Introduction to Modern Compilers (part of E0255)

Uday Kumar Reddy B

udayb@iisc.ac.in

Dept of CSA
Indian Institute of Science



RESEARCH IN PROGRAMMING AND COMPILER TECHNOLOGIES

o Current:
e C, C++, Rust, Java, Python, MATLAB, R, ...



RESEARCH IN PROGRAMMING AND COMPILER TECHNOLOGIES

@ Current:
e C, C++, Rust, Java, Python, MATLAB, R, ...

@ What will the new and disruptive programming technologies of the 21st
century be?



RESEARCH IN PROGRAMMING AND COMPILER TECHNOLOGIES

© What do programmers want?
@ How are architectures evolving?

Multiple cores and many cores on a chip

GPUs, accelerators, and heterogeneous parallel architectures
Wider vector processing units

Deep memory hierarchies

Reduced precision



HIGH-PERFORMANCE COMPILATION: WHAT DO YOU WANT TO
PROGRAM?

@ Scientific and engineering simulations
e Eg: Solving partial differential equations numerically

Embedded vision (Eg: Autonomous/self-driving cars)

Smartphones — HPC in data centers and cloud drives a number of
smartphone technologies

Scientific and Engineering simulations
Data Analytics

Deep Learning

Generative Al, LLMs



QUESTIONS TO THINK ABOUT

@ What will the new programming technologies for the emerging domains
be?

e Current: C, C++, Rust with OpenMP, MPI, CUDA, OpenCL
o Future: New languages, compilers, libraries, and DSLs




QUESTIONS TO THINK ABOUT

e What will the new programming technologies for Al be?
e PyTorch is dominant today; JAX is another high-level one. OpenAl Triton is
mid-level.
@ Just scratches the surface




THE NEED FOR HIGH PERFORMANCE

@ More/Larger Data

o Instagram — 60 million photos / day
e YouTube — 100 hours of video uploaded every minute

@ Need for a fast/real-time response in some domains
@ More complex algorithms

@ Science/Engineering simulations/modeling: Time to solution



PROGRAMMING MODERN HARDWARE EFFECTIVELY

e Compute speed: Eg.: 16 multiply-adds per cycle (AVX-512 unit for {p32)
@ Synchronization (2 cores 0.25 ys, 8 cores 1.25 s, 2x8 cores 1.54 ps)
@ Memory bandwidth (10 GB/s per core, 500 GB/s per socket)



PROGRAMMING MODERN HARDWARE EFFECTIVELY

e Compute speed: Eg.: 16 multiply-adds per cycle (AVX-512 unit for {p32)
@ Synchronization (2 cores 0.25 ys, 8 cores 1.25 s, 2x8 cores 1.54 ps)
@ Memory bandwidth (10 GB/s per core, 500 GB/s per socket)

e High-Performance Programming and Compilation

e Exploiting locality (caches, registers)

e Exploit single core hardware well (vectorization, ...)

e Multi-core parallelism

e Reduce synchronization and communication as much as possible

@ Good scaling without good single thread performance is a great waste of
resources (power, equipment cost)



A CLASSIFICATION OF VARIOUS APPROACHES

@ Manual low-level (C, C++) with parallel programming models (OpenMP,
CUDA, MPI) with the best optimizing compilers



A CLASSIFICATION OF VARIOUS APPROACHES

@ Manual low-level (C, C++) with parallel programming models (OpenMP,
CUDA, MPI) with the best optimizing compilers

@ Library-based: C, C++, Python with libraries/packages: MKL, ScaLAPACK,
CuBLAS, CuDNN, Cutlass, CuB



A CLASSIFICATION OF VARIOUS APPROACHES

@ Manual low-level (C, C++) with parallel programming models (OpenMP,
CUDA, MPI) with the best optimizing compilers

@ Library-based: C, C++, Python with libraries/packages: MKL, ScaLAPACK,
CuBLAS, CuDNN, Cutlass, CuB

@ Mid-level: Triton, CuTile, Pallas

© Ultra-high level languages and models including embedded DSLs:
Tensorflow, PyTorch, JAX, R, MATLAB, Halide, Spiral



A CLASSIFICATION OF VARIOUS APPROACHES

@ Manual low-level (C, C++) with parallel programming models (OpenMP,
CUDA, MPI) with the best optimizing compilers

@ Library-based: C, C++, Python with libraries/packages: MKL, ScaLAPACK,
CuBLAS, CuDNN, Cutlass, CuB

@ Mid-level: Triton, CuTile, Pallas
© Ultra-high level languages and models including embedded DSLs:
Tensorflow, PyTorch, JAX, R, MATLAB, Halide, Spiral

@ General goal: Obtain productivity of the last class and the performance of the
first



EXAMPLE: UNSHARP MASK — AN IMAGE PROCESSING PIPELINE

(C) Bernie Saunders, CC BY-NC-ND 3.0




UNSHARP MASK: COMPUTATION

for (i =0; i <= 2; i++)
for (j =2; j <= (R+1); j++)

for (k = 0; (k <= (C + 3)); k++)
blurx[i][j-2]1[k] = img[i][]j-2]1[k]*0.0625f + img[i][j-1][k]*0.25f I
+ img[i][j]1[k]*0.375f + img[i][j+1]1[k]*0.25f + img[i][]j+2][k]*0.0625F; in
for (i = 0; (i <= 2); i++) l
for (j =2; (j <= (R+1)); j++)
for (k = 2; (k<= (C + 1)); ki+) blur,
blury[i][j]1[k-2] = blurx[i][j-2][k-2]%0.0625f + blurx[i][j-2][k-1]*0.25f
+ blurx[i][j-2]1[k]1*0.375F + blurx[i][j-2]1[k+11%0.25f + blurx[i][j-2][k+2]1%0.0625f;
for (i =0; (i <= 2); i++) blur,
for (j =2; (j <= (R+ 1)); j++)
for (k = 2; (k <= (C + 1)); k++) l
sharpen[il[j][k-2] = img[i][j]l[k 1 + weight) + blury[i][j-2]1[k-2 -weight);
pen[i][j]1[k-2] g[1][3] k] ( ght) y[i103-2]11k-2]*( ght) sharpen
for (i =0; i <= 2; i++)
for (j = 2; j <= R+ 1; j++) l
for (k = 2; k<= C+ 1; k++) {
_ct0 = img[i][j1LK]; masked
_ctl = sharpen[i][j-2][k-2];
= (std::abs((img[i]1[j]1[k] - blury[i][j-2][k-2])) < threshold)? _ct0: _ctl;

_ct2 =
mask[i][j-2]1[k-2] = _ct2;

A sequential version in C: 18.6 ms / frame
(using GCC with opts, quad-core Nehalem, 720p video)



UNSHARP MASK - A NAIVE OPENMP VERSION

for (i =0; i <= 2; i++)
#pragma omp parallel for
for (j =2; j <= (R+ 1); j++)
#pragma ivdep
for (k = 0; k <= C + 3; k++) I
blurx[i][j-2]1[k] = img[il[j-2][k]*0.0625f + img[i][j-1][k]*0.25f in
1031

+ img[1]1Tj1[K]*0.375F + img[i][j+1]1[K]*0.25F + img[i][j+2][K]*0.0625f;
for (i =0; i <= 2; i++) l
#pragma omp parallel for
for (j =2; j <=R+1; j++) blurx
#pragma ivdep
for (k = 2; k <= C + 1; k++)
blury[i1[j1[k-2] = blurx[i][j-2][k-2]1%0.0625f + blurx[i][j-2][k-1]1%0.25f
+ blurx[i][j-2]1[k]*0.375f + blurx[i][j-2]1[k+1]1%0.25f + blurx[i][j-2][k+2]%0.0625f;
for (i = 0; 1 <= 2; i++) blury
#pragma omp parallel for
for (j =2; j <= R+ 1; j++)
#pragma ivdep
for (k =2; k<=C+ 1

5 k++)
sharpen[i][j1[k-2] = img[i][j]1[k]*(1 + weight) + blury[il[j-2][k-2]*(-weight); sharpen
for (i =0; i <= 2; i++)
#pragma omp parallel for private(_ct0,_ctl,_ct2)
for (j =2; j <=R+ 1; j++)
#pragma ivdep

for (k = 2; k <= C + 1; k++) {
_ctd = img[i][j1[k]; mﬂSkEd
,ctl = sharpen[i][]j-2][k

(std: abs((lmg[l][]][k] - blury[i][j-2]1[k-2])) < threshold)? _ct@: _ctl;
mask[l][] 2][k-2] = _ct2;
}

20.2 ms / frame on 1 thread, 18.02 ms / frame on 4 threads



UNSHARP MASK - A BETTER OPENMP VERSION

#pragma omp parallel for
for (j =2; j <= (R+ 1); j++)
for (i = 0; i <= 2; i++)
#pragma ivdep
for (k = 0; (k
blurx[i]l[j-2
+ img[i][j]

<= (C +3)); k++) Jls
10Kkl = img[i][j-2]1[k]*0.0625f + img[i][j-1]1[k]*0.25f in
[k1%0.375f + img[i][j+1][k]*0.25f + img[i][j+2][k]*0.0625f;

#pragma omp parallel for l
for (j =2; (j <= (R+1)); j++) bl
for (i = 0; i <= 2; i++)
#pragma ivdep Ury
for (k = 2; (k <= (C + 1)); k++)
qury[l][ 1[k-2] = blurx[i][j-2]1[k-2]1%0.0625f + blurx[i][]j-2]1[k-1]1%0.25f
+ blurx[i][j-2]1[k]*0.375f + blurx[i][j-2]1[k+1]1%0.25f + blurx[i][j-2][k+2]*0.0625f;
#pragma omp parallel for blury
for (j =2; (j <= R+ 1)); j++)
for (i = 0; i <=2; i++)
#pragma ivdep
for (k = 2; (k <= (C + 1)); k++)
sharpen[i][j]1[k-2] = img[i][j]1[k]*(1 + weight) + blury[i][j-2][k-2]*(-weight); shtzrpen
#pragma omp parallel for private(_ct0,_ctl,_ct2)
for (j = 2; ] <= R + 1; j++)
for (1 =0; i <= 2; i++)
#pragma ivdep
for 2; k<= C+ 1; k++) {
ing[11 3] [K]; masked

sharpen[i][j-2][k

(std: abs((lmg[l][]][k] - blury[i][j-2]1[k-2])) < threshold)? _ct@: _ctl;
mask[l][] 2][k-2] = _ct2;

}

18.6 ms / frame on 1 thread, 15.03 ms / frame on 4 threads

|
o
&~
o=

o



OPTIMIZING UNSHARP MASK

@ Write with OpenCV library (with Python bindings)

@jit("float32[::]1(uint8[::]1,,int64)", cache = True, nogil = True)
def unsharp_cv(frame, lib_func):
frame_f = np.float32(frame) / 255.0
res = frame_f
kernelx = np.array([1, 4, 6, 4, 1], np.float32) / 16
kernely = np.array([[1], [4], [6], [4], [1]], np.float32) / 16
blury = sepFilter2D(frame_f, -1, kernelx, kernely)
sharpen = addWeighted(frame_f, (1 + weight), blury, (-weight), 0)
th, choose = threshold(absdiff(frame_f, blury), thresh, 1, THRESH_BINARY)
choose = choose.astype(bool)
np.copyto(res, sharpen, ’'same_kind’, choose)
return res

Performance: 35.9 ms / frame



OPTIMIZING UNSHARP MASK

@ Write with OpenCV library (with Python bindings)

@jit("float32[::]1(uint8[::]1,,int64)", cache = True, nogil = True)
def unsharp_cv(frame, lib_func):
frame_f = np.float32(frame) / 255.0
res = frame_f
kernelx = np.array([1, 4, 6, 4, 1], np.float32) / 16
kernely = np.array([[1], [4], [6], [4], [1]], np.float32) / 16
blury = sepFilter2D(frame_f, -1, kernelx, kernely)
sharpen = addWeighted(frame_f, (1 + weight), blury, (-weight), 0)
th, choose = threshold(absdiff(frame_f, blury), thresh, 1, THRESH_BINARY)
choose = choose.astype(bool)
np.copyto(res, sharpen, ’'same_kind’, choose)
return res

Performance: 35.9 ms / frame

© Write in a dynamic language like Python and use a JIT (Numba) — performance: 79 ms / frame



OPTIMIZING UNSHARP MASK

@ Write with OpenCV library (with Python bindings)

@jit("float32[::](uint8[::],,int64)", cache = True, nogil = True)
def unsharp_cv(frame, lib_func):
frame_f = np.float32(frame) / 255.0
res = frame_f
kernelx = np.array([1, 4, 6, 4, 1], np.float32) / 16
kernely = np.array([[1], [4], [6], [4], [1]], np.float32) / 16
blury = sepFilter2D(frame_f, -1, kernelx, kernely)
sharpen = addWeighted(frame_f, (1 + weight), blury, (-weight), 0)
th, choose = threshold(absdiff(frame_f, blury), thresh, 1, THRESH_BINARY)
choose = choose.astype(bool)
np.copyto(res, sharpen, ’'same_kind’, choose)
return res

Performance: 35.9 ms / frame
© Write in a dynamic language like Python and use a JIT (Numba) — performance: 79 ms / frame

@ A naive C version parallelized with OpenMP: 18.02 ms / frame



OPTIMIZING UNSHARP MASK

@ Write with OpenCV library (with Python bindings)

@jit("float32[::]1(uint8[::]1,,int64)", cache = True, nogil = True)
def unsharp_cv(frame, lib_func):
frame_f = np.float32(frame) / 255.0
res = frame_f
kernelx = np.array([1, 4, 6, 4, 1], np.float32) / 16
kernely = np.array([[1], [4], [6], [4], [1]], np.float32) / 16
blury = sepFilter2D(frame_f, -1, kernelx, kernely)
sharpen = addWeighted(frame_f, (1 + weight), blury, (-weight), 0)
th, choose = threshold(absdiff(frame_f, blury), thresh, 1, THRESH_BINARY)
choose = choose.astype(bool)
np.copyto(res, sharpen, ’'same_kind’, choose)
return res

Performance: 35.9 ms / frame
© Write in a dynamic language like Python and use a JIT (Numba) — performance: 79 ms / frame
@ A naive C version parallelized with OpenMP: 18.02 ms / frame

© A version with sophisticated optimizations (fusion + overlapped tiling): 8.97 ms / frame (in
this course, we will study how to get to this, and build compilers/code generators that can
achieve this automatically)

@ Video demo



UNSHARP MASK - A HIGHLY OPTIMIZED VERSION

Note: Code below is indicative and not meant for reading. Zoom into soft copy or browse
source code repo listed in references.

Iin

|

blur,

!

blur,

!

sharpen

!

masked

15.5 ms / frame on 1 threads, 8.97 ms / frame on 4 threads



DOMAIN-SPECIFIC LANGUAGES (DSL)

@ The example motivates a domain-specific language + compiler approach



DOMAIN-SPECIFIC LANGUAGES (DSL)

@ The example motivates a domain-specific language + compiler approach

e High-performance domain-specific language + compiler: productivity
similar to ultra high-level or high-level but performance similar to manual or
even better!



DOMAIN-SPECIFIC LANGUAGES (DSL)

DSLs

@ Exploit domain information to improve programmability, performance, and
portability

DSL compilers



DOMAIN-SPECIFIC LANGUAGES (DSL)

DSLs
@ Exploit domain information to improve programmability, performance, and
portability
@ Expose greater information to the compiler and programmer specifies less
@ abstract away many things from programmers (parallelism, memory)
DSL compilers
@ can “see” across routines — allow whole program optimization
@ generate optimized code for multiple targets

@ Programmers say what to execute and not how to execute



BIG PICTURE: ROLE OF COMPILERS

General-Purpose Domain-Specific
e Improve existing general-purpose @ Build new domain-specific
compilers (for C, C++, Python, ...) languages and compilers
@ Programmers say a LOT @ Programmers say WHAT they
e LLVM/Polly, GCC/Graphite execute and not HOW they execute

@ SPIRAL, Halide, Tensorflow,
Pytorch, ...



BIG PICTURE: ROLE OF COMPILERS

General-Purpose Domain-Specific

e Improve existing general-purpose @ Build new domain-specific
compilers (for C, C++, Python, ...) languages and compilers

@ Programmers say a LOT @ Programmers say WHAT they

e LLVM/Polly, GCC/Graphite execute and not HOW they execute

e Limited improvements, not e SPIRAL, Halide, Tensorflow,
everything is possible Pytorch, ...

e Broad impact @ Dramatic speedups, Automatic

parallelization

e Narrower impact and adoption



BIG PICTURE: ROLE OF COMPILERS

EVOLUTIONARY approach REVOLUTIONARY approach
e Improve existing general-purpose @ Build new domain-specific
compilers (for C, C++, Python, ...) languages and compilers
@ Programmers say a LOT @ Programmers say WHAT they
e LLVM/Polly, GCC/Graphite execute and not HOW they execute

@ SPIRAL, Halide, Tensorflow,

i g




BIG PICTURE: ROLE OF COMPILERS

EVOLUTIONARY approach REVOLUTIONARY approach
e Improve existing general-purpose @ Build new domain-specific
compilers (for C, C++, Python, ...) languages and compilers
@ Programmers say a LOT @ Programmers say WHAT they
e LLVM/Polly, GCC/Graphite execute and not HOW they execute

@ SPIRAL, Halide, Tensorflow,
¢ ! &A! PYtorCh

@ Both approaches share infrastructure
@ Important to pursue both




@ Compilers for Al



COMPILERS FOR Al

e Compilers are language translators: they translate programming languages
to instructions hardware can execute

@ One of the pillars of Computer Systems



COMPILERS - THE EARLY DAYS

| Motorola 68000 |

PL/8 Power




COMPILERS - THE EARLY DAYS

e M languages, N targets = M * N compilers! Not scalable!



COMPILERS EVOLUTION - M + N

€]

m/
| PTX/NVIDIA |

e With an common IR, we have M + N + 1 compilers!




WHAT DOES AN IR LOOK LIKE?

@ A representation convenient
to analyze and transform
Y Round_trippable fOI'm that de{ine void @foo(ptr nocapture %a) {
entry:
you can parse and print br label %for.body
for.body: ; preds = %for.body, %entry
o LOW'level IRs are %sindvars.iv = phi i64 [ 0, %entry 1, [ %indvars.iv.next, %for.body ]
. %arrayidx = getelementptr inbounds i32, ptr %a, 64 %indvars.iv
three'address COde-llke %0 = load 132, ptr %arrayidx, align 4
. %1 = add i32 %0, 2
@ IRs have used expressions sinc = add nsw i32 %0, 1
store 132 %inc, ptr %arrayidx, align 4
treeS, 3—address Code/ %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq 164 %indvars.iv.next, 64
graphs. br il %exitcond, label %for.end, label %for.body
. . . for.end: ; ds = %for.bod
@ Static Single Assignment: a et preds = wror-hody
}

property of IRs that makes
it convenient; most IRs now
use SSA



MODERN COMPILERS - LLVM IR-BASED

Clang AST x86
, /
/
Objective-C
opt
HIR/MIR
SIL

- x86-64
, -
K -
FI target desc.
LLVM IR LLVM Machlne IR
[Julia}~{Julia AST ”/

|}?)/( Torch IR, Triton |
[TensorFlow /JAX |- XLA HLO| @

higher-order languages

J
e LLVM: modular, reusable, open-source, but too low-level, not extensible for



COMPILERS FOR Al

Explosion of Al chips and
Al programming accelergtors
frameworks @3 %

N

L

: . Compiler infrastructure?

9
?

LE & o s &

@ Space in between is ruled by hand-written libraries. Not scalable.

@ The right tools weren’t available until recently.



PyTorch-

Triton

CUDA

High, mid, and low-level
abstractions

High: PyTorch, JAX, ...
Mid: OpenAl Triton, cuTile

Low: CUDA, C/C++,
CUTLASS, ...

All three approaches need /use
compilers in different ways
They also share/rest on the
same underlying infrastructure
Eg: Triton, MLIR, LLVM, PTX




HOW DO YOU PROGRAM Al HARDWARE?

@ High, mid, and low-level
abstractions

@ High: PyTorch, JAX, ...

@ Mid: OpenAl Triton, cuTile

@ Low: CUDA, C/C++,
CUTLASS, ...

@ All three approaches need /use
compilers in different ways

@ They also share/rest on the
same underlying infrastructure

@ Eg: Triton, MLIR, LLVM, PTX

PyTorch- Triton CUDA



PYTHON-BASED PROGRAMMING FRAMEWORKS: TODAY

class SelfAttentionLayer(nn.Module):
def __init__(self, feature_size):

o Where does performance ln super(SelfAttentionLayer, self).__init__()
self.feature_size = feature_size
Python-based frameworks , _
# Linear transformations for Q, K, V from the same source.

? self.key = nn.Linear(feature_size, feature_size)
come from‘ self.query nn.Linear(feature_size, feature_size)
self.value nn.Linear(feature_size, feature_size)

° Largely from hbrarles def forward(self, x, mask=None):

written in C, C++, CUDA, # Apply Unear {ronsTornations.

queries = self.query(x)
and even assembly values = self.value(x)
o Compilers exist: XLA’ # Scaled dot-product atten‘gion.
scores = torch.matmul(queries, keys.transpose(-2, -1))
TOI'ChIndUCtOT, TensorRT / torch.sqrt(torch.tensor(self.feature_size, dtype=torch.float32))
3 3 3 . # Apply mask (if provided).
° lelted n many Ways' if mask is not None:
”semi—compﬂers", scores = scores.masked_fill(mask == 0, -1e9)
1 # Apply softmax.
fragmented 1nfra, attention_weights = F.softmax(scores, dim=-1)
performance # Multiply weights with values.
° Stlll evolving output = torch.matmul(attention_weights, values)

return output, attention_weights



OPENING MULTI-LEVEL DOORS TO PROGRAMMING Al HARDWARE

@ High-level Python-based programming
frameworks (e.g. PyTorch, JAX),

@ Compiler support for (1) that could be
turned off/on (e.g. torch.compile),

© Mid/low-level programming support (e.g.,
CUDA, CUTLASS, CuTile, Triton)

© Low-level MLIR dialects that expose their
hardware intrinsics/virtual ISA on top of
which both (2) compilers and (3) low-level
frameworks rest,

© Ability to use inline virtual ISA.




COMPILER AUTO-PARALLELIZATION IS ALREADY HERE!

GPU Inference (float32)

w 200
o —— Torchinductor
3 150 AvFuser ;
E —— NNC
‘6 100 4 = PyTorch/XLA
5 —— ONNXRT
£ 504{— ™M J
S Hidet /
= 0
10x  9x  8x 7x 6x 5x 4x 3x 2x 1x  Ox
@ Recent PyTorch 2 ASPLOS Spesdup areater wran
paper GPU Inference (float16)

—— Torchinductor

PyTorch 2: Faster Machine

150 nvFuser
Learning Through Dynamic e o ﬂ?
. 50— ™M
Python Bytecode Transformation 2 =

10x  9x 8x 7x 6x 5x ax 3x 2x 1x 0;

Number of models
=
o
3

B

and Graph Compilation, Ansel Speedup grster than
et al. (Meta), ASPLOS 2024. . CPU Inference
e
s 100 — ?\m‘m
£

10x  9x 8 7x 6x 5x 4x 3x 2x 1x  Ox
Speedup greater than



HOW IS HARDWARE EVOLVING? (1/2)

From 2000s to now

Multiple cores (early 2000s)
Wider SIMD (early 2000s)
Many cores (late 2000s)
Heterogeneity (2000s/2010s)

Tensor/matmul cores (mid 2010s)

Low-precision compute instructions )
(late 2010s/2020s) LE]



HOW IS HARDWARE EVOLVING? (2/2)

Example: NVIDIA H100 chip
@ 80 GB of GPU DRAM
@ 3.35 TB/s of memory bandwidth (HBM3).
@ 990 TFLOPS for fp16 tensor operations, 1.98 PFLOPS for int8.
@ 50 MB of L2 cache.



HOW ARE PROGRAMMING FRAMEWORKS EVOLVING?

Al programming frameworks

TN
@ Programmer productivity r
@ Write less and do more .
@ Hardware usability O
@ Deliver performance
@ Deliver portability ¢

£
3



COMPILERS FOR Al

Explosion of Al chips and
Al programming accelergtors
frameworks ‘}“L 2
)

nr\

: . Compiler infrastructure?
?

LE & & /ey

@ MLIR infrastructure: open-sourced by Google in 2019



COMPILERS FOR Al

Explosion of Al chips and

Al programming acceleritors
frameworks g\} E
» 8
N * &
” ]
L]

@ MLIR infrastructure: open-sourced by Google in 2019



MLIR

MLIR

e ML in MLIR: Multi-level
@ Characteristics
e Loops and multi-dimensional arrays (tensors) had to be first class citizens
e Had to be extensible (types, operations, attributes)
e Had to enable building both general-purpose and domain-specific compilers
and even more.
e Had to be open-source with a permissive license



MULTI-DIMENSIONALITY EVERYWHERE: CNN CONVOLUTION

for (n =0; n < N; n++) // Samples in a batch.
for (o = 0; o < Oc; o++) // Output feature channels.
for (i = 0; i2 < Ic; i++) // Input feature channels.

for (y = 0; i3 < Y; i3++) // Layer height.
for (x = 0; 14 < X; i4++) // Layer width.

for (kh = 0; i5 < Kh; i5++) // Convolution kernel height.

for (kw = 0; 16 < Kw; i6++) // Convolution kernel width.

output[n, o, y, x] += input[n, i, y+kh, x+kw] * weights[o, i, kh, kw];




MLIR: MULTI-LEVEL INTERMEDIATE REPRESENTATION

1. Ops (general purpose to domain
cific) on tensor types / graph form

2. Loop-level / mid-level form

st
?
2 o
9 3 g
3 et R e e
2R 2 la 2 s for (i = 031 < N; i++)
LRSS SN for (j =03 j < N; j++)
LSS S e 59 s2
PR AN b B e
'S B¥ Sen
L S
b4 >

for (i =031 < N3 i++)
for (j =05 j <N; j++)
for (k = 03 k <N; ke+)

s1

spe-

3. Low-level form: closer to hardware

9patches = "tf.reshape”(%patches, %minus_one, %minor_dim_size)
: (tensor<?x?x? x 2 x 32>, index, index) —> tensor<? x ? x 32>
Y%emat_out = "tf.matmul"(%patches_flat, %patches_flat){transpose_a : true}
: (tensor<?x?x 32>, tensor<? x ? x {32>) —> tensor<? x ?x 32>
Y%vec_out = "tf.reduce_sun'(%patches_flat) {axis: 0} : (tensor<?x? x 32>) > tensor<? x (32>

affine.for %i=0to8 step 4 {
affine.for %j=0to8 step 4 {
affine.for %k =0to8step 4 |
affine.for %ii = #map0(%i) to #map1(%i) {
affine.for %jj = #map0(%) to #map1 (%) |
affine.for %kk = #map0(%k) to #mapl(%k) |
%5 = affine.load %arg0[%ii, %kk] : memref<8 x 8 x vector<64 x {32>>
%6 = affine.load %arg1[%kk, %jj] : memref<8 x 8 x vector<64 x {32>>
%7 = af fine.Load %arg2{%i, %jj] : memref<8 x 8 x vector<6d x (325>
%8 = arithmulf %5, %6 : vector<64xf32>
%9 = arith.addf %7, %8 : vector<64xf32>
affine.store %9, %arg2[%ii, %jj] : memref<8 x 8 x vector<64xf32>>

%v1 = memref.load %al%i2, %i3] : memref<256 x 64 x vector<16 x {32>>
%v2 = memref.load %b[%i2, %i3] : memref<256 x 64 x vector<16 x {32>>
%v3 = addf %v1, %v2 : vector<16 x (32>

menref.store %v3, %d[%i2, %i3] : memref<256 x 64 x vector<16 x {32>>




MODERN COMPILER TOPICS IN THIS COURSE

@ Foundations: SSA, Dominance, Basic concepts for control flow analysis and
data flow analysis

@ Compiler optimizations for parallelism and locality

© Affine abstraction/Polyhedral framework (only the basics)
Q@ MLIR

@ Practice: Building compilers using MLIR

@ Practice: Building compilers and optimizers for Al frameworks (basic
overview, pointers)



	Compilers for AI

