layer width.

for (kh = 0; i5 < Kh; i5++) // Convolution kernel height.

for (kw = 0; 16 < Kw; i6++) // Convolution kernel width.

output[n, o, y, x] += input[n, i, y+kh, x+kw] * weights[o, i, kh, kw];




MLIR: MULTI-LEVEL INTERMEDIATE REPRESENTATION

1. Ops (general purpose to domain spe-
cific) on tensor types / graph form

2. Loop-level / mid-level form

st
?
2 o
9 3 g
3 et R e e
2R 2 la 2 s for (i = 031 < N; i++)
LRSS SN for (j =03 j < N; j++)
LSS S e 59 s2
PR AN b B e
'S B¥ Sen
L S
b4 >

for (i =031 < N3 i++)
for (j =05 j <N; j++)
for (k = 03 k <N; ke+)

s1

3. Low-level form: closer to hardware

9patches = "tf.reshape”(%patches, %minus_one, %minor_dim_size)
: (tensor<?x?x? x 2 x 32>, index, index) —> tensor<? x ? x 32>
Y%emat_out = "tf.matmul"(%patches_flat, %patches_flat){transpose_a : true}
: (tensor<?x?x 32>, tensor<? x ? x {32>) —> tensor<? x ?x 32>
Y%vec_out = "tf.reduce_sun'(%patches_flat) {axis: 0} : (tensor<?x? x 32>) > tensor<? x (32>

affine.for %i=0:8 4
affine.for %j=
affine.for %
affine.for %ii = #map0(%i) (o #map1(%i) {
atfine.for %jj = #map0(%j) to #mapl(%j) |
affine.for %kk = #map0(%k) (o #map1(%k) {
%5 = affine.load %arg0[%ii, %kk] : memref<8 x 8 x vector<64 x {32>>
%6 = af fine.load %arg1[%kk, %jj] : memref<8 x 8 x vector<64 x {32>>
%7 = affine.load %arg2[%ii, %jj] : memref<8 x 8 x vector<6d x {32>>
%8 = arithmulf %5, %6 : vector<6dxf3z>
%9 = arith.addf %7, %8 : vector<6dxf32>
affine.store %9, %arg2(%ii, %jj] : memref<8 x 8 x vector<64xf32>>

8 4

%v1 = memref.Load %al%i2, %i3] : memref<256 x 64 x vector<16 x {32>>
9%v2 = memref.Load %b[%i2, %i3] : memref<256 x 64 x vector<16 x [32>>
9%v3 = addf %v1, %v2 : vector<l16 x (32>

memref.store %v3, %d|%i2, %i3] : memref<256 x 64 x vector<16 x {32>>




MODERN COMPILER TOPICS IN THIS COURSE

@ Foundations: SSA, Dominance, Basic concepts for control flow analysis and
data flow analysis

@ Compiler optimizations for parallelism and locality

© Affine abstraction/Polyhedral framework (only the basics)
Q@ MLIR

@ Practice: Building compilers using MLIR

@ Practice: Building compilers and optimizers for Al frameworks (basic
overview, pointers)



@ Compilers for the 21st Century: Introduction
@ Compilers for Al
© Control Flow Analysis
© Data Flow Analysis
© Static Single Assignment and SSA Transformations
© Mid-level Transformations
@ Data Dependences, Transformations, Parallelization
@ Locality
o Affine Transformations
@ Parallelism
@ Tiling, Fusion, Vectorization
@ Other Complementary Transformations
O MLIR
@ MLIR Representation
@ Polyhedral Notions in MLIR
@ Analyses and Transformations
€ Backend Ontimizations



BASIC BLOCKS AND CONTROL FLOW GRAPH

@ A basic block is a maximal straight-line code sequence that has a single entry
point that is at its first instruction, and a single exit point that is at its last
instruction.

e Whenever the first instruction is executed, the rest of the instructions are
executed exactly once, and in sequence.

e No code within it is the target of any jump instruction

e Only the last instruction cause control to leave the basic block



BASIC BLOCKS AND CONTROL FLOW GRAPH

@ A basic block is a maximal straight-line code sequence that has a single entry
point that is at its first instruction, and a single exit point that is at its last
instruction.

e Whenever the first instruction is executed, the rest of the instructions are
executed exactly once, and in sequence.

e No code within it is the target of any jump instruction

e Only the last instruction cause control to leave the basic block

@ A control flow graph is a directed graph where the nodes are basic blocks and
the edges represent transfer of program control



DOMINATORS

@ Anoded in a flow graph dominates node n, written d dom #, if every path
from the initial node of the control flow graph to n goes through d

@ The node x strictly dominates y, if x dominates y and x # y
@ x is the immediate dominator of v, if x is the closest strict dominator of y

@ A dominator tree shows all the immediate dominator relationships
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@ x is the immediate dominator of v, if x is the closest strict dominator of y

@ A dominator tree shows all the immediate dominator relationships
e How do you find the dominators?



DOMINATORS

@ Anoded in a flow graph dominates node n, written d dom #, if every path
from the initial node of the control flow graph to n goes through d

@ The node x strictly dominates y, if x dominates y and x # y
@ x is the immediate dominator of v, if x is the closest strict dominator of y

@ A dominator tree shows all the immediate dominator relationships
e How do you find the dominators?
e What can you say about a node’s predecessors’ dominators and its dominators?



ALGORITHM TO FIND DOMINATORS

Input :CFG (V,E)
Output: Dom(n) Vn € V
1 Dom(s) < {s}
2 foreachn € V — {s} do
| Dom(n) « V
while changes to Dom(n) occur do
foreachn € V — {s} do
‘ IN(”) A mpepred(n)Dom(p)
foreachn € V — {s} do
| Dom(n) < {n} UIN(n)

® N o U W




Dominator Example

BO Start

For determining
dominators, assume
visit order of nodes in
the CFG to be
BO,...B8

i=0
read n

\
BS[ even(n) ] [ print i ]54

BS B8

n=3*n+1|B6 Stop

init: OUT[B1,...,B8] = {B0,... B8}, OUT[BO] = (B0}
1: IN[B1] = OUT[BO] = {B0}, OUT[B1] = {B0,B1}
2: IN[B2] =OUT[B1] N OUT[B7] = {B0,B1}, OUT[B2] = {B0,B1,B2}
3: IN[B3] = {B0,B1,B2}, OUT[B3] = {B0,B1,82,B3}
IN[B4] = {B0,B1,B2}, OUT[B4] = {B0,B1,B2,B4}
4: IN[B5] = {B0,B1,B2,B3} = IN[B6], OUT[BS5] = {B0,B1,B2,B3,B5)
OUT[B6] = {B0,B1,62,B3,B6}, OUT[BB] = {B0,B1,B2,B4,B8}
5: IN[B7] = OUT[B5] N OUT[B6] = {B0,B1,B2,B3}
OUT[BT] = {B0,B1,B2,B3,B7}

Y.N. Srikant Control Flow Analysis



DFS oN CFG, BACK EDGES, NATURAL LOOPS

o A DFS will yield tree edges, forward edges, cross edges, and retreating edges
— what are these?

@ A back edge in a CFG is an edge whose head dominates the tail (definition is
not the same as the one used for depth first search in graphs)

@ A natural loop of a back edge is the set of nodes comprising the head node of
the back edges and the nodes that can reach the tail of the back edge without
going through the head node

e It is intuitively the region of the program that may be executed
iteratively /repeatedly with the back edge being used for looping and with the
head of the back edge as the only entry point to this region

e It is intuitively the loop body of a for loop or a similar iterative construct (while,
do/while)



Dominators, Back Edges, and Natural Loops

Dominator Tree

Adapted from the
“Dragon Book”,

“ AWV, 1986
\
\
'
/)
1
1
[}
1
1
1
1
1
- Back edges and their natural loops

724 1007 |43 10>3 11->1

{4,5,6,7,8, | {7.8,10} {3.4,56,7, | {3.456.7, {1,2,34.5,
10} 8,10} 8,10} 6,7,8,9,10,11}

Flow Graph

Y.N. Srikant Control Flow Analysis



Dominators, Back Edges, and Natural Loops

Flow Graph

Dominator Tree

Adapted from the

\ “Dragon Book”,
“ AWV, 1986
\
1
1
1
1
|
[}
1
1
1
1
1
- Back edges and their natural loops
7->3 10>7 |43 10->3 11->1
{34,56,78, | {7.810} | {34} {3.4,56,7, {1,2,34.5,
10} 8,10} 6,7,8,9,10,11}
Y.N. Srikant Control Flow Analysis




Depth-First Numbering Example 1

retreating

edge
P /tree edge
4
BS[ even(n) ] [ printi ]54
\ B8

Y.N. Srikant Control Flow Analysis



Depth-First Numbering Example 2

Dominator Tree

]
1 Adapted from the
I “Dragon Book”,
1 \ AWV, 1986
I \
| \
1 1
1 1
R !
crosk edge :
' I
1 1
1
|
\ 1
\

Nodes of the CFG show the
DF-numbering

retreating \
edge M-
Flow Graph

tree edge

Y.N. Srikant Control Flow Analysis



CONTROL FLOW GRAPH REDUCIBILITY

@ A control flow graph is reducible if all its retreating edges are back edges
@ A control flow graph is reducible if if it can be reduced to a single node by
repeatedly applying T1 and T2 transformations

e T1: Eliminate a self loop
e T2: Merge a single entry node into its parent
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@ A control flow graph is reducible if all its retreating edges are back edges

@ A control flow graph is reducible if if it can be reduced to a single node by
repeatedly applying T1 and T2 transformations
e T1: Eliminate a self loop
e T2: Merge a single entry node into its parent

@ Are your flow graphs reducible?



CONTROL FLOW GRAPH REDUCIBILITY

@ A control flow graph is reducible if all its retreating edges are back edges

@ A control flow graph is reducible if if it can be reduced to a single node by
repeatedly applying T1 and T2 transformations

e T1: Eliminate a self loop
e T2: Merge a single entry node into its parent

@ Are your flow graphs reducible?

@ What about structured programming?



@ Control flow Analsis, Frances Allen, 1970.
http://dl.acm.org/citation.cfm?id=808479


http://dl.acm.org/citation.cfm?id=808479

Reducibility - Example 1

72>3,10->7,4>3,10-> 3,
and 11 &> 1 are all back edges.

There are no other retreating
edges in any depth-first search
tree of this graph.

The rest of the edges form a
DAG, in which each node is
reachable from node 1.

Reducible graph.

Flow Graph

Y.N. Srikant Control Flow Analysis



Reducibility - Example 2

Irreducible graph, no back edge.

Either2 > 3 or 3 > 2 is aretreating
edge in a depth-first search tree.

The graph is cyclic, not a DAG.

d 2 cis a back edge.

Other edges form a DAG in
which each node is reachable
from the node a.

Reducible graph.

Y.N. Srikant Control Flow Analysis



@ Compilers for the 21st Century: Introduction
@ Compilers for Al
© Control Flow Analysis
@ Data Flow Analysis
© Static Single Assignment and SSA Transformations
© Mid-level Transformations
@ Data Dependences, Transformations, Parallelization
@ Locality
o Affine Transformations
@ Parallelism
@ Tiling, Fusion, Vectorization
@ Other Complementary Transformations
O MLIR
@ MLIR Representation
@ Polyhedral Notions in MLIR
@ Analyses and Transformations
€ Backend Ontimizations



Data-flow analysis

@ These are techniques that derive information about the
flow of data along program execution paths
@ An execution path (or path) from point p; to point p, is a

sequence of points p1, po, ..., Pn such that for each
i=1,2,. — 1, either

Q piis the point immediately preceding a statement and p; 1
is the point immediately following that same statement, or
@ p;is the end of some block and p;, 1 is the beginning of a
successor block
@ In general, there is an infinite number of paths through a
program and there is no bound on the length of a path

@ Program analyses summarize all possible program states
that can occur at a point in the program with a finite set of
facts

@ No analysis is necessarily a perfect representation of the
state

Y.N. Srikant Data-flow Analysis



Uses of Data-flow Analysis

@ Program debugging

@ Which are the definitions (of variables) that may reach a
program point? These are the reaching definitions

@ Program optimizations

e Constant folding
e Copy propagation
@ Common sub-expression elimination etc.

Y.N. Srikant Data-flow Analysis



Data-Flow Analysis Schema

@ A data-flow value for a program point represents an
abstraction of the set of all possible program states that
can be observed for that point

@ The set of all possible data-flow values is the domain for
the application under consideration

e Example: for the reaching definitions problem, the domain
of data-flow values is the set of all subsets of of definitions
in the program

e A particular data-flow value is a set of definitions

@ IN[s] and OUTs|: data-flow values before and after each
statement s

@ The data-flow problem is to find a solution to a set of
constraints on IN[s] and OUT |s], for all statements s

Y.N. Srikant Data-flow Analysis



The Reaching Definitions Problem

@ We kill a definition of a variable a, if between two points
along the path, there is an assignment to a

@ A definition d reaches a point p, if there is a path from the
point immediately following d to p, such that d is not killed
along that path

@ Unambiguous and ambiguous definitions of a variable

a:=b+c

(unambiguous definition of ’a’)

*p:=d
(ambiguous definition of ’a’, if 'p’ may point to variables
other than 'a’ as well; hence does not kill the above
definition of ’a’)

a:=k-m
(unambiguous definition of ’a’; kills the above definition of
la!)
Y.N. Srikant Data-flow Analysis



The Reaching Definitions Problem(2)

@ We compute supersets of definitions as safe values

@ |t is safe to assume that a definition reaches a point, even
if it does not.

@ In the following example, we assume that both a=2 and

a=4 reach the point after the complete if-then-else
statement, even though the statement a=4 is not reached

by control flow
if (a==b) a=2; else if (a==b) a=4;

Y.N. Srikant Data-flow Analysis



The Reaching Definitions Problem (3)

@ The data-flow equations (constraints)

IN[B] = U OUT[P]
P is a predecessor of B
OUT[B] = GENIB] U (IN[B] — KILL[B])
IN[B] = ¢,for all B (initialization only)

@ If some definitions reach B; (entry), then IN[B;] is
initialized to that set

@ Forward flow DFA problem (since OUT|[B] is expressed in
terms of IN[B]), confluence operator is U

@ GENIB] = set of all definitions inside B that are “visible”
immediately after the block - downwards exposed
definitions

@ KILL[B] = union of the definitions in all the basic blocks of
the flow graph, that are killed by individual statements in B

Y.N. Srikant Data-flow Analysis



Reaching Definitions Analysis: An Example - Pass 1

Pass 1

GEN[B2]={d4,d5}
KILL[B2]={d1,d2,d7}
IN[B2]=®
QUT[B2]={d4,d5}

GEN[B1]={d1,d2,d3}
KILL[B1]={d4,d5,d6,d7}
IN[B1]=0, OUT[B1]={d1,d2,d3}

GEN[B3]={d6} [ggr a = uz] B3

KILL[B3]={d3}
IN[B3]=®
OUT[B3]={d6}
GEN[B4]={d7}
KILL[B4]={d1,d4}
IN[B4]=®
OUT[B4]={d7}

dd:i:=i+1| B2
d5:j:=j1
Adapted from the
“Dragon Book”,
d7:i:=a+j | B4 AW, 1986
exit
Y.N. Srikant Data-flow Analysis



Reaching Definitions Analysis: An Example - Pass 2

Pass 2

GEN[B2]={d4,d5}
KILL[B2]={d1,d2,d7}
IN[B2]={d1,d2,d3,d7}
OUT[B2]={d3,d4,d5}

GEN[B3]={d6} | gg: a:=u2 | B3
KILL[B3]={d3}
IN[B3]={d3,d4,d5}
OUT[B3]={d4,d5,d6}

GEN[B4]={d7}
KILL[B4]={d1,d4}
IN[B4]={d3,d4,d5,d6}
OUT[B4]={d3,d5,d6,d7}

d4:i:=i+1
d5:j:=j1

d7:i:=a+j | B4

exit

Y.N. Srikant

GEN[B1]={d1,d2,d3}
KILL[B1]={d4,d5,d6,d7}
IN[B1]=0, OUT[B1]={d1,d2,d3}

B2

Adapted from the
“Dragon Book”,
A-W, 1986

Data-flow Analysis



Reaching Definitions Analysis: An Example - Final

Final

d1:i:=m-1| GEN[B1]={d1,d2,d3}
B1 |g2:j:=n KILL[B1]={d4,d5,d6,d7}
d3:a:=ui | IN[B1]=®, OUT[B1]={d1,d2,d3}

GEN[B2]={d4,d5}
KILL[B2]={d1,d2,d7} |d4:

IN[B2]={d1,d2,d3,d5,d6,d7} |d5
OUT[B2]={d3,d4,d5,d6}

i+1| B2

GEN[B3]={d6} | 4g; a := u2 | B3
KILL[B3]={d3}
IN[B3]={d3,d4,d5,d6}
OUT[B3]={d4,d5,d6}

GEN[B4]={dT}
KILL[B4]={d1,d4}
IN[B4]={d3,d4,d5,d6} [

OUT[B4]={d3,d5,d6,d7}

Adapted from the
“Dragon Book”,

d7:i:=a+j | B4 A-W, 1986

Y.N. Srikant Data-flow Analysis



An lterative Algorithm for Computing Reaching
Definitions

for each block B do { IN[B] = ¢; OUT[B] = GENIBJ; }
change = true;
while change do { change = false;

for each block B do {

INB] = U OUTIPY;
P a predecessor of B

oldout = OUTIB];
OUT[B] = GEN[B]| J (IN[B] - KILL[B]):;
if (OUT|[B] # oldout) change = true;

}
}

@ GEN, KILL, IN, and OUT are all represented as bit
vectors with one bit for each definition in the flow graph

Y.N. Srikant Data-flow Analysis



Reaching Definitions: Bit Vector Representation

Final dataflow value sets

shown in bit vector format
GEN[B1]= [1[1T1T0T0T0[0]

B1 g;f!f M- qLLe1)= (O[O0 T[1][1]
i7", | NmB1= [o[olofolol0l0

ouTB1]= [1[1[1]0[0]0[0]

GEN[B2]={d4,d5} a1ld2]d3ladlas]deld7
KILL[B2]={d1,d2,d7} |d4:i:=i+1| B2

IN[B2]={d1,d2,d3,d5,d6,d7} | d5: ] :=j-1

OUT[B2]={d3,d4,d5,d6}

—

GEN[B3]={d6} | 46:a:=uz| B3
KILL[B3]={d3}

IN[B3]={d3,d4,d5,d6} Adapted from the
OUT[B3]={d4,d5,d6} = g4 “Dragon Book”,
GEN[B4]={d7} | d7:i:= atj AW, 1986
KILL[BA4]={d1,d4}

IN[B4]={d3,d4,d5,d6}
OUT[B4]={d3,d5,d6,d7} exit

Y.N. Srikant Data-flow Analysis



Use-Definition Chains (u-d chains)

Reaching definitions may be stored as u-d chains for
convenience

A u-d chain is a list of a use of a variable and all the
definitions that reach that use

u-d chains may be constructed once reaching definitions
are computed

case 1: If use u1 of a variable b in block B is preceded by
no unambiguous definition of b, then attach all definitions
of bin IN[B] to the u-d chain of that use u1 of b

case 2: If any unambiguous definition of b preceeds a use
of b, then only that definition is on the u-d chain of that use
of b

case 3: If any ambiguous definitions of b precede a use of
b, then each such definition for which no unambiguous
definition of b lies between it and the use of b, are on the
u-d chain for this use of b

Y.N. Srikant Data-flow Analysis



Use-Definition Chain Construction

IN[B]
= B
l B | b= (def d1) b i= (def d1)
B n° en
no other = :
A e
def. of ‘b’ def. of ‘b’ here 42)
= b (use u1 = L
( ) =b(use u1) unambiguous
def. of ‘b’ here
attach def of ‘b’ attach def d1
in IN[B] to u-d alone to use u1 = b (use ul)
chain of use u1

attach both d1 and
d2 to use u1

Three cases while constructing
u-d chains from the reaching
definitions

Y.N. Srikant Data-flow Analysis



Use-Definition Chain Example

Adapted from the
“Dragoh Book”,

AW, 1986 d1:i:=m-1 | GEN[B1]={d1,d2,d3}
Bl \gp:j=n | KILL[B1]={d4,d5,d6,d7}
d3:a-=u1 | IN[B1]=0®, OUT[B1]={d1,d2,d3}
GEN[B2]={d4,d5} -
KILL[B2]={d1,d2,d7} |d4:i:=i+1| B2 use | u-d chain
IN[B2]={d1,d2,d3,d5,d6,d7} | d5:]:= -1 .
QUT[B2]={d3,d4,d5,d6} (iad) | (d1.d7)
GENI[B3]={d6} [gg:a=uz| B3 (3.d5) | (d2,d3)
KILL[B3]={d3}
IN[B3]={d3,d4,d5,d6} (a,d7) | (d3,d6)
QUT[B3]={d4,d5,d6}
GEN[B4]={d7} | d7:i:= a+j | B4 (j,d7) (d5)
KILL[B4]={d1,d4}
IN[BA4]={d3,d4,d5,d6}
OUT[B4]={d3,d5,d6,d7} | exit
Y.N. Srikant Data-flow Analysis



Available Expression Computation

@ Sets of expressions constitute the domain of data-flow
values

@ Forward flow problem
@ Confluence operator is N

@ An expression x + y is available at a point p, if every path
(not necessarily cycle-free) from the initial node to p
evaluates x + y, and after the last such evaluation, prior to
reaching p, there are no subsequent assignments to x or y

@ A block kills x + y, if it assigns (or may assign) to x or y
and does not subsequently recompute x + .

@ A block generates x + y, if it definitely evaluates x + y, and
does not subsequently redefine x or y

Y.N. Srikant Data-flow Analysis



Available Expression Computation(2)

@ Useful for global common sub-expression elimination
@ 4xjisa CSE in B3, if it is available at the entry point of B3

i.e., if i is not assigned a new value in B2 or 4 x i is

recomputed after i is assigned a new value in B2 (as

shown in the dotted box)

t1 = 4%

i=.. il no asgmnt.
to=4% tol B2

\"‘*—»« t2 = 4%

Y.N. Srikant Data-flow Analysis

B1

B3



Available Expression Computation (3)

@ The data-flow equations

IN[B] = N OUTIP], B not initial
P is a predecessor of B
OUT[B] = e_gen[B]| ] (IN[B] - e_kill[B])
IN[B1] = ¢
IN[B] = U, for all B # B1 (initialization only)
@ B1 is the intial or entry block and is special because
nothing is available when the program begins execution
@ IN[B1] is always ¢
@ Uis the universal set of all expressions
@ Initializing IN[B] to ¢ for all B # B1, is restrictive

Y.N. Srikant Data-flow Analysis



Available Expression Computation - An Example

B1

B2

B4

BS

t1=1>1
if 1t1 goto B9
false l
i=o
B3 |42 =1

l

13 = j<t2
if 1t3 goto B8

false l

t4 = 4%
15 = a[td]
t6 = j+1
t7=4+16
18 = a[t7]
t9=15>1t8
if 1t9 goto B7

i=t21
goto B2

false

t10=4% ¢——v0 0
t11 = a[t10]
temp = t11

t2=4% g——
t3=a+t12

t14 =j+1 H——
t15=4*t14

116 = a[t15] B6
*13 =116

t17 =j+1 ——
t18=4*t17
t19=a+t18

*t19 = temp

120 = j+1

j=t20 B7

goto B4

Y.N. Srikant

Data-flow Analysis



Available Expression Computation - An Example (2)

B

B2

B4

BS

1

t1=1>1
if 1t1 goto B9
false l
j=0
B3 |42 =1

l

13 = j<t2
if 1t3 goto B8

false l

t4 = 4%
15 = a[td]
t6 = j+1
t7=4+16
18 = a[t7]
t9=15>1t8
if 1t9 goto B7

i=t21
goto B2

false

t10=t4 ¢+—
t11 = a[t10]
temp = t11

t12=t4 ——0
t3=a+t12

t14=16 €¢—
t15=4*t14

116 = a[t15] B6
*13 = t16

t17=t6 €——
t18=4*t17
t19=a+t18

*t19 = temp

120 = t6

j=t20 B7

goto B4

Y.N. Srikant

Data-flow Analysis



An lterative Algorithm for Computing Available
Expressions

for each block B # B1 do {OUT[B] = U — e_kill[B]; }
/* You could also do IN[B] = U;*/
/* In such a case, you must also interchange the order of */
/* IN[B] and OUT[B] equations below */
change = true;
while change do { change = false;
for each block B = B1 do {

IN[B] = N OUTIPY;
P a predecessor of B

oldout = OUTI[B];
OUT[B] = e_gen[B]| J (IN[B] - e_kill[B]);
if (OUT|[B] # oldout) change = true;

}
}

Y.N. Srikant Data-flow Analysis



Initializing IN[B] to ¢ for all B can be restrictive

B1

Let e_gen[B2] be G and e_kill[B2]
be K

IN[B2] = QUT[B1] N CUT[B2]

OUT[B2]=G U (IN[B2] - K)

IN°[B2]=®, OUT[B2]=G

IN'[B2]=OUTBIIN G

OUT?[B2]=G U ((CUT[B1] N G) — K)
=GUG=G

Note that (OQUT[B1] N G) is always

smaller than G

IN'[B2]= U, OUT'[B2]= U - K

IN'[B2]=OUT[B1] N (U — K)
=Q0UT[B1] -K
OUT?B2]=G U ((OCUT[B1] - K) - K)
=G U OUT[B1]- K)
This set OUT[B2] is larger and more
intuitive, but still correct

Data-flow Analysis



Live Variable Analysis

The variable x is live at the point p, if the value of x at p
could be used along some path in the flow graph, starting
at p; otherwise, x is dead at p
Sets of variables constitute the domain of data-flow values
Backward flow problem, with confluence operator | J
IN[B] is the set of variables live at the beginning of B
OUTB] is the set of variables live just after B
DEF|B] is the set of variables definitely assigned values in
B, prior to any use of that variable in B
USE|[B] is the set of variables whose values may be used
in B prior to any definition of the variable

ouT[B] = U IN[S]

S is a successor of B

IN[B] USE[B] U (OUT[B] — DEF[B])
IN[B] = ¢,for all B (initialization only)

Y.N. Srikant Data-flow Analysis



Live Variable Analysis: An Example

i :=lm-1 USE[B1]={m,n,u1}
Bl |j:=n DEF[B1]={i,j,a}
a:=ul IN[B1]={m,n,u1,u2}

OUT[B1]={i,j,u2,a)

USE[B2]={i,j}
DEF[B2]={} i=i+1
IN[B2]={i,j,u2,a} J=)1 B2
QUT[B2]={u2,a,j}

USE[B3]={u2}
DEF[B3]={a}
IN[B3]={j,u2}
QUT[B3]={a,j,u2}

USE[B4]={a,j}
DEF[B4]={i}

IN[B4]={a,},u2} B
OUT[B4I={a,ij,u2} [exit |

Y.N. Srikant Data-flow Analysis



Definition-Use Chains (d-u chains)

For each definition, we wish to attach the statement
numbers of the uses of that definition

Such information is very useful in implementing register
allocation, loop invariant code motion, etc.

This problem can be transformed to the data-flow analysis
problem of computing for a point p, the set of uses of a
variable (say x), such that there is a path from p to the use
of x, that does not redefine x.

This information is represented as sets of (x, s) pairs,
where x is the variable used in statement s

In live variable analysis, we need information on whether a
variable is used later, but in (x, s) computation, we also
need the statment numbers of the uses

The data-flow equations are similar to that of LV analysis
Once IN[B] and OUT|B] are computed, d-u chains can be
computed using a method similar to that of u-d chains

Y.N. Srikant Data-flow Analysis



Data-flow Analysis for (x,s) pairs

Sets of pairs (x,s) constitute the domain of data-flow values
Backward flow problem, with confluence operator | J
USE[B] is the set of pairs (x, s), such that s is a statement
in B which uses variable x and such that no prior definition
of x occurs in B
DEF|B] is the set of pairs (x, s), such that s is a statement
which uses x, s is not in B, and B contains a definition of x
IN[B] (OUT|B], resp.) is the set of pairs (x, s), such that
statement s uses variable x and the value of x at IN[B]
(OUT|B], resp.) has not been modified along the path from
IN[B] (OUT|[B], resp.) to s
ouT[B] = U IN[S]
S is a successor of B
IN[B] = USE[B] U (OUT[B] — DEF|[B])
IN[B] = ¢, for all B (initialization only)

Y.N. Srikant Data-flow Analysis



Definition-Use Chain Example

s1: i := m-1 | USE[B1]={(m,s1),(n,s2),(u1,s3)}
Bl |s2:j:=n DEF[B1]={(i,s4),(j,s5),(j,s7),(a,87)}
s3:a:=u1 | IN[B1={(m,s1),(n,s2),(u1,s3),(u2,s6)}
OUTI[B1]={(i,s4),(J,s5),(u2,s6),(a,s7)}

USE[B2]={(i,s4),{j.s5)}
DEF[B2]={(j,s7)} | S4:1:= i+1
INIB2]={(,54),(],85),(u2,56) (a,s7)} |85:) =]
QOUT[B2]={(j,85).(u2,s6),(a,s7),(j,87)}

def d-u chain
(i,s1) (s4)

(i-s2) (s3)
USE[B3]={(u2,56)} (a,s3) (s7)
DEF[B3]={(a,s7)} -
IN[B3]={(j,55),(j,57),(u2,56)} (1,54) 0

OUT[B3]|={(a,s7),(}.57),(,55),(u2,56)}
USE[B4]={(a,s7),(j,s7)}
DEF[B4]={(i,s4)}
IN[B4]={(a,57),(j,57).(u2,56)}

OUT[B4]={(a,s7),(i,54),(j,s5),(u2,56)}

(j,s5) (s9,s7)
(a,s6) (s7)
(i,s7) (s4)
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Definition-Use Chain Construction

= B
B | h:=(def d1) b := (def d1)
b := (def d1) no other *p := (ambiguous
no unambiguous definition of ‘b’,d2)
unambiguous def. of ‘b” here
def. of ‘b’ _ no other
= o [E W) unambiguous
l def. of ‘b’ here
OUTI[B] attach use u1
to du-chain of =b (use u1)
attach to du-chain of  def d1
d1, stmts s, of all use attach use u to
airs (b,s.) in OUT[B ;
P (bs) [B] du-chains of both

def d1 and def d2

Three cases while constructing
d-u chains from the (x,s) pairs

Y.N. Srikant Data-flow Analysis



Very Busy Expressions or Anticipated Expressions

@ An expression B op C is very busy or anticipated at a point
p, if along every path from p, we come to a computation of
B op C before any computation of B or C

@ Useful in code hoisting and partial redundancy elimination

@ Code hoisting does not reduce time, but reduces space

@ We must make sure that no use of B op C (from X,Y, or Z
below) has any definition of B or C reaching it without
passing through p

P T=BopC

code hoisting

>

X=BopC vy=gopC z=BopC X=T  y=r =T

Y.N. Srikant Data-flow Analysis



Very Busy Expressions or Anticipated Expressions (2)

@ Sets of expressions constitute the domain of data-flow
values

@ Backward flow analysis with () as confluence operator

@ V_USE|[n] is the set of expressions B op C computed in n
with no prior definition of Bor Cin n

@ V_DEF](n] is the set of expressions B op C in U (the
universal set of expressions) for which either B or C is
defined in n, prior to any computation of B op C

ouT[n] = N IN[S]
S is a successor of n
IN[n] = V_USE|n]| U (OUT[n] — V_DEF]|n])
IN[n] = U, for all n(initialization only)

Y.N. Srikant Data-flow Analysis



Anticipated Expressions - An Example

star‘t

‘x a+b‘ ‘

w

y=arb| |

(b)

a+b is anticipated at: entry to 1 and 4
a+b is not anticipated at: all other points

a+b is anticipated at all peints,
except at exit of 4 and entry of 5

Y.N. Srikant
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Data-Flow Problems: A Summary - 1

The Reaching Definitions Problem
@ Domain of data-flow values: sets of definitions
Direction: Forwards
Confluence operator: U
Initialization: IN[B] = ¢
Equations:

IN[B]

U OUT[P]

P is a predecessor of B

ouT[B] = GEN[B]|J (IN[B] - KILL[B])

Y.N. Srikant Data-flow Analysis



Data-Flow Problems: A Summary - 2

The Available Expressions Problem
@ Domain of data-flow values: sets of expressions
@ Direction: Forwards
@ Confluence operator: N
@ Initialization: IN[B] = U
@ Equations:

IN[B] N OUTIP]

P is a predecessor of B
OUT[B] = e_gen[B]| J (IN[B] - e_kill[B])
IN[B1] = ¢

Y.N. Srikant Data-flow Analysis



Data-Flow Problems: A Summary - 3

The Live Variable Analysis Problem
@ Domain of data-flow values: sets of variables
Direction: backwards
Confluence operator: U
Initialization: IN[B] = ¢

°
°
°
@ Equations:

OUTI[B] U IN[S]

S is a successor of B

IN[B] = USE[B]| J (OUT[B] - DEFIB])

Y.N. Srikant Data-flow Analysis



Data-Flow Problems: A Summary - 4

The Anticipated Expressions (Very Busy Expressions) Problem
@ Domain of data-flow values: sets of expressions

Direction: backwards

Confluence operator: N

Initialization: IN[B] = U

°
°
°
@ Equations:

OUT(B] N IN[S]

S is a successor of B

IN[B] = V_USE[B]| J (OUT[B] - V_DEFIB])

Y.N. Srikant Data-flow Analysis



@ Compilers for the 21st Century: Introduction
@ Compilers for Al
© Control Flow Analysis
© Data Flow Analysis
© Static Single Assignment and SSA Transformations
© Mid-level Transformations
@ Data Dependences, Transformations, Parallelization
@ Locality
o Affine Transformations
@ Parallelism
@ Tiling, Fusion, Vectorization
@ Other Complementary Transformations
O MLIR
@ MLIR Representation
@ Polyhedral Notions in MLIR
@ Analyses and Transformations
€ Backend Ontimizations



The SSA Form: Introduction

@ A new intermediate representation

@ Incorporates def-use information
@ Every variable has exactly one definition in the program
text
e This does not mean that there are no loops
e This is a static single assignment form, and not a dynamic
single assignment form
@ Some compiler optimizations perform better on SSA forms
e Conditional constant propagation and global value
numbering are faster and more effective on SSA forms
@ A sparse intermediate representation
e If a variable has N uses and M definitions, then def-use
chains need space and time proportional to N.M
e But, the corresponding instructions of uses and definitions
are only N + M in number
e SSA form, for most realistic programs, is linear in the size of
the original program

Y.N. Srikant Program Optimizations and the SSA Form



A Program in non-SSA Form and its SSA Form

read A,B,C
if (A=B)
if (A>C)max = A
else max =C
else if (B>C) max = B
else max =C
printf (max) ‘ A

‘ max, = §(max max, mex max )

Print
max

Y.N. Srikant Program Optimizations and the SSA Form




SSA Form: A Definition

@ A program is in SSA form, if each use of a variable is
reached by exactly one definition

@ Flow of control remains the same as in the non-SSA form

@ A special merge operator, ¢, is used for selection of values
in join nodes

@ Not every join node needs a ¢ operator for every variable

@ No need for a ¢ operator, if the same definition of the
variable reaches the join node along all incoming edges

@ Often, an SSA form is augmented with u-d and d-u chains
to facilitate design of faster algorithms

@ Translation from SSA to machine code introduces copy
operations, which may introduce some inefficiency

Y.N. Srikant Program Optimizations and the SSA Form



Program 2 in non-SSA Text Form

{Read A; LSR =1, RSR=A;
SR = (LSR+RSR)/2;
Repeat {
T =8SR*SR;
if (T>A) RSR =SR;
else if (T<A) LSR = SR;
else {LSR = SR; RSR = SR}
SR = (LSR+RSR)/Z;
Until (LSR # RSR);
Print SR;

}

Y.N. Srikant Program Optimizations and the SSA Form



Program 2 in non-SSA and SSA Form

Read A
LSR, =1; RSR, = A
R, = (LSR+RSR,)/2

B1

LSR=1;RSR=A

B1 | sr=(LSR+RSR)2

LSR, = ®(LSR;, LSR,)
RSR, = ®(RSR, RSR,)
SR, = ®(SR;,SR;)

T=5R,"* SR,

B2

LSR5 = ®(LSR,,LSR,,LSR,)
RSR, = ®(RSR3,RSR,,RSR,)
SR, = (LSR.+RSR)/2

LSR;s != RSR

Y.N. Srikant Program Optimizations and the SSA Form



Program 3 in non-SSA and SSA Form

B6
[n=n/2] [n=3*n+1] [ Stop ]
B5

B4

B7

Y.N. Srikant Program Optimizations and the SSA Form



Conditions on the SSA form

After translation, the SSA form should satisfy the following
conditions for every variable v in the original program.

@ If two non-null paths from nodes X and Y each having a
definition of v converge at a node p, then p contains a
trivial ¢-function of the form v = ¢(v, v, ..., v), with the
number of arguments equal to the in-degree of p.

© Each appearance of v in the original program or a
¢-function in the new program has been replaced by a new
variable v;, leaving the new program in SSA form.

© Any use of a variable v along any control path in the

original program and the corresponding use of v; in the
new program yield the same value for both v and v;.

Y.N. Srikant Program Optimizations and the SSA Form



Conditions on SSA Forms

@ Condition 1 in the previous slide is recursive.

o It implies that ¢-assignments introduced by the translation
procedure will also qualify as assignments to v

e This in turn may lead to introduction of more ¢-assignments
at other nodes

@ It would be wasteful to place ¢-functions in all join nodes

@ |t is possible to locate the nodes where ¢-functions are
essential

@ This is captured by the dominance frontier

Y.N. Srikant Program Optimizations and the SSA Form



The Join Sets and ¢ Nodes

Given S: set of flow graph nodes, the set JOIN(S) is

@ the set of all nodes n, such that there are at least two
non-null paths in the flow graph that start at two distinct
nodes in S and converge at n

e The paths considered should not have any other common
nodes apart from n

@ The iterated join set, JOINT(S) is

JOIN(S) = JOIN(S)
JOINU+(S) = JOIN(S U JOINY(S))

@ If S is the set of assignment nodes for a variable v, then
JOINT(S) is precisely the set of flow graph nodes, where
¢-functions are needed (for v)

@ JOINT(S) is termed the dominance frontier, DF(S), and
can be computed efficiently

Y.N. Srikant Program Optimizations and the SSA Form



JOIN Example -1

e variable i: JOIN*({B1, B7}) = {B2}
@ variable n: JOIN* ({B1, B5, B6}) = {B2, B7}

B3 B4

B6

Y.N. Srikant Program Optimizations and the SSA Form



JOIN Example - 2

BO

Read A
LSR=1; RSR=A
SR = (LSR+RSR)/2

B1
SR: Join"({B1,88)) = (B2}

LSR: Join™({B1,B6,B7}) = {B2,B8}
RSR: Join*({B1,B4,B7}) = {B2,B8}

BS

i
« LSR = SR
- ESRISH RSR = SR

B6
B8 [ SR=(LSR+RSR)2 |

B7

B9

B10( Printsk | stop | B11
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Dominators and Dominance Frontier

@ Given two nodes x and y in a flow graph, x dominates y
(x € dom(y)) , if x appears in all paths from the Start node
toy

@ The node x strictly dominates y, if x dominates y and
X#Yy

@ x is the immediate dominator of y (denoted idom(y)), if x
is the closest strict dominator of y

@ A dominator tree shows all the immediate dominator
relationships

@ The dominance frontier of a node x, DF(x), is the set of all
nodes y such that
e x dominates a predecessor of y
(p € preds(y) and x € dom(p))
e but x does not strictly dominate y (x ¢ dom(y) — {y})
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Dominance frontiers - An Intuitive Explanation

@ A definition in node n forces a ¢-function in join nodes that
lie just outside the region of the flow graph that n
dominates; hence the name dominance frontier

@ Informally, DF(x) contains the first nodes reachable from x
that x does not dominate, on each path leaving x

e In example 1 (next slide), DF(B1) = (), since B1 dominates
all nodes in the flow graph except Start and B1, and there is
no path from B1 to Start or B1

e In the same example, DF(B2) = {B2}, since B2 dominates
all nodes except Start, B1, and B2, and there is a path from
B2 to B2 (via the back edge)

e Continuing in the same example, B5, B6, and B7 do not
dominate any node and the first reachable nodes are B7,
B7, and B2 (respectively). Therefore,

DF(B5) = DF(B6) = {B7} and DF(B7) = {B2}

e In example 2 (second next slide), B5 dominates B6 and B7,
but not B8; B8 is the first reachable node from B5 that B5S
does not dominate; therefore, DF(B5) = {B8}

Y.N. Srikant Program Optimizations and the SSA Form



DF Example - 1

Start ¢
B1 @
i=0
read n l
B2 (B2}
B3 {B2} B4 ¢

B3 [even(n)] [ print i ]B4

TN B B5 B6  B7 Stop
[ n=n/2 ] [n = 3"n+1] [ Stop ] {B7} {B7} {B2} ®
BS DF(x) is the set of all nodes y such that

x dominates a predecessor of y,
B7 but x does not strictly dominate y

DF(x) contains the first nodes reachable
from x, that x does not dominate

Y.N. Srikant Program Optimizations and the SSA Form



DF Example - 2

o |po

Read A J’

B1 | LSR=1;RSR=A ¢ [Bd
SR = (LSR+RSR)2 |

{82} B2

{82} B3

el N -~

(B8} B4 (B8} BS

B8
SN\
T B9

B6 B
B7
{B8} (B8} \.
® B10
Dominator tree l
B8 SR =(LSR4RSR)2 | with dominance
frontiers ® (BT

LSR!=RSR | B9

F
B10 [ PrntSR | —f stop  B11
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Computation of Dominance Frontiers - 2

@ Identify each join node x in the flow graph

© For each predecessor, p of x in the flow graph, traverse the
dominator tree upwards from p, till idom(x)

© During this traversal, add x to the DF-set of each node met

@ In example 1 (second previous slide), consider the join
node B2; its predecessors are B1 and B7
e B1is also idom(B2) and hence is not considered
e Starting from B7 in the dominator tree, in the upward
traversal till B1 (i.e., idom(B2)) B2 is added to the DF sets
of B7, B3, and B2
@ In example 2 (previous slide), consider the join node B8; its
predecessors are B4, B6, and B7
e Consider B4: B8 is added to DF(B4)
e Consider B6: B8 is added to DF(B6) and DF(B5)
e Consider B7: B8 is added to DF(B7); B8 has already been
added to DF(B5)
e All the above traversals stop at B3, which is idom(B8)

Y.N. Srikant Program Optimizations and the SSA Form



DF Algorithm

{

for all nodes n in the flow graph do
DF(n) = 0;
for all nodes n in the flow graph do {
/* It is enough to consider only join nodes */
/* Other nodes automatically get their DF sets */
/* computed during this process /*
for each predecessor p of nin the flow graph do {
t=p;
while (t # idom(n)) do {
DF(t) = DF(t) U {n};
t = idom(t);
}
}
}
}

Y.N. Srikant Program Optimizations and the SSA Form



Minimal SSA Form Construction 1

@ Compute DF sets for each node of the flow graph

© For each variable v, place trivial ¢-functions in the nodes of
the flow graph using the algorithm place-phi-function(v)

© Rename variables using the algorithm
Rename-variables(x,B)

¢-Placement Algorithm

@ The ¢-placement algorithm picks the nodes n; with
assignments to a variable

@ It places trivial ¢-functions in all the nodes which are in
DF(n;), for each i

@ It uses a work list (i.e., queue) for this purpose
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¢-function placement Example

i= o, i)

n= ®(n, n)
printi ] B4 @

[
B6 {BN

n=3*n+1] [ Stop ]q:

B7 {B2}

Dominance frontier is written beside BB no.
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The function place-phi-function(v) - 1

function Place-phi-function(v) // v is a variable
// This function is executed once for each variable in the flow graph
begin
/I has-phi(B, v) is true if a ¢-function has already
// been placed in B, for the variable v
/I processed(B) is true if B has already been processed once
// for variable v
for all nodes B in the flow graph do
has-phi(B, v) = false; processed(B) = false;
end for
W = 0; // W is the work list
/Il Assignment-nodes(v) is the set of nodes containing
/I statements assigning to v
for all nodes B € Assignment-nodes(v) do
processed(B) = true; Add(W, B);
end for

Y.N. Srikant Program Optimizations and the SSA Form



The function place-phi-function(v) - 2

while W # () do
begin
B = Remove(W);
for all nodes y € DF(B) do
if (not has-phi(y, v)) then
begin
place < v =¢(v,v,...,v) >iny;
has-phi(y, v) = true;
if (not processed(y)) then
begin processed(y) = true;
Add(W, y);
end
end
end for
end
end

Y.N. Srikant Program Optimizations and the SSA Form



SSA Form Construction Example - 1

Start ¢
i,= ®(iz,i) l
n,= ®(hg,n,)
ny<= 1 B1 @
B3 {even(nQ)] [ print i, } B4 BL 2

N B
n3:n2.'2] n, = *n2+1] [ Stop ] /\

Be [ B3 (B2} B4 o
n5 i= ;Dl(rlii:ln4) B7 B5 B6& B7 Stop
= (BT} BT} B2} ¢

SSA form ‘ Dominator tree with dominance frontier |
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SSA Form Construction Example - 2

BO
Read A
LSR,;=1; RSR, =A
SR, = (LSR,+RSR,)/2

.|

LSR, = O(LSR;, LSR,)
RSR; = ®(RSR;, RSR,)
SR, = O(SR;,SR)
T=SR," SR,

B2

LSR, = SR, B7

LSR; = O(LSR,,LSR;,LSR,)
RSR; = ®(RSR;,RSR,,RSR)
SR, = (LSR;+RSR)/2

B8

Y.N. Srikant

® B0
® B
(B2} B2

B2} B

/I\ 82)

(B8} B4 (BS) BS
\{B2}
B9

B6 B7
{B8} {B8} 3.
¢ B10
Dominator tree i
with dominance
frontiers ¢ 1Bl
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Minimal SSA Form Construction 2

Renaming Algorithm

@ The renaming algorithm performs a top-down traversal of
the dominator tree
@ A separate pair of version stack and version counter are
used for each variable
e The top element of the version stack V is always the
version to be used for a variable usage encountered (in the
appropriate range, of course)
e The counter v is used to generate a new version number
@ The alogorithm shown later is for a single variable only; a
similar algorithm is executed for all variables with an array
of version stacks and counters
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The Renaming Algorithm

@ An SSA form should satisfy the dominance property:
o the definition of a variable dominates each use or
e when the use is in a ¢-function, the predecessor of the use
@ Therefore, it is apt that the renaming algorithm performs a
top-down traversal of the dominator tree
e Renaming for non-¢-statements is carried out while visiting
anode n
e Renaming parameters of a ¢-statement in a node nis
carried out while visiting the appropriate predecessors of n

Y.N. Srikant Program Optimizations and the SSA Form



The function Rename-variables(x,B)

function Rename-variables(x, B) // x is a variable and B is a block
begin
ve = Top(V); // V is the version stack of x
// variables are defined before use; hence no renaming can
/I happen on empty stack
for all statements s € B do
if sis a non-¢ statement then
replace all uses of x in the RHS(s) with Top(V);
if s defines x then
begin
replace x with x, in its definition; push x, onto V;
/I x, is the renamed version of x in this definition
v =v +1;// vis the version number counter
end
end for
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The function Rename-variables(x,B)

for all successors s of B in the flow graph do
J = predecessor index of B with respect to s
for all ¢-functions f in s which define x do
replace the j operand of f with Top(V);
end for
end for
for all children c of B in the dominator tree do
Rename-variables(x, c);
end for
repeat Pop(V); until (Top(V) == ve);
end
begin // calling program
for all variables x in the flow graph do
V = (; v =1; push 0 onto V;// end-of-stack marker
Rename-variables(x, Start);
end for

end
Y.N. Srikant Program Optimizations and the SSA Form



Renaming Variables Example 0.1

Renaming variables
Processing B1

Renamed (red)
while visiting
node B1

B3 { even(n) ] [ print i } B4

AN
[nB;n/2][n:3*n+1] [ Stop ]

Order of visiting the blocks:
Start, B1, B2, B3, B5, B6, BY, B4, Stop
(depth-first order on dominator tree)

B7
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Renaming Variables Example 0.2

Renaming variables
Processing B2

Order of visiting the blocks:
Start, B1, B2, B3, B5, B6, BY, B4, Stop
(depth-first order on dominator tree)
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Renaming Variables Example 0.3

Renaming variables
Processing B3

Bs[even(nz)] [ print i }54

T es

n/2][nz3*n+1] [ Stop ]

Order of visiting the blocks:
Start, B1, B2, B3, B5, B6, BY, B4, Stop
(depth-first order on dominator tree)

Y.N. Srikant Program Optimizations and the SSA Form



Renaming Variables Example 0.4

Renaming variables
Processing B5

Bs[even(nz)] [ print i }54

[ :/\Be S

n,/ ] [ n=3"m+1 ] Stop ]
BS

Renamed (red)
while visiting
node B5

Order of visiting the blocks:
Start, B1, B2, B3, B5, B6, BY, B4, Stop
(depth-first order on dominator tree)

Y.N. Srikant Program Optimizations and the SSA Form



Renaming Variables Example 0.5

Renaming variables
Processing B6

Bs[even(nz)] [ print i }54

NN
= =] (i |

n=®(hg, n,) |
i=i+1

Renamed (red)
while visiting
node B6

Order of visiting the blocks:
Start, B1, B2, B3, B5, B6, BY, B4, Stop
(depth-first order on dominator tree)

Y.N. Srikant Program Optimizations and the SSA Form



Renaming Variables Example 0.6

Renaming variables
Processing B7

Renamed (red)
while visiting
node BY

Bs[even(nz)] [ print i }54

NN
= =] (i |

Order of visiting the blocks:
Start, B1, B2, B3, B5, B6, BY, B4, Stop
(depth-first order on dominator tree)

ng = ®(N3, n,)
+1

B7

3= 1

Y.N. Srikant Program Optimizations and the SSA Form



Renaming Variables Example 0.7

Renaming variables
Processing B4

B3 [eVen(ng)] [ print i, } B4

NN
= =] (i |

Order of visiting the blocks:
Start, B1, B2, B3, B5, B6, BY, B4, Stop
(depth-first order on dominator tree)

ng = ®(N3, n,)
+1

B7

3= 1

Y.N. Srikant Program Optimizations and the SSA Form



Renaming Variables Example 0.8

Renaming variables
completed

B3 [eVen(ng)] [ print i, } B4

NN
et =] (e |

Order of visiting the blocks:
Start, B1, B2, B3, B5, B6, BY, B4, Stop
(depth-first order on dominator tree)

ng = ®(N3, n,)
+1

B7

3= 1

Y.N. Srikant Program Optimizations and the SSA Form



Translation to Machine Code - 1

Read
AB,C

Y.N. Srikant Program Optimizations and the SSA Form



Translation to Machine Code - 2

x1=1 x1=1
X1=1 x2 =x1 t=
x2 = O(x1,x3) x3=x2+1 x3);2x£t+ 1
X3=x2+1 x2=x3 _
if p then if p then it
if p then

return x2

Qriginal program

return x2

Wrong translation
returned value is
incorrect

| return x2 |

Correct translation

Y.N. Srikant Program Optimizations and the SSA Form



Translation to Machine Code - 3

The parameters of all ¢-functions in a basic block are supposed
to be read concurrently before any other evaluation begins

Original program After conversion to SSA After copy propagarion
X= .. x0= .. x0=...
y=.. —) yo= .. —) yo=_.
t=x t= P(x1, x0)

- e x1 = &(y1, y0)
X=y x1 = @(y1, y0) _

y=t y1=1 y1=®x1, x0)

x0= .. x0=..

yo = ... yo= ..

x1 = x0 t1=x0

y1=y0 t2=y0

x1 =12

x1=y1 y1=1t1

y1=x1 t1=x1

2=y1

! 7
Wrong translation Correct translation

Y.N. Srikant Program Optimizations and the SSA Form



Optimization Algorithms with SSA Forms

@ Dead-code elimination

e Very simple, since there is exactly one definition reaching
each use

e Examine the du-chain of each variable to see if its use list is
empty

o Remove such variables and their definition statements

e If a statement such as x = y + z (or x = ¢(y1, y2)) is
deleted, care must be taken to remove the deleted
statement from the du-chains of y and z (or y; and y»)

@ Simple constant propagation

@ Copy propagation

@ Conditional constant propagation and constant folding
@ Global value numbering

Y.N. Srikant Program Optimizations and the SSA Form



Simple Constant Propagation

{ Stmtpile = {S|S is a statement in the program}
while Stmtpile is not empty {
S = remove(Stmtpile);
if S is of the form x = ¢(c, c, ..., ¢) for some constant ¢
replace Sby x =c¢
if S is of the form x = ¢ for some constant ¢
delete S from the program
for all statements T in the du-chain of x do
substitute ¢ for x in T; simplify T
Stmtpile = Stmtpile U {T}
}

Copy propagation is similar to constant propagation

@ A single-argument ¢-function, x = ¢(y), or a copy
statement, x = y can be deleted and y substituted for
every use of x

Y.N. Srikant Program Optimizations and the SSA Form



The Constant Propagation Framework - An Overview

m(y) m(z) m'(x)

UNDEF UNDEF

UNDEF [ UNDEF
NAC NAC
T (UNDEF)
UNDEF UNDEF
€ C2 G+ C2
NAC NAC

w =8 2 1012 3
UNDEF NAC
NAC e NAC W

NAC NAC L (nacy

any M UNDEF = any

any M NAC = NAC

cyMeco = NAC, ifcy # ¢

cgMe = ¢, ifcg =c

Y.N. Srikant Program Optimizations and the SSA Form



Conditional Constant Propagation - 1

@ SSA forms along with extra edges corresponding to d-u
information are used here

e Edge from every definition to each of its uses in the SSA
form (called henceforth as SSA edges)

@ Uses both flow graph and SSA edges and maintains two
different work-lists, one for each (Flowpile and SSApile ,
resp.)

@ Flow graph edges are used to keep track of reachable
code and SSA edges help in propagation of values

@ Flow graph edges are added to Flowpile, whenever a
branch node is symbolically executed or whenever an
assignment node has a single successor

Y.N. Srikant Program Optimizations and the SSA Form



Conditional Constant Propagation - 2

@ SSA edges coming out of a node are added to the SSA
work-list whenever there is a change in the value of the
assigned variable at the node

@ This ensures that all uses of a definition are processed
whenever a definition changes its lattice value.

@ This algorithm needs only one lattice cell per variable
(globally, not on a per node basis) and two lattice cells per
node to store expression values

@ Conditional expressions at branch nodes are evaluated
and depending on the value, either one of outgoing edges
(corresponding to true or false) or both edges
(corresponding to 1) are added to the worklist

@ However, at any join node, the meet operation considers
only those predecessors which are marked executable.

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Contd.

11 G = (N ,&,Es) is the SSA graph,
// with flow edges and SSA edges, and
/I'V is the set of variables used in the SSA graph

begin
Flowpile = {(Start — n) | (Start — n) € & };
SSApile = ();

for all e € & do e.executable = false; end for

/lv.cell is the lattice cell associated with the variable v
forall v eV do v.cell = T; end for

// y.oldval and y.newval store the lattice values

// of expressions at node y

forall y € N do
y.oldval = T; y.newval = T;
end for

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Contd.

while (Flowpile # 0) or (SSApile # () do
begin
if (Flowpile # () then
begin
(x, y) = remove(Flowpile);
if (not (x, y).executable) then
begin
(x, y).executable = true;
if (p-present(y)) then visit-¢(y)
else if (first-time-visit(y)) then visit-expr(y);
/I visit-expr is called on y only on the first visit
// to y through a flow edge; subsequently, it is called
// on y on visits through SSA edges only
if (flow-outdegree(y) == 1) then
// Only one successor flow edge for y
Flowpile = Flowpile U {(y, z) | (v, 2) € &};
end

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Contd.

/I if the edge is already marked, then do nothing
end
if (SSApile # () then
begin
(x, y) = remove(SSApile);
if (p-present(y)) then visit-¢(y)
else if (already-visited(y)) then visit-expr(y);
/I A false returned by already-visited implies
// that y is not yet reachable through flow edges
end
end // Both piles are empty
end
function ¢-present(y) Il y e N
begin
if y is a ¢-node then return true
else return false

end
Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Contd.

function visit-¢(y) I/ y € N
begin
y.newval = T;//|| y.instruction.inputs || is the number of
/I parameters of the ¢-instruction at node y
for i =1 to || y.instruction.inputs || do
Let p; be the i predecessor of y ;
if ((pi, y).executable) then
begin
Let a; = y.instruction.inputs|i];
/ a; is the i input and a;.cell is the lattice cell
// associated with that variable
y.newval = y.newval N a;.cell;
end
end for

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Contd.

if (y.newval < y.instruction.output.cell) then
begin
y.instruction.output.cell = y.newval,
SSApile = SSApile U{(y,z) | (y,2) € & };
end
end

function already-visited(y) I y € N
// This function is called when processing an SSA edge
begin // Check in-coming flow graph edges of y

forall e € {(x,y) | (x,y)€ &}

if e.executable is true for at least one edge e
then return true else return false

end for

end

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Contd.

function first-time-visit(y) // y € N
// This function is called when processing a flow graph edge
begin // Check in-coming flow graph edges of y
forall e € {(x,y) | (x,y)€ &}
if e.executable is true for more than one edge e
then return false else return true
end for
/I At least one in-coming edge will have executable true
// because the edge through which node y is entered is
// marked as executable before calling this function
end

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Contd.

function visit-expr(y) // y € N
begin
Let inputy = y.instruction.inputs[1];
Let inputs = y.instruction.inputs|2];
if (inputy.cell == L or inputy.cell == 1) then
y.newval = |
else if (inputy.cell == T or inputy.cell == T) then
y.newval =T
else // evaluate expression at y as per lattice evaluation rules
y.newval = evaluate(y);
/I It is easy to handle instructions with one operand
if y is an assignment node then
if (y.newval < y.instruction.output.cell) then
begin
y.instruction.output.cell = y.newval,
SSApile = SSApile U {(y,2) | (y,z) € & };

end
Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Contd.

else if y is a branch node then
begin
if (y.newval < y.oldval) then
begin
y.oldval = y.newval,
switch(y.newval)
case L: // Both true and false branches are equally likely
Flowpile = Flowpile U {(y,z) | (y,2) € & };
case true: Flowpile = Flowpile U {(y, z) | (v, z) € & and
(v, 2) is the true branch edge at y };
case false: Flowpile = Flowpile U {(y, z) | (v, z) € & and
(v, 2) is the false branch edge at y };
end switch
end
end
end

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example - 1

Solid edges are
flow edges and
dashed edges

are S5A edges

B6| stop

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 1 - Trace 1

wm \

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 1 - Trace 2

CO | start

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 1 - Trace 3

SES

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2

B1

I
O a4 -

0O T o
- 4

b2 = ®(b4, b1)
B2 c2 = ®(c4, c1)
if ¢2 < 100

Vw

B3 | ifb2<20 Stop B4

true;/w‘

B5 b3 = a1 b5 = c2
c3=c2+1 cd=c2+1

B6

‘ bd = (b3, b5)

B7
cd = ®(c3, cb)

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 1

B1

inn
(= R

0O T o
- 4

b2 = ®(b4, b1)
B2 c2 = ®(c4, c1)
if ¢2 < 100

Vw

B3 | ifb2<20 Stop B4

true;/w‘

B5 b3 = a1 b5 = c2
c3=c2+1 cd=c2+1

B6

‘ bd = (b3, b5)

B7
cd4 = ®(c3, cb)

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 2

B1

I
O a4 -

0O T o
- 4

b2 = ®(b4, b1)
B2 c2 = ®(c4, c1)
if ¢2 < 100

Vw

B3 | ifb2<20 Stop B4

true;/w‘

B5 b3 = a1 b5 = c2
c3=c2+1 cd=c2+1

B6

‘ bd = (b3, b5)

B7
cd4 = ®(c3, cb)

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 3

B1

inn
(= R

0O T o
- 4

b2 = ®(b1) =1
B2 c2=P(cl)=0
if c2 < 100: true

V\alse

B3 | ifb2<20 Stop B4

true;/w‘

B5 b3 = a1 b5 = c2
c3=c2+1 cd=c2+1

B6

‘ bd = (b3, b5)

B7
cd4 = ®(c3, cb)
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CCP Algorithm - Example 2 - Trace 4

B1

inn
(= R

fo ]
- 4

(]

b2 = ®(b1) =1
B2 c2=P(cl)=0
if c2 < 100: true

V\alse

if b2 < 20: true Stop B4

true / w‘

B5 b3 = a1 b5 = c2
c3=c2+1 cd=c2+1

B6

‘ bd = (b3, b5)

B7
cd4 = ®(c3, cb)

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 5

B1

inn
(= R

0O T o
- 4

b2 = ®(b1) =1
B2 c2=®(cl) =
if c2 < 100: true

V\alse

if b2 < 20: true Stop B4
true/w‘
| ps|b3=al=1 b5 = c2 B6
c3 = c2+1=1 cd=c2+1

‘ bd = B(b3, b5)

B7
cd = ®(c3, cb)

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 6

B1 b1=1
c1=0

b2 = ®(b1) =1 second
B2 | c2=®(c1)=0 visit
if ¢2 < 100: true

V\alse

B3 | if b2 < 20: true Stop B4

true/w‘
g5 | P3=al=1 b5 = c2 B6
c3 = c2+1=1 cd=c2+1

o~

‘ b4 = (b3) = 1 ‘B?

cd = d(e3) = 1

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 7

B1

0O T o
- 4

second visit, change in value
b2 = O(bd,b1) = 1 of ¢2; no change in value of b2

c2 = d(cecl)=L1
if c2 < 100: unknown

if b2 < 20: true Stop B4

true/w‘
b3=al1=1 b5 = c2
c3 = c2+1=1 c5=c2+1| pg

o~

‘ bd = B(b3) = 1 ‘B?

cd = d(e3) = 1

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 8

B1

0O T o
- 4

b2 = B(bd,b1) = 1

- = c2=P(cdcl) =L = o

if c2 < 100: unknown

B3 | if b2 < 20: true

true / w‘

Stop

b3=al=1
c3=c2+1=1

b5 = c2
cd=c2+1

>~

b4 = d(b3) = 1
cd = d(e3) = 1

Y.N. Srikant

P

B6

Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 9

B1

0O T o
- 4

b2 = ®(b4,b1) =1
c2 = d(cecl)=L1
if c2 < 100: unknown

if b2 < 20: true

Stop

true / w‘

b3=al=1
c3=c2+1=1

b5 = c2
cd=c2+1

o~

b4 = ®(b3) = 1

B7
cd = d(e3) = 1 ‘

Y.N. Srikant

”

-
= ~ Nothing happens in B6

because it is not reachable
by a flow edge

Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 10

al
B1 b1
c1
B2| b2 = oba, b1y = 1
- c2=dachy=L FI <
if €2 < 100: unknown S e
~ ~
N N
1 \ \
1 if b2 < 20: true Stop | B4 \
| / 1
\ true/w‘ 4 ]
\ Pid ’
y b3=at=1 bs5=c2 | _ -~ ’
c3=c2+1=1 c5=c2+1| gg 4

4
4
~
-
-
-

b4 = d(b3) = 1 -—="
cd = CD(CS) = B7

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 11

B1

1
1
0

0O T o
- 4

third visit to B2, no change
in either b2 or ¢2; algorithm
stops

]

B2 12 = oba, b1y = 1 R
- c2=d(cdel)=L FIT =<
if ¢2 < 100: unknown

A}
w \ \\
\ \

if b2 < 20: true Stop B4 \

’ \
\ true/w‘ / ]
4
Y - l
b3=al=1 bS=c2 | _ -~ ’
Bg |c3=c2+1=1 c5=c2+1| gg 4

e
1 P
\ -
-

b4 = ¢b3)—1 -——="
cd=de3)= 1

"'b

B7
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CCP Algorithm - Example 2 - Trace 12

After first round of
simplification B1

I
O a4 -

0O T o
- 4

b2 =1
c2 = P(c4,c1)
if ¢2 < 100

w
true
Stop B4

b3 =1
c3 = ¢c2+1

B5

b4 =1
B cd = P(c3) =3

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 13

B2 c2 = P(c3, 0)

if c2 < 100
true false
B5
€3 = c2+1 Stop | B4

After second round of simplification —
elimination of dead code, elimination
of trivial @-functions, copy propagation etc.

Y.N. Srikant Program Optimizations and the SSA Form



Value Numbering with SSA Forms

@ Global value numbering scheme

e Similar to the scheme with extended basic blocks
e Scope of the tables is over the dominator tree
e Therefore more redundancies can be caught

@ For example, an assignment ajo = uy + vy in block B9 (if
present) can use the value of the expression u; + v4 of block
B1, since B1 is a dominator of B9

@ No d-u or u-d edges needed

@ Uses reverse post order on the DFS tree of the SSA graph
to process the dominator tree

e This ensures that definitions are processed before use

@ Back edges make the algorithm find fewer equivalences
(more on this later)

Y.N. Srikant Program Optimizations and the SSA Form



Value Numbering with SSA Forms

@ Variable names are not reused in SSA forms
e Hence, no need to restore old entries in the scoped
HashTable when the processing of a block is completed
e Just deleting new entries will be sufficient
@ Any copies generated because of common subexpressions
can be deleted immediately

@ Copy propagation is carried out during value-numbering

@ Ex: Copy statements generated due to value numbering in
blocks B2, B4, B5, B6, B7, and B8 can be deleted

@ The ValnumTable stores the SSA name and its value
number and is global; it is not scoped over the dominator
tree (reasons in the next slide)

@ Value numbering transformation retains the dominance
property of the SSA form

e Every definition dominates all its uses or predecessors of
uses (in case of phi-functions)

Y.N. Srikant Program Optimizations and the SSA Form



Example: An SSA Form
// a;?tl1+v1

- B1 b1 = uz+v2
/////
a2 = u2+v2
B2 | b2 = u3+v3 B3 .

b5 = u3+v3

ab = u2+v2
B7 c3 = u3+v3d

B6 c2 = uZ+v2

b3 = u2+v2

B4 BS

a5 = d(ad, a2)
b6 = &(b2, b3)

B8

a7 = ®(ab, ab, a3)
B9 b7 = ®(bB, b1, b5)
cd = d(c1, c2, c3)

Processing order:
B1,B3,B7,B6,B2,B5,B4,88,B9

Program Optimizations and the SSA Form

Y.N. Srikant



Dominator Tree and Reverse Post order

Reverse postorder on the SSA graph that is used with
the dominator tree above:

Start,B1,B3,B7,B6,82,B5,B4,B8,B9,Stop

Postorder on the DFS tree:
Stop, B, B8, B4, B5, B2, B, B7, B3, Bl, Start

Y.N. Srikant Program Optimizations and the SSA Form
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OUTLINE

© Mid-level Transformations
@ Data Dependences, Transformations, Parallelization
@ Locality
o Affine Transformations
@ Parallelism
@ Tiling, Fusion, Vectorization
@ Other Complementary Transformations



(1] Compilers for the 21st Century: Introduction
@ Compilers for Al
© Control Flow Analysis
© Data Flow Analysis
O static Single Assignment and SSA Transformations
© Mid-level Transformations
@ Data Dependences, Transformations, Parallelization
@ Locality
o Affine Transformations
@ Parallelism
@ Tiling, Fusion, Vectorization
@ Other Complementary Transformations
O MLIR
@ MLIR Representation
@ Polyhedral Notions in MLIR
@ Analyses and Transformations
€ Backend Ontimizations



ITERATION SPACES AND DEPENDENCES

for (t =0; t < T; t++)
for (i = 1; i < N+1; i++)
A[t+1][i] = f(A[t][i+1], A[t][i], A[t]l[i-1]);

@ Iteration Domains

e Every statement has a domain or an index set — instances that have to be
executed

e Each instance is a vector (of loop index values from outermost to innermost)
Ds={[t,i]|0<t<T-1,1<i<N}

© Dependences

e A dependence is a relation between domain instances that are in conflict (more
on next slide)



LEXICOGRAPHIC ORDERING

@ Lexicographic ordering: >, <, X >~ 1, - 0
@ Transformations as a way to provide multi-dimensional timestamps

@ Code generation: Scanning points in the transformed space in
lexicographically increasing order



DOMAINS, DEPENDENCES, AND TRANSFORMATIONS

for (i=1; i<=N-1; i++)
for (j=1; j<=N-1; j++)
A[i1[3] = f(A[i-11[j], A[il[j-11);

]
Vil e e e e e
o o o o o
3 o o 0 0 O
2fee ee e
1 ® @ 0 @ @
0 1 2 3 - N-1 i

Figure: Original space (i, ])

@ Domain: {[i,j] | 1<i,j<N-1}



DOMAINS, DEPENDENCES, AND TRANSFORMATIONS

for (i=1; i<=N-1; i++)
for (j=1; j<=N-1; j++)
A[i1[31 = F(A[L-11031, A[i1[j-11);
j

Figure: Original space (i, )

@ Dependences:
Q {[ij] = [i+1j]1
Q {[ijl—[ij+1]|1

<i<N-20<j<N-1}—(1,0)
<i<N-1,0<j<N-2}—(01



DOMAINS, DEPENDENCES, AND TRANSFORMATIONS

for (i=1; i<=N-1; i++)
for (j=1; j<=N-1; j++)
A[i1[31 = F(A[L-11031, A[i1[j-11);

N-1f ®
. A
e
3 I
2 N
I
1 ®
0 1 2 3 - N-1 i

Figure: Original space (i, )

@ Dependences:
Q {[ij] = [i+1j]1
Q {[ijl—[ij+1]|1

<i<N-20<j<N-1}—(1,0)
<i<N-1,0<j<N-2}—(01



DOMAINS, DEPENDENCES, AND TRANSFORMATIONS

for (i=1; i<=N-1; i++)
for (j=1; j<=N-1; j++)
A[i1[31 = F(A[L-11031, A[i1[j-11);

]

........... j
wl b ias A o .......... :
o— «»o—»*—»?' : oo ././. ././
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Figure: Transformed ey
Figure: Original space (i, /) igure: Transformed space (i +, )

@ Transformation: T(i,j) = (i +},j)
@ Dependences: (1,0) and (0,1) now become (1,0) and (1,1) resp.



DOMAINS, DEPENDENCES, AND TRANSFORMATIONS

for (i=1; i<=N-1; i++)
for (j=1; j<=N-1; j++)
A[i1[31 = F(A[L-11031, A[i1[j-11);

]

I
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Figure: Transformed ey
Figure: Original space (i, /) igure: Transformed space (i +, )

@ Transformation: T(i,j) = (i +},j)
@ Dependences: (1,0) and (0,1) now become (1,0) and (1,1) resp.
@ Inner loop is now parallel



DEPENDENCES: ANOTHER EXAMPLE

for (i 1; 1 < N+1; i++)

for (t =0; t < T; t++)
A[i] = f(A[i+1], A[i], A[i-11);

e Compute the dependences



DEPENDENCES: ANOTHER EXAMPLE

for (t =0; t < T; t++)
for (i 1; 1 < N+1; i++)
A[i] = f(A[i+1], A[i], A[i-11);

e Compute the dependences
e Transitivity in dependences?
@ Remove transitively covered dependences.



DEPENDENCES: YET ANOTHER EXAMPLE

for (i = 0; i < N; i++)
for (j =1; j < 1i; j++)
Aljl = A[j]1 - A[jl/A[i];

e Compute the dependences.



DEPENDENCE REPRESENTATIONS

@ Distance vectors: constant dependences
@ Dependence levels: depth at which a dependence is carried
@ Direction vectors: direction of the dependence along each dimension

@ Dependence as presburger formulae, relations on integer sets with affine
constraints and existential quantifiers



DEPENDENCE TESTING

o GCD test, GCD tightening of constraints

@ Guassian elimination, Fourier-Motzkin elimination (super-exponential)
complexity

@ Omega test
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CHARACTERIZING REUSE

@ Reuse through multi-dimensional array accesses

@ Self reuse
© Group reuse

@ In space or in time?
@ Spatial reuse (self or group)
© Temporal reuse (self or group)

@ Under what conditions does an access exhibit spatial or temporal reuse along
a specific outer loop?

o This topic is well-covered in the Dragon textbook.

@ Degree of temporal reuse: Dimensionality of the iteration space minus rank of
the access function
Eg: for (i, j, k), access Ali + j][j][j] has an access function of rank two in an
iteration space of dimensionality three — one degree of temporary reuse.



REPRESENTATION OF ARRAY ACCESSES

@ Linear Algebraic representation of “regular” accesses

@ Affine access functions can be analyzed by the compiler easily for reuse,
dependences, optimization, and parallelization

@ Refer to the definition of affine functions earlier

© Handling compositions of mod and floordiv functions in accesses requires
additional techniques to determine spatial and temporal reuse



LOOP NESTS: SOME DEFINITIONS

@ Perfectly nested loop nest: A sequence of successively nested loops (from
outermost to innermost) where every loop other than the innermost one has a
single loop as the only statement in its body.

@ Imperfectly nested: not perfectly nests.

// (t, i, j) is imperfectly nested, but
// (t, i) is perfectly nested.

// Perfectly nested. for (t =0; t <T; t++) {
for (t =0; t <T; t++) for (i = 1; i < N+1; i++) {
for (i =1; i < N+1; i++) S1(t, i);
for (j = 1; j < N+1; j++) for (j = 1; j < N+1; j++)

s(t, i, j); S2(t, i, j);
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AFFINE TRANSFORMATIONS

e Examples of affine functionsof i,j: i +j,i —j,i+1,2i+5
e Not affine: ij, i2, i + j2, aj]

b
R
$ 1l
A4
1 L] L]
T
Figure: Iteration space Figure: Transformed space

. . Lo . // Synchronization-free.
;groggl):gr.)cgrzn;%aﬁz? if J is parallelized. #pragma omp parallel for private(t2)
for (3 ='0_ j <'M- 44) for (tl=-M+1; tl<=N-1; tl++)
A[i+1][]"+1] = %(A[i][j])- for (t2 = max(0,-t1); t2 <= min(M-1,N-1-t1); t2++)
! A[t1+t2+1][t2+1] = f(A[t1+t2]1[t2]);

e Transformation: (i,j) — (i —j,j)



AFFINE TRANSFORMATIONS

e Examples of affine functionsof i,j: i +j,i —j,i+1,2i+5
e Not affine: ij, i2, i + j2, aj]

e>e->e

B TN

Figure: Iteration space Figure: Transformed space

// Synchronization-free.

;grog):sgr;cgrzn;faﬁz? if j is parallelized. #pragma omp parallel for private(t2)
for (j =0; j <M; j++) for (tl=-M+1; tl<=N-1; tl++)
A[L+11[§+1] = F(ALLl[§1); for (t2 = max(0,-tl); t2 <= min(M-1,N-1-t1); t2++)
! A[t1+t2+1][t2+1] = f(A[t1+t2]1[t2]);

e Transformation: (i,j) — (i —j,j)



AFFINE TRANSFORMATIONS

°e—>e
o->e->e

Figure: Iteration space Figure: Transformed space

@ Affine transformations are attractive because:

o Preserve collinearity of points and ratio of distances between points

e Code generation with affine transformations has thus been studied well
(CLooG, ISL, OMEGA+)

e Model a very rich class of loop re-orderings

e Useful for several domains like dense linear algebra, stencil computations,
image processing pipelines, deep learning



FINDING GOOD AFFINE TRANSFORMATIONS

(i,7) Identity
(j,1) Interchange
(i+7,7) Skew i (by a factor of one w.r.tj)
(i—j,—j) Reverse j and skew i
(i,2i +7) Skew j (by a factor of two w.r.t i)
(2i,7) Scale i by a factor of two

(i,7+1) Shift j
(i+7j,i—j)  More complex
(i/32,j/32,1,7) Tile

@ One-to-one functions



FINDING GOOD AFFINE TRANSFORMATIONS

(i,7) Identity
(j,1) Interchange
(i+7,7) Skew i (by a factor of one w.r.tj)
(i—j,—j) Reverse j and skew i
(i,2i +7) Skew j (by a factor of two w.r.t i)
(2i,7) Scale i by a factor of two

(i,7+1) Shift j
(i+7j,i—j)  More complex
(i/32,j/32,1,7) Tile

@ One-to-one functions

@ Can be expressed using matrices: T(i,j) = (i +/,j) = [ (1) 1 ] < ; )

@ Unimodular and non-unimodular transformations



DEPENDENCES

@ Dependences are determined pairwise between conflicting accesses

for (t =0; t <T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
AL(t+1)%2][11[3] = f((A[t%2] [i+11[j], A[t%s2][i]1[j], Alt%2][i-11[j],
A[t%2] [1]1[j+1], A[t%2][i][j-11);

@ Dependence notations
e Distance vectors: (1,-1,0), (1,0,0), (1,1,0), (1,0,-1), (1,0,1)
e Direction vectors
e Dependence relations as integer sets with affine constraints and existential
quantifiers or Presburger formulae — powerful
@ Consider the dependence from the write to the third read:
Al(t+1)%2]li][]] — Alr'%2)[7 = 1])[7]
Dependence relation: {[t,i,j] — [t/,7,/] | =t+1,i' =i+ 1,/ =j,0<t <
T-1,0<i<N-1,0<j<N}



PRESERVING DEPENDENCES

for (t =0; t <T; t++)
for (i = 1; i < N+1; i++)
for (j =1; j < N+1; j++)
AL(t+1)%2] [11[3] = f((A[t%2][i+1][j]1, A[t%s2][i]1[j], A[t%2][i-11[j],
Alt%2][1]1[j+1], A[t%2][i][j-11);

@ For affine loop nests, these dependences can be analyzed and represented
precisely

@ Next step: Transform while preserving dependences

e Find execution reorderings that preserve dependences and improve
performance

e Execution reordering as a function: T(?)

e For all dependence relation instances (s
T(f) — T() - 0,
i.e., the source should precede the target even in the transformed space

@ What is the structure of T?

—

— 1),



VALID TRANSFORMATIONS

for (t =0; t <T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
AL(t+1)%2] [1113] = FO(A[t%2][i+1]105], A[t%2][il[j], Alt%2][i-11[j],
A[t%s2] [1][j+1], A[t®2][1i][j-11);

@ Dependences: (1,0,0), (1,0,1), (1,0,-1), (1,1,0), (1,-1,0)
e Validity: T(f) — T(5) » 0,i.e, T(F—5) = 0
e Examples of invalid transformations
o T(t,i,j) = (i,j,t)
e Similarly, (i,t,]), (j,i,t), (t +1,1,j), (t+i+],i,j) are all invalid transformations
@ Valid transformations
o (tj,i), (ht+it+j), (Lt+it+it))
e However, only some of the infinitely many valid ones are interesting



GENERATING LOOPS AFTER TRANSFORMATION

@ Fourier-Motzkin elimination can be used to generate code
e Successively eliminate old loop variables, and then new loop variables from
innermost to outermost, generating bounds for the loop being eliminated at
each step.
e Replace old loop IVs with new ones in the loop body
@ More powerful techniques exist to generate more efficient code (fewer/no
redundancy in loop bound checks, conditional guards)

e Work out for this example transformation: (i,j) — (i +j, ).



PARALLELISM AND DEPENDENCE CARRYING

Carrying or satisfying a dependence
Loop-carried dependence

°
°

@ Aloop is parallel if does not carry any dependences.

@ For each dependence, determine the depth at which it is carried
°

For constant distance vectors, the depth of the first non-zero dependence
component is the depth at which the dependence is satisfied



SYNCHRONIZATION-FREE OR COMMUNICATION-FREE
PARALLELISM

Number of degrees of synchronization-free parallelim
m: Dimensionality of the iteration space
D: Dependence matrix — columns are distance vectors

m - rank(D) degrees of synchronization-free parallelism

For any perfect loop nest that has only constant dependences, we can always
obtain at least m — 1 degrees of parallelism.

How do you determine or maximize synchronization-free parallelism? Find T
(transformation matrix) that satisfies certain properties.

e Find f # 0 such that f.d:- =0, Vd: (dependence distance vector).



WAVEFRONT PARALLELISM

@ Synchronization required after execution of a parallel loop

e A single outer sequential loop with N iterations containing all inner parallel
loops will lead to O(N) synchronization

@ Refer illustration earlier in this chapter: (i + j,j) mapping for an example
@ Connection to DoAcross parallelism, as opposed to DoAll parallelism?

@ It’s possible to parallelize using barrier-style synchronization or
point-to-point synchronization (between specific pairs of processors)
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TILING (BLOCKING)

@ Partition and execute iteration space in blocks
@ A tile is executed atomically
@ Benefits: exploits cache locality & improves parallelization in the presence of synchronization
@ Allows reuse in multiple directions
@ Reduces frequency of synchronization for parallelization: synchronization after you execute
tiles (as opposed to points) in parallel )
1 i
Tl @ €0 @ @ Tl @ @0 @@
| 1A | gttt
SRR AN %% 7%
iz NP vy vivgdy
A2 %271 |
T 1 2 5w o 1 2 5w

(i,j) = (i/50,j/50,1,j);  (i,j) = (i/50 +j/50,j/50,1, j)



VALIDITY OF TILING (BLOCKING)

e Validity of tiling

. for (i=1; i<T; i++)
@ There should be no cycle between the tiles for (j=l; j<N-1; j++)
AL(i+1)%21[j] = f(A[i%2]11§-11,
Ali%2]13], A[i%2]11j+11);

X X X X

.
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VALIDITY OF TILING (BLOCKING)

e Validity of tiling
@ There should be no cycle between the tiles

o Sufficient condition: All dependence components

should be non-negative along dimensions that are
being tiled

for (i=1; i<T; i++)
for (j=1; j<N-1; j++)
A[(i+1)%2][j] = f(A[i%2]1[j-1],
Ali%2][j], A[i%2][j+1]);
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VALIDITY OF TILING (BLOCKING)

e Validity of tiling
@ There should be no cycle between the tiles
o Sufficient condition: All dependence components
should be non-negative along dimensions that are
being tiled
@ Dependences: (1,0), (1,1), (1,-1)

for (i=1; i<T; i++)
for (j=1; j<N-1; j++)
A[(i+1)%2][j] = f(A[i%2]1[j-1],
Ali%2][j], A[i%2][j+1]);

.
i
L d
i
3 L d
f
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Figure: Iteration space



VALIDITY OF TILING (BLOCKING)

e Validity of tiling
@ There should be no cycle between the tiles
o Sufficient condition: All dependence components
should be non-negative along dimensions that are
being tiled
@ Dependences: (1,0), (1,1), (1,-1)

for (i=1; i<T; i++)
for (j=1; j<N-1; j++)
A[(i+1)%2][j] = f(A[i%2]1[j-1],
Ali%2][j], A[i%2][j+1]);

.
i
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i
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f
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TILING (BLOCKING)

e Affine transformations can enable tiling
o First skew: T(i,]) = (i,i+])
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TILING (BLOCKING)

e Affine transformations can enable tiling

o First skew: T(i,j) = (i,i +7)

e Then, apply (rectangular) tiling: T(7,j) = (i/64, (i +j)/64,i,i+ j)
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BACK TO 3-D EXAMPLE

for (t =0; t <T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
AL(t+1)%2] [1][3] = f((A[t%2] [1+1][j], A[t%s2][i][j], A[t%2][i-11[j],
A[t%2] [1]1[j+1], A[t%2][i][j-1]);

@ What is a good transformation here to improve parallelism and locality?
@ Demo



BACK TO 3-D EXAMPLE

for (t =0; t <T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
AL(t+1)%2] [1][3] = f((A[t%2] [1+1][j], A[t%s2][i][j], A[t%2][i-11[j],
A[t%2] [1]1[j+1], A[t%2][i][j-1]);

@ What is a good transformation here to improve parallelism and locality?
@ Demo
o Skewing: (¢,t+1i,t+])



BACK TO 3-D EXAMPLE

for (t =0; t <T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
AL(t+1)%2] [1][3] = f((A[t%2] [1+1][j], A[t%s2][i][j], A[t%2][i-11[j],
A[t%2] [1]1[j+1], A[t%2][i][j-1]);

@ What is a good transformation here to improve parallelism and locality?
@ Demo

o Skewing: (t,t+i,t+7)
o Tiling: (t/64, (t+1i)/64, (t+j)/1000, t, t +i, t + f)



BACK TO 3-D EXAMPLE

for (t =0; t <T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
AL(t+1)%2] [1][3] = f((A[t%2] [1+1][j], A[t%s2][i][j], A[t%2][i-11[j],
A[t%2] [1]1[j+1], A[t%2][i][j-1]);

@ What is a good transformation here to improve parallelism and locality?
@ Demo
o Skewing: (¢,t+1i,t+])

o Tiling: (t/64, (t+1i)/64, (t+j)/1000, t, t +i, t + f)
o Tile wavefront: (t/64 + (t +1)/64, (t +1)/64, (t+)/1000, t, t +1i, t + )



OTHER TRANSFORMATIONS AND OPTIMIZATIONS

Loop Fusion

Loop Distribution

Vectorization

Explicit copying (Packing)

Unroll-and-Jam, Register Tiling
Complementary/enabling transformations for Parallelism

e Privatization, Scalar expansion, Array Expansion
o Trade-off between parallelism and memory usage

Reductions - parallelization and vectorization



Loor FUSION: VALIDITY

@ A fine (or finer) grained interleaving of the execution of multiple loop nests

e Validity: fusion is valid if, for every loop being fused, there are no
dependences from the first nest body to the second nest body that have a
negative component on the loop being fused while not being carried by any
outer loops

@ Data Dependence Graph (DDG) needed to model “inter-statement”
dependences to analyze the above conditions

e Statements (IR operations or groups of IR operations) are nodes of this graph

e Each edge corresponds to a dependence from the source node to the target node

e Directed graph, can have multiple edges between nodes and self edges.

e Each edge has information on the source and target memory accesses involved
in the dependence and additional information.



FUSION: EXAMPLE

// Original code.

// Produces B[i] using another array A. // Fused code.

for (i =0; i <N - 1; i++) for (i =0; i <N - 1; i++) {
B[i] = A[i] + A[i + 1]; B[i] = A[i] + A[1 + 1];

// Consumes B[i] to create C[i]. C[i] = B[i];

for (i =0; i <N - 1; i++) }
C[i] = B[i];

// Fusion not valid without shifting the second nest forward by one.
for (i =0; i < N; i++)
B[i] = A[i];
// Consumes B[i] to create C[i].
for (1 =0; i <N - 1; i++)
C[i] = B[i] + B[i + 1];
@ Fusion can be enabled other transformations: shifting,

permutation/interchange
@ Fusion can be partial as well, i.e., not fusing all loops

@ For partial fusion, consider dependence components up until the loops being
fused.



FUSION: OTHER EXAMPLES

// Original code.
// Produces B using another array A.

for (i

=0; i < N; i++)

for (j = 0; j < N; j++)
B[il[j] = A[il[j];
// Consumes B to create C. Fusion is valid.
// Dependence carried on the fused ‘i’ loop.

for (i

=0; i < N; i++)

for (j =0; j <N - 1; j++)
C[i][j] = B[il[j] + B[i - 1][j + 1];

// Original code.
// Produces B using another array A.

for (i

=0; i < N; i++)

for (j = 0; j < N; j++)
B[i]1[j] = A[il[j]1;
// Consumes B to create C.

for (i

=1; i < N; i++)

for (j =0; j <N - 1; j++)
C[i - 1][j] = B[i][j] + B[i - 11[j];



LooOP FUSION AND DISTRIBUTION: COSTS/BENEFITS

@ Benefits

@ Improves cache locality: producer-consumer reuse, input reuse

@ Improves register reuse

© Eliminates intermediate arrays and reduces memory consumption
@ Reduces code size, less control overhead

@ Disadvantages

© Reduces effective cache capacity available for each of components fused: cache
capacity misses

@ Increases the risk of conflict misses

© Can lead to loss of parallelism, loss of tilability, or loss of vectorizability

© Increases hardware prefetch stream utilization; can lead to lower prefetching
performance



LOOP DISTRIBUTION

@ Loop distribution is the inverse of fusion

@ Two operations/statements part of the same strongly connected component
of the data dependence graph can’t be distributed

@ Distribution at the inner level or partial distribution: consider only a part of
the DDG, discarding dependences carried on outer loops that aren’t being
considered for distribution.

@ Maximal distribution: distribute out all strongly connnected components of a
loop nest.

e Disadvantages of fusion are the benefits of distribution



VECTORIZATION

@ A fine-grained parallelization: single instruction on multiple data (SIMD)
@ Vectorization, SIMDization used synonymously today

@ An efficient form of parallelization with minimal additional hardware
resources

@ Reduction in the number of instructions executed

@ The instructions that form a vector can come from a loop body
(“superword-level parallelism”) or from a loop (“loop vectorization”)



LOOP VECTORIZATION: EXAMPLES

// Vectorizable loop.
for (1 =0; i < N; i++)
C[i] = A[i] + B[i];

// Non-vectorizable loop.
for (1 =2; i < N; i++)
A[i] = A[1 - 1] + A[i - 2];

// A loop doesn’t have to be parallel to be vectorizable.
// Loop i is vectorizable despite not being parallel and despite
// carrying a short loop dependence. No dependence cycle.
for (i =0; i < N; i++) {
C[i + 1] = A[i] * B[i];
D[i] = C[i] + X[i];
}
// Vectorizing a loop body like this can also be viewed as tiling by vector
// width, distributing the intra-tile loops, and vectorizing them.



LOOP VECTORIZATION: VALIDITY

@ A loop can be vectorized only if there is no dependence cycle betweeen the
instructions that spans less than the “vector width” iterations.

@ Contiguity: Data being loaded for a vector may need to be contiguous in
memory; depends on hardware

@ Alignment: data may have to be aligned depending on the hardware —
modern general-purpose processors typically don’t have an alignment
requirement

@ Performance of aligned vs unaligned memory operations



VECTORIZATION: EXAMPLE

// Original code.
affine.for %i = 0 4096 {
affine.for %j = 0 4096 {
affine.for %k = 0 4096 {
%lhs = affine.load %A[%i, %k]
%rhs = affine.load %B[%k, %j] : memref<4096x4096xf32>

%in = affine.load %C[%i, %j] : memref<4096x4096xf32>
%product = arith.mulf %lhs, %rhs : 32

%acc = arith.addf %in, %product : 32
affine.store %acc, %C[%i, %j] : memref<4096x4096xf32>

: memref<4096x4096xf32>

// Interchanged %j to innermost and vectorized 8-way along the %j loop.

affine.for %i = 0 4096 {
affine.for %k = 0 4096 {
affine.for %j = 0 4096 8 {

%lhs = affine.load %A[%i, %k] : memref<4096x4096xf32>
%v_lhs = vector.splat %lhs : vector<8xf32>
%v_rhs = affine.vector_load %B[%k, %j] : memref<4096x4096xf32>
%product = arith.mulf %v_lhs, %v_rhs : vector<8xf32>
%in = affine.vector_load %C[%i, %j] : memref<4096x4096xf32>
%acc = arith.addf %in, %product : vector<8xf32>

affine.vector_store %acc, %C[%i, %j] : memref<4096x4096xf32>



EXPLICIT COPYING OR PACKING

Typically performed in conjunction with tiling

Pack data being accessed by a ‘tile” into a contiguous buffer that fits in
cache/fast memory

‘Compute’ tile reads from packed input buffers and writes out to a packed
buffer; unpack output buffer.
Benefits

@ Eliminates conflicts misses and thus improves cache locality
@ Reduces TLB misses
© Improves prefetching performance (fewer hardware prefetch streams used)

Packing involves overhead (copy-in and copy-out)
Reference: see packing scheme for high-performance matrix-matrix
multiplication in this illustration:

Analytical Modeling is Enough for High Performance BLIS, Low et al., ACM
TOMS 2016.



UNROLL-AND-JAM OR REGISTER TILING

e Improves register reuse

@ Multi-dimensional unroll-and-jam (multiple loops) can be performed to
simultaneously exploit register reuse along multiple dimensions

@ Can be thought of as tiling for register locality except that the tiles are small
(variables being reused to fit in registers ideally) and the tile is fully unrolled.

@ Improves the compute to load/store operation ratio — extremely important
for high-performance on modern architectures

e Sufficient: if it is valid to make a loop the innermost loop, it is valid to
unroll-and-jam it.

@ More precise: unroll-and-jam is valid iff stripminng the loop by the
unroll-and-jam factor and bringing the intra-tile loop to the innermost
position is valid

@ Multi-dimensional unroll-and-jam (multiple loops)



UNROLL-AND-JAM OR REGISTER TILING (CONTINUED)

@ For a matrix-matrix multiplication in the canonical ijk form, work out the
improvement in compute to load/store ratio when unroll-and-jamming i and
j loops with factors U; and Uj; respectively.

@ Assume a register budget of 16 registers in one case and 32 registers in
another.



@ Reductions can be parallelized

@ Reductions can be vectorized
s =0;
for (i = 0; i < N; i++)
s += A[il];



A COMPOSITION OF TRANSFORMATIONS

for (i =11 < N; i++)
// S1.
B[i] = A[il];

for (i =1; i < N; i++)

// S2.
C[i - 1] = B[i] + B[i - 1]

@ Original ordering: Ts, (i) = (0,1), Ts, (i) = (1,1)
@ Fused + Tiled + Innermost loop distribution

e Produce a chunk of A and consume it before a new chunk is produced
o Transformation: T, (i) = (i/32,0,i), Ts,(i) = (i/32,1,i).
for (t1=0;tl<=floord(N-1,32);tl++) {
for (t3=max(1,32*tl;t3<=min(N-1,32xt1+31);t3++)
B[t3] = A[t3];
for (t3=max(1,32xtl);t3<=min(N-1,32%t1+31);t3++)
C[t3 - 1] = B[t3] + B[t3 - 1];
}

e Provides cache locality while also providing parallelism and vectorization.
e Either locality or parallelism/vectorizability would have otherwise been lost
with only fusion or only parallelizing without any fusion.



ALGORITHMS TO FIND TRANSFORMATIONS

@ The history
e A data locality optimizing algorithm, Wolf and Lam, PLDI 1991: Improve
locality through unimodular transformations
@ Characterize self-spatial, self-temporal, and group reuse
e Find unimodular transformations (permutation, reversal, skewing) to transform to
permutable loop nests with reuse, and subsequently tile them

@ Several advances on polyhedral transformation algorithms through 1990s and
2000s: Feautrier [1991-1992], Lim and Lam (Affine Partitioning) [1997-2001],
Pluto [2008-2015]

@ The Present

e Polyhedral framework provides a powerful mathematical abstraction (away
from the syntax)

e A number of new techniques, open-source libraries and tools have been
developed and are actively maintained

e Affine abstractions and infrastructure in MLIR
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MLIR

=

MLIR

@ Open-sourced by Google in Apr 2019
e ML in MLIR: Multi-level
e Ability to represent code at multiple levels in a unified way

@ First class abstractions for multi-dimensional arrays (tensors), loop nests,
affine maps/sets, and more
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MLIR: MULTI-LEVEL INTERMEDIATE REPRESENTATION

1. Ops on tensor types form

2. Loop-level/mid-level form

3. Low-level form: closer to hardware

9patches = "tf.reshape”(%patches, %minus_one, %minor_dim_size)

: (tensor<?x?x? x 2 x 32>, index, index) —> tensor<? x ? x 32>
Yemat_out = "tf.matmul"(%patches_flat, %patches_flat){transpose_a : true}

: (tensor<?x?x (32>, tensor<? x ?x f32>) —> tensor<? x ? x {32>
“vec_out = "tf.reduce_sun'(%patches_flat) faxis: 0} : (tensor<?x?x {32>) —> tensor<?x f

#map0 = <(d0) -> (d0)>
#mapl = <(d0) -> (d0 + 4)>
affine.for %i=0108 siep 4 |

affine.for %j=0108 step 4 (
affine.for %k =008 sicp 4 (
affine.for %ii = #map0(%i) o #map1(%i) {
affine.for %jj = #map0(%) to #map1 (%) {
affine.for %kk = #map0(%k) o #map1(%kK) |

%5 = affine.load %lhs[%ii, %kk] : memref<§ x 8 x 132>
%6 = affine.load %rhs|%Kkk, %j] : memref< x 8 x 32>
%7 = affine.load %out[%ii, %jj] : nemref<8 x 8 x (32>
%8 = arithmulf %5, %6 : 32
%9 = arithaddf %7, %8 : 32
affine.store %9, %out[%i, °

j : memref<8 x 8 x 132>

%v1 = memref.load %al[%i2, %i3] : nemref<256 x 64 x vector<16 x {32>>
%v2 = memref.load %b[%i2, %i3] : memref<256 x 64 x vector<16 x {32>>
%v3 =arith.addf %v1, %v2: vector<16 x f32>

memref.store %v3, %d[%i2, %i3] : nemref<256 x 64 x vector<16 x f32>>




© Round-trippable textual format
@ Ability to represent code at multiple levels

© Unified representation for all the levels



MLIR DESIGN PRINCIPLES
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@ Ability to represent code at multiple levels



MLIR DESIGN PRINCIPLES

@ Round-trippable textual format
@ Ability to represent code at multiple levels
© Unified representation for all the levels



MLIR - BAsic CONCEPTS

Module
@ SSA, typed, three address

@ Module/Function/Block/Operation structure

@ Operations can hold a “region”, which is a list of :
Operation
blocks

Operation

func.func @test(%arg: i32) {
%x = call @thing_to_call(%arg) : (i32) —>i32

cf.br Abbl
bb1:
%y = arith.addi %x, %x :132 Operation

return %y :i32
} Operation




SSA REPRESENTATION

@ Functional SSA representation
@ No ¢ nodes
@ Instead, blocks take arguments

func.func @condbr_simple() -> (i32) {
%scond = "foo"() : () -> il
%a = "bar"() : () -> i32
%b = "bar"() : () -> i64

cf.cond_br %cond, "“bbl(%a : 132), "bb2(%b :

~bbl(%x : 132):
%sw = "foo_bar"(%x) : (i32) -> i64
cf.br “bb2(%w: i64)

~bb2(%y : i64):
%z = "abc"(%y) : (i64) -> 132
return %z : 132

}

164)



MLIR OPERATIONS

@ Operations always have a name and source location info
@ Operations may have:

Arbitrary number of SSA results and operands

Attributes: guaranteed constant values

Block operands: e.g. for branch operations

Regions: discussed later

Custom printing/parsing - or use the more verbose generic syntax

%size = tensor.dim %T, 1: tensor<1024x? x 32>

// Dimension to extract is a guaranteed integer constant, an attribute .
%x = memref.alloc() : memref<1024x64xf32>

%y = affine.load %x[%a, %b] : memref<1024x64x{32>



OPERATIONS WITH REGIONS

@ An MLIR Region is a list of blocks

@ Operations in MLIR can have nested regions

%2 = xla.fusion (%0 : tensor<f32>,

Abb0(%al : tensor<f32>, %al : tensor<f32>):
%x0 = xla.add %a0, %al : tensor<f32>
%x1 = xla.relu %x0: tensor<f32>
return %x1

}

func.func @loop_nest_unroll(%arg0: index) {
affine.for %argl =0 to 100 2
affine.for %arg2 = 0 to #map1(%arg0) {
%0 ="foo"() : () —>i32
}
}

return

%1 : tensor<f32>): tensor<f32> {

@ Can be used to represent:

functional control flow

fusion nodes

closures/lambdas

structured looping/conditional constructs (for, if, while)
Parallelism abstractions like OpenMP
Launch/dispatch kernel abstractions gpu. launch



DIALECTS IN MLIR

@ A collection of operations and types suitable for a specific task
@ Typically correspond to a programming model, frontend, or a backend

e Example dialects: TensorFlow dialect, LLVM dialect, Affine dialect, NVIDIA
GPU dialect

@ You can have a mix of dialects



CURRENT DIALECTS IN MLIR

Payload 1 Structure -

: :
Lo JPL (e )
Output Utility
Utility
Buffer
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AFFINE EXPRESSIONS IN MLIR

@ Affine for functions is linear + constant
e Addition of identifiers, multiplication with a constant, floordiv, mod, ceildiv
with respect to a positive constant

e Examples of affine functions of i, J:

i+j,21—j,i+1,2i+5,

i/128 +1,1%8, (i+])/8,

((d0 % 9216 4 d1 % 128) mod 294912) floordiv 147456
e Not affine: ij, i/j, j/N, i* + j*, a[j]



AFFINE MAPS

@ An affine map maps zero or more identifiers to one or more result affine
expressions

#mapl = (d0) — ((dO floordiv 4) mod 2)

#map2 = (d0) — (d0 —4)

#map3 = (d0) — (d0+4)

#mapst = (d0,dl) — (dO 16 — d1 + 15)

H#map5 (d0,d1,d2,d3) — (d2 — d0 + 16,d3 — d1  16)

e Why affine maps? What can they express?

e Loop IV mappings for nearly every useful loop transformation, data layout
transformations, placement functions / processor mappings / distributions:
block, cyclic, block-cyclic, multi-dimensional array subscripts, loop bound
expressions, conditionals



WHERE ARE AFFINE MAPS USED IN MLIR?

@ IV remappings: to map old IVs to new IVs

(i,]) Identity
(j,1) Interchange
(i,i+7) Skew j #map = (d0) —> (2:d0 - 1)
(24,7) Scale i by two affine.for %i=0 to #map(%N) {
1.7 ift i affine.for %j=0t03 {
.(l’] + 1). ' Shlft] Yoy < affineLoad %0[%i + %j] : memref<100xf32>
(Ls5)5 1 %1.1,j)  Tile (rectangular) | "opl"(%v) : (£32) = ()
. \
@ Loop bounds %w = "op"(%s, %t) {map: <(d0, d1) -> (d1, d0)>}

© Memref access subscripts

© As an attribute for any operation



POLYHEDRAL STRUCTURES IN THE IR

Q@ Affine expressions
e Eg: (d0+ 1) mod 2
@ Affine maps
e Eg: (d0,d1) — (d1,d0/128,d0 mod 128)
© Integer sets
e Eg: {(d0,d1)[s1] : d0 > 0,d0 < s1,d1 == 512}



POLYHEDRAL STRUCTURES IN THE IR

Q@ Affine expressions
e Eg: (d0+ 1) mod 2
@ Affine maps
e Eg: (d0,d1) — (d1,d0/128,d0 mod 128)
© Integer sets
e Eg: {(d0,d1)[s1] : d0 > 0,d0 < s1,d1 == 512}
© Affine apply operation (affine.apply)

%a = affine.apply (d0, dl) -> (d0 + dl1) (%i, %j)

@ Affine ‘for’ operation (affine. for)
O Affine ‘if operation (affine.if)



TYPES RELEVANT FOR DENSE MATRICES/ TENSORS

@ tensor A value that is a multi-dimensional array of elemental values

%d ="t f.Add"(%e, %f) : (tensor<?x42x?xf32>, tensor<?x42x?xf32>) —> tensor<?x42x?xf32>

@ memref A buffer in memory or a view on a buffer, has a layout map, memory
space qualifier, symbols bound to its dynamic dimensions

%N = affine.apply (d0) —> (8 * (dO ceildiv 8)) (%S)

%M = affine.apply (d0) —> (2 * d0) (%N)

#tmap = <(d0, d1) —> (d1 floordiv 32, dO floordiv 128, d1 mod 32, d0 mod 128)>
#shift = <(d0, d1)[s0, s1] —> (d0 +s0, d1 +sl)>

%A =memref.alloc() : memref<1024x64xf32, #tmap, 0>

%B = memref.alloc(%M, %N)[%x, %y] : memref<?x?xf32, #tmap, 1>

%C = memref.alloc(%M, %M)[%x, %y] : memref<?x?x{32, #shift, 1>



INTEGER SETS

@ An integer set is primarily used for conditionals

e It is also powerful as an attribute to specify constraints on symbols (esp.
shape symbols)

// An example two-dimensional integer set with two symbols.
#set = <(do, dl1)[s0, s1]
1 d0 >=0, -d0 + sO - 1>=0, dl >= 0, -dl + s1 - 1 >= 0>

affine.if #set(%i, %j)[%M, %N] {
%v = affine.load %A[%i] : memref<256xf32>

}
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ANALYSES AND TRANSFORMATIONS: WHAT’S CURENTLY PRESENT

@ Several techniques are available:

o GCD test
2i+4j—-8k-1=0 — No solution
e GCD tightening:
16i > 16j — 15, 16i < 16j —i=j
e Gaussian elimination
i=j—1 0<j<i
e Fourier-Motzkin elimination: eliminate a variable from a system of linear
inequalities
i<j+1, j=k k<16, i>32

o FlatAffineConstraints
@ Fast Presburger library (FPL)



GENERALIZED SLICING-BASED LOOP FUSION

@ A generalized slicing-based loop fusion approach
e Can trade off redundant computation for locality / memory minimization

@ Post fusion, forwarding of ‘affine.store’ to affine.load, elimination of
intermediate arrays can be performed

@ Fixed size local buffers are created when possible to pass intermediate data

affine.for %i=0to 64 {
%v = affine.load %in[%i] : memref<64xf32>
affine.store %v, %out[%i floordiv 4, %i mod 4]
: memref<16x4xf32> affine.for %i=0to 16 {
} affine.for %j=0to4 {
%v = affine.load %in[4 * %i + %j] : memref<64xf32>
affine.for %i=01t016 { "f00"(%v) : (£32) —> ()
affine.for %j=0to4 { }
%w = affine.load %out[%i, %j] : memref<16x4xf32> }
"f00"(%w) : (£32) —> ()
}
}
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COMPILER BACKEND

@ Instruction Selection
@ Instruction Scheduling
© Register Allocation



REGISTER ALLOCATION

@ Machines have a limited number of registers
@ Register Allocation: Determine which variables should be allocated registers
and assign them registers
@ Objectives
e Minimize “spilling”
o Efficiency: time complexity, performance in practice



REGISTER ALLOCATION: DEFINITIONS

A variable is live from its definition to its last use

Two variables cannot be allocated the same register if they are both
simulataneously live

Such simultaneously live variables are said to interfere

Spilling saves a values from a register to memory; a register is freed

A variables that has not been updated can be spilled without a store to
memory



LIVE RANGES AND INTERFERENCE GRAPH

@ Perform analysis to compute liveness information

@ From live ranges, construct an interference graph

@ Variables are nodes of the graph (each node has a live range)

@ An edge between nodes iff the associated variables’ live ranges interfere

@ Color the interference graph such that no two adjacent vertices have the same
color

@ kregisters: find a k-colouring for the interference graph
@ Registers are colours

@ NP-complete problem in general



CHAITIN’S ALGORITHM: REGISTER ALLOCATION BY GRAPH
COLORING

© While 3 vertices with < k neighbours in G:
e Pick any vertex n such that deg(n) < k and put it on the stack
e Remove n and all edges incident to it from G
@ If G is non-empty with deg(v) > k, Vv € G then:
Pick vertex v (using a heuristic), spill live range of v
Remove vertex v and edges from G, put v on the “spill list”
Gotostep 1

@ If the spill list is not empty, insert spill code, then rebuild the interference
graph and try to allocate, again

@ Otherwise, successively pop vertices off the stack and colour them in the
lowest colour not used by some neighbour.



LINEAR SCAN ALGORITHM

Linearization of basic blocks

Approximate register allocation as the coloring of interval graphs

Live interval A sequence of instructions, outside of which a variable v is
never live.

The algorithm
@ Walk intervals in the sorted increasing order of start points
© Maintain a pool of available registers, determine expired intervals, free registers,
and allocate from the pool
© When no registers are available, spill the interval that has the latest finish point
(other heuristics possible)

Complexity: O(VIogR): V variables, R registers



RECENT WORK

@ Copy Coalescing
@ Register allocation under SSA: interference graphs are chordal graphs.
Chordal graphs can be coloured efficiently

@ Register allocation has to be solved in combination with instruction
scheduling and code generation

@ Classic phase ordering problem between register allocation and instruction
scheduling
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