Mid-level Compiler Optimizations and
Transformations

Uday Kumar Reddy Bondhugula

udayb@iisc.ac.in

Dept of CSA
Indian Institute of Science

@ Data Dependences, Transformations, Parallelization
@ Locality

o Affine Transformations

@ Parallelism

@ Tiling, Fusion, Vectorization

@ Other Complementary Transformations

ITERATION SPACES AND DEPENDENCES

for (t =0; t <T; t++)
for (i = 1; i < N+1; i++)
A[t+1][i] = f(A[t][i+1], A[tI[i], A[t][i-1]);

@ Iteration Domains

e Every statement has a domain or an index set — instances
that have to be executed

e Each instance is a vector (of loop index values from
outermost to innermost)
Ds={[t,i]|0<t<T-1,1<i<N}

© Dependences

e A dependence is a relation between domain instances that
are in conflict (more on next slide)

LEXICOGRAPHIC ORDERING

@ Lexicographic ordering: -, <, ¥ = 1, - 0
e Transformations as a way to provide multi-dimensional
timestamps

@ Code generation: Scanning points in the transformed
space in lexicographically increasing order

DOMAINS, DEPENDENCES, AND TRANSFORMATIONS

for (i=1; i<=N-1; i++)
for (j=1; j<=N-1; j++)
A[i1[31 = F(A[L-11031, A[i1[j-11);

J
Vil e e e e e
o o o o o
3 o @ 0 0 O
2f e e ee e
1 ® @ 0 0 @
0 1 2 3 - N-1 i

Figure: Original space (i,])

@ Domain: {[i,j] | 1<i,j<N-1}

DOMAINS, DEPENDENCES, AND TRANSFORMATIONS

for (i=1; i<=N-1; i++)
for (j=1; j<=N-1; j++)
A[il[j] = f(A[i-11[31, A[il[j-11);

]

Figure: Original space (i,)

@ Dependences:
Q {ij]l = +1j1[1
@ {[ij—1[j+1][1

-2,0<j<N-1}—(1,0)
-1,0<j<N-2}—(0,1)

ZZ

DOMAINS, DEPENDENCES, AND TRANSFORMATIONS

for (i=1; i<=N-1; i++)
for (j=1; j<=N-1; j++)
A[il[j] = f(A[i-11[31, A[il[j-11);

N-1 °
. A
: o—
3
2 N
I
1 ®
0 1 2 3 e N-1 i

Figure: Original space (i,)

@ Dependences:
Q {ij]l = +1j1[1
@ {[ij—1[j+1][1

-2,0<j<N-1}—(1,0)
-1,0<j<N-2}—(0,1)

ZZ

DOMAINS, DEPENDENCES, AND TRANSFORMATIONS

for (i=1; i<=N-1; i++)
for (j=1; j<=N-1; j++)
A[i1[j1 = F(A[L-110j]1, A[i1[j-11);

j j
N-1 ® A e RERENEERD *—>0—>0—>0—>0
) ! *—>0—>0 : oio—»i»iii/
o060 T oo el relre’ ... -
v /
3 3 i e—>0—>0—>0—>0@ i
oSS S
2 —> @ 2 . . ._)._)._)._).
i S S
1 [} 1 @@ @—>@—>@
ol 1 2 3. N1 b 123 4 5 6 7 8 s N2
Figure: Original space (i,) Figure: Transformed space (i + j, j)

@ Transformation: T(i,j) = (i +},))
@ Dependences: (1,0) and (0,1) now become (1,0) and (1,1) resp.

DOMAINS, DEPENDENCES, AND TRANSFORMATIONS

for (i=1; i<=N-1; i++)
for (j=1; j<=N-1; j++)
A[i1[j1 = F(A[L-110j]1, A[i1[j-11);

j Jj
N-1 ° NApii e () 0> 0—>e—>0—>0 -
A : S S S
o= >0—>0—>0 1 R - —/»0—»0—).—). <<<<<
3 3 i o—> —>0—>0—>0 i
/S /'
2 — @ 2 F ._)._) > @@ it
i /
1 [} 1 @—>0—>@—> @ e
0 1 2 3 eeees N-1 i 0 1 2 3 4 5 6 7 8§ - 2N-2
Figure: Original space (i,) Figure: Transformed space (i + j, j)

@ Transformation: T(i,j) = (i +},))
@ Dependences: (1,0) and (0,1) now become (1,0) and (1,1) resp.
@ Inner loop is now parallel

DEPENDENCES: ANOTHER EXAMPLE

for (t = 0; t < T; t++)
for (1 = 1; 1 < N+1; i++)
A[i] = f(A[i+1], A[i], A[i-1]);

e Compute the dependences

DEPENDENCES: ANOTHER EXAMPLE

for (t = 0; t < T; t++)
for (i 1; 1 < N+1; i++)
Alil f(A[i+1], A[i], A[i-1]);

e Compute the dependences
@ Transitivity in dependences?

@ Remove transitively covered dependences.

DEPENDENCES: YET ANOTHER EXAMPLE

for (i = 0; i < N; i++)
for (j =1; j <i; j++)
Alj1 = A[j]1 - ALjI/ALil;

e Compute the dependences.

DEPENDENCE REPRESENTATIONS

@ Distance vectors: constant dependences

@ Dependence levels: depth at which a dependence is carried

@ Direction vectors: direction of the dependence along each
dimension

@ Dependence as presburger formulae, relations on integer
sets with affine constraints and existential quantifiers

DEPENDENCE TESTING

@ GCD test, GCD tightening of constraints

@ Guassian elimination, Fourier-Motzkin elimination
(super-exponential) complexity
@ Omega test

@ Data Dependences, Transformations, Parallelization
@ Locality

o Affine Transformations

@ Parallelism

@ Tiling, Fusion, Vectorization

@ Other Complementary Transformations

CHARACTERIZING REUSE

@ Reuse through multi-dimensional array accesses
©Q Self reuse
© Group reuse
@ In space or in time?
@ Spatial reuse (self or group)
© Temporal reuse (self or group)
@ Under what conditions does an access exhibit spatial or
temporal reuse along a specific outer loop?
e This topic is well-covered in the Dragon textbook.

@ Degree of temporal reuse: Dimensionality of the iteration
space minus rank of the access function
Eg: for (i, j, k), access Ali + j][j][j] has an access function of
rank two in an iteration space of dimensionality three —
one degree of temporary reuse.

REPRESENTATION OF ARRAY ACCESSES

@ Linear Algebraic representation of “regular” accesses

@ Affine access functions can be analyzed by the compiler
easily for reuse, dependences, optimization, and
parallelization

@ Refer to the definition of affine functions earlier

© Handling compositions of mod and floordiv functions in
accesses requires additional techniques to determine
spatial and temporal reuse

LOOP NESTS: SOME DEFINITIONS

@ Perfectly nested loop nest: A sequence of successively
nested loops (from outermost to innermost) where every
loop other than the innermost one has a single loop as the
only statement in its body:.

@ Imperfectly nested: not perfectly nests.

// (t, i, j) is imperfectly nested, but
// (t, i) is perfectly nested.

// Perfectly nested. for (t =0; t <T; t++) {
for (t =0; t <T; t++) for (i =1; i < N+1; i++) {
for (i =1; 1 < N+1; i++) S1(t, 1i);
for (j = 1; j < N+1; j++) for (j =1; j < N+1; j++)

S(t, i, j); S2(t, i, j);

@ Data Dependences, Transformations, Parallelization
@ Locality

o Affine Transformations

@ Parallelism

@ Tiling, Fusion, Vectorization

@ Other Complementary Transformations

AFFINE TRANSFORMATIONS

e Examples of affine functions of i,j: i +j,i—j,i+1,2i+5
e Not affine: ij, i2, i + j?, aj]

: A
L] L] L] L]
Aot
2 L] L] L]
3k
$

I Tt

Figure: Iteration space Figure: Transformed space

! ! PP . // Synchronization-free.
;g,—oiq):g?cgrzn;faziil; if j is parallelized. #pragma omp parallel for private(t2)
for (j = 0; j < M; j++) for (tl=-M+1; tl<=N-1; tl++))
A[L+1][§+1] = F(ALQl[31); for (t2 = max(0,-tl); t2 <= min(M-1,N-1-t1); t2++)
! A[t1+t2+1][t2+1] = f(A[t1+t2]1[t2]);

@ Transformation: (7,j) — (i —,j)

AFFINE TRANSFORMATIONS

e Examples of affine functions of i,j: i +j,i—j,i+1,2i+5
e Not affine: ij, i2, i + j?, aj]

: rot
L] L]

A A

2 L] L]

¢

ﬁ

s : s Tt
Figure: Iteration space Figure: Transformed space

// O(N) synchronization if j is parallelized. // Synchronization-free.

T s #pragma omp parallel for private(t2)
f°;°:1”‘. S'e% ; E’M]-.+;i+) for (tl=-M+l; tl<=N-1; tl++)
ALi+1113+1] = F(ALLI[51); for (t2 = max(0,-tl); t2 <= min(M-1,N-1-t1); t2++)

A[t1+t2+1][t2+1] = f(A[t1+t2][t2]);

@ Transformation: (7,j) — (i —,j)

AFFINE TRANSFORMATIONS

o—>e0
e>0—>0

Figure: Iteration space Figure: Transformed space

e Affine transformations are attractive because:

e Preserve collinearity of points and ratio of distances
between points

e Code generation with affine transformations has thus been
studied well (CLooG, ISL, OMEGA+)

e Model a very rich class of loop re-orderings

e Useful for several domains like dense linear algebra, stencil
computations, image processing pipelines, deep learning

FINDING GOOD AFFINE TRANSFORMATIONS

(i,]) Identity
(j,1) Interchange
(i+7,7) Skew i (by a factor of one w.r.tj)
(i—j,—j) Reverse j and skew i
(i,2i +7) Skew j (by a factor of two w.r.t i)
(2i,7) Scale i by a factor of two

(i,j+1) Shift j
(i+j,i—j) More complex
(/32,7/32,i,j) Tile

@ One-to-one functions

FINDING GOOD AFFINE TRANSFORMATIONS

(i,]) Identity
(j,1) Interchange
(i+7,]) Skew i (by a factor of one w.r.tj)
(i—j,—j) Reverse j and skew i
(i,2i +7) Skew j (by a factor of two w.r.t i)
(2i,7) Scale i by a factor of two

(i,j+1) Shift j
(i+j,i—j) More complex
(/32,7/32,i,j) Tile

@ One-to-one functions

e Can be expressed using matrices:

T(i,j) = (i+],]) = [(1) ” <;)

@ Unimodular and non-unimodular transformations

DEPENDENCES

@ Dependences are determined pairwise between conflicting

accesses
for (t =0; t <T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
AL(t+1)%2] [1][3] = f((A[t%2] [i+1][j], A[t%s2][i][j], A[t%2][i-11[j],
A[t%2] [1]1[j+1], A[t%2][i][j-1]);

@ Dependence notations
e Distance vectors: (1,-1,0), (1,0,0), (1,1,0), (1,0,-1), (1,0,1)
e Direction vectors
e Dependence relations as integer sets with affine constraints

and existential quantifiers or Presburger formulae —
powerful

@ Consider the dependence from the write to the third read:
Al(t+ D)%2][{][j] — AlY'%2][i" — 1]]]']
Dependence relation: {[t,i,j] — [t/,i,]] | =t+ 1, =
i+1,/=7,0<t<T—-1,0<i<N-1,0<j<N}

PRESERVING DEPENDENCES

for (t =0; t <T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
Al(t+1)%2][1113] = FO(A[t%2][i+1]1[5], Alt%2][il[j], Alt%2][i-11[j],
Alt%2] [1]1[j+1], Al[t%2][i][j-11);

@ For affine loop nests, these dependences can be analyzed
and represented precisely

@ Next step: Transform while preserving dependences

e Find execution reorderings that preserve dependences and
improve performance

e Execution reordering as a function: T(?)

o For all dependence relation instances (5 — f),
T(f) - T() - 0,
i.e., the source should precede the target even in the
transformed space

@ What is the structure of T?

VALID TRANSFORMATIONS

for (t =0; t <T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
AL(t+1)%2] [11[3] = f((A[t%2] [i+11[j]1, A[t%2][i]1[j], Alt%2][i-11[j],
A[t%2] [1]1[j+1], A[t%2][i][j-11);

° DependenceS' (1,0,0), (1,0,1), (1,0,-1), (1,1,0), (1,-1,0)
o Validity: T(f) — T(5) > 0, i.e., T(fF—5) = 0
e Examples of invalid transformations
o T(t,i,j) = (i,j,t)
o Similarly, (i,t,]), (j,i,t), (t +1,1,j), (t +i+],1,j) are all
invalid transformations
@ Valid transformations
o (tj,i), (t,t+it+j), (tt+it+i+])
e However, only some of the infinitely many valid ones are
interesting

GENERATING LOOPS AFTER TRANSFORMATION

@ Fourier-Motzkin elimination can be used to generate code
@ Successively eliminate old loop variables, and then new
loop variables from innermost to outermost, generating
bounds for the loop being eliminated at each step.
e Replace old loop IVs with new ones in the loop body
@ More powerful techniques exist to generate more efficient
code (fewer/no redundancy in loop bound checks,
conditional guards)

e Work out for this example transformation: (i,j) — (i +j,).

PARALLELISM AND DEPENDENCE CARRYING

Carrying or satisfying a dependence

°
@ Loop-carried dependence

@ Aloop is parallel if does not carry any dependences.
°

For each dependence, determine the depth at which it is
carried

For constant distance vectors, the depth of the first
non-zero dependence component is the depth at which the
dependence is satisfied

SYNCHRONIZATION-FREE OR
COMMUNICATION-FREE PARALLELISM

@ Number of degrees of synchronization-free parallelim
e m: Dimensionality of the iteration space

@ D: Dependence matrix — columns are distance vectors
e m - rank(D) degrees of synchronization-free parallelism

@ For any perfect loop nest that has only constant
dependences, we can always obtain at least m — 1 degrees
of parallelism.

e How do you determine or maximize synchronization-free
parallelism? Find T (transformation matrix) that satisfies
certain properties.

e Find f # 0 such that ?ci; =0, Vci;- (dependence distance
vector).

WAVEFRONT PARALLELISM

@ Synchronization required after execution of a parallel loop
e A single outer sequential loop with N iterations containing
all inner parallel loops will lead to O(N) synchronization
@ Refer illustration earlier in this chapter: (i + j,j) mapping
for an example

@ Connection to DoAcross parallelism, as opposed to DoAll
parallelism?

@ It’s possible to parallelize using barrier-style
synchronization or point-to-point synchronization
(between specific pairs of processors)

@ Data Dependences, Transformations, Parallelization
@ Locality

o Affine Transformations

@ Parallelism

@ Tiling, Fusion, Vectorization

@ Other Complementary Transformations

TILING (BLOCKING)

@ Partition and execute iteration space in blocks

A tile is executed atomically

@ Benefits: exploits cache locality & improves parallelization in the presence
of synchronization

@ Allows reuse in multiple directions

@ Reduces frequency of synchronization for parallelization:
_synchronization after you execute tiles (as opposed to points) in parallel

1 1

T @ @ @ @ @ T @ @ @ @ @

: VN ; VAV VA4S
A% AN 205208

| iz zkffli'

| izt «Li 78
o1 2 s oone o 1 2 s ooN2

(i,j) = (1/50,j/50,1,j); (i,j) = (i/50 +j/50,j/50,1,j)

VALIDITY OF TILING (BLOCKING)

e Validity of tiling

@ There should be no cycle between the

tiles

for (i=1; i<T; i++)
for (j=1; j<N-1; j++)
A[(i+1)%2][j] = f(A[i%2]1[j-1],
A[i%2][j], A[i%2][j+1]);

o o o
IXIXL
o e e
XXt
o e e
XX
o e e
IXEXL

o e

VALIDITY OF TILING (BLOCKING)

e Validity of tiling
for (i=1; i<T; i++)

@ There should be no cycle between the for (j=l; jeN-1; j++)

tiles ALG+1)%21 151 = f(ALi%2]1[§-1],

. . o ALi%2][3]1, ALi%2][§+1]);

o Sufficient condition: All dependence

components should be non-negative

along dimensions that are being tiled

VALIDITY OF TILING (BLOCKING)

e Validity of tiling
for (i=1; i<T; i++)

@ There should be no cycle between the for (j=1; j<N-1; j++)
tiles AL(i+1)%2]1[5] = f(A[i%2]1[j-11,
. . s ALi%2]1[j], A[i%2][j+1]);
o Sufficient condition: All dependence

components should be non-negative
along dimensions that are being tiled
@ Dependences: (1,0), (1,1), (1,-1)

Figure: Iteration space

L d
1
L]
i
L d
1
L d
i
L]

TNz
Figure: Invalid tiling

VALIDITY OF TILING (BLOCKING)

e Validity of tiling
for (i=1; i<T; i++)

@ There should be no cycle between the for (j=1; j<N-1; j++)
tiles AL(i+1)%2]1[5] = f(A[i%2]1[j-11,
. . - ALi%2]1[j], A[i%2][j+1]);
o Sufficient condition: All dependence

components should be non-negative
along dimensions that are being tiled
@ Dependences: (1,0), (1,1), (1,-1)

L d
1
L]
i
L d
1
L d
i
L]

SN2

Figure: Invalid tiling Figure: Valid tiling

TILING (BLOCKING)

e Affine transformations can enable tiling
o First skew: T(i,j) = (i,i +/)

Tl e e e o @

Sl XXX
o ‘o ‘0" 0" 0.
A AKX}

3 o ‘o ‘0" 0" 0.
A AKX}

2 ® -0 -0 0 0
PR 4K L

1 LYY YO YOO YO 3

o1 2 5

Figure: Original space (i,)

i
N bt
1 LAzt
3»

2 - -0 -0 -0 0

1 ®* @ 0 @ @ -

0 1 2 3 4 5 6 7 ----N+T-3

Figure: Transformed space (i, + f)

TILING (BLOCKING)

e Affine transformations can enable tiling
o First skew: T(i,j) = (i,i +/)
o Then, apply (rectangular) tiling:
T(i,j) = (i/64, (i +j)/64,i,i+])

. @ iand i+ j arealso called tiling hyperplanes
i
' \&17 L SRR TS S

T-1F

ol 1 2 5. N-2 j ol 1 2 3 4 5 6 7 NeTB 4]
Figure: Original space (i, j) Figure: Transformed space (i, + f)

BACK TO 3-D EXAMPLE

for (t =0; t <T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
AL(t+1)%2] [11[3] = f((A[t%2] [i+11[j]1, A[t%s2][i]1[j], Alt%2][i-11[j],
A[t%2] [1]1[j+1], Alt%2][i][j-1]);

@ What is a good transformation here to improve parallelism
and locality?
@ Demo

BACK TO 3-D EXAMPLE

for (t =0; t <T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
AL(t+1)%2] [11[3] = f((A[t%2] [i+11[j]1, A[t%s2][i]1[j], Alt%2][i-11[j],
A[t%2] [1]1[j+1], Alt%2][i][j-1]);

@ What is a good transformation here to improve parallelism
and locality?

@ Demo
o Skewing: (f,t+1i,t+7)

BACK TO 3-D EXAMPLE

for (t =0; t <T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
AL(t+1)%2] [11[3] = f((A[t%2] [i+11[j]1, A[t%s2][i]1[j], Alt%2][i-11[j],
A[t%2] [1]1[j+1], Alt%2][i][j-1]);

@ What is a good transformation here to improve parallelism
and locality?
@ Demo

o Skewing: (f,t+1i,t+7)
o Tiling: (+/64, (+1)/64, (t+7)/1000, t, t+i, t +)

BACK TO 3-D EXAMPLE

for (t =0; t < T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
AL(t+1)%2] [11[3] = f((A[t%2] [i+11[j]1, A[t%s2][i]1[j], Alt%2][i-11[j],
A[t%2] [1]1[j+1], Alt%2][i][j-1]);

@ What is a good transformation here to improve parallelism
and locality?
@ Demo
o Skewing: (f,t+1i,t+7)
o Tiling: (t/64, (t+1)/64, (t+7)/1000, t, t + i, t+j)
e Tile wavefront:
(t/64 + (t +1)/64, (t+1)/64, (t+7)/1000, t, t+1i, t +7)

OTHER TRANSFORMATIONS AND OPTIMIZATIONS

@ Loop Fusion

@ Loop Distribution

@ Vectorization

e Explicit copying (Packing)

@ Unroll-and-Jam, Register Tiling

e Complementary/enabling transformations for Parallelism

e Privatization, Scalar expansion, Array Expansion
o Trade-off between parallelism and memory usage

@ Reductions - parallelization and vectorization

Loopr FUSION: VALIDITY

@ A fine (or finer) grained interleaving of the execution of
multiple loop nests
e Validity: fusion is valid if, for every loop being fused, there
are no dependences from the first nest body to the second
nest body that have a negative component on the loop
being fused while not being carried by any outer loops
@ Data Dependence Graph (DDG) needed to model
“inter-statement” dependences to analyze the above
conditions
e Statements (IR operations or groups of IR operations) are
nodes of this graph
e Each edge corresponds to a dependence from the source
node to the target node
e Directed graph, can have multiple edges between nodes
and self edges.
e Each edge has information on the source and target
memory accesses involved in the dependence and
additional information.

FUSION: EXAMPLE

// Original code.

// Produces B[i] using another array A. // Fused code.

for (1 =0; i <N - 1; i++) for (1 =0; i <N - 1; i++) {
B[i] = A[i] + A[i1 + 1]; B[i] = A[i] + A[i + 1];

// Consumes B[i] to create C[i]. C[i] = B[il;

for (1 =0; i <N - 1; i++) }
C[i] = B[i];

// Fusion not valid without shifting the second nest forward by one.
for (i =0; i < N; i++)
B[i] = A[il];
// Consumes B[i] to create C[i].
for (i =0; i <N - 1; i++)
C[i] = B[i] + B[i + 1];
@ Fusion can be enabled other transformations: shifting,

permutation/interchange
@ Fusion can be partial as well, i.e., not fusing all loops

e For partial fusion, consider dependence components up
until the loops being fused.

FUSION: OTHER EXAMPLES

// Original code.
// Produces B using another array A.
for (i =0; i < N; i++)
for (j =0; j <N; j++)
B[i][j] = A[il[j];
// Consumes B to create C. Fusion is valid.
// Dependence carried on the fused ‘i‘ loop.
for (i =0; i < N; i++)
for (3 =0; j <N - 1; j++)
C[i][j] = B[il[j] + B[i - 1][j + 1];

// Original code.
// Produces B using another array A.
for (i =0; i < N; i++)
for (j = 0; j < N; j++)
B[i][j] = A[il[j];
// Consumes B to create C.
for (i =1; i < N; i++)
for (j =0; j <N - 1; j++)
Cl[i - 11[j] = B[i][j] + B[i - 11[j];

LooOP FUSION AND DISTRIBUTION: COSTS/BENEFITS

@ Benefits
@ Improves cache locality: producer-consumer reuse, input
reuse
© Improves register reuse
© Eliminates intermediate arrays and reduces memory
consumption
@ Reduces code size, less control overhead
@ Disadvantages
@ Reduces effective cache capacity available for each of
components fused: cache capacity misses
@ Increases the risk of conflict misses
© Can lead to loss of parallelism, loss of tilability, or loss of
vectorizability
© Increases hardware prefetch stream utilization; can lead to
lower prefetching performance

LOOP DISTRIBUTION

@ Loop distribution is the inverse of fusion

@ Two operations/statements part of the same strongly
connected component of the data dependence graph can’t
be distributed

@ Distribution at the inner level or partial distribution:
consider only a part of the DDG, discarding dependences
carried on outer loops that aren’t being considered for
distribution.

@ Maximal distribution: distribute out all strongly
connnected components of a loop nest.

e Disadvantages of fusion are the benefits of distribution

VECTORIZATION

@ A fine-grained parallelization: single instruction on
multiple data (SIMD)

@ Vectorization, SIMDization used synonymously today

@ An efficient form of parallelization with minimal
additional hardware resources

@ Reduction in the number of instructions executed

@ The instructions that form a vector can come from a loop
body (“superword-level parallelism”) or from a loop
(“loop vectorization”)

LOOP VECTORIZATION: EXAMPLES

// Vectorizable loop.
for (1 =0; i < N; i++)
C[i] = A[i] + B[i];

// Non-vectorizable loop.
for (i =2; i <N; i++)
A[i] = A[i - 1] + A[L - 2];

// A loop doesn’t have to be parallel to be vectorizable.
// Loop i is vectorizable despite not being parallel and despite
// carrying a short loop dependence. No dependence cycle.
for (i =0; i < N; i++) {
C[i + 1] = A[i] * B[i];
D[i] = C[i] + X[i];
}
// Vectorizing a loop body like this can also be viewed as tiling by vector
// width, distributing the intra-tile loops, and vectorizing them.

LOOP VECTORIZATION: VALIDITY

@ A loop can be vectorized only if there is no dependence
cycle betweeen the instructions that spans less than the
“vector width” iterations.

@ Contiguity: Data being loaded for a vector may need to be
contiguous in memory; depends on hardware

@ Alignment: data may have to be aligned depending on the
hardware — modern general-purpose processors typically
don’t have an alignment requirement

@ Performance of aligned vs unaligned memory operations

VECTORIZATION: EXAMPLE

// Original code.
affine.for %i = 0 to 4096 {
affine.for %j = 0 to 4096 {
affine.for sk = 0 to 4096 {

%lhs = affine.load %A[%i, %k] : memref<4096x4096xf32>
%rhs = affine.load %B[%k, %j] : memref<4096x4096xf32>
%in = affine.load %C[%i, %j] : memref<4096x4096xf32>
%product = arith.mulf %lhs, %rhs : f32
%acc = arith.addf %in, %product : f32
affine.store %acc, %C[%1i, %j] : memref<4096x4096xf32>

// Interchanged %j to innermost and vectorized 8-way along the %j loop.
affine.for %i = 0 to 4096 {
affine.for %k = 0 to 4096 {
affine.for %j = 0 to 4096 step 8 {
%lhs = affine.load %A[%1, %k] : memref<4096x4096xf32>
%v_lhs = vector.splat %lhs : vector<8xf32>
%v_rhs = affine.vector_load %B[%k, %j] : memref<4096x4096xf32>
%sproduct = arith.mulf %v_lhs, %v_rhs : vector<8xf32>
%in = affine.vector_load %C[%i, %j] : memref<4096x4096xf32>
%acc = arith.addf %in, %product : vector<8xf32>
affine.vector_store %acc, %C[%i, %j] : memref<4096x4096xf32>

EXPLICIT COPYING OR PACKING

e Typically performed in conjunction with tiling

@ Pack data being accessed by a ‘tile” into a contiguous
buffer that fits in cache/fast memory

@ ‘Compute’ tile reads from packed input buffers and writes
out to a packed buffer; unpack output buffer.
@ Benefits

@ Eliminates conflicts misses and thus improves cache
locality

@ Reduces TLB misses

© Improves prefetching performance (fewer hardware
prefetch streams used)

@ Packing involves overhead (copy-in and copy-out)
@ Reference: see packing scheme for high-performance
matrix-matrix multiplication in this illustration:

Analytical Modeling is Enough for High Performance
BLIS, Low et al., ACM TOMS 2016.

UNROLL-AND-JAM OR REGISTER TILING

@ Improves register reuse

@ Multi-dimensional unroll-and-jam (multiple loops) can be
performed to simultaneously exploit register reuse along
multiple dimensions

@ Can be thought of as tiling for register locality except that
the tiles are small (variables being reused to fit in registers
ideally) and the tile is fully unrolled.

@ Improves the compute to load/store operation ratio —
extremely important for high-performance on modern
architectures

@ Sufficient: if it is valid to make a loop the innermost loop,
it is valid to unroll-and-jam it.

@ More precise: unroll-and-jam is valid iff stripminng the
loop by the unroll-and-jam factor and bringing the
intra-tile loop to the innermost position is valid

@ Multi-dimensional unroll-and-jam (multiple loops)

UNROLL-AND-JAM OR REGISTER TILING
(CONTINUED)

e For a matrix-matrix multiplication in the canonical ijk
form, work out the improvement in compute to load/store
ratio when unroll-and-jamming i and j loops with factors
U; and U; respectively.

@ Assume a register budget of 16 registers in one case and 32
registers in another.

REDUCTIONS

@ Reductions can be parallelized

@ Reductions can be vectorized
s =0;
for (i =0; i < N; i++)
s += A[i];

A COMPOSITION OF TRANSFORMATIONS

for (i =11 < N; i++)
// S1.
B[i] = A[i];

for (i =1; i <N; i++)
// S2.
C[i - 1] = B[i] + B[i - 1]
@ Original ordering: Ts, (i) = (0,1), Ts, (i) = (1,1)
@ Fused + Tiled + Innermost loop distribution
e Produce a chunk of A and consume it before a new chunk is
produced
e Transformation: Ts, (i) = (i/32,0,i), Ts,(i) = (i/32,1,i).
for (t1=0;tl<=floord(N-1,32);tl++) {
for (t3=max(1,32*tl;t3<=min(N-1,32%t1+31);t3++)
B[t3] = A[t3];
for (t3=max(1,32%tl);t3<=min(N-1,32%t1+31);t3++)
C[t3 - 1] = B[t3] + B[t3 - 1];
}
e Provides cache locality while also providing parallelism
and vectorization.
e Either locality or parallelism/vectorizability would have
otherwise been lost with only fusion or only parallelizing

without any fusion.

ALGORITHMS TO FIND TRANSFORMATIONS

@ The history
o A data locality optimizing algorithm, Wolf and Lam, PLDI
1991: Improve locality through unimodular
transformations
@ Characterize self-spatial, self-temporal, and group reuse
e Find unimodular transformations (permutation, reversal,
skewing) to transform to permutable loop nests with reuse,
and subsequently tile them

@ Several advances on polyhedral transformation algorithms
through 1990s and 2000s: Feautrier [1991-1992], Lim and
Lam (Affine Partitioning) [1997-2001], Pluto [2008-2015]

@ The Present

e Polyhedral framework provides a powerful mathematical
abstraction (away from the syntax)

e A number of new techniques, open-source libraries and
tools have been developed and are actively maintained

o Affine abstractions and infrastructure in MLIR

	Data Dependences, Transformations, Parallelization
	Locality
	Affine Transformations
	Parallelism
	Tiling, Fusion, Vectorization
	Other Complementary Transformations

