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ITERATION SPACES AND DEPENDENCES

for (t = 0; t < T; t++)
for (i = 1; i < N+1; i++)

A[t+1][i] = f(A[t][i+1], A[t][i], A[t][i-1]);

1 Iteration Domains

Every statement has a domain or an index set – instances
that have to be executed
Each instance is a vector (of loop index values from
outermost to innermost)
DS = {[t, i] | 0 ≤ t ≤ T − 1, 1 ≤ i ≤ N}

2 Dependences

A dependence is a relation between domain instances that
are in conflict (more on next slide)
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LEXICOGRAPHIC ORDERING

Lexicographic ordering: ≻, ≺, x⃗ ≻ y⃗, ≻ 0⃗
Transformations as a way to provide multi-dimensional
timestamps
Code generation: Scanning points in the transformed
space in lexicographically increasing order
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DOMAINS, DEPENDENCES, AND TRANSFORMATIONS

for (i=1; i<=N-1; i++)
for (j=1; j<=N-1; j++)
A[i][j] = f(A[i-1][j], A[i][j-1]);

i

j

N-1

N-1

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

3

Figure: Original space (i, j)

Domain: {[i, j] | 1 ≤ i, j ≤ N − 1}
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Figure: Original space (i, j)

Dependences:
1 {[i, j] → [i + 1, j] | 1 ≤ i ≤ N − 2, 0 ≤ j ≤ N − 1} — (1,0)
2 {[i, j] → [i, j + 1] | 1 ≤ i ≤ N − 1, 0 ≤ j ≤ N − 2} — (0,1)
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Figure: Transformed space (i + j, j)

Transformation: T(i, j) = (i + j, j)
Dependences: (1,0) and (0,1) now become (1,0) and (1,1) resp.
Inner loop is now parallel

5/45



DOMAINS, DEPENDENCES, AND TRANSFORMATIONS

for (i=1; i<=N-1; i++)
for (j=1; j<=N-1; j++)
A[i][j] = f(A[i-1][j], A[i][j-1]);

i

j

N-1

N-1

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

3

Figure: Original space (i, j)

i + j

j

2N-2

N-1

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3 4 5 6 7 8

1

2

3

Figure: Transformed space (i + j, j)

Transformation: T(i, j) = (i + j, j)
Dependences: (1,0) and (0,1) now become (1,0) and (1,1) resp.
Inner loop is now parallel

5/45



DEPENDENCES: ANOTHER EXAMPLE

for (t = 0; t < T; t++)
for (i = 1; i < N+1; i++)
A[i] = f(A[i+1], A[i], A[i-1]);

Compute the dependences
Transitivity in dependences?
Remove transitively covered dependences.
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DEPENDENCES: YET ANOTHER EXAMPLE

for (i = 0; i < N; i++)
for (j = 1; j < i; j++)
A[j] = A[j] - A[j]/A[i];

Compute the dependences.

7/45



DEPENDENCE REPRESENTATIONS

1 Distance vectors: constant dependences
2 Dependence levels: depth at which a dependence is carried
3 Direction vectors: direction of the dependence along each

dimension
4 Dependence as presburger formulae, relations on integer

sets with affine constraints and existential quantifiers
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DEPENDENCE TESTING

GCD test, GCD tightening of constraints
Guassian elimination, Fourier-Motzkin elimination
(super-exponential) complexity
Omega test
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CHARACTERIZING REUSE

Reuse through multi-dimensional array accesses
1 Self reuse
2 Group reuse

In space or in time?
1 Spatial reuse (self or group)
2 Temporal reuse (self or group)

Under what conditions does an access exhibit spatial or
temporal reuse along a specific outer loop?

This topic is well-covered in the Dragon textbook.

Degree of temporal reuse: Dimensionality of the iteration
space minus rank of the access function
Eg: for (i, j, k), access A[i + j][j][j] has an access function of
rank two in an iteration space of dimensionality three →
one degree of temporary reuse.

11/45



REPRESENTATION OF ARRAY ACCESSES

1 Linear Algebraic representation of “regular” accesses
2 Affine access functions can be analyzed by the compiler

easily for reuse, dependences, optimization, and
parallelization

3 Refer to the definition of affine functions earlier
4 Handling compositions of mod and floordiv functions in

accesses requires additional techniques to determine
spatial and temporal reuse
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LOOP NESTS: SOME DEFINITIONS

Perfectly nested loop nest: A sequence of successively
nested loops (from outermost to innermost) where every
loop other than the innermost one has a single loop as the
only statement in its body.
Imperfectly nested: not perfectly nests.

// Perfectly nested.
for (t = 0; t < T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
S(t, i, j);

// (t, i, j) is imperfectly nested, but
// (t, i) is perfectly nested.
for (t = 0; t < T; t++) {
for (i = 1; i < N+1; i++) {
S1(t, i);
for (j = 1; j < N+1; j++)
S2(t, i, j);

}
}
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AFFINE TRANSFORMATIONS

Examples of affine functions of i, j: i + j, i − j, i + 1, 2i + 5
Not affine: ij, i2, i2 + j2, a[j]
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Figure: Iteration space

// O(N) synchronization if j is parallelized.
for (i = 0; i < N; i++)
for (j = 0; j < M; j++)

A[i+1][j+1] = f(A[i][j]);

t1 = i − j1 2 3−3 −2 −1 . . .. . . 0 N − 1−M + 1

t2 = j

0
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3

...
M − 1

Figure: Transformed space

// Synchronization-free.
#pragma omp parallel for private(t2)
for (t1=-M+1; t1<=N-1; t1++)
for (t2 = max(0,-t1); t2 <= min(M-1,N-1-t1); t2++)
A[t1+t2+1][t2+1] = f(A[t1+t2][t2]);

Transformation: (i, j) → (i − j, j)
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AFFINE TRANSFORMATIONS
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t1 = i − j1 2 3−3 −2 −1 . . .. . . 0 N − 1−M + 1

t2 = j
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Figure: Transformed space

Affine transformations are attractive because:
Preserve collinearity of points and ratio of distances
between points
Code generation with affine transformations has thus been
studied well (CLooG, ISL, OMEGA+)
Model a very rich class of loop re-orderings
Useful for several domains like dense linear algebra, stencil
computations, image processing pipelines, deep learning
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FINDING GOOD AFFINE TRANSFORMATIONS

(i, j) Identity
(j, i) Interchange

(i + j, j) Skew i (by a factor of one w.r.t j)
(i − j,−j) Reverse j and skew i
(i, 2i + j) Skew j (by a factor of two w.r.t i)
(2i, j) Scale i by a factor of two

(i, j + 1) Shift j
(i + j, i − j) More complex

(i/32, j/32, i, j) Tile
. . .

One-to-one functions
Can be expressed using matrices:

T(i, j) = (i + j, j) =
[

1 1
0 1

](
i
j

)
.

Unimodular and non-unimodular transformations
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DEPENDENCES

Dependences are determined pairwise between conflicting
accesses
for (t = 0; t < T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],

A[t%2][i][j+1], A[t%2][i][j-1]);

Dependence notations
Distance vectors: (1,-1,0), (1,0,0), (1,1,0), (1,0,-1), (1,0,1)
Direction vectors
Dependence relations as integer sets with affine constraints
and existential quantifiers or Presburger formulae —
powerful

Consider the dependence from the write to the third read:
A[(t + 1)%2][i][j] → A[t′%2][i′ − 1][j′]
Dependence relation: {[t, i, j] → [t′, i′, j′] | t′ = t + 1, i′ =
i + 1, j′ = j, 0 ≤ t ≤ T − 1, 0 ≤ i ≤ N − 1, 0 ≤ j ≤ N}
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PRESERVING DEPENDENCES

for (t = 0; t < T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],

A[t%2][i][j+1], A[t%2][i][j-1]);

For affine loop nests, these dependences can be analyzed
and represented precisely
Next step: Transform while preserving dependences

Find execution reorderings that preserve dependences and
improve performance
Execution reordering as a function: T(⃗i)
For all dependence relation instances (⃗s → t⃗),
T(⃗t)− T(⃗s) ≻ 0⃗,
i.e., the source should precede the target even in the
transformed space

What is the structure of T?
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VALID TRANSFORMATIONS

for (t = 0; t < T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],

A[t%2][i][j+1], A[t%2][i][j-1]);

Dependences: (1, 0, 0), (1, 0, 1), (1, 0,−1), (1, 1, 0), (1,-1,0)

Validity: T(⃗t)− T(⃗s) ≻ 0⃗, i.e., T(⃗t − s⃗) ≻ 0⃗
Examples of invalid transformations

T(t, i, j) = (i, j, t)
Similarly, (i, t, j), (j, i, t), (t + i, i, j), (t + i + j, i, j) are all
invalid transformations

Valid transformations
(t, j, i), (t, t + i, t + j), (t, t + i, t + i + j)
However, only some of the infinitely many valid ones are
interesting
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GENERATING LOOPS AFTER TRANSFORMATION

Fourier-Motzkin elimination can be used to generate code
Successively eliminate old loop variables, and then new
loop variables from innermost to outermost, generating
bounds for the loop being eliminated at each step.
Replace old loop IVs with new ones in the loop body

More powerful techniques exist to generate more efficient
code (fewer/no redundancy in loop bound checks,
conditional guards)
Work out for this example transformation: (i, j) → (i + j, j).
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PARALLELISM AND DEPENDENCE CARRYING

Carrying or satisfying a dependence
Loop-carried dependence
A loop is parallel if does not carry any dependences.
For each dependence, determine the depth at which it is
carried
For constant distance vectors, the depth of the first
non-zero dependence component is the depth at which the
dependence is satisfied
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SYNCHRONIZATION-FREE OR

COMMUNICATION-FREE PARALLELISM

Number of degrees of synchronization-free parallelim
m: Dimensionality of the iteration space
D: Dependence matrix – columns are distance vectors
m - rank(D) degrees of synchronization-free parallelism
For any perfect loop nest that has only constant
dependences, we can always obtain at least m − 1 degrees
of parallelism.
How do you determine or maximize synchronization-free
parallelism? Find T (transformation matrix) that satisfies
certain properties.

Find t⃗ ̸= 0⃗ such that t⃗.d⃗i = 0, ∀d⃗i (dependence distance
vector).
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WAVEFRONT PARALLELISM

Synchronization required after execution of a parallel loop
A single outer sequential loop with N iterations containing
all inner parallel loops will lead to O(N) synchronization

Refer illustration earlier in this chapter: (i + j, j) mapping
for an example
Connection to DoAcross parallelism, as opposed to DoAll
parallelism?
It’s possible to parallelize using barrier-style
synchronization or point-to-point synchronization
(between specific pairs of processors)
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TILING (BLOCKING)

Partition and execute iteration space in blocks
A tile is executed atomically
Benefits: exploits cache locality & improves parallelization in the presence
of synchronization
Allows reuse in multiple directions
Reduces frequency of synchronization for parallelization:
synchronization after you execute tiles (as opposed to points) in parallel
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(i, j) → (i/50, j/50, i, j); (i, j) → (i/50 + j/50, j/50, i, j)
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VALIDITY OF TILING (BLOCKING)

Validity of tiling
There should be no cycle between the
tiles
Sufficient condition: All dependence
components should be non-negative
along dimensions that are being tiled
Dependences: (1,0), (1,1), (1,-1)

for (i=1; i<T; i++)
for (j=1; j<N-1; j++)
A[(i+1)%2][j] = f(A[i%2][j-1],

A[i%2][j], A[i%2][j+1]);

Figure: Iteration space

Figure: Invalid tiling Figure: Valid tiling
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TILING (BLOCKING)

Affine transformations can enable tiling
First skew: T(i, j) = (i, i + j)

Then, apply (rectangular) tiling:
T(i, j) = (i/64, (i + j)/64, i, i + j)

i and i + j are also called tiling hyperplanes
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Figure: Original space (i, j)
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Figure: Transformed space (i, i + j)
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BACK TO 3-D EXAMPLE

for (t = 0; t < T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],

A[t%2][i][j+1], A[t%2][i][j-1]);

What is a good transformation here to improve parallelism
and locality?
Demo

Skewing: (t, t + i, t + j)
Tiling: (t/64, (t + i)/64, (t + j)/1000, t, t + i, t + j)
Tile wavefront:
(t/64 + (t + i)/64, (t + i)/64, (t + j)/1000, t, t + i, t + j)
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OTHER TRANSFORMATIONS AND OPTIMIZATIONS

Loop Fusion
Loop Distribution
Vectorization
Explicit copying (Packing)
Unroll-and-Jam, Register Tiling
Complementary/enabling transformations for Parallelism

Privatization, Scalar expansion, Array Expansion
Trade-off between parallelism and memory usage

Reductions - parallelization and vectorization

30/45



LOOP FUSION: VALIDITY

A fine (or finer) grained interleaving of the execution of
multiple loop nests
Validity: fusion is valid if, for every loop being fused, there
are no dependences from the first nest body to the second
nest body that have a negative component on the loop
being fused while not being carried by any outer loops
Data Dependence Graph (DDG) needed to model
“inter-statement” dependences to analyze the above
conditions

Statements (IR operations or groups of IR operations) are
nodes of this graph
Each edge corresponds to a dependence from the source
node to the target node
Directed graph, can have multiple edges between nodes
and self edges.
Each edge has information on the source and target
memory accesses involved in the dependence and
additional information.

31/45



FUSION: EXAMPLE

// Original code.
// Produces B[i] using another array A.
for (i = 0; i < N - 1; i++)
B[i] = A[i] + A[i + 1];

// Consumes B[i] to create C[i].
for (i = 0; i < N - 1; i++)
C[i] = B[i];

// Fused code.
for (i = 0; i < N - 1; i++) {
B[i] = A[i] + A[i + 1];
C[i] = B[i];

}

// Fusion not valid without shifting the second nest forward by one.
for (i = 0; i < N; i++)
B[i] = A[i];

// Consumes B[i] to create C[i].
for (i = 0; i < N - 1; i++)
C[i] = B[i] + B[i + 1];

Fusion can be enabled other transformations: shifting,
permutation/interchange
Fusion can be partial as well, i.e., not fusing all loops
For partial fusion, consider dependence components up
until the loops being fused.
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FUSION: OTHER EXAMPLES

// Original code.
// Produces B using another array A.
for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
B[i][j] = A[i][j];

// Consumes B to create C. Fusion is valid.
// Dependence carried on the fused ‘i‘ loop.
for (i = 0; i < N; i++)
for (j = 0; j < N - 1; j++)
C[i][j] = B[i][j] + B[i - 1][j + 1];

// Original code.
// Produces B using another array A.
for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
B[i][j] = A[i][j];

// Consumes B to create C.
for (i = 1; i < N; i++)
for (j = 0; j < N - 1; j++)
C[i - 1][j] = B[i][j] + B[i - 1][j];
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LOOP FUSION AND DISTRIBUTION: COSTS/BENEFITS

Benefits
1 Improves cache locality: producer-consumer reuse, input

reuse
2 Improves register reuse
3 Eliminates intermediate arrays and reduces memory

consumption
4 Reduces code size, less control overhead

Disadvantages
1 Reduces effective cache capacity available for each of

components fused: cache capacity misses
2 Increases the risk of conflict misses
3 Can lead to loss of parallelism, loss of tilability, or loss of

vectorizability
4 Increases hardware prefetch stream utilization; can lead to

lower prefetching performance
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LOOP DISTRIBUTION

Loop distribution is the inverse of fusion
Two operations/statements part of the same strongly
connected component of the data dependence graph can’t
be distributed
Distribution at the inner level or partial distribution:
consider only a part of the DDG, discarding dependences
carried on outer loops that aren’t being considered for
distribution.
Maximal distribution: distribute out all strongly
connnected components of a loop nest.
Disadvantages of fusion are the benefits of distribution
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VECTORIZATION

A fine-grained parallelization: single instruction on
multiple data (SIMD)
Vectorization, SIMDization used synonymously today
An efficient form of parallelization with minimal
additional hardware resources
Reduction in the number of instructions executed
The instructions that form a vector can come from a loop
body (“superword-level parallelism”) or from a loop
(“loop vectorization”)
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LOOP VECTORIZATION: EXAMPLES

// Vectorizable loop.
for (i = 0; i < N; i++)
C[i] = A[i] + B[i];

// Non-vectorizable loop.
for (i = 2; i < N; i++)
A[i] = A[i - 1] + A[i - 2];

// A loop doesn’t have to be parallel to be vectorizable.
// Loop i is vectorizable despite not being parallel and despite
// carrying a short loop dependence. No dependence cycle.
for (i = 0; i < N; i++) {
C[i + 1] = A[i] * B[i];
D[i] = C[i] + X[i];

}
// Vectorizing a loop body like this can also be viewed as tiling by vector
// width, distributing the intra-tile loops, and vectorizing them.
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LOOP VECTORIZATION: VALIDITY

A loop can be vectorized only if there is no dependence
cycle betweeen the instructions that spans less than the
“vector width” iterations.
Contiguity: Data being loaded for a vector may need to be
contiguous in memory; depends on hardware
Alignment: data may have to be aligned depending on the
hardware – modern general-purpose processors typically
don’t have an alignment requirement
Performance of aligned vs unaligned memory operations
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VECTORIZATION: EXAMPLE

// Original code.
affine.for %i = 0 to 4096 {
affine.for %j = 0 to 4096 {
affine.for %k = 0 to 4096 {
%lhs = affine.load %A[%i, %k] : memref<4096x4096xf32>
%rhs = affine.load %B[%k, %j] : memref<4096x4096xf32>
%in = affine.load %C[%i, %j] : memref<4096x4096xf32>
%product = arith.mulf %lhs, %rhs : f32
%acc = arith.addf %in, %product : f32
affine.store %acc, %C[%i, %j] : memref<4096x4096xf32>

}
}

}

// Interchanged %j to innermost and vectorized 8-way along the %j loop.
affine.for %i = 0 to 4096 {
affine.for %k = 0 to 4096 {
affine.for %j = 0 to 4096 step 8 {
%lhs = affine.load %A[%i, %k] : memref<4096x4096xf32>
%v_lhs = vector.splat %lhs : vector<8xf32>
%v_rhs = affine.vector_load %B[%k, %j] : memref<4096x4096xf32>
%product = arith.mulf %v_lhs, %v_rhs : vector<8xf32>
%in = affine.vector_load %C[%i, %j] : memref<4096x4096xf32>
%acc = arith.addf %in, %product : vector<8xf32>
affine.vector_store %acc, %C[%i, %j] : memref<4096x4096xf32>

}
}

}
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EXPLICIT COPYING OR PACKING

Typically performed in conjunction with tiling
Pack data being accessed by a ‘tile’ into a contiguous
buffer that fits in cache/fast memory
‘Compute’ tile reads from packed input buffers and writes
out to a packed buffer; unpack output buffer.
Benefits

1 Eliminates conflicts misses and thus improves cache
locality

2 Reduces TLB misses
3 Improves prefetching performance (fewer hardware

prefetch streams used)

Packing involves overhead (copy-in and copy-out)
Reference: see packing scheme for high-performance
matrix-matrix multiplication in this illustration:
Analytical Modeling is Enough for High Performance
BLIS, Low et al., ACM TOMS 2016.
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UNROLL-AND-JAM OR REGISTER TILING

Improves register reuse
Multi-dimensional unroll-and-jam (multiple loops) can be
performed to simultaneously exploit register reuse along
multiple dimensions
Can be thought of as tiling for register locality except that
the tiles are small (variables being reused to fit in registers
ideally) and the tile is fully unrolled.
Improves the compute to load/store operation ratio –
extremely important for high-performance on modern
architectures
Sufficient: if it is valid to make a loop the innermost loop,
it is valid to unroll-and-jam it.
More precise: unroll-and-jam is valid iff stripminng the
loop by the unroll-and-jam factor and bringing the
intra-tile loop to the innermost position is valid
Multi-dimensional unroll-and-jam (multiple loops)

41/45



UNROLL-AND-JAM OR REGISTER TILING

(CONTINUED)

For a matrix-matrix multiplication in the canonical ijk
form, work out the improvement in compute to load/store
ratio when unroll-and-jamming i and j loops with factors
Ui and Uj respectively.
Assume a register budget of 16 registers in one case and 32
registers in another.
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REDUCTIONS

Reductions can be parallelized
Reductions can be vectorized
s = 0;
for (i = 0; i < N; i++)
s += A[i];
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A COMPOSITION OF TRANSFORMATIONS

for (i = 1 i < N; i++)
// S1.
B[i] = A[i];

for (i = 1; i < N; i++)
// S2.
C[i - 1] = B[i] + B[i - 1]

Original ordering: TS1(i) = (0, i), TS2(i) = (1, i)
Fused + Tiled + Innermost loop distribution

Produce a chunk of A and consume it before a new chunk is
produced
Transformation: TS1(i) = (i/32, 0, i) , TS2(i) = (i/32, 1, i).
for (t1=0;t1<=floord(N-1,32);t1++) {
for (t3=max(1,32*t1;t3<=min(N-1,32*t1+31);t3++)
B[t3] = A[t3];

for (t3=max(1,32*t1);t3<=min(N-1,32*t1+31);t3++)
C[t3 - 1] = B[t3] + B[t3 - 1];

}

Provides cache locality while also providing parallelism
and vectorization.
Either locality or parallelism/vectorizability would have
otherwise been lost with only fusion or only parallelizing
without any fusion.
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ALGORITHMS TO FIND TRANSFORMATIONS

The history
A data locality optimizing algorithm, Wolf and Lam, PLDI
1991: Improve locality through unimodular
transformations

Characterize self-spatial, self-temporal, and group reuse
Find unimodular transformations (permutation, reversal,
skewing) to transform to permutable loop nests with reuse,
and subsequently tile them

Several advances on polyhedral transformation algorithms
through 1990s and 2000s: Feautrier [1991–1992], Lim and
Lam (Affine Partitioning) [1997–2001], Pluto [2008–2015]
The Present

Polyhedral framework provides a powerful mathematical
abstraction (away from the syntax)
A number of new techniques, open-source libraries and
tools have been developed and are actively maintained
Affine abstractions and infrastructure in MLIR
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