

Introduction to Modern Compilers (part of E0255)

Uday Kumar Reddy B

udayb@iisc.ac.in

**Dept of CSA
Indian Institute of Science**

- **Current:**
 - C, C++, Rust, Java, Python, MATLAB, R, ...
- What will the new and disruptive programming technologies of the 21st century be?

- **Current:**
 - C, C++, Rust, Java, Python, MATLAB, R, ...
- **What will the new and disruptive programming technologies of the 21st century be?**

- ① **What do programmers want?**
- ② **How are architectures evolving?**

- Multiple cores and many cores on a chip
- GPUs, accelerators, and heterogeneous parallel architectures
- Wider vector processing units
- Deep memory hierarchies
- Reduced precision

HIGH-PERFORMANCE COMPILATION: WHAT DO YOU WANT TO PROGRAM?

- Scientific and engineering simulations
 - Eg: Solving partial differential equations numerically
- Embedded vision (Eg: Autonomous/self-driving cars)
- Smartphones — HPC in data centers and cloud drives a number of smartphone technologies
- **Scientific and Engineering simulations**
- **Data Analytics**
- **Deep Learning**
- **Generative AI, LLMs**

QUESTIONS TO THINK ABOUT

- What will the new programming technologies for the emerging domains be?
 - Current: C, C++, Rust with OpenMP, MPI, CUDA, OpenCL
 - Future: New languages, compilers, libraries, and DSLs

QUESTIONS TO THINK ABOUT

- **What will the new programming technologies for AI be?**

- PyTorch is dominant today; JAX is another high-level one. OpenAI Triton is mid-level.
- Just scratches the surface

THE NEED FOR HIGH PERFORMANCE

- **More/Larger Data**
 - Instagram — 60 million photos / day
 - YouTube — 100 hours of video uploaded every minute
- **Need for a fast/real-time response in some domains**
- **More complex algorithms**
- **Science/Engineering simulations/modeling: Time to solution**

PROGRAMMING MODERN HARDWARE EFFECTIVELY

- Compute speed: Eg.: 16 multiply-adds per cycle (AVX-512 unit for fp32)
- Synchronization (2 cores $0.25 \mu\text{s}$, 8 cores $1.25 \mu\text{s}$, 2x8 cores $1.54 \mu\text{s}$)
- Memory bandwidth (10 GB/s per core, 500 GB/s per socket)
- High-Performance Programming and Compilation
 - Exploiting locality (caches, registers)
 - Exploit single core hardware well (vectorization, ...)
 - Multi-core parallelism
 - Reduce synchronization and communication as much as possible
- Good scaling without good single thread performance is a great waste of resources (power, equipment cost)

PROGRAMMING MODERN HARDWARE EFFECTIVELY

- Compute speed: Eg.: 16 multiply-adds per cycle (AVX-512 unit for fp32)
- Synchronization (2 cores $0.25 \mu\text{s}$, 8 cores $1.25 \mu\text{s}$, 2x8 cores $1.54 \mu\text{s}$)
- Memory bandwidth (10 GB/s per core, 500 GB/s per socket)
- High-Performance Programming and Compilation
 - Exploiting locality (caches, registers)
 - Exploit single core hardware well (vectorization, ...)
 - Multi-core parallelism
 - Reduce synchronization and communication as much as possible
- Good scaling without good single thread performance is a great waste of resources (power, equipment cost)

A CLASSIFICATION OF VARIOUS APPROACHES

- ① Manual low-level (C, C++) with parallel programming models (OpenMP, CUDA, MPI) with the best optimizing compilers
- ② Library-based: C, C++, Python with libraries/packages: MKL, ScaLAPACK, CuBLAS, CuDNN, Cutlass, CuB
- ③ Mid-level: Triton, CuTile, Pallas
- ④ Ultra-high level languages and models including embedded DSLs: Tensorflow, PyTorch, JAX, R, MATLAB, Halide, Spiral
- General goal: Obtain productivity of the last class and the performance of the first

A CLASSIFICATION OF VARIOUS APPROACHES

- ① Manual low-level (C, C++) with parallel programming models (OpenMP, CUDA, MPI) with the best optimizing compilers
- ② Library-based: C, C++, Python with libraries/packages: MKL, ScaLAPACK, CuBLAS, CuDNN, Cutlass, CuB
- ③ Mid-level: Triton, CuTile, Pallas
- ④ Ultra-high level languages and models including embedded DSLs: Tensorflow, PyTorch, JAX, R, MATLAB, Halide, Spiral
- General goal: Obtain productivity of the last class and the performance of the first

A CLASSIFICATION OF VARIOUS APPROACHES

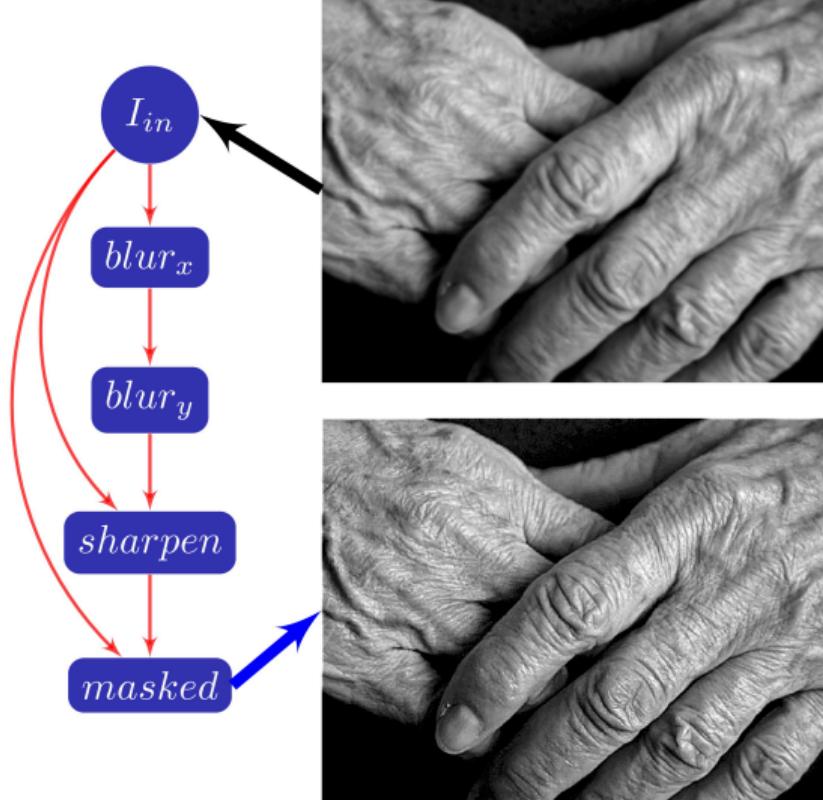
- ① Manual low-level (C, C++) with parallel programming models (OpenMP, CUDA, MPI) with the best optimizing compilers
- ② Library-based: C, C++, Python with libraries/packages: MKL, ScaLAPACK, CuBLAS, CuDNN, Cutlass, CuB
- ③ Mid-level: Triton, CuTile, Pallas
- ④ Ultra-high level languages and models including embedded DSLs: Tensorflow, PyTorch, JAX, R, MATLAB, Halide, Spiral
- General goal: Obtain productivity of the last class and the performance of the first

A CLASSIFICATION OF VARIOUS APPROACHES

- ① Manual low-level (C, C++) with parallel programming models (OpenMP, CUDA, MPI) with the best optimizing compilers
- ② Library-based: C, C++, Python with libraries/packages: MKL, ScaLAPACK, CuBLAS, CuDNN, Cutlass, CuB
- ③ Mid-level: Triton, CuTile, Pallas
- ④ Ultra-high level languages and models including embedded DSLs: Tensorflow, PyTorch, JAX, R, MATLAB, Halide, Spiral
- **General goal:** Obtain productivity of the last class and the performance of the first

EXAMPLE: UNSHARP MASK – AN IMAGE PROCESSING PIPELINE

(C) Bernie Saunders, CC BY-NC-ND 3.0



UNSHARP MASK: COMPUTATION

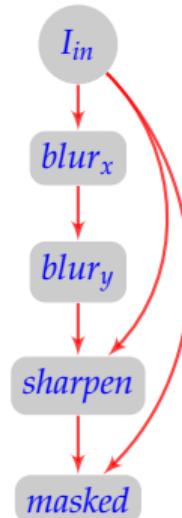
```
for (i = 0; i <= 2; i++)
    for (j = 2; j <= (R + 1); j++)
        for (k = 0; (k <= (C + 3)); k++)
            blurx[i][j-2][k] = img[i][j-2][k]*0.0625f + img[i][j-1][k]*0.25f
                + img[i][j][k]*0.375f + img[i][j+1][k]*0.25f + img[i][j+2][k]*0.0625f;

for (i = 0; (i <= 2); i++)
    for (j = 2; (j <= (R + 1)); j++)
        for (k = 2; (k <= (C + 1)); k++)
            blury[i][j][k-2] = blurx[i][j-2][k-2]*0.0625f + blurx[i][j-2][k-1]*0.25f
                + blurx[i][j-2][k]*0.375f + blurx[i][j-2][k+1]*0.25f + blurx[i][j-2][k+2]*0.0625f;

for (i = 0; (i <= 2); i++)
    for (j = 2; (j <= (R + 1)); j++)
        for (k = 2; (k <= (C + 1)); k++)
            sharpen[i][j][k-2] = img[i][j][k]*(1 + weight) + blury[i][j-2][k-2]*(-weight);

for (i = 0; i <= 2; i++)
    for (j = 2; j <= R + 1; j++)
        for (k = 2; k <= C + 1; k++) {
            _ct0 = img[i][j][k];
            _ct1 = sharpen[i][j-2][k-2];
            _ct2 = (std::abs((img[i][j][k] - blury[i][j-2][k-2])) < threshold)? _ct0: _ct1;
            mask[i][j-2][k-2] = _ct2;
        }
```

A sequential version in C: **18.6 ms** / frame
(using GCC with opts, quad-core Nehalem, 720p video)



UNSHARP MASK - A NAIIVE OPENMP VERSION

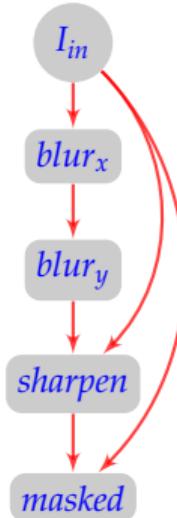
```
for (i = 0; i <= 2; i++)
#pragma omp parallel for
  for (j = 2; j <= (R + 1); j++)
#pragma ivdep
  for (k = 0; k <= C + 3; k++)
    blurx[i][j-2][k] = img[i][j-2][k]*0.0625f + img[i][j-1][k]*0.25f
    + img[i][j][k]*0.375f + img[i][j+1][k]*0.25f + img[i][j+2][k]*0.0625f;

for (i = 0; i <= 2; i++)
#pragma omp parallel for
  for (j = 2; j <= R + 1; j++)
#pragma ivdep
  for (k = 2; k <= C + 1; k++)
    blury[i][j][k-2] = blurx[i][j-2][k-2]*0.0625f + blurx[i][j-2][k-1]*0.25f
    + blurx[i][j-2][k]*0.375f + blurx[i][j-2][k+1]*0.25f + blurx[i][j-2][k+2]*0.0625f;

for (i = 0; i <= 2; i++)
#pragma omp parallel for
  for (j = 2; j <= R + 1; j++)
#pragma ivdep
  for (k = 2; k <= C + 1; k++)
    sharpen[i][j][k-2] = img[i][j][k]*(1 + weight) + blury[i][j-2][k-2]*(-weight);

for (i = 0; i <= 2; i++)
#pragma omp parallel for private(_ct0,_ct1,_ct2)
  for (j = 2; j <= R + 1; j++)
#pragma ivdep
  for (k = 2; k <= C + 1; k++) {
    _ct0 = img[i][j][k];
    _ct1 = sharpen[i][j-2][k-2];
    _ct2 = (std::abs((img[i][j][k] - blury[i][j-2][k-2])) < threshold)? _ct0: _ct1;
    mask[i][j-2][k-2] = _ct2;
  }
```

20.2 ms / frame on 1 thread, 18.02 ms / frame on 4 threads



UNSHARP MASK - A BETTER OPENMP VERSION

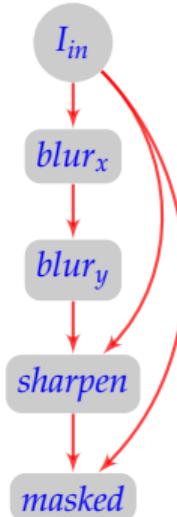
```
#pragma omp parallel for
for (j = 2; j <= (R + 1); j++)
    for (i = 0; i <= 2; i++)
#pragma ivdep
    for (k = 0; (k <= (C + 3)); k++)
        blurx[i][j-2][k] = img[i][j-2][k]*0.0625f + img[i][j-1][k]*0.25f
        + img[i][j][k]*0.375f + img[i][j+1][k]*0.25f + img[i][j+2][k]*0.0625f;

#pragma omp parallel for
for (j = 2; (j <= (R + 1)); j++)
    for (i = 0; i <= 2; i++)
#pragma ivdep
    for (k = 2; (k <= (C + 1)); k++)
        blury[i][j][k-2] = blurx[i][j-2][k-2]*0.0625f + blurx[i][j-2][k-1]*0.25f
        + blurx[i][j-2][k]*0.375f + blurx[i][j-2][k+1]*0.25f + blurx[i][j-2][k+2]*0.0625f;

#pragma omp parallel for
for (j = 2; (j <= (R + 1)); j++)
    for (i = 0; i <= 2; i++)
#pragma ivdep
    for (k = 2; (k <= (C + 1)); k++)
        sharpen[i][j][k-2] = img[i][j][k]*(1 + weight) + blury[i][j-2][k-2]*(-weight);

#pragma omp parallel for private(_ct0,_ct1,_ct2)
for (j = 2; j <= R + 1; j++)
    for (i = 0; i <= 2; i++)
#pragma ivdep
    for (k = 2; k <= C + 1; k++) {
        _ct0 = img[i][j][k];
        _ct1 = sharpen[i][j-2][k-2];
        _ct2 = (std::abs((img[i][j][k] - blury[i][j-2][k-2])) < threshold)? _ct0: _ct1;
        mask[i][j-2][k-2] = _ct2;
    }
```

18.6 ms / frame on 1 thread, 15.03 ms / frame on 4 threads



OPTIMIZING UNSHARP MASK

- ➊ Write with OpenCV library (with Python bindings)

```
@jit("float32[:,::](uint8[:,::],int64)", cache = True, nogil = True)
def unsharp_cv(frame, lib_func):
    frame_f = np.float32(frame) / 255.0
    res = frame_f
    kernelx = np.array([1, 4, 6, 4, 1], np.float32) / 16
    kernely = np.array([[1], [4], [6], [4], [1]], np.float32) / 16
    blury = sepFilter2D(frame_f, -1, kernelx, kernely)
    sharpen = addWeighted(frame_f, (1 + weight), blury, (-weight), 0)
    th, choose = threshold(absdiff(frame_f, blury), thresh, 1, THRESH_BINARY)
    choose = choose.astype(bool)
    np.copyto(res, sharpen, 'same_kind', choose)
    return res
```

Performance: **35.9 ms** / frame

- ➋ Write in a dynamic language like Python and use a JIT (Numba) — performance: **79 ms** / frame
- ➌ A naive C version parallelized with OpenMP: **18.02 ms** / frame
- ➍ A version with sophisticated optimizations (fusion + overlapped tiling): **8.97 ms** / frame (in this course, we will study how to get to this, and build compilers/code generators that can achieve this automatically)
- Video demo

OPTIMIZING UNSHARP MASK

- ➊ Write with OpenCV library (with Python bindings)

```
@jit("float32[:,::](uint8[:,::],int64)", cache = True, nogil = True)
def unsharp_cv(frame, lib_func):
    frame_f = np.float32(frame) / 255.0
    res = frame_f
    kernelx = np.array([1, 4, 6, 4, 1], np.float32) / 16
    kernely = np.array([[1], [4], [6], [4], [1]], np.float32) / 16
    blury = sepFilter2D(frame_f, -1, kernelx, kernely)
    sharpen = addWeighted(frame_f, (1 + weight), blury, (-weight), 0)
    th, choose = threshold(absdiff(frame_f, blury), thresh, 1, THRESH_BINARY)
    choose = choose.astype(bool)
    np.copyto(res, sharpen, 'same_kind', choose)
    return res
```

Performance: **35.9 ms / frame**

- ➋ Write in a dynamic language like Python and use a JIT (Numba) — performance: **79 ms / frame**
- ➌ A naive C version parallelized with OpenMP: **18.02 ms / frame**
- ➍ A version with sophisticated optimizations (fusion + overlapped tiling): **8.97 ms / frame** (in this course, we will study how to get to this, and build compilers/code generators that can achieve this automatically)
- Video demo

OPTIMIZING UNSHARP MASK

- ➊ Write with OpenCV library (with Python bindings)

```
@jit("float32[:,::](uint8[:,::],int64)", cache = True, nogil = True)
def unsharp_cv(frame, lib_func):
    frame_f = np.float32(frame) / 255.0
    res = frame_f
    kernelx = np.array([1, 4, 6, 4, 1], np.float32) / 16
    kernely = np.array([[1], [4], [6], [4], [1]], np.float32) / 16
    blury = sepFilter2D(frame_f, -1, kernelx, kernely)
    sharpen = addWeighted(frame_f, (1 + weight), blury, (-weight), 0)
    th, choose = threshold(absdiff(frame_f, blury), thresh, 1, THRESH_BINARY)
    choose = choose.astype(bool)
    np.copyto(res, sharpen, 'same_kind', choose)
    return res
```

Performance: **35.9 ms / frame**

- ➋ Write in a dynamic language like Python and use a JIT (Numba) — performance: **79 ms / frame**
- ➌ A naive C version parallelized with OpenMP: **18.02 ms / frame**
- ➍ A version with sophisticated optimizations (fusion + overlapped tiling): **8.97 ms / frame** (in this course, we will study how to get to this, and build compilers/code generators that can achieve this automatically)

- Video demo

OPTIMIZING UNSHARP MASK

- ➊ Write with OpenCV library (with Python bindings)

```
@jit("float32[:,::](uint8[:,::],int64)", cache = True, nogil = True)
def unsharp_cv(frame, lib_func):
    frame_f = np.float32(frame) / 255.0
    res = frame_f
    kernelx = np.array([1, 4, 6, 4, 1], np.float32) / 16
    kernely = np.array([[1], [4], [6], [4], [1]], np.float32) / 16
    blury = sepFilter2D(frame_f, -1, kernelx, kernely)
    sharpen = addWeighted(frame_f, (1 + weight), blury, (-weight), 0)
    th, choose = threshold(absdiff(frame_f, blury), thresh, 1, THRESH_BINARY)
    choose = choose.astype(bool)
    np.copyto(res, sharpen, 'same_kind', choose)
    return res
```

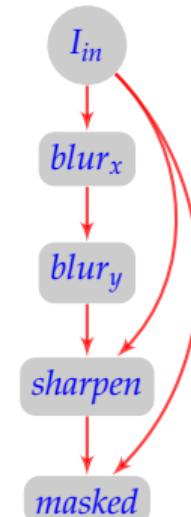
Performance: **35.9 ms** / frame

- ➋ Write in a dynamic language like Python and use a JIT (Numba) — performance: **79 ms / frame**
- ➌ A naive C version parallelized with OpenMP: **18.02 ms** / frame
- ➍ A version with sophisticated optimizations (fusion + overlapped tiling): **8.97 ms** / frame (in this course, we will study how to get to this, and build compilers/code generators that can achieve this automatically)

- **Video demo**

UNSHARP MASK - A HIGHLY OPTIMIZED VERSION

Note: Code below is indicative and not meant for reading. Zoom into soft copy or browse source code repo listed in references.



15.5 ms / frame on 1 threads, 8.97 ms / frame on 4 threads

DOMAIN-SPECIFIC LANGUAGES (DSL)

- **The example motivates a domain-specific language + compiler approach**
- High-performance domain-specific language + compiler: productivity similar to ultra high-level or high-level but performance similar to manual or even better!

DOMAIN-SPECIFIC LANGUAGES (DSL)

- The example motivates a domain-specific language + compiler approach
- High-performance domain-specific language + compiler: productivity similar to ultra high-level or high-level but performance similar to manual or even better!

DOMAIN-SPECIFIC LANGUAGES (DSL)

DSLs

- Exploit domain information to improve programmability, performance, and portability
- Expose greater information to the compiler and programmer specifies less
- abstract away many things from programmers (parallelism, memory)

DSL compilers

- can “see” across routines – allow whole program optimization
- generate optimized code for multiple targets
- Programmers say what to execute and not how to execute

DOMAIN-SPECIFIC LANGUAGES (DSL)

DSLs

- Exploit domain information to improve programmability, performance, and portability
- Expose greater information to the compiler and programmer specifies less
- abstract away many things from programmers (parallelism, memory)

DSL compilers

- can “see” **across** routines – allow whole program optimization
- generate optimized code for multiple targets
- Programmers say **what** to execute and not **how** to execute

BIG PICTURE: ROLE OF COMPILERS

General-Purpose

- Improve existing **general-purpose** compilers (for C, C++, Python, ...)
- Programmers say a **LOT**
- LLVM/Polly, GCC/Graphite

Domain-Specific

- Build new **domain-specific languages and compilers**
- Programmers say **WHAT** they execute and not **HOW** they execute
- **SPIRAL, Halide, Tensorflow, Pytorch, ...**

BIG PICTURE: ROLE OF COMPILERS

General-Purpose

- Improve existing **general-purpose** compilers (for C, C++, Python, ...)
- Programmers say a **LOT**
- LLVM/Polly, GCC/Graphite
- Limited improvements, not everything is possible
- Broad impact

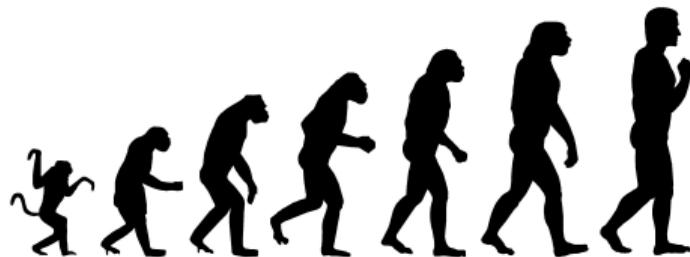
Domain-Specific

- Build new **domain-specific languages and compilers**
- Programmers say **WHAT** they execute and not **HOW** they execute
- SPIRAL, Halide, Tensorflow, Pytorch, ...
- Dramatic speedups, Automatic parallelization
- Narrower impact and adoption

BIG PICTURE: ROLE OF COMPILERS

EVOLUTIONARY approach

- Improve existing **general-purpose** compilers (for C, C++, Python, ...)
- Programmers say a **LOT**
- LLVM/Polly, GCC/Graphite



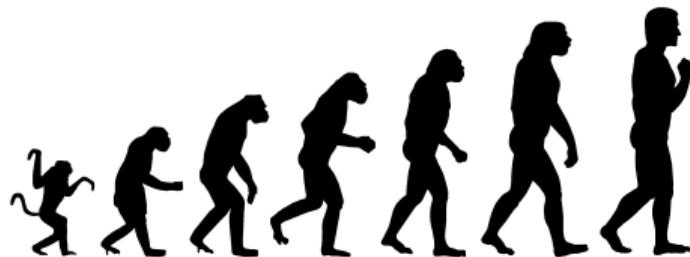
REVOLUTIONARY approach

- Build new **domain-specific languages and compilers**
- Programmers say **WHAT** they execute and not **HOW** they execute
- SPIRAL, Halide, Tensorflow, Pytorch, ...

BIG PICTURE: ROLE OF COMPILERS

EVOLUTIONARY approach

- Improve existing **general-purpose** compilers (for C, C++, Python, ...)
- Programmers say a **LOT**
- LLVM/Polly, GCC/Graphite



- Both approaches share infrastructure
- Important to pursue both

REVOLUTIONARY approach

- Build new **domain-specific languages and compilers**
- Programmers say **WHAT** they execute and not **HOW** they execute
- SPIRAL, Halide, Tensorflow, Pytorch, ...

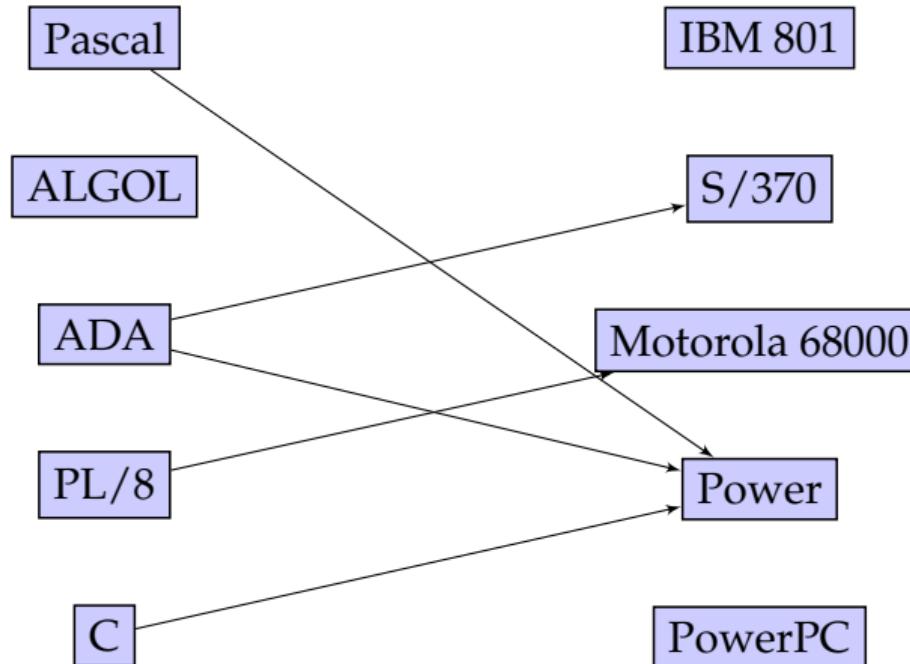
OUTLINE

- Compilers for AI

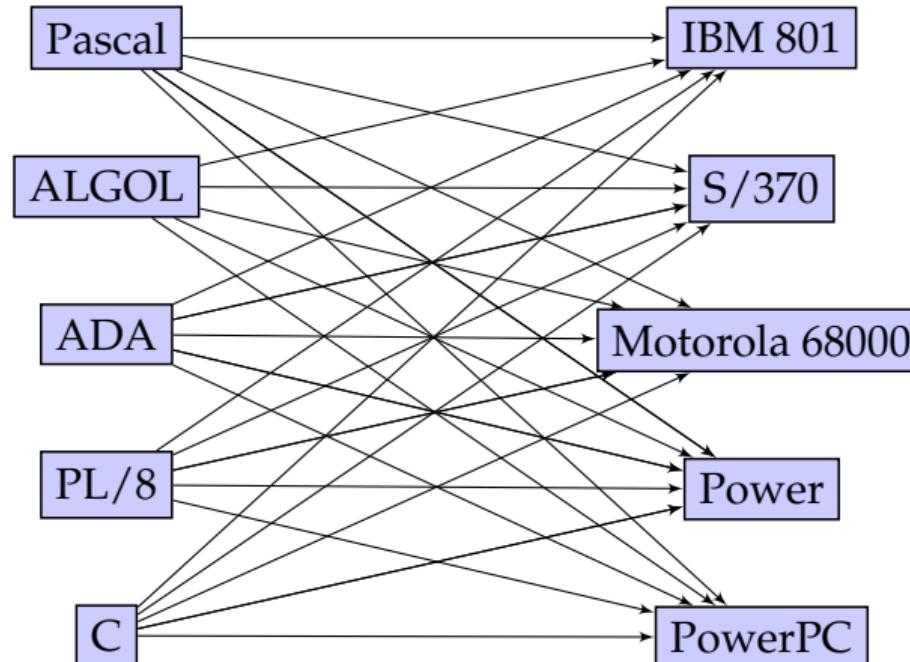
COMPILERS FOR AI

- **Compilers** are language translators: they translate programming languages to instructions hardware can execute
- One of the pillars of Computer Systems

COMPILERS - THE EARLY DAYS

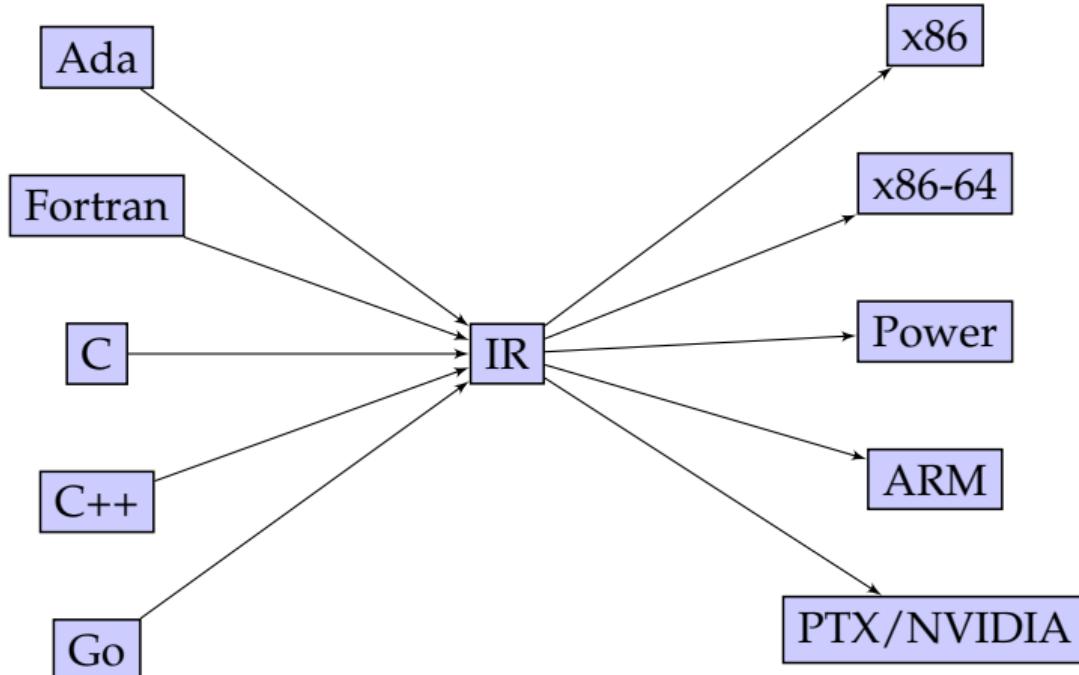


COMPILERS - THE EARLY DAYS



- M languages, N targets $\Rightarrow M * N$ compilers! Not scalable!

COMPILERS EVOLUTION - $M + N$



- With an common IR, we have $M + N + 1$ compilers!

WHAT DOES AN IR LOOK LIKE?

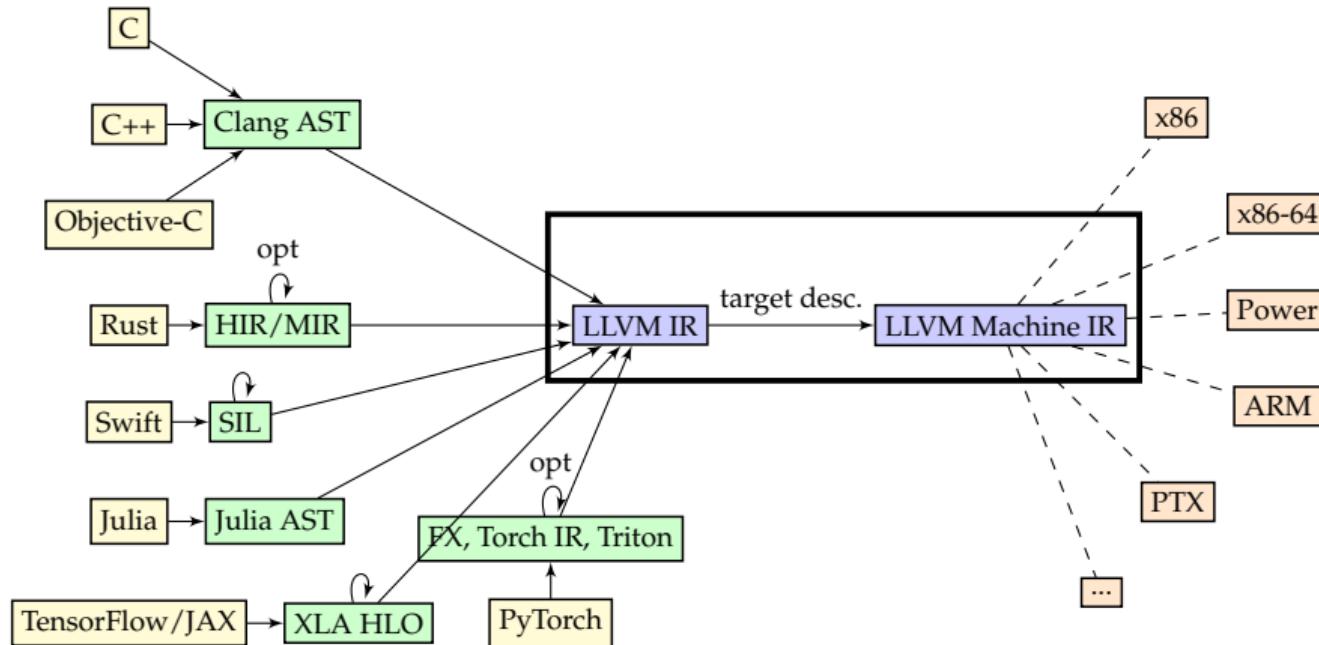
- A representation convenient to analyze and transform
- Round-trippable form that you can parse and print
- Low-level IRs are three-address code-like
- IRs have used expressions trees, 3-address code, graphs.
- Static Single Assignment: a property of IRs that makes it convenient; most IRs now use SSA

```
define void @foo(ptr nocapture %a) {
entry:
  br label %for.body

for.body: ; preds = %for.body, %entry
  %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  %arrayidx = getelementptr inbounds i32, ptr %a, i64 %indvars.iv
  %0 = load i32, ptr %arrayidx, align 4
  %1 = add i32 %0, 2
  %inc = add nsw i32 %0, 1
  store i32 %inc, ptr %arrayidx, align 4
  %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
  %exitcond = icmp eq i64 %indvars.iv.next, 64
  br i1 %exitcond, label %for.end, label %for.body

for.end: ; preds = %for.body
  ret void
}
```

MODERN COMPILERS - LLVM IR-BASED



- LLVM: modular, reusable, open-source, but too low-level, not extensible for higher-order languages.

COMPILERS FOR AI

AI programming frameworks

...

?

Compiler infrastructure?

Explosion of AI chips and accelerators

- Space in between is ruled by hand-written libraries. Not scalable.
- The right tools weren't available until recently.

HOW DO YOU PROGRAM AI HARDWARE?

CUDA

- High, mid, and low-level abstractions
- High: PyTorch, JAX, ...
- Mid: OpenAI Triton, cuTile
- Low: CUDA, C/C++, CUTLASS, ...
- All three approaches need/use compilers in different ways
- They also share/rest on the same underlying infrastructure
- Eg: Triton, MLIR, LLVM, PTX

HOW DO YOU PROGRAM AI HARDWARE?

- High, mid, and low-level abstractions
- High: PyTorch, JAX, ...
- Mid: OpenAI Triton, cuTile
- Low: CUDA, C/C++, CUTLASS, ...
- All three approaches need/use compilers in different ways
- They also share/rest on the same underlying infrastructure
- Eg: Triton, MLIR, LLVM, PTX

PYTHON-BASED PROGRAMMING FRAMEWORKS: TODAY

- Where does performance in Python-based frameworks come from?
- Largely from libraries written in C, C++, CUDA, and even assembly
- Compilers exist: XLA, TorchInductor, TensorRT
 - Limited in many ways: “semi-compilers”, fragmented infra, performance
 - Still evolving

```
class SelfAttentionLayer(nn.Module):  
    def __init__(self, feature_size):  
        super(SelfAttentionLayer, self).__init__()  
        self.feature_size = feature_size  
  
        # Linear transformations for Q, K, V from the same source.  
        self.key = nn.Linear(feature_size, feature_size)  
        self.query = nn.Linear(feature_size, feature_size)  
        self.value = nn.Linear(feature_size, feature_size)  
  
    def forward(self, x, mask=None):  
        # Apply linear transformations.  
        keys = self.key(x)  
        queries = self.query(x)  
        values = self.value(x)  
  
        # Scaled dot-product attention.  
        scores = torch.matmul(queries, keys.transpose(-2, -1))  
        / torch.sqrt(torch.tensor(self.feature_size, dtype=torch.float32))  
  
        # Apply mask (if provided).  
        if mask is not None:  
            scores = scores.masked_fill(mask == 0, -1e9)  
  
        # Apply softmax.  
        attention_weights = F.softmax(scores, dim=-1)  
  
        # Multiply weights with values.  
        output = torch.matmul(attention_weights, values)  
  
    return output, attention_weights
```

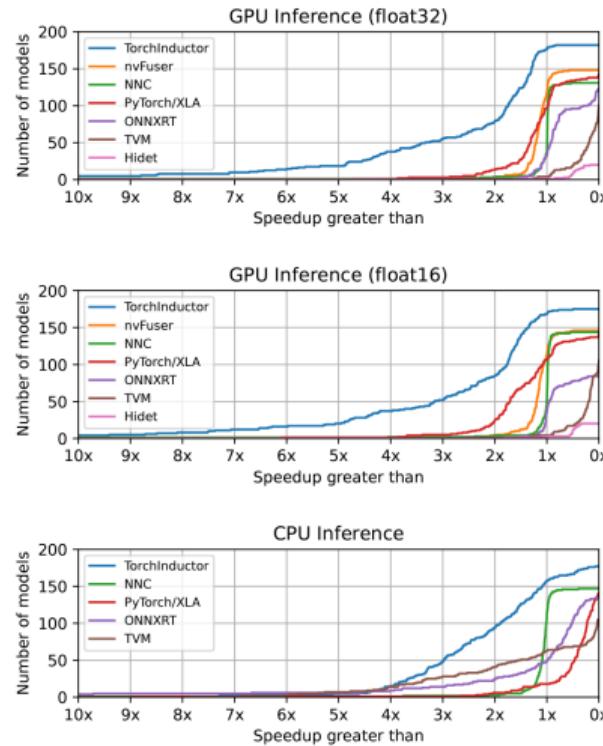
OPENING MULTI-LEVEL DOORS TO PROGRAMMING AI HARDWARE

- ① High-level Python-based programming frameworks (e.g. PyTorch, JAX),
- ② Compiler support for (1) that could be turned off/on (e.g. `torch.compile`),
- ③ Mid/low-level programming support (e.g., CUDA, CUTLASS, CuTile, Triton)
- ④ Low-level MLIR dialects that expose their hardware intrinsics/virtual ISA on top of which both (2) compilers and (3) low-level frameworks rest,
- ⑤ Ability to use inline virtual ISA.

COMPILER AUTO-PARALLELIZATION IS ALREADY HERE!

- Recent PyTorch 2 ASPLOS paper

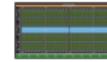
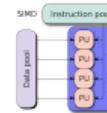
PyTorch 2: Faster Machine Learning Through Dynamic Python Bytecode Transformation and Graph Compilation, Ansel et al. (Meta), ASPLOS 2024.



HOW IS HARDWARE EVOLVING? (1/2)

From 2000s to now

- Multiple cores (early 2000s)
- Wider SIMD (early 2000s)
- Many cores (late 2000s)
- Heterogeneity (2000s/2010s)
- Tensor/matmul cores (mid 2010s)
- Low-precision compute instructions (late 2010s/2020s)



HOW IS HARDWARE EVOLVING? (2/2)

Example: NVIDIA H100 chip

- 80 GB of GPU DRAM
- 3.35 TB/s of memory bandwidth (HBM3).
- 990 TFLOPS for fp16 tensor operations, 1.98 PFLOPS for int8.
- 50 MB of L2 cache.

HOW ARE PROGRAMMING FRAMEWORKS EVOLVING?

AI programming frameworks

- Programmer productivity
- Write less and do more
- Hardware usability
- Deliver performance
- Deliver portability

COMPILERS FOR AI

AI programming
frameworks

... ?

Compiler infrastructure?

Explosion of AI chips and
accelerators

- MLIR infrastructure: open-sourced by Google in 2019

COMPILERS FOR AI

AI programming
frameworks

... ?

MLIR

Explosion of AI chips and
accelerators

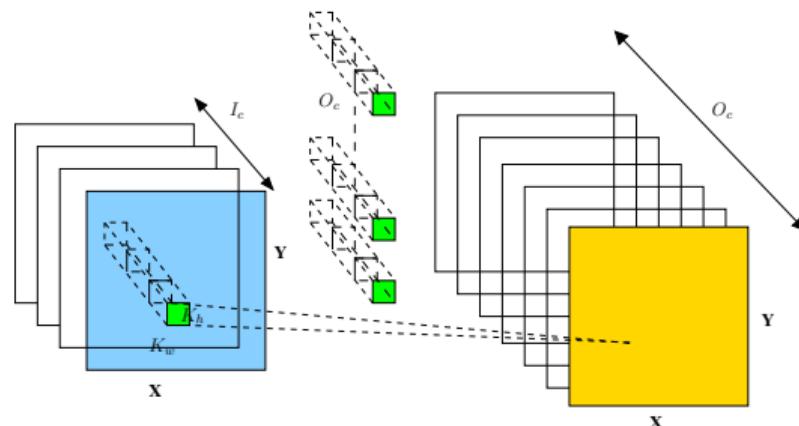
- MLIR infrastructure: open-sourced by Google in 2019

MLIR

- ML in MLIR: Multi-level
- Characteristics
 - Loops and multi-dimensional arrays (tensors) had to be first class citizens
 - Had to be extensible (types, operations, attributes)
 - Had to enable building both general-purpose and domain-specific compilers and even more.
 - Had to be open-source with a permissive license

MULTI-DIMENSIONALITY EVERYWHERE: CNN CONVOLUTION

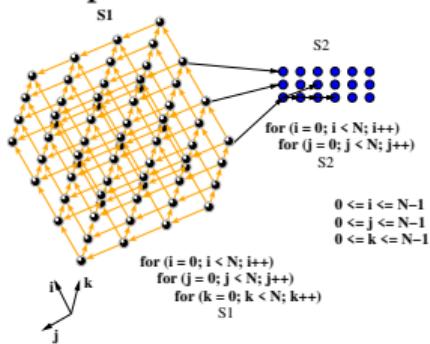
```
for (n = 0; n < N; n++) // Samples in a batch.  
  for (o = 0; o < Oc; o++) // Output feature channels.  
    for (i = 0; i2 < Ic; i++) // Input feature channels.  
      for (y = 0; i3 < Y; i3++) // Layer height.  
        for (x = 0; i4 < X; i4++) // Layer width.  
          for (kh = 0; i5 < Kh; i5++) // Convolution kernel height.  
            for (kw = 0; i6 < Kw; i6++) // Convolution kernel width.  
              output[n, o, y, x] += input[n, i, y+kh, x+kw] * weights[o, i, kh, kw];
```



MLIR: MULTI-LEVEL INTERMEDIATE REPRESENTATION

1. Ops (general purpose to domain specific) on tensor types / graph form

2. Loop-level / mid-level form



3. Low-level form: closer to hardware

```
%patches = "tf.reshape"(%patches, %minus_one, %minor_dim_size)
  : (tensor<? x ? x ? x ? x f32>, index, index) -> tensor<? x ? x f32>
%mat_out = "tf.matmul"(%patches_flat, %patches_flat)[transpose_a : true]
  : (tensor<? x ? x f32>, tensor<? x ? x f32>) -> tensor<? x ? x f32>
%vec_out = "tf.reduce_sum"(%patches_flat)[axis: 0] : (tensor<? x ? x f32>) -> tensor<? x f32>
```

```
affine.for %i = 0 to 8 step 4 {
  affine.for %j = 0 to 8 step 4 {
    affine.for %k = 0 to 8 step 4 {
      affine.for %ii = #map0(%i) to #map1(%i) {
        affine.for %jj = #map0(%j) to #map1(%j) {
          affine.for %kk = #map0(%k) to #map1(%k) {
            %5 = affine.load %arg0[%ii, %kk] : memref<8 x 8 x vector<64 x f32>>
            %6 = affine.load %arg1[%kk, %jj] : memref<8 x 8 x vector<64 x f32>>
            %7 = affine.load %arg2[%ii, %jj] : memref<8 x 8 x vector<64 x f32>>
            %8 = arith.mulf %5, %6 : vector<64xf32>
            %9 = arith.addf %7, %8 : vector<64xf32>
            affine.store %9, %arg2[%ii, %jj] : memref<8 x 8 x vector<64xf32>>
          }
        }
      }
    }
  }
}
```

```
%v1 = memref.load %a[%i2, %i3] : memref<256 x 64 x vector<16 x f32>>
%v2 = memref.load %b[%i2, %i3] : memref<256 x 64 x vector<16 x f32>>
%v3 = addf %v1, %v2 : vector<16 x f32>
memref.store %v3, %d[%i2, %i3] : memref<256 x 64 x vector<16 x f32>>
```

MODERN COMPILER TOPICS IN THIS COURSE

- ① Foundations: SSA, Dominance, Basic concepts for control flow analysis and data flow analysis
- ② Compiler optimizations for parallelism and locality
- ③ Affine abstraction/Polyhedral framework (only the basics)
- ④ MLIR
- ⑤ Practice: Building compilers using MLIR
- ⑥ Practice: Building compilers and optimizers for AI frameworks (basic overview, pointers)