MLIR

Uday Kumar Reddy B

udayb@iisc.ac.in

Dept of CSA
Indian Institute of Science

MLIR

=

MLIR

@ Open-sourced by Google in Apr 2019
e ML in MLIR: Multi-level
e Ability to represent code at multiple levels in a unified way

@ First class abstractions for multi-dimensional arrays
(tensors), loop nests, affine maps/sets, and more

@ MLIR Representation
@ Polyhedral Notions in MLIR
@ Analyses and Transformations

MLIR: MULTI-LEVEL INTERMEDIATE
REPRESENTATION

“patches = "tf.reshape”(%patches, %minus_one, %minor_dim_size)
: (tensor<?x?x? x ? x {32, index, index) —> tensor<? x ?x 132>
1. OpS on tensor types form %mat_out = "tf.natmul"(%patches_flat, %patches_flat){transpose_a : true}
: (tensor<?x?x 32>, tensor<? x? x f32>) —> tensor<? x ? x 32>
%vec_out = "tf.reduce_sum'(%patches_flat) faxis: 0) : (tensor<?x?x {32>) —> tensor<?x (32>

. #map0 = affine_map<(d0) -> (d0)>
2. Loop-level/mid-level form #mapl = affine_map<(d0) —> (d0 +4)>
S1

affine.for %i=0to8 step 4 {
affine.for %j=0to8 step 4 {
affine.for %k =0to8step 4 {
affine.for %ii = #map0(%i) to #map1(%i) |
affine.for %jj = #map0(%j) to #map1(%)) |
affine.for %kk = #map0(%k) to #map1(%k) (
%5 = affine.load %lhs[%ii, %kk] : memref< x 8 x 32>
9%6 = affine.load %rhs[%kk, %jj] : memref<8 x 8 x 32>
%7 = affine.load %out[%ii, %jj : memref<§ x 8 x 132>
%8 = arithmulf %5, %6
%9 = arith.addf %7, %8 :
affine.store %9, %out{%ii, %j] : memref<8 x 8 x (32>

%v1 =memref.load %a[%i2, %i3] : memref<256 x 64 x ve
%v2 =memref.load %b[%i2, %i3] : memref<256 x 64 x ve

3. Low-level form: closer to hardware 3= arithadds %, % veciorclox oo
memref.store %v3, %d[%i2, %i3] : memref<256 x 64 x vector<16 x {32>>

1<l x £32>>
or<l6 x £32>>

© Round-trippable textual format
@ Ability to represent code at multiple levels

@ Unified representation for all the levels

MLIR DESIGN PRINCIPLES

@ Round-trippable textual format
@ Ability to represent code at multiple levels

MLIR DESIGN PRINCIPLES

@ Round-trippable textual format
@ Ability to represent code at multiple levels
© Unified representation for all the levels

MLIR - BAsic CONCEPTS

@ SSA, typed, three address

@ Module/Function/Block/Operation
structure

@ Operations can hold a “region”,
which is a list of blocks

func.func @test(%arg: i32) {
%x = call @thing_to_call(%arg) : (i32) —>i32
cf.br Abbl
bb1:
%y = arith.addi %x, %x :i32
return %y :i32
}

Module

Operation
Operation

SSA REPRESENTATION

@ Functional SSA representation
@ No ¢ nodes

@ Instead, blocks take arguments

func.func @condbr_simple() -> (i32) {
%scond = "foo"() : () -> il
%a = "bar"() : () -> 132
%b = "bar"() : () -> i64

cf.cond_br %cond, "“bbl(%a : 132), "bb2(%b :

~bbl(%x : i32):
%w = "foo_bar"(%x) : (i32) -> i64
cf.br "bb2(%w: 164)

~bb2(%y : i64):
%z = "abc"(%y) : (i64) -> 132
return %z : 132

}

i64)

MLIR OPERATIONS

@ Operations always have a name and source location info
@ Operations may have:

Arbitrary number of SSA results and operands

Attributes: guaranteed constant values

Block operands: e.g. for branch operations

Regions: discussed later

Custom printing/parsing - or use the more verbose generic
syntax

Yosize = tensor.dim %T, 1 : tensor<1024x? x 32>

// Dimension to extract is a guaranteed integer constant, an attribute .
%x = memref.alloc() : memref<1024x64xf32>

%y = affine.load %x[%a, %b] : memref<1024x64xf32>

OPERATIONS WITH REGIONS

@ An MLIR Region is a list of blocks
@ Operations in MLIR can have nested regions

func.func @loop_nest_unroll(%arg0: index) {
affine.for %argl =0 to 100 step 2 {
affine.for %arg2 = 0 to #map1(%arg0) {
%0 ="foo"() : () —>i32
}
}
return

}

%2 = xla.fusion (%0 : tensor<f32>,
%1 : tensor<f32>): tensor<f32> {
Abb0(%a0 : tensor<f32>, %al : tensor<f32>):
%x0 = xla.add %a0, %al : tensor<f32>
%x1 = xla.relu %x0: tensor<f32>
return %x1

}

@ Can be used to represent:

e functional control flow
fusion nodes
closures/lambdas
structured looping/conditional constructs (for, if, while)
Parallelism abstractions like OpenMP
Launch/dispatch kernel abstractions gpu. launch

DIALECTS IN MLIR

@ A collection of operations and types suitable for a specific
task

@ Typically correspond to a programming model, frontend,
or a backend

e Example dialects: TensorFlow dialect, LLVM dialect,
Affine dialect, NVIDIA GPU dijalect

@ You can have a mix of dialects

CURRENT DIALECTS IN MLIR

Payload | Structure
(o) |
(—=——
Ce) S
e = Cwo
e ()
= f ‘ [Work In Progress
Output Utiity s
"""""""""""""" "
(s
Buffer =

| System

p—

v
(LM (core) "} (Avxst2 (xevecton)] (ROGm (ROCDL) | ((NwM)

:

@ MLIR Representation
@ Polyhedral Notions in MLIR
@ Analyses and Transformations

AFFINE EXPRESSIONS IN MLIR

e Affine for functions is linear + constant
e Addition of identifiers, multiplication with a constant,
floordiv, mod, ceildiv with respect to a positive constant

e Examples of affine functions of , j:

i+j,21—j,i+1,2i+5,

i/128 +1,1%8, (i+])/8,

((d0 %9216 + d1 x 128) mod 294912) floordiv 147456
e Not affine: ij, i/j, j/N, i + j*, alj]

AFFINE MAPS

@ An affine map maps zero or more identifiers to one or
more result affine expressions

#mapl
#map2
#map3
#map4
F##map5

(d0) — ((d0 floordiv 4) mod 2)

(d0) — (d0 — 4)

(d0) — (d0 + 4)

(d0,d1) — (d0 % 16 — d1 + 15)
(d0,d1,d2,d3) — (d2 — d0 * 16,d3 — d1 « 16)

e Why affine maps? What can they express?

e Loop IV mappings for nearly every useful loop
transformation, data layout transformations, placement
functions / processor mappings / distributions: block,
cyclic, block-cyclic, multi-dimensional array subscripts,
loop bound expressions, conditionals

WHERE ARE AFFINE MAPS USED IN MLIR?

@ IV remappings: to map old IVs

to new IVs
(1,7)
(G, 1)
(i,i+7)
(2i,))
@+ 1)
(EAREARY)

© Loop bounds

Identity
Interchange

. #map = (d0) —> (2+d0 - 1)
Skew j

: affine.for %i = 0 to #map(%N) {
Scale by two affine.for %j=0to3 {

Shlft] %v = affine.load %0[%i + %j] : memref<100xf32>
. "opl"(%v) : (£32) —>

Tile (rectangular) | o) (52 =0

}

%w = "op"(%s, %t) {map: affine_map<(d0, d1) —> (d1, d0)>}

© Memref access subscripts

© As an attribute for any operation

POLYHEDRAL STRUCTURES IN THE IR

Q@ Affine expressions
e Eg: (d0+ 1) mod 2
@ Affine maps
o Eg: (d0,d1) — (d1,d0/128,d0 mod 128)
@ Integer sets
o Eg: {(d0,d1)[s1] : d0 > 0,d0 < s1,d1 == 512}

POLYHEDRAL STRUCTURES IN THE IR

Q@ Affine expressions
e Eg: (d0+ 1) mod 2
@ Affine maps
e Eg: (d0,d1) — (d1,d0/128,d0 mod 128)
@ Integer sets
o Eg: {(d0,d1)[s1] : d0 > 0,d0 < s1,d1 == 512}
© Affine apply operation (affine.apply)

%a = affine.apply (dO, dl) -> (dO + d1) (%i, %j)

@ Affine ‘for’ operation (affine. for)
O Affine ‘if operation (affine.if)

TYPES RELEVANT FOR DENSE MATRICES/ TENSORS

@ fensor A value that is a multi-dimensional array of
elemental values

%d ="t f.Add"(%e, %f) : (tensor<?x42x?xf32>, tensor<?x42x?xf32>) —> tensor<?x42x?xf32>

@ memref A buffer in memory or a view on a buffer, has a
layout map, memory space qualifier, symbols bound to its
dynamic dimensions

%N = affine.apply (d0) —> (8 * (dO ceildiv 8)) (%S)

%M = affine.apply (d0) —> (2 * d0) (%N)

#tmap = affine_map<(d0, d1) —> (d1 floordiv 32, dO floordiv 128, d1 mod 32, d0 mod 128)>
#shift = affine_map<(d0, d1)[s0, s1] —> (d0 +s0, d1 +s1)>

%A =memref.alloc() : memref<1024x64xf32, #tmap, 0>

%B = memref.alloc(%M, %N)[%x, %y] : memref<?x?xf32, #tmap, 1>

%C = memref.alloc(%M, %M)[%x, %y] : memref<?x?x{32, #shift, 1>

INTEGER SETS

@ An integer set is primarily used for conditionals

e Itis also powerful as an attribute to specify constraints on
symbols (esp. shape symbols)

// An example two-dimensional integer set with two symbols.
#set = affine_set<(dO, dl1)[s0O, sl]

1 d0 >=0, -d0 +s0 - 1>=0, dl >= 0, -dl + sl - 1 >= 0>

affine.if #set(%i, %j)[%M, %N] {
%v = affine.load %A[%i] : memref<256xf32>

}

@ MLIR Representation
@ Polyhedral Notions in MLIR
@ Analyses and Transformations

ANALYSES AND TRANSFORMATIONS: WHAT’S
CURENTLY PRESENT

@ Several techniques are available:

o GCD test
2i+4j—-8—-1=0 — No solution
e GCD tightening:
16i > 16j — 15, 16i < 16j —1i=j
e Gaussian elimination
i=j—1, 0<j<i
e Fourier-Motzkin elimination: eliminate a variable from a
system of linear inequalities
i<j+1, j=k k<16, i>32

o FlatAffineConstraints
@ Fast Presburger library (FPL)

GENERALIZED SLICING-BASED LOOP FUSION

@ A generalized slicing-based loop fusion approach

@ Can trade off redundant computation for locality /

memory minimization

@ Post fusion, forwarding of ‘affine.store” to affine.load,
elimination of intermediate arrays can be performed

@ Fixed size local buffers are created when possible to pass

intermediate data

affine.for %i=0to 64 {
%v = affine.load %in[%i] : memref<64xf32>
affine.store %v, %out[%i floordiv 4, %i mod 4]
: memref<16x4xf32>
}

affine.for %i=0to 16 {
affine.for %j=0to4 {
%w = affine.load %out[%i, %j] : memref<16x4xf32>
"f00"(%w) : (£32) —> ()

affine.for %i=0to 16 {
affine.for %j=0to4 {
%v = affine.load %in[4 * %i + %j] : memref<64xf32>
"f00"(%v) : (f32) —> ()

	MLIR Representation
	Polyhedral Notions in MLIR
	Analyses and Transformations

