

# Mid-level Compiler Optimizations and Transformations

Uday Kumar Reddy Bondhugula

*udayb@iisc.ac.in*

**Dept of CSA**  
**Indian Institute of Science**

# OUTLINE

- Data Dependences, Transformations, Parallelization
  - Locality
  - Affine Transformations
  - Parallelism
  - Tiling, Fusion, Vectorization
  - Other Complementary Transformations

# ITERATION SPACES AND DEPENDENCES

```
for (t = 0; t < T; t++)
    for (i = 1; i < N+1; i++)
        A[t+1][i] = f(A[t][i+1], A[t][i], A[t][i-1]);
```

## ① Iteration Domains

- Every statement has a domain or an index **set** – instances that have to be executed
- Each instance is a vector (of loop index values from outermost to innermost)

$$D_S = \{[t, i] \mid 0 \leq t \leq T - 1, 1 \leq i \leq N\}$$

## ② Dependences

- A dependence is a **relation** between domain instances that are in conflict (more on next slide)

# LEXICOGRAPHIC ORDERING

- **Lexicographic ordering:**  $\succ, \prec, \vec{x} \succ \vec{y}, \succ \vec{0}$
- **Transformations** as a way to provide multi-dimensional timestamps
- Code generation: **Scanning points in the transformed space in lexicographically increasing order**

# DOMAINS, DEPENDENCES, AND TRANSFORMATIONS

```
for (i=1; i<=N-1; i++)
  for (j=1; j<=N-1; j++)
    A[i][j] = f(A[i-1][j], A[i][j-1]);
```



Figure: Original space  $(i, j)$

- **Domain:**  $\{[i, j] \mid 1 \leq i, j \leq N - 1\}$

# DOMAINS, DEPENDENCES, AND TRANSFORMATIONS

```
for (i=1; i<=N-1; i++)
  for (j=1; j<=N-1; j++)
    A[i][j] = f(A[i-1][j], A[i][j-1]);
```



Figure: Original space  $(i, j)$

- **Dependences:**

- ①  $\{[i, j] \rightarrow [i + 1, j] \mid 1 \leq i \leq N - 2, 0 \leq j \leq N - 1\} — (1, 0)$
- ②  $\{[i, j] \rightarrow [i, j + 1] \mid 1 \leq i \leq N - 1, 0 \leq j \leq N - 2\} — (0, 1)$

# DOMAINS, DEPENDENCES, AND TRANSFORMATIONS

```
for (i=1; i<=N-1; i++)
  for (j=1; j<=N-1; j++)
    A[i][j] = f(A[i-1][j], A[i][j-1]);
```



Figure: Original space  $(i, j)$

- **Dependences:**

- ①  $\{[i, j] \rightarrow [i + 1, j] \mid 1 \leq i \leq N - 2, 0 \leq j \leq N - 1\} — (1, 0)$
- ②  $\{[i, j] \rightarrow [i, j + 1] \mid 1 \leq i \leq N - 1, 0 \leq j \leq N - 2\} — (0, 1)$

# DOMAINS, DEPENDENCES, AND TRANSFORMATIONS

```
for (i=1; i<=N-1; i++)  
  for (j=1; j<=N-1; j++)  
    A[i][j] = f(A[i-1][j], A[i][j-1]);
```



Figure: Original space  $(i, j)$



Figure: Transformed space  $(i + j, j)$

- **Transformation:**  $T(i, j) = (i + j, j)$ 
  - Dependences:  $(1,0)$  and  $(0,1)$  now become  $(1,0)$  and  $(1,1)$  resp.
  - Inner loop is now parallel

# DOMAINS, DEPENDENCES, AND TRANSFORMATIONS

```
for (i=1; i<=N-1; i++)  
  for (j=1; j<=N-1; j++)  
    A[i][j] = f(A[i-1][j], A[i][j-1]);
```



Figure: Original space  $(i, j)$



Figure: Transformed space  $(i + j, j)$

- **Transformation:**  $T(i, j) = (i + j, j)$ 
  - Dependences:  $(1,0)$  and  $(0,1)$  now become  $(1,0)$  and  $(1,1)$  resp.
  - Inner loop is now parallel

## DEPENDENCES: ANOTHER EXAMPLE

```
for (t = 0; t < T; t++)
    for (i = 1; i < N+1; i++)
        A[i] = f(A[i+1], A[i], A[i-1]);
```

- Compute the dependences
- Transitivity in dependences?
- Remove transitively covered dependences.

## DEPENDENCES: ANOTHER EXAMPLE

```
for (t = 0; t < T; t++)
    for (i = 1; i < N+1; i++)
        A[i] = f(A[i+1], A[i], A[i-1]);
```

- Compute the dependences
- Transitivity in dependences?
- Remove transitively covered dependences.

## DEPENDENCES: YET ANOTHER EXAMPLE

```
for (i = 0; i < N; i++)
  for (j = 1; j < i; j++)
    A[j] = A[j] - A[j]/A[i];
```

- Compute the dependences.

# DEPENDENCE REPRESENTATIONS

- ① Distance vectors: constant dependences
- ② Dependence levels: depth at which a dependence is carried
- ③ Direction vectors: direction of the dependence along each dimension
- ④ Dependence as presburger formulae, relations on integer sets with affine constraints and existential quantifiers

# DEPENDENCE TESTING

- GCD test, GCD tightening of constraints
- Gaussian elimination, Fourier-Motzkin elimination  
(super-exponential) complexity
- Omega test

# OUTLINE

- Data Dependences, Transformations, Parallelization
- **Locality**
- Affine Transformations
- Parallelism
- Tiling, Fusion, Vectorization
- Other Complementary Transformations

# CHARACTERIZING REUSE

- Reuse through multi-dimensional array accesses
  - ① Self reuse
  - ② Group reuse
- In space or in time?
  - ① Spatial reuse (self or group)
  - ② Temporal reuse (self or group)
- Under what conditions does an access exhibit spatial or temporal reuse along a specific outer loop?
  - This topic is well-covered in the Dragon textbook.
- Degree of temporal reuse: Dimensionality of the iteration space minus rank of the access function
  - Eg: *for (i, j, k), access A[i + j][j][j]* has an access function of rank two in an iteration space of dimensionality three → one degree of temporary reuse.

# REPRESENTATION OF ARRAY ACCESSES

- ① Linear Algebraic representation of “regular” accesses
- ② Affine access functions can be analyzed by the compiler easily for reuse, dependences, optimization, and parallelization
- ③ Refer to the definition of affine functions earlier
- ④ Handling compositions of mod and floordiv functions in accesses requires additional techniques to determine spatial and temporal reuse

# LOOP NESTS: SOME DEFINITIONS

- **Perfectly nested** loop nest: A sequence of successively nested loops (from outermost to innermost) where every loop other than the innermost one has a single loop as the only statement in its body.
- **Imperfectly nested**: not perfectly nests.

```
// (t, i, j) is imperfectly nested, but
// (t, i) is perfectly nested.
for (t = 0; t < T; t++) {
    for (i = 1; i < N+1; i++) {
        for (j = 1; j < N+1; j++)
            S(t, i, j);
    }
}
```

# OUTLINE

- Data Dependences, Transformations, Parallelization
- Locality
- **Affine Transformations**
- Parallelism
- Tiling, Fusion, Vectorization
- Other Complementary Transformations

# AFFINE TRANSFORMATIONS

- Examples of affine functions of  $i, j$ :  $i + j, i - j, i + 1, 2i + 5$
- Not affine:  $ij, i^2, i^2 + j^2, a[j]$



Figure: Iteration space



Figure: Transformed space

```
// O(N) synchronization if j is parallelized.  
for (i = 0; i < N; i++)  
    for (j = 0; j < M; j++)  
        A[i+1][j+1] = f(A[i][j]);
```

```
// Synchronization-free.  
#pragma omp parallel for private(t2)  
for (t1=-M+1; t1<=N-1; t1++)  
    for (t2 = max(0, -t1); t2 <= min(M-1, N-1-t1); t2++)  
        A[t1+t2+1][t2+1] = f(A[t1+t2][t2]);
```

- Transformation:  $(i, j) \rightarrow (i - j, j)$

# AFFINE TRANSFORMATIONS

- Examples of affine functions of  $i, j$ :  $i + j, i - j, i + 1, 2i + 5$
- Not affine:  $ij, i^2, i^2 + j^2, a[j]$



Figure: Iteration space



Figure: Transformed space

```
// O(N) synchronization if j is parallelized.  
for (i = 0; i < N; i++)  
    for (j = 0; j < M; j++)  
        A[i+1][j+1] = f(A[i][j]);
```

```
// Synchronization-free.  
#pragma omp parallel for private(t2)  
for (t1=-M+1; t1<=N-1; t1++)  
    for (t2 = max(0, -t1); t2 <= min(M-1, N-1-t1); t2++)  
        A[t1+t2+1][t2+1] = f(A[t1+t2][t2]);
```

- Transformation:  $(i, j) \rightarrow (i - j, j)$

# AFFINE TRANSFORMATIONS



Figure: Iteration space



Figure: Transformed space

- Affine transformations are attractive because:
  - Preserve **collinearity** of points and **ratio of distances** between points
  - Code generation with affine transformations has thus been studied well (CLooG, ISL, OMEGA+)
  - Model a very rich class of loop re-orderings
  - Useful for several domains like dense linear algebra, stencil computations, image processing pipelines, deep learning

# FINDING GOOD AFFINE TRANSFORMATIONS

|                      |                                     |
|----------------------|-------------------------------------|
| $(i, j)$             | Identity                            |
| $(j, i)$             | Interchange                         |
| $(i + j, j)$         | Skew i (by a factor of one w.r.t j) |
| $(i - j, -j)$        | Reverse j and skew i                |
| $(i, 2i + j)$        | Skew j (by a factor of two w.r.t i) |
| $(2i, j)$            | Scale i by a factor of two          |
| $(i, j + 1)$         | Shift j                             |
| $(i + j, i - j)$     | More complex                        |
| $(i/32, j/32, i, j)$ | Tile                                |
| ...                  |                                     |

- One-to-one functions

- Can be expressed using matrices:

$$T(i, j) = (i + j, j) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} i \\ j \end{pmatrix}.$$

- Unimodular and non-unimodular transformations

# FINDING GOOD AFFINE TRANSFORMATIONS

|                      |                                     |
|----------------------|-------------------------------------|
| $(i, j)$             | Identity                            |
| $(j, i)$             | Interchange                         |
| $(i + j, j)$         | Skew i (by a factor of one w.r.t j) |
| $(i - j, -j)$        | Reverse j and skew i                |
| $(i, 2i + j)$        | Skew j (by a factor of two w.r.t i) |
| $(2i, j)$            | Scale i by a factor of two          |
| $(i, j + 1)$         | Shift j                             |
| $(i + j, i - j)$     | More complex                        |
| $(i/32, j/32, i, j)$ | Tile                                |
| ...                  |                                     |

- One-to-one functions
- Can be expressed using matrices:
$$T(i, j) = (i + j, j) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} i \\ j \end{pmatrix}.$$
- Unimodular and non-unimodular transformations

# DEPENDENCES

- Dependences are determined pairwise between conflicting accesses

```
for (t = 0; t < T; t++)
    for (i = 1; i < N+1; i++)
        for (j = 1; j < N+1; j++)
            A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],
                                    A[t%2][i][j+1], A[t%2][i][j-1]));
```

- Dependence notations
  - Distance vectors:  $(1, -1, 0)$ ,  $(1, 0, 0)$ ,  $(1, 1, 0)$ ,  $(1, 0, -1)$ ,  $(1, 0, 1)$
  - Direction vectors
  - Dependence relations as integer sets with affine constraints and existential quantifiers or Presburger formulae — powerful
- Consider the dependence from the write to the third read:  
 $A[(t + 1)\%2][i][j] \rightarrow A[t'\%2][i' - 1][j']$   
Dependence relation:  $\{[t, i, j] \rightarrow [t', i', j'] \mid t' = t + 1, i' = i + 1, j' = j, 0 \leq t \leq T - 1, 0 \leq i \leq N - 1, 0 \leq j \leq N\}$

# PRESERVING DEPENDENCES

```
for (t = 0; t < T; t++)
  for (i = 1; i < N+1; i++)
    for (j = 1; j < N+1; j++)
      A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],
                             A[t%2][i][j+1], A[t%2][i][j-1]));
```

- For affine loop nests, these dependences can be analyzed and represented precisely
- **Next step:** Transform while preserving dependences
  - Find execution reorderings that **preserve** dependences and improve performance
  - Execution reordering as a function:  $T(\vec{i})$
  - For all dependence relation instances  $(\vec{s} \rightarrow \vec{t})$ ,  
 $T(\vec{t}) - T(\vec{s}) \succ \vec{0}$ ,  
i.e., the source should precede the target even in the transformed space
- What is the structure of  $T$ ?

# VALID TRANSFORMATIONS

```
for (t = 0; t < T; t++)
  for (i = 1; i < N+1; i++)
    for (j = 1; j < N+1; j++)
      A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],
                             A[t%2][i][j+1], A[t%2][i][j-1]);
```

- Dependences:  $(1, 0, 0), (1, 0, 1), (1, 0, -1), (1, 1, 0), (1, -1, 0)$
- Validity:  $T(\vec{t}) - T(\vec{s}) \succ \vec{0}$ , i.e.,  $T(\vec{t} - \vec{s}) \succ \vec{0}$
- Examples of invalid transformations
  - $T(t, i, j) = (i, j, t)$
  - Similarly,  $(i, t, j), (j, i, t), (t + i, i, j), (t + i + j, i, j)$  are all invalid transformations
- Valid transformations
  - $(t, j, i), (t, t + i, t + j), (t, t + i, t + i + j)$
  - However, only some of the infinitely many valid ones are interesting

# GENERATING LOOPS AFTER TRANSFORMATION

- Fourier-Motzkin elimination can be used to generate code
  - Successively eliminate old loop variables, and then new loop variables from innermost to outermost, generating bounds for the loop being eliminated at each step.
  - Replace old loop IVs with new ones in the loop body
- More powerful techniques exist to generate more efficient code (fewer/no redundancy in loop bound checks, conditional guards)
- Work out for this example transformation:  $(i, j) \rightarrow (i + j, j)$ .

## PARALLELISM AND DEPENDENCE CARRYING

- Carrying or satisfying a dependence
- Loop-carried dependence
- A loop is parallel if does not carry any dependences.
- For each dependence, determine the depth at which it is carried
- For constant distance vectors, the depth of the first non-zero dependence component is the depth at which the dependence is satisfied

# SYNCHRONIZATION-FREE OR COMMUNICATION-FREE PARALLELISM

- Number of degrees of synchronization-free parallelism
- $m$ : Dimensionality of the iteration space
- $D$ : Dependence matrix – columns are distance vectors
- $m - \text{rank}(D)$  degrees of synchronization-free parallelism
- For any perfect loop nest that has only constant dependences, we can always obtain at least  $m - 1$  degrees of parallelism.
- How do you determine or maximize synchronization-free parallelism? Find  $T$  (transformation matrix) that satisfies certain properties.
- Find  $\vec{t} \neq \vec{0}$  such that  $\vec{t} \cdot \vec{d}_i = 0, \forall \vec{d}_i$  (dependence distance vector).

# WAVEFRONT PARALLELISM

- Synchronization required after execution of a parallel loop
  - A single outer sequential loop with  $N$  iterations containing all inner parallel loops will lead to  $O(N)$  synchronization
- Refer illustration earlier in this chapter:  $(i + j, j)$  mapping for an example
- Connection to *DoAcross* parallelism, as opposed to *DoAll parallelism*?
- It's possible to parallelize using barrier-style synchronization or point-to-point synchronization (between specific pairs of processors)

# OUTLINE

- Data Dependences, Transformations, Parallelization
- Locality
- Affine Transformations
- Parallelism
- **Tiling, Fusion, Vectorization**
- Other Complementary Transformations

# TILING (BLOCKING)

- Partition and execute iteration space in blocks
- A tile is executed atomically
- Benefits: exploits *cache locality* & improves *parallelization* in the presence of synchronization
- **Allows reuse in multiple directions**
- **Reduces frequency of synchronization** for parallelization:  
synchronization after you execute *tiles* (as opposed to *points*) in parallel



$$(i, j) \rightarrow (i/50, j/50, i, j);$$



$$(i, j) \rightarrow (i/50 + j/50, j/50, i, j)$$

# VALIDITY OF TILING (BLOCKING)

- Validity of tiling

- There should be no cycle between the tiles
- **Sufficient condition:** All dependence components should be non-negative along dimensions that are being tiled
- Dependences:  $(1,0), (1,1), (1,-1)$

```
for (i=1; i<T; i++)
  for (j=1; j<N-1; j++)
    A[(i+1)%2][j] = f(A[i%2][j-1],
                          A[i%2][j], A[i%2][j+1]);
```



Figure: Iteration space

# VALIDITY OF TILING (BLOCKING)

- Validity of tiling

- There should be no cycle between the tiles
- **Sufficient condition:** All dependence components should be non-negative along dimensions that are being tiled
- Dependences:  $(1,0), (1,1), (1,-1)$

```
for (i=1; i<T; i++)  
  for (j=1; j<N-1; j++)  
    A[(i+1)%2][j] = f(A[i%2][j-1],  
                         A[i%2][j], A[i%2][j+1]);
```



Figure: Iteration space

# VALIDITY OF TILING (BLOCKING)

- Validity of tiling

- There should be no cycle between the tiles
- **Sufficient condition:** All dependence components should be non-negative along dimensions that are being tiled
- Dependences:  $(1,0)$ ,  $(1,1)$ ,  $(1,-1)$

```
for (i=1; i<T; i++)  
  for (j=1; j<N-1; j++)  
    A[(i+1)%2][j] = f(A[i%2][j-1],  
                         A[i%2][j], A[i%2][j+1]);
```



Figure: Iteration space



Figure: Invalid tiling

# VALIDITY OF TILING (BLOCKING)

- Validity of tiling

- There should be no cycle between the tiles
- **Sufficient condition:** All dependence components should be non-negative along dimensions that are being tiled
- Dependences:  $(1,0)$ ,  $(1,1)$ ,  $(1,-1)$



Figure: Invalid tiling

```
for (i=1; i<T; i++)  
  for (j=1; j<N-1; j++)  
    A[(i+1)%2][j] = f(A[i%2][j-1],  
                         A[i%2][j], A[i%2][j+1]);
```



Figure: Iteration space



Figure: Valid tiling

# TILING (BLOCKING)

- Affine transformations can enable tiling
  - First skew:  $T(i, j) = (i, i + j)$



Figure: Original space  $(i, j)$



Figure: Transformed space  $(i, i + j)$

# TILING (BLOCKING)

- Affine transformations can enable tiling

- First skew:  $T(i, j) = (i, i + j)$
- Then, apply (rectangular) tiling:  
 $T(i, j) = (i/64, (i + j)/64, i, i + j)$



Figure: Original space ( $i, j$ )

Figure: Transformed space ( $i, i + j$ )

## BACK TO 3-D EXAMPLE

```
for (t = 0; t < T; t++)
  for (i = 1; i < N+1; i++)
    for (j = 1; j < N+1; j++)
      A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],
      A[t%2][i][j+1], A[t%2][i][j-1]);
```

- What is a good transformation here to improve parallelism and locality?
- Demo
  - Skewing:  $(t, t + i, t + j)$
  - Tiling:  $(t/64, (t + i)/64, (t + j)/1000, t, t + i, t + j)$
  - Tile waveform:  
 $(t/64 + (t + i)/64, (t + i)/64, (t + j)/1000, t, t + i, t + j)$

## BACK TO 3-D EXAMPLE

```
for (t = 0; t < T; t++)
  for (i = 1; i < N+1; i++)
    for (j = 1; j < N+1; j++)
      A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],
      A[t%2][i][j+1], A[t%2][i][j-1]);
```

- What is a good transformation here to improve parallelism and locality?
- Demo
  - Skewing:  $(t, t + i, t + j)$
  - Tiling:  $(t/64, (t + i)/64, (t + j)/1000, t, t + i, t + j)$
  - Tile waveform:  
 $(t/64 + (t + i)/64, (t + i)/64, (t + j)/1000, t, t + i, t + j)$

## BACK TO 3-D EXAMPLE

```
for (t = 0; t < T; t++)
  for (i = 1; i < N+1; i++)
    for (j = 1; j < N+1; j++)
      A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],
      A[t%2][i][j+1], A[t%2][i][j-1]);
```

- What is a good transformation here to improve parallelism and locality?
- Demo
  - Skewing:  $(t, t + i, t + j)$
  - Tiling:  $(t/64, (t + i)/64, (t + j)/1000, t, t + i, t + j)$
  - Tile waveform:  
 $(t/64 + (t + i)/64, (t + i)/64, (t + j)/1000, t, t + i, t + j)$

## BACK TO 3-D EXAMPLE

```
for (t = 0; t < T; t++)
  for (i = 1; i < N+1; i++)
    for (j = 1; j < N+1; j++)
      A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],
                             A[t%2][i][j+1], A[t%2][i][j-1]);
```

- What is a good transformation here to improve parallelism and locality?
- Demo
  - Skewing:  $(t, t + i, t + j)$
  - Tiling:  $(t/64, (t + i)/64, (t + j)/1000, t, t + i, t + j)$
  - Tile waveform:  
 $(t/64 + (t + i)/64, (t + i)/64, (t + j)/1000, t, t + i, t + j)$

# OTHER TRANSFORMATIONS AND OPTIMIZATIONS

- Loop Fusion
- Loop Distribution
- Vectorization
- Explicit copying (Packing)
- Unroll-and-Jam, Register Tiling
- Complementary/enabling transformations for Parallelism
  - Privatization, Scalar expansion, Array Expansion
  - Trade-off between parallelism and memory usage
- Reductions - parallelization and vectorization

## LOOP FUSION: VALIDITY

- A fine (or finer) grained interleaving of the execution of multiple loop nests
- Validity: fusion is valid if, for every loop being fused, there are no dependences from the first nest body to the second nest body that have a negative component on the loop being fused while not being carried by any outer loops
- Data Dependence Graph (DDG) needed to model “inter-statement” dependences to analyze the above conditions
  - Statements (IR operations or groups of IR operations) are nodes of this graph
  - Each edge corresponds to a dependence from the source node to the target node
  - Directed graph, can have multiple edges between nodes and self edges.
  - Each edge has information on the source and target memory accesses involved in the dependence and additional information.

# FUSION: EXAMPLE

```
// Original code.  
// Produces B[i] using another array A.          // Fused code.  
for (i = 0; i < N - 1; i++)                  for (i = 0; i < N - 1; i++) {  
    B[i] = A[i] + A[i + 1];  
    // Consumes B[i] to create C[i].  
    for (i = 0; i < N - 1; i++)  
        C[i] = B[i];  
  
// Fusion not valid without shifting the second nest forward by one.  
for (i = 0; i < N; i++)  
    B[i] = A[i];  
// Consumes B[i] to create C[i].  
for (i = 0; i < N - 1; i++)  
    C[i] = B[i] + B[i + 1];
```

- Fusion can be enabled other transformations: shifting, permutation/interchange
- Fusion can be partial as well, i.e., not fusing all loops
- For partial fusion, consider dependence components up until the loops being fused.

# FUSION: OTHER EXAMPLES

```
// Original code.  
// Produces B using another array A.  
for (i = 0; i < N; i++)  
  for (j = 0; j < N; j++)  
    B[i][j] = A[i][j];  
// Consumes B to create C. Fusion is valid.  
// Dependence carried on the fused 'i' loop.  
for (i = 0; i < N; i++)  
  for (j = 0; j < N - 1; j++)  
    C[i][j] = B[i][j] + B[i - 1][j + 1];  
  
// Original code.  
// Produces B using another array A.  
for (i = 0; i < N; i++)  
  for (j = 0; j < N; j++)  
    B[i][j] = A[i][j];  
// Consumes B to create C.  
for (i = 1; i < N; i++)  
  for (j = 0; j < N - 1; j++)  
    C[i - 1][j] = B[i][j] + B[i - 1][j];
```

# LOOP FUSION AND DISTRIBUTION: COSTS/BENEFITS

- Benefits
  - ❶ Improves cache locality: producer-consumer reuse, input reuse
  - ❷ Improves register reuse
  - ❸ Eliminates intermediate arrays and reduces memory consumption
  - ❹ Reduces code size, less control overhead
- Disadvantages
  - ❶ Reduces effective cache capacity available for each of components fused: cache capacity misses
  - ❷ Increases the risk of conflict misses
  - ❸ Can lead to loss of parallelism, loss of tilability, or loss of vectorizability
  - ❹ Increases hardware prefetch stream utilization; can lead to lower prefetching performance

## LOOP DISTRIBUTION

- Loop distribution is the inverse of fusion
- Two operations/statements part of the same strongly connected component of the data dependence graph can't be distributed
- Distribution at the inner level or partial distribution: consider only a part of the DDG, discarding dependences carried on outer loops that aren't being considered for distribution.
- Maximal distribution: distribute out all strongly connected components of a loop nest.
- Disadvantages of fusion are the benefits of distribution

# VECTORIZATION

- A fine-grained parallelization: single instruction on multiple data (SIMD)
- Vectorization, SIMDization used synonymously today
- An efficient form of parallelization with minimal additional hardware resources
- Reduction in the number of instructions executed
- The instructions that form a vector can come from a loop body (“superword-level parallelism”) or from a loop (“loop vectorization”)

# LOOP VECTORIZATION: EXAMPLES

```
// Vectorizable loop.
for (i = 0; i < N; i++)
    C[i] = A[i] + B[i];

// Non-vectorizable loop.
for (i = 2; i < N; i++)
    A[i] = A[i - 1] + A[i - 2];

// A loop doesn't have to be parallel to be vectorizable.
// Loop i is vectorizable despite not being parallel and despite
// carrying a short loop dependence. No dependence cycle.
for (i = 0; i < N; i++) {
    C[i + 1] = A[i] * B[i];
    D[i] = C[i] + X[i];
}
// Vectorizing a loop body like this can also be viewed as tiling by vector
// width, distributing the intra-tile loops, and vectorizing them.
```

## LOOP VECTORIZATION: VALIDITY

- A loop can be vectorized only if there is no dependence cycle between the instructions that spans less than the “vector width” iterations.
- Contiguity: Data being loaded for a vector may need to be contiguous in memory; depends on hardware
- Alignment: data may have to be aligned depending on the hardware – modern general-purpose processors typically don't have an alignment requirement
- Performance of aligned vs unaligned memory operations

# VECTORIZATION: EXAMPLE

```
// Original code.
affine.for %i = 0 to 4096 {
  affine.for %j = 0 to 4096 {
    affine.for %k = 0 to 4096 {
      %lhs = affine.load %A[%i, %k] : memref<4096x4096xf32>
      %rhs = affine.load %B[%k, %j] : memref<4096x4096xf32>
      %in = affine.load %C[%i, %j] : memref<4096x4096xf32>
      %product = arith.mulf %lhs, %rhs : f32
      %acc = arith.addf %in, %product : f32
      affine.store %acc, %C[%i, %j] : memref<4096x4096xf32>
    }
  }
}

// Interchanged %j to innermost and vectorized 8-way along the %j loop.
affine.for %i = 0 to 4096 {
  affine.for %k = 0 to 4096 {
    affine.for %j = 0 to 4096 step 8 {
      %lhs = affine.load %A[%i, %k] : memref<4096x4096xf32>
      %v_lhs = vector.splat %lhs : vector<8xf32>
      %v_rhs = affine.vector_load %B[%k, %j] : memref<4096x4096xf32>
      %product = arith.mulf %v_lhs, %v_rhs : vector<8xf32>
      %in = affine.vector_load %C[%i, %j] : memref<4096x4096xf32>
      %acc = arith.addf %in, %product : vector<8xf32>
      affine.vector_store %acc, %C[%i, %j] : memref<4096x4096xf32>
    }
  }
}
```

## EXPLICIT COPYING OR PACKING

- Typically performed in conjunction with tiling
- Pack data being accessed by a 'tile' into a contiguous buffer that fits in cache/fast memory
- 'Compute' tile reads from packed input buffers and writes out to a packed buffer; unpack output buffer.
- Benefits
  - ① Eliminates conflicts misses and thus improves cache locality
  - ② Reduces TLB misses
  - ③ Improves prefetching performance (fewer hardware prefetch streams used)
- Packing involves overhead (copy-in and copy-out)
- Reference: see packing scheme for high-performance matrix-matrix multiplication in this illustration:  
Analytical Modeling is Enough for High Performance BLIS, Low et al., ACM TOMS 2016.

## UNROLL-AND-JAM OR REGISTER TILING

- Improves register reuse
- Multi-dimensional unroll-and-jam (multiple loops) can be performed to simultaneously exploit register reuse along multiple dimensions
- Can be thought of as tiling for register locality except that the tiles are small (variables being reused to fit in registers ideally) and the tile is fully unrolled.
- Improves the compute to load/store operation ratio – extremely important for high-performance on modern architectures
- Sufficient: if it is valid to make a loop the innermost loop, it is valid to unroll-and-jam it.
- More precise: unroll-and-jam is valid iff stripminng the loop by the unroll-and-jam factor and bringing the intra-tile loop to the innermost position is valid
- Multi-dimensional unroll-and-jam (multiple loops)

## UNROLL-AND-JAM OR REGISTER TILING (CONTINUED)

- For a matrix-matrix multiplication in the canonical  $ijk$  form, work out the improvement in compute to load/store ratio when unroll-and-jamming  $i$  and  $j$  loops with factors  $U_i$  and  $U_j$  respectively.
- Assume a register budget of 16 registers in one case and 32 registers in another.

# REDUCTIONS

- Reductions can be parallelized
- Reductions can be vectorized

```
s = 0;  
for (i = 0; i < N; i++)  
    s += A[i];
```

# A COMPOSITION OF TRANSFORMATIONS

```
for (i = 1 i < N; i++)
  // S1.
  B[i] = A[i];

for (i = 1; i < N; i++)
  // S2.
  C[i - 1] = B[i] + B[i - 1]
```

- Original ordering:  $T_{S_1}(i) = (0, i)$ ,  $T_{S_2}(i) = (1, i)$
- Fused + Tiled + Innermost loop distribution
  - Produce a chunk of  $A$  and consume it before a new chunk is produced
  - Transformation:  $T_{S_1}(i) = (i/32, 0, i)$ ,  $T_{S_2}(i) = (i/32, 1, i)$ .

```
for (t1=0;t1<=floord(N-1,32);t1++) {
  for (t3=max(1,32*t1;t3<=min(N-1,32*t1+31);t3++)
    B[t3] = A[t3];
  for (t3=max(1,32*t1);t3<=min(N-1,32*t1+31);t3++)
    C[t3 - 1] = B[t3] + B[t3 - 1];
}
```

- Provides cache locality while also providing parallelism and vectorization.
- Either locality or parallelism/vectorizability would have otherwise been lost with only fusion or only parallelizing without any fusion.

# ALGORITHMS TO FIND TRANSFORMATIONS

- **The history**
  - A data locality optimizing algorithm, Wolf and Lam, PLDI 1991: Improve locality through unimodular transformations
    - Characterize self-spatial, self-temporal, and group reuse
    - Find unimodular transformations (permutation, reversal, skewing) to transform to permutable loop nests with reuse, and subsequently tile them
  - Several advances on polyhedral transformation algorithms through 1990s and 2000s: Feautrier [1991–1992], Lim and Lam (Affine Partitioning) [1997–2001], Pluto [2008–2015]
- **The Present**
  - Polyhedral framework provides a powerful mathematical abstraction (away from the syntax)
  - A number of new techniques, open-source libraries and tools have been developed and are actively maintained
  - Affine abstractions and infrastructure in MLIR