
MLIR

Uday Kumar Reddy B
udayb@iisc.ac.in

Dept of CSA
Indian Institute of Science

1/21



MLIR

Open-sourced by Google in Apr 2019
ML in MLIR: Multi-level
Ability to represent code at multiple levels in a unified way
First class abstractions for multi-dimensional arrays
(tensors), loop nests, affine maps/sets, and more

2/21



OUTLINE

MLIR Representation
Polyhedral Notions in MLIR
Analyses and Transformations

3/21



MLIR: MULTI-LEVEL INTERMEDIATE

REPRESENTATION

1. Ops on tensor types form
%patches = "tf.reshape"(%patches, %minus_one, %minor_dim_size)

: (tensor<? x ? x ? x ? x f32>, index, index) −> tensor<? x ? x f32>
%mat_out = "tf.matmul"(%patches_flat, %patches_flat){transpose_a : true}

: (tensor<? x ? x f32>, tensor<? x ? x f32>) −> tensor<? x ? x f32>
%vec_out = "tf.reduce_sum"(%patches_flat) {axis: 0} : (tensor<? x ? x f32>) −> tensor<? x f32>

2. Loop-level/mid-level form

for (i = 0; i < N; i++)

for (k = 0; k < N; k++)

for (i = 0; i < N; i++)

S1

S2

for (j = 0; j < N; j++)

S1

for (j = 0; j < N; j++)

S2

0 <= i <= N−1

0 <= j <= N−1

0 <= k <= N−1

i

j

k

#map0 = affine_map<(d0) −> (d0)>
#map1 = affine_map<(d0) −> (d0 + 4)>
affine.for %i = 0 to 8 step 4 {
affine.for %j = 0 to 8 step 4 {
affine.for %k = 0 to 8 step 4 {
affine.for %ii = #map0(%i) to #map1(%i) {
affine.for %jj = #map0(%j) to #map1(%j) {
affine.for %kk = #map0(%k) to #map1(%k) {

%5 = affine.load %lhs[%ii, %kk] : memref<8 x 8 x f32>
%6 = affine.load %rhs[%kk, %jj] : memref<8 x 8 x f32>
%7 = affine.load %out[%ii, %jj] : memref<8 x 8 x f32>
%8 = arith.mulf %5, %6 : f32
%9 = arith.addf %7, %8 : f32
affine.store %9, %out[%ii, %jj] : memref<8 x 8 x f32>

}
}

}
}

}
}

3. Low-level form: closer to hardware
%v1 = memref.load %a[%i2, %i3] : memref<256 x 64 x vector<16 x f32>>
%v2 = memref.load %b[%i2, %i3] : memref<256 x 64 x vector<16 x f32>>
%v3 = arith.addf %v1, %v2 : vector<16 x f32>
memref.store %v3, %d[%i2, %i3] : memref<256 x 64 x vector<16 x f32>>

4/21



MLIR DESIGN PRINCIPLES

1 Round-trippable textual format
2 Ability to represent code at multiple levels
3 Unified representation for all the levels

5/21



MLIR DESIGN PRINCIPLES

1 Round-trippable textual format
2 Ability to represent code at multiple levels
3 Unified representation for all the levels

5/21



MLIR DESIGN PRINCIPLES

1 Round-trippable textual format
2 Ability to represent code at multiple levels
3 Unified representation for all the levels

5/21



MLIR - BASIC CONCEPTS

SSA, typed, three address
Module/Function/Block/Operation
structure
Operations can hold a “region”,
which is a list of blocks

func.func @test(%arg: i32) {
%x = call @thing_to_call(%arg) : (i32) −> i32
cf.br ^bb1

^bb1:
%y = arith.addi %x, %x : i32
return %y : i32

}

6/21



SSA REPRESENTATION

Functional SSA representation
No ϕ nodes
Instead, blocks take arguments

func.func @condbr_simple() -> (i32) {
%cond = "foo"() : () -> i1
%a = "bar"() : () -> i32
%b = "bar"() : () -> i64
cf.cond_br %cond, ^bb1(%a : i32), ^bb2(%b : i64)

^bb1(%x : i32):
%w = "foo_bar"(%x) : (i32) -> i64
cf.br ^bb2(%w: i64)

^bb2(%y : i64):
%z = "abc"(%y) : (i64) -> i32
return %z : i32

}

7/21



MLIR OPERATIONS

Operations always have a name and source location info
Operations may have:

Arbitrary number of SSA results and operands
Attributes: guaranteed constant values
Block operands: e.g. for branch operations
Regions: discussed later
Custom printing/parsing - or use the more verbose generic
syntax
%size = tensor.dim %T, 1 : tensor<1024x? x f32>
// Dimension to extract is a guaranteed integer constant, an attribute .
%x = memref.alloc() : memref<1024x64xf32>
%y = affine.load %x[%a, %b] : memref<1024x64xf32>

8/21



OPERATIONS WITH REGIONS

An MLIR Region is a list of blocks
Operations in MLIR can have nested regions

%2 = xla.fusion (%0 : tensor<f32>,
%1 : tensor<f32>) : tensor<f32> {

^bb0(%a0 : tensor<f32>, %a1 : tensor<f32>):
%x0 = xla.add %a0, %a1 : tensor<f32>
%x1 = xla.relu %x0 : tensor<f32>
return %x1

}

func.func @loop_nest_unroll(%arg0: index) {
affine.for %arg1 = 0 to 100 step 2 {
affine.for %arg2 = 0 to #map1(%arg0) {

%0 = "foo"() : () −> i32
}

}
return

}

Can be used to represent:
functional control flow
fusion nodes
closures/lambdas
structured looping/conditional constructs (for, if , while)
Parallelism abstractions like OpenMP
Launch/dispatch kernel abstractions gpu.launch

9/21



DIALECTS IN MLIR

A collection of operations and types suitable for a specific
task
Typically correspond to a programming model, frontend,
or a backend
Example dialects: TensorFlow dialect, LLVM dialect,
Affine dialect, NVIDIA GPU dialect
You can have a mix of dialects

10/21



CURRENT DIALECTS IN MLIR

11/21



OUTLINE

MLIR Representation
Polyhedral Notions in MLIR
Analyses and Transformations

12/21



AFFINE EXPRESSIONS IN MLIR

Affine for functions is linear + constant
Addition of identifiers, multiplication with a constant,
floordiv, mod, ceildiv with respect to a positive constant

Examples of affine functions of i, j:
i + j, 2i − j, i + 1, 2i + 5,
i/128 + 1, i%8, (i + j)/8,
((d0 ∗ 9216 + d1 ∗ 128) mod 294912) floordiv 147456
Not affine: ij, i/j, j/N, i2 + j2, a[j]

13/21



AFFINE MAPS

An affine map maps zero or more identifiers to one or
more result affine expressions

#map1 = (d0) → ((d0 floordiv 4) mod 2)

#map2 = (d0) → (d0 − 4)

#map3 = (d0) → (d0 + 4)

#map4 = (d0, d1) → (d0 ∗ 16 − d1 + 15)

#map5 = (d0, d1, d2, d3) → (d2 − d0 ∗ 16, d3 − d1 ∗ 16)

Why affine maps? What can they express?
Loop IV mappings for nearly every useful loop
transformation, data layout transformations, placement
functions / processor mappings / distributions: block,
cyclic, block-cyclic, multi-dimensional array subscripts,
loop bound expressions, conditionals

14/21



WHERE ARE AFFINE MAPS USED IN MLIR?

1 IV remappings: to map old IVs
to new IVs

(i, j) Identity
(j, i) Interchange

(i, i + j) Skew j
(2i, j) Scale i by two

(i, j + 1) Shift j
(⌊ i

32⌋, ⌊
j

32⌋, i, j) Tile (rectangular)
. . .

2 Loop bounds
3 Memref access subscripts
4 As an attribute for any operation

#map = (d0) −> (2*d0 − 1)

affine.for %i = 0 to #map(%N) {
affine.for %j = 0 to 3 {

%v = affine.load %0[%i + %j] : memref<100xf32>
"op1"(%v) : (f32) −> ()

}
}
%w = "op"(%s, %t) {map: affine_map<(d0, d1) −> (d1, d0)>}

15/21



POLYHEDRAL STRUCTURES IN THE IR

1 Affine expressions
Eg: (d0 + 1) mod 2

2 Affine maps
Eg: (d0, d1) → (d1, d0/128, d0 mod 128)

3 Integer sets
Eg: {(d0, d1)[s1] : d0 ≥ 0, d0 ≤ s1, d1 == 512}

4 Affine apply operation (affine.apply)
%a = affine.apply (d0, d1) -> (d0 + d1) (%i, %j)

5 Affine ‘for‘ operation (affine.for)
6 Affine ‘if‘ operation (affine.if)

16/21



POLYHEDRAL STRUCTURES IN THE IR

1 Affine expressions
Eg: (d0 + 1) mod 2

2 Affine maps
Eg: (d0, d1) → (d1, d0/128, d0 mod 128)

3 Integer sets
Eg: {(d0, d1)[s1] : d0 ≥ 0, d0 ≤ s1, d1 == 512}

4 Affine apply operation (affine.apply)
%a = affine.apply (d0, d1) -> (d0 + d1) (%i, %j)

5 Affine ‘for‘ operation (affine.for)
6 Affine ‘if‘ operation (affine.if)

16/21



TYPES RELEVANT FOR DENSE MATRICES/TENSORS

1 tensor A value that is a multi-dimensional array of
elemental values

%d = "tf.Add"(%e, %f) : (tensor<?x42x?xf32>, tensor<?x42x?xf32>) −> tensor<?x42x?xf32>

2 memref A buffer in memory or a view on a buffer, has a
layout map, memory space qualifier, symbols bound to its
dynamic dimensions
%N = affine.apply (d0) −> (8 * (d0 ceildiv 8)) (%S)
%M = affine.apply (d0) −> (2 * d0) (%N)
#tmap = affine_map<(d0, d1) −> (d1 floordiv 32, d0 floordiv 128, d1 mod 32, d0 mod 128)>
#shift = affine_map<(d0, d1)[s0, s1] −> (d0 + s0, d1 + s1)>
%A = memref.alloc() : memref<1024x64xf32, #tmap, 0>
%B = memref.alloc(%M, %N)[%x, %y] : memref<?x?xf32, #tmap, 1>
%C = memref.alloc(%M, %M)[%x, %y] : memref<?x?xf32, #shift, 1>

17/21



INTEGER SETS

An integer set is primarily used for conditionals
It is also powerful as an attribute to specify constraints on
symbols (esp. shape symbols)

// An example two-dimensional integer set with two symbols.
#set = affine_set<(d0, d1)[s0, s1]

: d0 >= 0, -d0 + s0 - 1 >= 0, d1 >= 0, -d1 + s1 - 1 >= 0>

affine.if #set(%i, %j)[%M, %N] {
%v = affine.load %A[%i] : memref<256xf32>

}

18/21



OUTLINE

MLIR Representation
Polyhedral Notions in MLIR
Analyses and Transformations

19/21



ANALYSES AND TRANSFORMATIONS: WHAT’S

CURENTLY PRESENT

Several techniques are available:
GCD test

2i + 4j − 8k − 1 = 0 → No solution
GCD tightening:

16i ≥ 16j − 15, 16i ≤ 16j → i = j
Gaussian elimination

i = j − 1, 0 ≤ j ≤ i
Fourier-Motzkin elimination: eliminate a variable from a
system of linear inequalities

i ≤ j + 1, j = k, k ≤ 16, i ≥ 32

FlatAffineConstraints
Fast Presburger library (FPL)

20/21



GENERALIZED SLICING-BASED LOOP FUSION

A generalized slicing-based loop fusion approach
Can trade off redundant computation for locality /
memory minimization
Post fusion, forwarding of ‘affine.store‘ to affine.load,
elimination of intermediate arrays can be performed
Fixed size local buffers are created when possible to pass
intermediate data

affine.for %i = 0 to 64 {
%v = affine.load %in[%i] : memref<64xf32>
affine.store %v, %out[%i floordiv 4, %i mod 4]

: memref<16x4xf32>
}

affine.for %i = 0 to 16 {
affine.for %j = 0 to 4 {

%w = affine.load %out[%i, %j] : memref<16x4xf32>
"foo"(%w) : (f32) −> ()

}
}

affine.for %i = 0 to 16 {
affine.for %j = 0 to 4 {

%v = affine.load %in[4 * %i + %j] : memref<64xf32>
"foo"(%v) : (f32) −> ()

}
}

21/21


	MLIR Representation
	Polyhedral Notions in MLIR
	Analyses and Transformations

