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RESEARCH IN PROGRAMMING AND COMPILER TECHNOLOGIES

Current:
C, C++, Rust, Java, Python, MATLAB, R, ...

What will the new and disruptive programming technologies of the 21st
century be?
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RESEARCH IN PROGRAMMING AND COMPILER TECHNOLOGIES

1 What do programmers want?
2 How are architectures evolving?

Multiple cores and many cores on a chip
GPUs, accelerators, and heterogeneous parallel architectures
Wider vector processing units
Deep memory hierarchies
Reduced precision
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HIGH-PERFORMANCE COMPILATION: WHAT DO YOU WANT TO

PROGRAM?

Scientific and engineering simulations
Eg: Solving partial differential equations numerically

Embedded vision (Eg: Autonomous/self-driving cars)
Smartphones — HPC in data centers and cloud drives a number of
smartphone technologies
Scientific and Engineering simulations
Data Analytics
Deep Learning
Generative AI, LLMs
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QUESTIONS TO THINK ABOUT

What will the new programming technologies for the emerging domains
be?

Current: C, C++, Rust with OpenMP, MPI, CUDA, OpenCL
Future: New languages, compilers, libraries, and DSLs
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QUESTIONS TO THINK ABOUT

What will the new programming technologies for AI be?
PyTorch is dominant today; JAX is another high-level one. OpenAI Triton is
mid-level.
Just scratches the surface
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THE NEED FOR HIGH PERFORMANCE

More/Larger Data
Instagram — 60 million photos / day
YouTube — 100 hours of video uploaded every minute

Need for a fast/real-time response in some domains
More complex algorithms
Science/Engineering simulations/modeling: Time to solution
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PROGRAMMING MODERN HARDWARE EFFECTIVELY

Compute speed: Eg.: 16 multiply-adds per cycle (AVX-512 unit for fp32)
Synchronization (2 cores 0.25 µs, 8 cores 1.25 µs, 2x8 cores 1.54 µs)
Memory bandwidth ( 10 GB/s per core, 500 GB/s per socket)
High-Performance Programming and Compilation

Exploiting locality (caches, registers)
Exploit single core hardware well (vectorization, ...)
Multi-core parallelism
Reduce synchronization and communication as much as possible

Good scaling without good single thread performance is a great waste of
resources (power, equipment cost)
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A CLASSIFICATION OF VARIOUS APPROACHES

1 Manual low-level (C, C++) with parallel programming models (OpenMP,
CUDA, MPI) with the best optimizing compilers

2 Library-based: C, C++, Python with libraries/packages: MKL, ScaLAPACK,
CuBLAS, CuDNN, Cutlass, CuB

3 Mid-level: Triton, CuTile, Pallas
4 Ultra-high level languages and models including embedded DSLs:

Tensorflow, PyTorch, JAX, R, MATLAB, Halide, Spiral

General goal: Obtain productivity of the last class and the performance of the
first
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EXAMPLE: UNSHARP MASK – AN IMAGE PROCESSING PIPELINE

(C) Bernie Saunders, CC BY-NC-ND 3.0



UNSHARP MASK: COMPUTATION

for (i = 0; i <= 2; i++)
for (j = 2; j <= (R + 1); j++)
for (k = 0; (k <= (C + 3)); k++)
blurx[i][j-2][k] = img[i][j-2][k]*0.0625f + img[i][j-1][k]*0.25f
+ img[i][j][k]*0.375f + img[i][j+1][k]*0.25f + img[i][j+2][k]*0.0625f;

for (i = 0; (i <= 2); i++)
for (j = 2; (j <= (R + 1)); j++)
for (k = 2; (k <= (C + 1)); k++)
blury[i][j][k-2] = blurx[i][j-2][k-2]*0.0625f + blurx[i][j-2][k-1]*0.25f

+ blurx[i][j-2][k]*0.375f + blurx[i][j-2][k+1]*0.25f + blurx[i][j-2][k+2]*0.0625f;

for (i = 0; (i <= 2); i++)
for (j = 2; (j <= (R + 1)); j++)
for (k = 2; (k <= (C + 1)); k++)
sharpen[i][j][k-2] = img[i][j][k]*(1 + weight) + blury[i][j-2][k-2]*(-weight);

for (i = 0; i <= 2; i++)
for (j = 2; j <= R + 1; j++)
for (k = 2; k <= C + 1; k++) {
_ct0 = img[i][j][k];
_ct1 = sharpen[i][j-2][k-2];
_ct2 = (std::abs((img[i][j][k] - blury[i][j-2][k-2])) < threshold)? _ct0: _ct1;
mask[i][j-2][k-2] = _ct2;

}

Iin

blurx

blury

sharpen

masked

A sequential version in C: 18.6 ms / frame
(using GCC with opts, quad-core Nehalem, 720p video)
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UNSHARP MASK - A NAIVE OPENMP VERSION

for (i = 0; i <= 2; i++)
#pragma omp parallel for
for (j = 2; j <= (R + 1); j++)

#pragma ivdep
for (k = 0; k <= C + 3; k++)
blurx[i][j-2][k] = img[i][j-2][k]*0.0625f + img[i][j-1][k]*0.25f
+ img[i][j][k]*0.375f + img[i][j+1][k]*0.25f + img[i][j+2][k]*0.0625f;

for (i = 0; i <= 2; i++)
#pragma omp parallel for
for (j = 2; j <= R + 1; j++)

#pragma ivdep
for (k = 2; k <= C + 1; k++)
blury[i][j][k-2] = blurx[i][j-2][k-2]*0.0625f + blurx[i][j-2][k-1]*0.25f

+ blurx[i][j-2][k]*0.375f + blurx[i][j-2][k+1]*0.25f + blurx[i][j-2][k+2]*0.0625f;

for (i = 0; i <= 2; i++)
#pragma omp parallel for
for (j = 2; j <= R + 1; j++)

#pragma ivdep
for (k = 2; k <= C + 1; k++)
sharpen[i][j][k-2] = img[i][j][k]*(1 + weight) + blury[i][j-2][k-2]*(-weight);

for (i = 0; i <= 2; i++)
#pragma omp parallel for private(_ct0,_ct1,_ct2)
for (j = 2; j <= R + 1; j++)

#pragma ivdep
for (k = 2; k <= C + 1; k++) {
_ct0 = img[i][j][k];
_ct1 = sharpen[i][j-2][k-2];
_ct2 = (std::abs((img[i][j][k] - blury[i][j-2][k-2])) < threshold)? _ct0: _ct1;
mask[i][j-2][k-2] = _ct2;

}

Iin

blurx

blury

sharpen

masked

20.2 ms / frame on 1 thread, 18.02 ms / frame on 4 threads
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UNSHARP MASK - A BETTER OPENMP VERSION

#pragma omp parallel for
for (j = 2; j <= (R + 1); j++)
for (i = 0; i <= 2; i++)

#pragma ivdep
for (k = 0; (k <= (C + 3)); k++)
blurx[i][j-2][k] = img[i][j-2][k]*0.0625f + img[i][j-1][k]*0.25f
+ img[i][j][k]*0.375f + img[i][j+1][k]*0.25f + img[i][j+2][k]*0.0625f;

#pragma omp parallel for
for (j = 2; (j <= (R + 1)); j++)
for (i = 0; i <= 2; i++)

#pragma ivdep
for (k = 2; (k <= (C + 1)); k++)
blury[i][j][k-2] = blurx[i][j-2][k-2]*0.0625f + blurx[i][j-2][k-1]*0.25f

+ blurx[i][j-2][k]*0.375f + blurx[i][j-2][k+1]*0.25f + blurx[i][j-2][k+2]*0.0625f;

#pragma omp parallel for
for (j = 2; (j <= (R + 1)); j++)
for (i = 0; i <= 2; i++)

#pragma ivdep
for (k = 2; (k <= (C + 1)); k++)
sharpen[i][j][k-2] = img[i][j][k]*(1 + weight) + blury[i][j-2][k-2]*(-weight);

#pragma omp parallel for private(_ct0,_ct1,_ct2)
for (j = 2; j <= R + 1; j++)
for (i = 0; i <= 2; i++)

#pragma ivdep
for (k = 2; k <= C + 1; k++) {
_ct0 = img[i][j][k];
_ct1 = sharpen[i][j-2][k-2];
_ct2 = (std::abs((img[i][j][k] - blury[i][j-2][k-2])) < threshold)? _ct0: _ct1;
mask[i][j-2][k-2] = _ct2;

}

Iin

blurx

blury

sharpen

masked

18.6 ms / frame on 1 thread, 15.03 ms / frame on 4 threads
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OPTIMIZING UNSHARP MASK

1 Write with OpenCV library (with Python bindings)

@jit("float32[::](uint8[::],␣int64)", cache = True, nogil = True)
def unsharp_cv(frame, lib_func):
frame_f = np.float32(frame) / 255.0
res = frame_f
kernelx = np.array([1, 4, 6, 4, 1], np.float32) / 16
kernely = np.array([[1], [4], [6], [4], [1]], np.float32) / 16
blury = sepFilter2D(frame_f, -1, kernelx, kernely)
sharpen = addWeighted(frame_f, (1 + weight), blury, (-weight), 0)
th, choose = threshold(absdiff(frame_f, blury), thresh, 1, THRESH_BINARY)
choose = choose.astype(bool)
np.copyto(res, sharpen, ’same_kind’, choose)
return res

Performance: 35.9 ms / frame
2 Write in a dynamic language like Python and use a JIT (Numba) — performance: 79 ms / frame
3 A naive C version parallelized with OpenMP: 18.02 ms / frame
4 A version with sophisticated optimizations (fusion + overlapped tiling): 8.97 ms / frame (in

this course, we will study how to get to this, and build compilers/code generators that can
achieve this automatically)

Video demo
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UNSHARP MASK - A HIGHLY OPTIMIZED VERSION

Note: Code below is indicative and not meant for reading. Zoom into soft copy or browse
source code repo listed in references.

#pragma omp parallel for schedule(static)

for (int _T_i1 = 0; (_T_i1 <= ((R + 1) / 32)); _T_i1 = (_T_i1 + 1))
{

int _ct0 = (((R + 1) < ((32 * _T_i1) + 31))? (R + 1): ((32 * _T_i1) + 31));

int _ct1 = ((2 > (32 * _T_i1))? 2: (32 * _T_i1));

int _ct4 = (((R + 1) < ((32 * _T_i1) + 31))? (R + 1): ((32 * _T_i1) + 31));

int _ct5 = ((2 > (32 * _T_i1))? 2: (32 * _T_i1));

int _ct8 = (((R + 1) < ((32 * _T_i1) + 31))? (R + 1): ((32 * _T_i1) + 31));

int _ct9 = ((2 > (32 * _T_i1))? 2: (32 * _T_i1));

int _ct12 = (((R + 1) < ((32 * _T_i1) + 31))? (R + 1): ((32 * _T_i1) + 31));

int _ct13 = ((2 > (32 * _T_i1))? 2: (32 * _T_i1));

for (int _T_i2 = -1; (_T_i2 <= ((C + 3) / 256)); _T_i2 = (_T_i2 + 1))
{

int _ct2 = (((C + 3) < ((256 * _T_i2) + 261))? (C + 3): ((256 * _T_i2) + 261));

int _ct3 = ((0 > (256 * _T_i2))? 0: (256 * _T_i2));

int _ct6 = (((C + 1) < ((256 * _T_i2) + 260))? (C + 1): ((256 * _T_i2) + 260));

int _ct7 = ((2 > ((256 * _T_i2) + 1))? 2: ((256 * _T_i2) + 1));

int _ct10 = (((C + 1) < ((256 * _T_i2) + 259))? (C + 1): ((256 * _T_i2) + 259));

int _ct11 = ((2 > ((256 * _T_i2) + 2))? 2: ((256 * _T_i2) + 2));

int _ct14 = (((C + 1) < ((256 * _T_i2) + 258))? (C + 1): ((256 * _T_i2) + 258));

int _ct15 = ((2 > ((256 * _T_i2) + 3))? 2: ((256 * _T_i2) + 3));

for (int _i0 = 0; (_i0 <= 2); _i0 = (_i0 + 1))
{

for (int _i1 = _ct1; (_i1 <= _ct0); _i1 = (_i1 + 1))
{
#pragma ivdep

for (int _i2 = _ct3; (_i2 <= _ct2); _i2 = (_i2 + 1))
{
blurx[_i0][((-32 * _T_i1) + _i1)][((-256 * _T_i2) + _i2)] = (((((img[(((_i0 * ((R + 4) * (C + 4))) + ((-2 + _i1) * (C + 4))) + _i2)] * 0.0625f) + (img[(((_i0 * ((R + 4) * (C + 4))) + ((-1 + _i1) * (C + 4))) + _i2)] * 0.25f)) + (img[(((_i0 * ((R + 4) * (C + 4)))

+ (_i1 * (C + 4))) + _i2)] * 0.375f)) + (img[(((_i0 * ((R + 4) * (C + 4))) + ((1 + _i1) * (C + 4))) + _i2)] * 0.25f)) + (img[(((_i0 * ((R + 4) * (C + 4))) + ((2 + _i1) * (C + 4))) + _i2)] * 0.0625f));
}

}
}

for (int _i0 = 0; (_i0 <= 2); _i0 = (_i0 + 1))
{

for (int _i1 = _ct5; (_i1 <= _ct4); _i1 = (_i1 + 1))
{
#pragma ivdep

for (int _i2 = _ct7; (_i2 <= _ct6); _i2 = (_i2 + 1))
{
blury[_i0][((-32 * _T_i1) + _i1)][((-256 * _T_i2) + _i2)] = (((((blurx[_i0][((-32 * _T_i1) + _i1)][(-2 + ((-256 * _T_i2) + _i2))] * 0.0625f) + (blurx[_i0][((-32 * _T_i1) + _i1)][(-1 + ((-256 * _T_i2) + _i2))] * 0.25f))

+ (blurx[_i0][((-32 * _T_i1) + _i1)][((-256 * _T_i2) + _i2)] * 0.375f)) + (blurx[_i0][((-32 * _T_i1) + _i1)][(1 + ((-256 * _T_i2) + _i2))] * 0.25f)) + (blurx[_i0][((-32 * _T_i1) + _i1)][(2 + ((-256 * _T_i2) + _i2))] * 0.0625f));
}

}
}

for (int _i0 = 0; (_i0 <= 2); _i0 = (_i0 + 1))
{

for (int _i1 = _ct9; (_i1 <= _ct8); _i1 = (_i1 + 1))
{
#pragma ivdep

for (int _i2 = _ct11; (_i2 <= _ct10); _i2 = (_i2 + 1))
{
sharpen[_i0][((-32 * _T_i1) + _i1)][((-256 * _T_i2) + _i2)] = ((img[(((_i0 * ((R + 4) * (C + 4))) + (_i1 * (C + 4))) + _i2)] * (1 + weight)) + (blury[_i0][((-32 * _T_i1) + _i1)][((-256 * _T_i2) + _i2)] * -(weight)));

}
}

}

for (int _i0 = 0; (_i0 <= 2); _i0 = (_i0 + 1))
{

for (int _i1 = _ct13; (_i1 <= _ct12); _i1 = (_i1 + 1))
{
#pragma ivdep

for (int _i2 = _ct15; (_i2 <= _ct14); _i2 = (_i2 + 1))
{
float _ct16 = img[(((_i0 * ((R + 4) * (C + 4))) + (_i1 * (C + 4))) + _i2)];
float _ct17 = sharpen[_i0][((-32 * _T_i1) + _i1)][((-256 * _T_i2) + _i2)];
float _ct18 = ((std::abs((img[(((_i0 * ((R + 4) * (C + 4))) + (_i1 * (C + 4))) + _i2)] - blury[_i0][((-32 * _T_i1) + _i1)][((-256 * _T_i2) + _i2)])) < threshold)? _ct16: _ct17);
mask_flip[((((_i1-2) * (3 * C)) + ((_i2 - 2) * 3)) + (_i0))] = _ct18;

}
}

}
}

}

Iin

blurx

blury

sharpen

masked

15.5 ms / frame on 1 threads, 8.97 ms / frame on 4 threads 15/37



DOMAIN-SPECIFIC LANGUAGES (DSL)

The example motivates a domain-specific language + compiler approach
High-performance domain-specific language + compiler: productivity
similar to ultra high-level or high-level but performance similar to manual or
even better!
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DOMAIN-SPECIFIC LANGUAGES (DSL)

DSLs
Exploit domain information to improve programmability, performance, and
portability
Expose greater information to the compiler and programmer specifies less
abstract away many things from programmers (parallelism, memory)

DSL compilers
can “see” across routines – allow whole program optimization
generate optimized code for multiple targets
Programmers say what to execute and not how to execute
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BIG PICTURE: ROLE OF COMPILERS

General-Purpose
Improve existing general-purpose
compilers (for C, C++, Python, ...)
Programmers say a LOT
LLVM/Polly, GCC/Graphite

Domain-Specific
Build new domain-specific
languages and compilers
Programmers say WHAT they
execute and not HOW they execute
SPIRAL, Halide, Tensorflow,
Pytorch, ...

Both approaches share infrastructure
Important to pursue both
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OUTLINE

Compilers for AI
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COMPILERS FOR AI

Compilers are language translators: they translate programming languages
to instructions hardware can execute
One of the pillars of Computer Systems
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COMPILERS - THE EARLY DAYS

Pascal

ALGOL

ADA

PL/8

C

IBM 801

S/370

Motorola 68000

Power

PowerPC

M languages, N targets ⇒ M ∗ N compilers! Not scalable!
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COMPILERS EVOLUTION - M + N

Ada

Fortran

C

C++

Go

IR

x86

x86-64

Power

ARM

PTX/NVIDIA

With an common IR, we have M + N + 1 compilers!

22/37



WHAT DOES AN IR LOOK LIKE?

A representation convenient
to analyze and transform
Round-trippable form that
you can parse and print
Low-level IRs are
three-address code-like
IRs have used expressions
trees, 3-address code,
graphs.
Static Single Assignment: a
property of IRs that makes
it convenient; most IRs now
use SSA

define void @foo(ptr nocapture %a) {
entry:

br label %for.body

for.body: ; preds = %for.body, %entry
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%arrayidx = getelementptr inbounds i32, ptr %a, i64 %indvars.iv
%0 = load i32, ptr %arrayidx, align 4
%1 = add i32 %0, 2
%inc = add nsw i32 %0, 1
store i32 %inc, ptr %arrayidx, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, 64
br i1 %exitcond, label %for.end, label %for.body

for.end: ; preds = %for.body
ret void

}
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MODERN COMPILERS - LLVM IR-BASED

C

C++ Clang AST

Objective-C

Rust HIR/MIR

opt

Swift SIL

Julia Julia AST

TensorFlow/JAX XLA HLO

LLVM IR

PyTorch

FX, Torch IR, Triton

opt

LLVM Machine IR

x86

x86-64

Power

ARM

PTX

...

target desc.

LLVM: modular, reusable, open-source, but too low-level, not extensible for
higher-order languages.
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COMPILERS FOR AI

AI programming
frameworks

. . . ?

Compiler infrastructure?

Explosion of AI chips and
accelerators

Space in between is ruled by hand-written libraries. Not scalable.
The right tools weren’t available until recently.
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HOW DO YOU PROGRAM AI HARDWARE?

High, mid, and low-level
abstractions

High: PyTorch, JAX, ...

Mid: OpenAI Triton, cuTile

Low: CUDA, C/C++,
CUTLASS, ...

All three approaches need/use
compilers in different ways

They also share/rest on the
same underlying infrastructure

Eg: Triton, MLIR, LLVM, PTX
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PYTHON-BASED PROGRAMMING FRAMEWORKS: TODAY

Where does performance in
Python-based frameworks
come from?
Largely from libraries
written in C, C++, CUDA,
and even assembly
Compilers exist: XLA,
TorchInductor, TensorRT

Limited in many ways:
“semi-compilers”,
fragmented infra,
performance
Still evolving

class SelfAttentionLayer(nn.Module):
def __init__(self, feature_size):

super(SelfAttentionLayer, self).__init__()
self.feature_size = feature_size

# Linear transformations for Q, K, V from the same source.
self.key = nn.Linear(feature_size, feature_size)
self.query = nn.Linear(feature_size, feature_size)
self.value = nn.Linear(feature_size, feature_size)

def forward(self, x, mask=None):
# Apply linear transformations.
keys = self.key(x)
queries = self.query(x)
values = self.value(x)

# Scaled dot-product attention.
scores = torch.matmul(queries, keys.transpose(-2, -1))

/ torch.sqrt(torch.tensor(self.feature_size, dtype=torch.float32))

# Apply mask (if provided).
if mask is not None:

scores = scores.masked_fill(mask == 0, -1e9)

# Apply softmax.
attention_weights = F.softmax(scores, dim=-1)

# Multiply weights with values.
output = torch.matmul(attention_weights, values)

return output, attention_weights
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OPENING MULTI-LEVEL DOORS TO PROGRAMMING AI HARDWARE

1 High-level Python-based programming
frameworks (e.g. PyTorch, JAX),

2 Compiler support for (1) that could be
turned off/on (e.g. torch.compile),

3 Mid/low-level programming support (e.g.,
CUDA, CUTLASS, CuTile, Triton)

4 Low-level MLIR dialects that expose their
hardware intrinsics/virtual ISA on top of
which both (2) compilers and (3) low-level
frameworks rest,

5 Ability to use inline virtual ISA.
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COMPILER AUTO-PARALLELIZATION IS ALREADY HERE!

Recent PyTorch 2 ASPLOS
paper
PyTorch 2: Faster Machine
Learning Through Dynamic
Python Bytecode Transformation
and Graph Compilation, Ansel
et al. (Meta), ASPLOS 2024.
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HOW IS HARDWARE EVOLVING? (1/2)

Multiple cores (early 2000s)
Wider SIMD (early 2000s)
Many cores (late 2000s)
Heterogeneity (2000s/2010s)
Tensor/matmul cores (mid 2010s)
Low-precision compute instructions
(late 2010s/2020s)

From 2000s to now
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HOW IS HARDWARE EVOLVING? (2/2)

Example: NVIDIA H100 chip
80 GB of GPU DRAM
3.35 TB/s of memory bandwidth (HBM3).
990 TFLOPS for fp16 tensor operations, 1.98 PFLOPS for int8.
50 MB of L2 cache.
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HOW ARE PROGRAMMING FRAMEWORKS EVOLVING?

Programmer productivity
Write less and do more
Hardware usability
Deliver performance
Deliver portability

AI programming frameworks
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COMPILERS FOR AI

AI programming
frameworks

. . . ?

Compiler infrastructure?

Explosion of AI chips and
accelerators

MLIR infrastructure: open-sourced by Google in 2019
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MLIR

ML in MLIR: Multi-level
Characteristics

Loops and multi-dimensional arrays (tensors) had to be first class citizens
Had to be extensible (types, operations, attributes)
Had to enable building both general-purpose and domain-specific compilers
and even more.
Had to be open-source with a permissive license
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MULTI-DIMENSIONALITY EVERYWHERE: CNN CONVOLUTION

for (n = 0; n < N; n++) // Samples in a batch.
for (o = 0; o < Oc; o++) // Output feature channels.
for (i = 0; i2 < Ic; i++) // Input feature channels.
for (y = 0; i3 < Y; i3++) // Layer height.
for (x = 0; i4 < X; i4++) // Layer width.
for (kh = 0; i5 < Kh; i5++) // Convolution kernel height.
for (kw = 0; i6 < Kw; i6++) // Convolution kernel width.
output[n, o, y, x] += input[n, i, y+kh, x+kw] * weights[o, i, kh, kw];

X

Y

X

Y

Kw

Ic

Kh

Oc Oc
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MLIR: MULTI-LEVEL INTERMEDIATE REPRESENTATION

1. Ops (general purpose to domain spe-
cific) on tensor types / graph form

%patches = "tf.reshape"(%patches, %minus_one, %minor_dim_size)
: (tensor<? x ? x ? x ? x f32>, index, index) −> tensor<? x ? x f32>

%mat_out = "tf.matmul"(%patches_flat, %patches_flat){transpose_a : true}
: (tensor<? x ? x f32>, tensor<? x ? x f32>) −> tensor<? x ? x f32>

%vec_out = "tf.reduce_sum"(%patches_flat) {axis: 0} : (tensor<? x ? x f32>) −> tensor<? x f32>

2. Loop-level / mid-level form

for (i = 0; i < N; i++)

for (k = 0; k < N; k++)

for (i = 0; i < N; i++)

S1

S2

for (j = 0; j < N; j++)

S1

for (j = 0; j < N; j++)

S2

0 <= i <= N−1

0 <= j <= N−1

0 <= k <= N−1

i

j

k

affine.for %i = 0 to 8 step 4 {
affine.for %j = 0 to 8 step 4 {
affine.for %k = 0 to 8 step 4 {
affine.for %ii = #map0(%i) to #map1(%i) {
affine.for %jj = #map0(%j) to #map1(%j) {
affine.for %kk = #map0(%k) to #map1(%k) {

%5 = affine.load %arg0[%ii, %kk] : memref<8 x 8 x vector<64 x f32>>
%6 = affine.load %arg1[%kk, %jj] : memref<8 x 8 x vector<64 x f32>>
%7 = affine.load %arg2[%ii, %jj] : memref<8 x 8 x vector<64 x f32>>
%8 = arith.mulf %5, %6 : vector<64xf32>
%9 = arith.addf %7, %8 : vector<64xf32>
affine.store %9, %arg2[%ii, %jj] : memref<8 x 8 x vector<64xf32>>

}
}

}
}

}
}

3. Low-level form: closer to hardware
%v1 = memref.load %a[%i2, %i3] : memref<256 x 64 x vector<16 x f32>>
%v2 = memref.load %b[%i2, %i3] : memref<256 x 64 x vector<16 x f32>>
%v3 = addf %v1, %v2 : vector<16 x f32>
memref.store %v3, %d[%i2, %i3] : memref<256 x 64 x vector<16 x f32>>
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MODERN COMPILER TOPICS IN THIS COURSE

1 Foundations: SSA, Dominance, Basic concepts for control flow analysis and
data flow analysis

2 Compiler optimizations for parallelism and locality
3 Affine abstraction/Polyhedral framework (only the basics)
4 MLIR
5 Practice: Building compilers using MLIR
6 Practice: Building compilers and optimizers for AI frameworks (basic

overview, pointers)
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