Compiling Affine Loop Nests for a Dynamic Scheduling Runtime on
Shared and Distributed Memory

Roshan Dathathri, Department of Computer Science and Automation, Indian Institute of Science
Ravi Teja Mullapudi, Department of Computer Science and Automation, Indian Institute of Science
Uday Bondhugula, Department of Computer Science and Automation, Indian Institute of Science

Current de-facto parallel programming models like OpenMP and MPI make it difficult to extract task-
level dataflow parallelism as opposed to bulk-synchronous parallelism. Task parallel approaches that use
point-to-point synchronization between dependent tasks in conjunction with dynamic scheduling dataflow
runtimes are thus becoming attractive. Although good performance can be extracted for both shared and
distributed memory using these approaches, there is little compiler support for them.

In this paper, we describe the design of compiler-runtime interaction to automatically extract coarse-
grained dataflow parallelism in affine loop nests for both shared and distributed-memory architectures. We
use techniques from the polyhedral compiler framework to extract tasks and generate components of the
runtime that are used to dynamically schedule the generated tasks. The runtime includes a distributed
decentralized scheduler that dynamically schedules tasks on a node. The schedulers on different nodes co-
operate with each other through asynchronous point-to-point communication — all of this is achieved by code
automatically generated by the compiler. On a set of six representative affine loop nest benchmarks, while
running on 32 nodes with 8 threads each, our compiler-assisted runtime yields a geometric mean speedup
of 143.6 X (70.3X to 474.7x) over the sequential version, and a geometric mean speedup of 1.64 x (1.04 X
to 2.42X) over the state-of-the-art automatic parallelization approach that uses bulk synchronization. We
also compare our system with past work that addresses some of these challenges on shared memory, and
an emerging runtime (Intel Concurrent Collections) that demands higher programmer input and effort in
parallelizing. To the best of our knowledge, ours is also the first automatic scheme that allows for dynamic
scheduling of affine loop nests on a cluster of multicores.

Categories and Subject Descriptors: D.3.4 [Programming Langauges]: Compilers, Run-time environments
General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Parallelization, dynamic scheduling, task parallelism, dataflow runtime,
compiler-runtime framework, distributed-memory architectures, polyhedral model

ACM Reference Format:

Roshan Dathathri, Ravi Teja Mullapudi, and Uday Bondhugula. Compiling Affine Loop Nests for a Dynamic
Scheduling Runtime on Shared and Distributed Memory. ACM Trans. Parallel Comput. V, N, Article A (Jan-
uary 2015), 29 pages.

DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

The design of new languages, compilers, and runtime systems are crucial to provide
productivity and high performance while programming parallel architectures. Clusters
of multicore processors and accelerators such as GPUs have emerged as the parallel
architectures of choice both for medium and high-end high-performance computing.
Integrating language and programming model design with compiler and runtime sup-

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2015 ACM 1539-9087/2015/01-ARTA $15.00

DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January 2015.

A:2

port is naturally a powerful approach owing to the amount of information available
to the compiler and runtime in generating and executing efficient code. Several sys-
tems [Kulkarni et al. 2007;|Bosilca et al. 2012; Bosilca et al. 2010; Ragan-Kelley et al.
2013;Song and Dongarra 2012] have been designed in an integrated manner to various
degrees.

Prevalent parallel programming models like OpenMP and MPI have several limi-
tations that prevent them from delivering high parallel performance for shared and
distributed memory without an extraordinary amount of programming effort. Though
OpenMP and MPI are the most commonly used programming models for shared-
memory and distributed-memory architectures respectively, using them to extract
task-level dataflow parallelism as opposed to bulk-synchronous parallelism is very dif-
ficult to almost infeasible. Bulk-synchronous parallelism is one in which all iterations
of a parallel loop are synchronized in bulk after their execution, and before moving
onto the next set of parallel iterations. Task-level dataflow parallelism is the paral-
lelism that can be extracted from the dynamic dependence graph of tasks (a directed
acyclic graph) — each task itself can correspond to a block of iterations of a parallel
loop or more generally, a piece of computation that is to be executed in sequence atom-
ically, i.e., synchronization or communication is performed only before and after exe-
cution of the task but not during it. Asynchronous parallelization enabled by explicit
point-to-point synchronization between tasks that are actually dependent is known to
provide better performance than bulk-synchronous parallelization [Buttari et al. 2009;
Baskaran et al. 2009; Chandramowlishwaran et al. 2010; Theobald 1999].

Several programming models and runtimes have been proposed to support task-
level dataflow parallelism. Some recent works that address this include that of
[Baskaran et al. 2009]], [Song and Dongarra 2012, DAGuE [Bosilca et al. 2012],
DPLASMA [Bosilca et al. 2010], Concurrent Collections (CnC) [Budimlic et al. 2009]],
the EARTH model [Theobald 1999], the codelet model [Zuckerman et al. 2011]], and
SWARM [Lauderdale and Khan 2012], though in varying contexts. The work of
[Baskaran et al. 2009] is the only one that takes sequential code as input and re-
quires no additional programming effort (i.e., it is fully automatic), but it is applicable
for affine loop nests only on shared-memory architectures.

Although good performance can be extracted for both shared and distributed mem-
ory using the other task-parallel approaches, it still requires considerable program-
ming effort. As an example, one of the key issues in leveraging dynamic scheduling
dataflow runtimes such as CnC is in determining the right decomposition of tasks;
the decomposition and granularity of tasks impacts load balance and synchronization
overheads. Choosing the right decomposition can improve the performance by orders
of magnitude. The decomposition into tasks has a direct connection with loop transfor-
mations such as tiling, making a strong case for integration of compiler support.

In this paper, we make a contribution towards the design of compiler support and
the necessary compiler-runtime interaction for dynamic scheduling dataflow runtimes.
For this purpose, we also develop our own runtime. However, the focus of our work is
in effectively exploiting runtime support and features through powerful compile-time
analysis and transformation to provide a fully automatic solution. This is done so that
efficient execution on shared as well as distributed memory is achieved with no pro-
grammer input. Hence, a distributed-memory cluster of multicores is a typical target.
This work’s objective is not to develop a generic runtime that replaces existing dynamic
scheduling ones like SWARM [Lauderdale and Khan 2012] or CnC [Budimlic et al.
2009]. The choice to develop our own runtime, instead of using SWARM or CnC, in
conjunction with our compiler was driven by the need to allow sufficient customization
for affine loop nests. Our runtime enables communication that is precise at the gran-
ularity of array elements. Dependences between tasks that execute on the same node

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January 2015.

A:3

(local) and those between tasks that execute on different nodes (remote) are allowed
to be handled differently. We use these runtime features by exploiting information ex-
tracted from affine loop nests through static analysis.

We describe the design of compiler-runtime interaction to automatically extract
coarse-grained dataflow parallelism in affine loop nests on both shared and distributed
memory. We use techniques from the polyhedral compiler framework to extract tasks
and generate components of the runtime that are used to dynamically schedule the
generated tasks. The runtime components are lightweight helper functions generated
by the compiler. The task dependence graph is also encapsulated in such compiler-
generated functions. This allows the same generated code to execute in parallel on
shared-memory, distributed-memory, or a combination of both. The runtime includes a
distributed decentralized scheduler that dynamically schedules tasks on a node. The
schedulers on different nodes cooperate with each other through asynchronous point-
to-point communication of data required to preserve program semantics. We are also
able to automatically obtain overlap of computation and communication, and load-
balanced execution. All of this is achieved by code automatically generated by the
compiler.

We build a source-to-source transformation tool that automatically generates code
targeting a dataflow runtime. While running on 32 nodes with 8 threads each, our
compiler-assisted runtime yields a geometric mean speedup of 143.6x (70.3x to
474.7x) over the sequential version, and a geometric mean speedup of 1.64x (1.04x
to 2.42x) over the state-of-the-art automatic parallelization approach that uses bulk-
synchronization. We also compare our system with past work that addresses some of
these challenges on shared-memory, and an emerging runtime (Intel Concurrent Col-
lections) that demands higher programmer input and effort in parallelizing. When
coupled with compiler support including recent advances in automatically generating
MPI code for affine loop nests [Bondhugula 2013a; Dathathri et al. 2013], ours is also
the first system that allows fully automatic dynamic scheduling for affine loop nests
on a cluster of multicores.

The main contributions of this paper can be summarized as follows:

— representing the dynamic dependence graph of tasks in a compact manner using
helper functions generated by the compiler,

— designing the compiler-runtime interface as a set of compiler-generated functions
required by the dataflow runtime,

— designing a novel compiler-assisted dataflow runtime framework that achieves coop-
eration without coordination in distributed dynamic schedulers,

—implementing the compiler-assisted dataflow runtime in a source-level transformer
to allow for dynamic scheduling of affine loop nests on a cluster of multicores,

— an experimental evaluation of the developed system and comparison with a state-of-
the-art parallelization approach that uses bulk-synchronization, demonstrating bet-
ter load balance and communication-computation overlap, which directly translates
into significantly better scaling and performance,

— comparing our fully automatic framework with manually optimized Intel Concur-
rent Collections (CnC) codes making a strong case to develop compiler support for
dataflow runtimes.

The rest of this paper is organized as follows. Section [2] provides background on run-
time design issues. Section[3|describes the design of our runtime in detail and Section
presents implementation details. Experimental evaluation is provided in Section
Section [6] discusses related work and conclusions are presented in Section [7]

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January 2015.

A4

2. MOTIVATION AND DESIGN CHALLENGES

This section describes our objectives, and their implications on the design to be pro-
posed.

2.1. Dataflow and memory-based dependences

It is well known that flow (RAW) dependences lead to communication when paral-
lelizing across nodes with private address spaces. On the other hand, memory-based
dependences, namely anti (WAR) and output (WAW) dependences, do not lead to com-
munication. Previous work [Bondhugula 2013a; Dathathri et al. 2013] has shown that
when multiple writes to an element occur on different nodes before a read to it, only
the last write value before the read can be communicated using non-transitive flow
dependences. Previous work [Bondhugula 2013a] has also shown that the last write
value of an element across the iteration space can be determined independently (write-
out set). Hence, memory-based dependences can be ignored when parallelizing across
nodes but they have to be preserved when parallelizing across multiple cores of a node
that share the address space. We will see that a compiler that targets a runtime for a
distributed-memory cluster of multicores should pay special attention to these.

2.2. Terminology

Tasks: A task is a part of a program that represents an atomic unit of computation.
A task is to be atomically executed by a single thread, but multiple tasks can be si-
multaneously executed by different threads in different nodes. Each task can have
multiple accesses to multiple shared data variables. A flow (RAW) data dependence
from one task to another would require the data written by the former to be com-
municated to the latter, if they will be executed on different nodes. In any case, it
enforces a constraint on the order of execution of those tasks, i.e., the dependent task
can only execute after the source task has executed. Anti (WAR) and output (WAW)
data dependences between two tasks are memory-based, and do not determine com-
munication. Since two tasks that will be executed on different nodes do not share an
address space, memory-based data dependences between them do not enforce a con-
straint on their order of execution. On the other hand, for tasks that will be executed
on the same node, memory-based data dependences do enforce a constraint on their
order of execution, since they share the local memory. There could be many data de-
pendences between two tasks with source access in one task and target access in the
other. All these data dependences can be encapsulated in one inter-task dependence to
enforce that the dependent task executes after the source task. So, it is sufficient to
have only one inter-task dependence from one task to another that represents all data
dependences whose source access is in the former and target access is in the latter. In
addition, it is necessary to differentiate between an inter-task dependence that is only
due to memory-based dependences, and one that is also due to a flow dependence. If
two tasks will be executed on different nodes, an inter-task dependence between them
that is only due to memory-based dependences does not enforce a constraint on the
order of execution. Finally, our notion of task here is same as that of a “codelet” in the
codelet execution model [Zuckerman et al. 2011].

Scheduling tasks: Consider the example shown in Figure |1, where there are 5
tasks Task-A, Task-B, Task-C, Task-D and Task-E. The inter-task dependences deter-
mine when a task can be scheduled for execution. For instance, the execution of Task-A,
Task-B, Task-C, Task-D and Task-E in that order by a single thread on a single node is
valid since it does not violate any inter-task dependence. Let Task-A, Task-B and Task-
D be executed on Node2, while Task-C and Task-E be executed on Nodel, as shown in
Figure 1, On Node2, Task-A can be scheduled for execution since it does not depend

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January 2015.

A5

,,,,,,, ~ WAR/WAW dependences
—— RAW dependences

Task-C - Task-B

Fig. 1: Inter-task dependences example

on any task. Since Task-B depends on Task-A, it can only be scheduled for execution
after Task-A has finished execution. Task-C in Nodel depends on Task-B in Node2,
but the dependence is only due to WAR or WAW data dependences. So, Task-C can be
scheduled for execution immediately. Similarly, Task-E in Nodel can ignore its WAR
or WAW dependence on Task-D in Node2, but it has to wait for Task-C’s completion
before it can be scheduled for execution. On the other hand, Task-D in Node2 depends
on Task-C in Nodel, and it can only be scheduled for execution once it receives the
required data from Task-C.

2.3. Synchronization and communication code

On shared-memory, threads use synchronization constructs to coordinate access to
shared data. bulk synchronization is a common technique used in conjunction with
loop parallelism to ensure that all threads exiting it are able to see writes performed
by others. For distributed-memory, data is shared typically through message pass-
ing communication code. Nodes in a distributed-memory cluster are typically shared-
memory multicores. Bulk synchronization of threads running on these cores could lead
to under-utilization of threads. Dynamically scheduling tasks on threads within each
node eliminates bulk synchronization and balances the load among the threads better.
It also enables asynchronous point-to-point communication that not only reduces run-
time overhead over globally synchronized communication, but also allows overlapping
computation with communication.

To dynamically schedule tasks, inter-task dependences are used at runtime. If the
task dependence graph is built and maintained in shared-memory, then the perfor-
mance might degrade as the number of tasks increase. So, the semantics of the task de-
pendence graph (i.e., all tasks and dependences between tasks) should be maintained
without building the graph in memory. In a distributed cluster of nodes, maintain-
ing a consistent semantic view of the task dependence graph across nodes might add
significant runtime overhead, thereby degrading performance as the number of tasks
increase. To reduce this overhead, each node can maintain its own semantic view of
the task dependence graph, and the required communication between nodes can help
them to cooperatively maintain their semantics without any centralized coordination.

2.4. Objectives
Our key objectives are:

(1) extraction of coarse-grained dataflow parallelism,
(2) allowingload-balanced execution on shared and distributed-memory architectures,

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January 2015.

A:6

(3) overlap of computation and communication, and
(4) exposing sufficient functionality that allows the compiler to exploit all of these
features automatically including generation of communication code.

For the application of loop transformations and parallelism detection, and subse-
quent generation of communication sets, we leverage recent techniques developed us-
ing the polyhedral framework [Bondhugula 2013a; Dathathri et al. 2013]l. The polyhe-
dral framework is used to model computation in sequences of arbitrarily nested loop
nests for purposes of analysis, transformation, and code generation. If the accesses are
affine functions of surrounding loop iterators and program parameters, they are known
as affine accesses. Affine loop nests are loop nests with affine accesses and loop bounds.
A statement’s domain is represented by a polyhedron with its dimensions correspond-
ing to loops surrounding the statement. The set of integer points in it is the execution
domain or the index set of the statement. For affine loop nests, the dependences can
be represented by dependence polyhedra. A dependence polyhedron is a relation be-
tween the source iterators and target iterators (from same or different statements)
that are in dependence. Both the statement’s domain and dependence polyhedra are
characterized by a set of linear inequalities and equalities.

3. COMPILER-ASSISTED DATAFLOW RUNTIME
This section describes the design issues, our choices, and the details of our solution.

3.1. Overview

A task is a portion of computation that operates on a smaller portion of data than the
entire iteration space. Tasks exhibit better data locality, and those that do not depend
on one another can be executed in parallel. With compiler assistance, tasks can be
automatically extracted from affine loop nests with precise dependence information.
Given a distributed-memory cluster of multicores, a task is executed atomically by a
thread on a core of a node. A single task’s execution itself is sequential with synchro-
nization or communication performed only before and after its execution but not during
it. Our aim is to design a distributed decentralized dataflow runtime that dynamically
schedules tasks on each node effectively.

Each node runs its own scheduler without centralized coordination. Figure [2|depicts
the scheduler on each node. Each node maintains a status for each task, and a queue
for the tasks that are ready to be scheduled for execution. There are multiple threads
on each node, all of which can access and update these data structures. Each thread
maintains its own pool of buffers that are reused for communication. It adds more
buffers to this pool if all the buffers are busy in communication.

A single dedicated thread on each node receives data from other nodes. The rest of
the threads on each node compute tasks that are ready to be scheduled for execution.
The computation can update data variables in the local shared memory. After comput-
ing a task, for each node that requires some data produced by this task, the thread
packs the data from the local shared memory to a buffer from its pool that is not being
used, and asynchronously sends this buffer to the node that requires it. After packing
the data, it updates the status of the tasks that are dependent on the task that com-
pleted execution. The receiver thread preemptively posts anonymous asynchronous
receives using all the buffers in its pool, and continuously checks for new completion
messages. Once it receives the data from another node, it unpacks the data from the
buffer to the local shared memory. After unpacking the data, it preemptively posts an-
other anonymous asynchronous receive using the same buffer, and updates the status
of the tasks that are dependent on the task that sent the data. When the status of a
task is updated, it is added to the queue if it is ready to be scheduled for execution.

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January 2015.

A7

n — 1 threads
1 thread P PN <
A N Each compute thread

The receiver thread

Z{Fetch task from queue]

[Post async receives] - - :
§/7 ompute
[Check for new messages] ata space ’—{—p]

I (shared

—N Pack
Unpack memory)
e Y [Post async sends
|]
Update status
e o o [- 7
Receive buffers Send buffers

~~

Task queue Buf m

Buf m

Buf'1 Task status Buf'1

Fig. 2: Overview of the scheduler on each node

Each compute thread fetches a task from the task queue and executes it. While
updating the status of tasks, each thread could add a task to the task queue. A con-
current task queue is used so that the threads do not wait for each other (lock-free).
Such dynamic scheduling of tasks by each compute thread on a node balances the
load shared by the threads better than a static schedule and improves resource uti-
lization [Buttari et al. 2009; Baskaran et al. 2009; (Chandramowlishwaran et al. 2010;
Theobald 1999]]. In addition, each compute thread uses asynchronous point-to-point
communication and does not wait for its completion. After posting the non-blocking
send messages, the thread progresses to execute another task from the task queue (if
it is available) while some communication may still be in progress. In this way, the
communication is automatically overlapped with computation, thereby reducing the
overall communication cost.

Each node asynchronously sends data without waiting for confirmation from the re-
ceiver. Each node receives data without prior coordination with the sender. There is
no coordination between the nodes for sending or receiving data. The only messages
between the nodes is that of the data that is required to be communicated to pre-
serve program semantics. These communication messages are embedded with meta-
data about the task sending the data. The meta-data is used to update the status of
dependent tasks, and schedule them for execution. The schedulers on different nodes
use the meta-data to cooperate with each other. In this way, the runtime is designed
for cooperation without coordination.

3.2. Synthesized Runtime Interface (SRI)

The status of tasks are updated based on dependences between them. A task can be
scheduled for execution only if all its dependent tasks have finished execution. Since
building and maintaining the task dependence graph in memory could have excessive
runtime overhead, our aim is to encapsulate the semantics of the task dependence
graph to yield minimal runtime overhead. To achieve this, we rely on the observation

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January 2015.

A:8

Function call Category Operation

incrementForLocalDependent(task_id) Scheduling Increment numTasksToWait of the task
task.id for each local task that it is de-
pendent on

incrementForRemoteDependent(task_id) Scheduling Increment numTasksToWait of the task
task.id for each remote task that it is de-
pendent on

decrementDependentOfLocal(task_id) Scheduling Decrement numTasksToWait of the tasks
that are dependent on the local task
task.id

decrementDependentOfRemote(task_id) Scheduling Decrement numTasksToWait of the local
tasks that are dependent on the remote
task task_id

countLocalDependent(task_id) Scheduling Returns the number of local tasks that
are dependent on the task task-id

countRemoteDependent(task_id) Scheduling Returns the number of remote tasks that
are dependent on the task task_id

isReceiver(node_id,data_id,task_id) Communication Returns true if the node node.id is a re-
ceiver of elements of data variable data_id
from the task task.id

pack(data_id,task_id, node_id, buffer) Communication Packs elements of data variable data_id
from local shared-memory into the buffer,
that should be communicated from the
task task_id to the node node._id

unpack(data_id,task-id, node_id, buffer) Communication Unpacks elements of data variable
data.id to local shared-memory from the
buffer, that has been communicated from
the task task_id to the node node_id

pi(task-id) Placement Returns the node node.id on which the
task task_id will be executed

compute(task_id) Computation Executes the computation of the task
task_id

Table I: Synthesized Runtime Interface (SRI)

that, for affine loop nests, the incoming or outgoing edges of a task in a task dependence
graph can be captured as a function (code) of that task using dependence analysis. In
other words, the semantics of the task dependence graph can be encapsulated at com-
pile time in functions parametric on a task. These functions are called at runtime to
dynamically schedule the tasks. The set of parameterized task functions (PTF's) gen-
erated for a program form the Synthesized Runtime Interface (SRI) for that program.
We now define the SRI that is required, and show that it can be generated using static
analysis techniques.

A task is an iteration of the innermost parallelized loop that should be executed
atomically. The innermost parallelized loop is the innermost among loops that have
been identified for parallelization, and we will use this term in the rest of this section.
The loops that surround the innermost parallelized loop may or may not be parallel. A
task is uniquely identified using the iteration vector of the innermost parallelized loop,
i.e., the tuple task_id of integer iterator values ordered from the outermost iterator to
the innermost iterator. In addition to task_id, some of the PTFs are parameterized on a
data variable and a node. A data variable is uniquely identified by an integer data_id,

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January 2015.

A9

which is its index position in the symbol table. A node is uniquely identifiable by an
integer node_id, which is typically the rank of the node in the global communicator.

Note that there are alternatives with respect to the choice of the loop depth that de-
fines the task. As per the previous paragraph, the innermost among parallelized loops
was chosen as the one demarcating a task from loops that surround it. However, the
framework we describe will work for any choice of loop depth that defines a task. A
trade-off clearly exists in its choice. Considering a loop nested deeper and carrying a
completely serializing dependence will yield no additional parallelism and incur addi-
tional synchronization overhead due to smaller tasks. On the other hand, considering
a partially or fully parallel loop at a deeper level will increase parallelism and provide
better performance if the reduction in granularity of tasks does not hurt synchroniza-
tion overhead and locality. We consider the choice of the innermost parallelized loop
as the one defining tasks as reasonable, especially in conjunction with tiling. With
tiling and multi-dimensional parallelization, the innermost parallelized loop will be
the innermost tile space loop, since we do not parallelize loops that traverse iterations
within a tile. The tile size chosen controls the task granularity in order to obtain suffi-
cient parallelism and locality while reducing synchronization overhead. Note that any
transformations that alter the schedule of loops surrounding the task do not affect the
outcome of dynamic scheduling. There may be loops carrying dependences surrounding
the innermost parallelized loop, and dynamic scheduling will enable extraction of par-
allelism from across tasks generated from all iterations of the loop nest surrounding
the task, and from across tasks pertaining to different statements as well.

The PTFs can access and update data structures that are local to the node, and are
shared by the threads within the node. The PTFs we define can access and update the
following locally shared data structures:

(1) readyQueue (task queue): a priority queue containing task_id of tasks that are
ready to be scheduled for execution.

(2) numTasksToWait (task status): a hash map from task.id of a task to a state or
counter, indicating the number of tasks that the task has to wait before it is ready
to be scheduled for execution.

The PTFs do not coordinate with other nodes to maintain these data structures, since
maintaining a consistent view of data structures across nodes might add significant
runtime overhead. So, all operations within a PTF are local and non-blocking.

The name, arguments, and operation of the PTFs in the SRI are listed in Table|ll The
PTFs are categorized into those that assist scheduling, communication, placement, and
computation.

Inter-task dependences: [Baskaran et al. 2009] describe a way to extract inter-tile
dependences from data dependences between statements in the transformed iteration
space. Inter-task dependences can be extracted in a similar way. Figure [3|illustrates
the inter-task dependences for an example. Recall that a task is an iteration of the
innermost parallelized loop. For each data dependence polyhedron in the transformed
iteration space, all dimensions inner to the innermost parallelized loop in the source
domain and the target domain are projected out to yield an inter-task dependence poly-
hedron corresponding to that data dependence. As noted in Section it is sufficient
to have only one inter-task dependence between two tasks for all data dependences be-
tween them. Therefore, a union of all inter-task dependence polyhedra corresponding
to data dependences is taken to yield the inter-task dependence polyhedron.

Note that a single task can be associated with multiple statements in the polyhe-
dral representation. In particular, all statements inside the innermost parallelized
loop characterizing the task are the ones associated with the task. A task can also be

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January 2015.

A:10

t [Tasks — Dependence (1,0) t [Tasks - & Inter-task dependences
— Dependenie (11,1)
0 VA V) 4 s)
D V) V) 4 N Vi 4 e e iyl O Gl B s
0) VA 4 A V4 e e) T A A5
for (t=1; t<=T—1; t++) ZAVA VA VA VAV VA vy , : d :
for (i=1; i<=N—1; i++) () V) V) | 4 N Vi 4 e e : L’ ! i !
altl[i] = 0))\ | A V4 e e) by B) s e U B s
a[t—1][i—1]+al[t—1][il; 0 V0 V) | 4| Ve VA Ve A s e i A0 AT
0) VA A V4 e e) 'L 1L 0
V%% %1% %% 4 B % B R ESEEE
0 V) V) | 4 A VA i 4 e e
i i
(a) Original code (b) Dependences between iterations (c) Dependences between tasks

Fig. 3: Illustration of inter-task dependences for an example

created for a statement with no surrounding parallel loops, but is part of a sequence of
loop nests with parallel loops elsewhere.

We now introduce notation corresponding to background presented on the polyhe-
dral framework in Section 2| Let Sq, Ss, ..., S,, be the statements in the polyhedral
representation of the program, mg be the dimensionality of statement S, d;, and d; be
the depths of the innermost parallelized loops corresponding to tasks 7; and T respec-
tively, s(7') be the set of polyhedral statements in task 7', and D, be the dependence
polyhedron for a dependence edge ¢ € E between S, and S,. Let project_out(P,i,n) be
the polyhedral library routine that projects out n dimensions from polyhedron P start-
ing from dimension number i (0-indexed). Then, the inter-task dependence polyhedron
for tasks 7; and 7 is computed as follows:

D. = project_out (De,ms, +dj,ms, — d;)

€

DT = project_out (D;, di,ms, — di)

U Qaﬂezf>. (1)

{ele=(5p,Sq), Sp€Ti, Sq€T;}

DY(T; — T;)

In the above, DI captures dependence instances between S, and S, only on the di-
mensions surrounding the respective tasks, more simply the inter-task dependence in-
stances. Equation (1) thus provides dependences between task instances of T; and T3,
with the union being performed for edges from any statement in 7; to any statement
inT;.

lele inter-task dependence polyhedron is a key compile-time structure. All PTFs that
assist in scheduling rely on it. A code generator such as Cloog [Bastoul 2013]] is used
to generate code iterating over certain dimensions of DT (T; — T;) while treating a
certain number of outer ones as parameters. For example, if the target tasks need to
be iterated over for a given source task, we treat the outer d; dimensions in D7 as
parameters and generate code scanning the next d; dimensions. If the source tasks are
to be iterated over given a target task, the dimensions are permuted before a similar
step is performed.

Constraints on scheduling: As illustrated in the example in Section [2.2] memory-
based data dependences, i.e., WAR and WAW dependences, do not enforce a constraint

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January 2015.

Type of Parameterized Iterates Conditionon Conditional action
dependence on over enumerated
task
RAW, WAR source .)
or WAW target task tasks local task numTasksToWait[target_task_id]++
(a) incrementForLocalDependent
Type of Parameterized Iterates Condition on Conditional action
dependence on over enumerated task
RAW target task source remote task numTasksToWait[target_task_id]++
tasks
(b) incrementForRemoteDependent
Type of Parame- Iterates Condition on Conditional action
dependence terized on over enumerated task
numTasksToWait[target_task_id]——
RAW, WAR source task target none If target task is local AND
or WAW tasks numTasksToWait[target_task_id] == 0:
readyQueue.push(target_task_id)
(c) decrementDependentOfLocal
Type of Parame- Iterates Condition on Conditional action
dependence terized on over enumerated task
numTasksToWait[target_task_id]——
RAW source task target local task If numTasksToWait[target_task.-id] == 0:
tasks readyQueue.push(target_task_id)
(d) decrementDependentOfRemote
Type of Parameterized Iterates Condition on Conditional action
dependence on over enumerated task
RQWWXVV%R source task Ezgizt local task return_count++
(e) countLocalDependent
Type of Parameterized Iterates Condition on Conditional action
dependence on over enumerated task
RAW source task target remote task return_count++
tasks

(f) countRemoteDependent

Table II: Synthesized Runtime Interface (SRI) that assists dynamic scheduling: gener-
ated by analyzing inter-task dependences (decrementDependentOfRemote() should be
called for remote tasks while the rest should be called for local tasks)

on the order of execution of tasks on different nodes since those tasks will not share
an address space at execution time. So, the inter-task dependence polyhedron between
tasks placed on different nodes is extracted using RAW dependence polyhedra alone.
On the other hand, memory-based data dependences do enforce a constraint on the or-
der of execution of tasks on the same node. So, the inter-task dependence polyhedron
between tasks on the same node is extracted using RAW, WAR and WAW dependence

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January 2015.

A:12

Algorithm 1: Distributed Function-based Dynamic Scheduling (DFDS)

1 (numTasksToCompute, numTasksToReceive) + initTasks()
2 begin parallel region

3 if thread_id == 0 then

L // single dedicated receiver thread

'

receiveDataFromTasks(numTasksToReceive)

o

// compute threads
6 computeTasks(numTasksToCompute)

polyhedra. For a PTF that traverses the incoming edges of a task, the target task in
the inter-task dependence polyhedron is treated as a parameter, and code is generated
to enumerate the source tasks. For a PTF that traverses the outgoing edges of a task,
the source task in the inter-task dependence polyhedron is treated as a parameter, and
code is generated to enumerate the target tasks. Each PTF can check if the enumer-
ated task is local or remote (using the placement PTF), and then perform an action
dependent on that. Table [II| summarizes this for each PTF that assists scheduling.

Communication and placement: [Dathathri et al. 2013]] generate data movement
code for distributed-memory architectures by parameterizing communication on an
iteration of the innermost parallelized loop. Since the data to be communicated could
be discontiguous in memory, the sender packs it into a buffer before sending it, and the
receiver unpacks it from the buffer after receiving it. We adapt the same techniques
(flow-out partitioning) to parameterize communication on a task. A PTF is generated
to pack elements of a data variable written in a task from local shared-memory into a
buffer that should be communicated to a node. Similarly, a PTF is generated to unpack
elements of a data variable written in a task to local shared-memory from a buffer that
has been communicated to a node. In addition, a PTF is generated to determine if a
node is a receiver of the elements of a data variable written in a task. The pi function
(Table|l) provides the placement of tasks. Section will discuss when the placement
can be determined and specified (in essence, our framework supports determining the
placement of all tasks at runtime before any task has been executed).

Computation: We enumerate all tasks and extract computation for a parameter-
ized task using techniques described by [Baskaran et al. 2009]. For each innermost
parallelized loop in the transformed iteration space, from the iteration domain of a
statement within the loop, all dimensions inner to the innermost parallelized loop are
projected out. The code generated to traverse this domain will enumerate all tasks in
that distributed loop at runtime. To extract the computation PTF, the iteration domain
of all statements within the innermost parallelized loop is considered. All outer dimen-
sions up to and including the innermost parallelized loop are treated as parameters,
and code is generated to traverse dimensions inner to the innermost parallelized loop.

Thread-safety: A concurrent priority queue is used as the readyQueue. Atomic in-
crements and decrements are used on the elements of numTasksToWait. unpack is the
only PTF that modifies original data variables in local shared-memory. So, the runtime
has to ensure that the unpack PTF of a (remote) task is not called while a local task
that the task depends on or a local task that depends on the task (through flow, anti,
or output dependence) is being executed. As long as the unpack PTF respects the local
inter-task dependence constraints, all PTFs can be simultaneously called with differ-
ent parameters by different threads in a node without affecting program semantics.

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January 2015.

A:13

Algorithm 2: initTasks()

1 my_node_id < node_id of this node

2 numTasksToCompute < 0

3 numTasksToReceive + 0

4 for each task_id do

5 if pi(task_id) == my_node_id then // local task
6 numTasksToCompute+-+

7 incrementForLocalDependent(task_id)

8 incrementForRemoteDependent(task_id)

9 if numTasksToWait[task_id] == 0 then

10 | readyQueue.push(task_id)

11 efse // remote task

12 numReceivesToWait[task_id] < 0

13 for each data_id do

14 if isReceiver(my_node_id,data_id,task_id) then
15 L numReceivesToWait[task_id]++

16 if numReceivesToWait[task_id] > 0 then

17 numTasksToReceive+-+

18 incrementForLocalDependent(task_id)

O]ltput: (numTasksToCompute, numTasksToReceive)

3.3. Distributed Function-based Dynamic Scheduling (DFDS)

Compiler assistance or hints can make a runtime more efficient by reducing runtime
overhead. A runtime, that a compiler can automatically generate code for, is even more
useful since efficient parallel code is directly obtained from sequential code, thereby
eliminating programmer burden in parallelization. As mentioned earlier, our goal is
to build a runtime that is designed to be targeted by a compiler. In particular, we
design a distributed decentralized runtime that uses the SRI generated by a compiler
to dynamically schedule tasks on each node. Hence, we call this runtime Distributed
Function-based Dynamic Scheduling (DFDS). Algorithm (1| shows the high-level code
generated for DFDS that is executed by each node. Initially, each node initializes the
status of all tasks. It also determines the number of tasks it has to compute and the
number of tasks it has to receive from. After initialization, a single dedicated thread
receives data from tasks executed on other nodes, while the rest of the threads compute
tasks that are assigned to this node and these could send data to other nodes.

Algorithm [2] shows the code generated to initialize the status of tasks. For each local
task, its numTasksToWait is initialized to the sum of the number of local and remote
tasks that it is dependent on. If a local task has no tasks that it is dependent on, then
it is added to the readyQueue. For each remote task, a counter numReceivesToWait is
determined, which indicates the number of data variables that this node should re-
ceive from that remote task. If any data is going to be received from a remote task,
then its numTasksToWait is initialized to the number of local tasks that it is dependent
on. This is required since the unpack PTF cannot be called on a remote task until all
the local tasks it depends on (through flow, anti, or output dependences) have com-
pleted. Note that the for-each task loop can be parallelized with numTasksToCompute
and numTasksToReceive as reduction variables, and atomic increments to elements of
numReceivesToWait.

Algorithm [3|and Algorithm [4{ show the generated code that is executed by a compute
thread. A task is fetched from the readyQueue and its computation is executed. Then,

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January 2015.

A:14

Algorithm 3: computeTasks()

Input: numTasksToCompute
1 while numTasksToCompute > 0 do
(pop-succeeded, task_id) < readyQueue.try_pop()
if pop_succeeded then
compute(task_id)
sendDataOfTask(task_id)
decrementDependentOfLocal(task_id)
atomic numTasksToCompute——

S O e WN

Algorithm 4: sendDataOfTask()

Input: task_id

1 my_node_id < node_id of this node

2 for each data_id do

for each node_id # my_node_id do

if isReceiver(node_id,data_id,task_id) then

Let i be the index of a send_buffer that is not in use
Put task_id to send_buffer[i]
pack(data_id, task_id, node_id, send_buffer[i])
Post asynchronous send from send_buffer[i] to node_id

®W TG ®

for each data variable and receiver, the data that has to be communicated to that
receiver is packed from local shared-memory into a buffer that is not in use. If all the
buffers in the pool are being used, then a new buffer is created and added to the pool.
The task.id of this task is added as meta-data to the buffer. The buffer is then sent
asynchronously to the receiver, without waiting for confirmation from the receiver.
Note that the pack PTF and the asynchronous send will not be called if all the tasks
dependent on this task due to RAW dependences will be executed on the same node. A
local task is considered to be complete from this node’s point-of-view only after the data
it has to communicate is copied into a separate buffer. Once a local task has completed,
numTasksToWait of its dependent tasks is decremented. This is repeated until there are
no more tasks to compute.

Algorithm |5| shows the generated code that is executed by the receiver thread. Ini-
tially, for each data variable, an asynchronous receive from any node (anonymous) is
preemptively posted to each buffer for the maximum number of elements that can be
received from any task. Reasonably tight upper bounds on the required size of buffers
are determined from the communication set constraints, which are all affine, and thus
amenable to static analysis. This is used to determine the maximum number of ele-
ments that can be received from any task.

Each receive is checked for completion. If the receive has completed, then the meta-
data task.id is fetched from the buffer. If all the local tasks that task.id depends on
(through flow, anti, or output dependences) have completed, then the data that has
been received from the task task.id is unpacked from the buffer into local shared-
memory, [[| and numReceivesToWait of task_id is decremented. A data variable from a

ITasks need not be unpacked in the order in which they are received because they may have to wait until
the local tasks they depend on have completed. In this way, the unpack PTF of a (remote) task respects the
dependence constraints between local tasks and the task. On the other hand, the unpack PTF of a (remote)
task ignores the dependence constraints between the task and other remote tasks. If there are multiple

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January 2015.

A:15

Algorithm 5: receiveDataFromTasks()

Input: numTasksToReceive
1 my_node_id < node_id of this node
for each data_id and index i of receive_buffer do
| Post asynchronous receive to receive buffer[i] with any node_id as source

W N

4 while numTasksToReceive > 0 do
5 for each data_id and index i of receive_buffer do
6 if asynchronous receive to receive_buffer(i] has completed then
7 Extract task_id from receive_buffer[i]
8 if numTasksToWait[task_id] == 0 then
9 unpack(data_id,task_id, my_node_id, receive_buffer[i])
10 numReceivesToWaitl[task_id]——
11 if numReceivesToWait[task_id] == 0 then
12 decrementDependentOfRemote(task_id)
13 L numTasksToReceive——
14 Post asynchronous receive to receive_buffer[i] with any node_id as source

task is considered to be received only if the data has been updated in local shared-
memory, i.e., only if the data has been unpacked. Once the data has been unpacked
from a buffer, an asynchronous receive from any node (anonymous) is preemptively
posted to the same buffer. A remote task is considered to be complete from this node’s
point-of-view only if it has received all the data variables it needs from that task. Once
a remote task has completed, numTasksToWait of its dependent tasks is decremented.
If all the receive buffers have received data, but have not yet been unpacked, then
more buffers are created and an asynchronous receive from any node (anonymous) is
preemptively posted to each new buffer. This is repeated until there are no more tasks
to receive from.

While evaluating our runtime, we observed that a dedicated receiver thread is
under-utilized since almost all its time is spent in busy-waiting for one of the non-
blocking receives to complete. Hence, we believe that a single receiver thread is suffi-
cient to manage any amount of communication. To avoid under-utilization, the gener-
ated code was modified such that the receiver thread also executed computation (and
its associated functions) instead of busy-waiting. We observed that there was almost no
difference in performance between a dedicated receiver thread and a receiver thread
that also computed. There is a trade-off: although a dedicated receiver thread is under-
utilized, it is more responsive since it can unpack data (and enable other tasks) soon
after a receive. The choice might depend on the application. Our tool can generate code
for both such that it can be chosen at compile-time. The algorithms are presented as is
for clarity of exposition.

Priority: Priority on tasks can improve performance by enabling the priority queue
to choose between many ready tasks more efficiently. There are plenty of heuristics to
decide the priority of tasks to be executed. Though this is not the focus of our work, we
use PTF's to assist in deciding the priority. A task with more remote tasks dependent
on it (countRemoteDependent()) has higher priority since data written in it is required
to be communicated to more remote tasks. This helps initiate communication as early
as possible, increasing its overlap with computation. For tasks with the same number
of remote tasks dependent on it, the task with more local tasks dependent on it (count-

writes to an element in different remote tasks, only the last write before the read in a local task is communi-
cated (using non-transitive flow dependences). So, the order of unpacking (remote) tasks is inconsequential.

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January 2015.

A:16

LocalDependent()) has higher priority since it could enable more tasks to be ready for
execution. We plan to explore more sophisticated priority schemes in the future.

Dynamic a priori placement: When the status of the tasks are being initialized at
runtime, DFDS expects the placement of all tasks to be known, since its behavior de-
pends on whether a task is local or remote. The placement of all tasks can be decided at
runtime before initializing the status of tasks. In such a case, a hash map from a task
to the node that will execute the task should be set consistently across all nodes before
the call to initTasks() in line 1 of Algorithm I} The placement PTF would then read the
hash map. DFDS is thus designed to support dynamic a priori placement. To find the
optimal placement automatically is not the focus of this work. In our evaluation, we
use a block placement function except in cases where non-rectangular iteration spaces
are involved — in such cases, we use a block-cyclic placement. This placement strategy
yields good strong scaling on distributed-memory for the benchmarks we have evalu-
ated, as we will see in Section [5.2] Determining more sophisticated placements includ-
ing dynamic a priori placements is orthogonal to our work. Recent work by [Reddy and
Bondhugula 2014] explores this independent problem.

4. IMPLEMENTATION

We implement our compiler-assisted runtime as part of a publicly available source-
to-source polyhedral tool chain. Clan [Bastoul 2012f], ISL [Verdoolaege 2014],
Pluto [Bondhugula 2013b|l, and Cloog-isl [Bastoul 2004] are used for polyhedral extrac-
tion, dependence testing, automatic transformation, and code generation, respectively.
[Polylib 2010 is used to implement the polyhedral operations in Section

The input to our compiler-assisted runtime is sequential code containing arbitrarily
nested affine loop nests. The sequential code is tiled and parallelized using the Pluto
algorithm [Bondhugula et al. 2008;|Bandishti et al. 2012]. Loop tiling helps reduce the
runtime overhead and improve data locality by increasing the granularity of tasks.
The tiling transformation, i.e., the shape of tiles, dictates the decomposition of tasks
and the tile size controls the granularity of tasks. The SRI is automatically gener-
ated using the parallelized code as input. The DFDS code for either shared-memory or
distributed-memory systems is then automatically generated. The code generated can
be executed either on a shared-memory multicore or on a distributed-memory cluster
of multicores. Thus, ours is a fully automatic source-transformer of sequential code
that targets a compiler-assisted dataflow runtime.

The concurrent priority queue in Intel Thread Building Blocks [Intel TBB 2014] is
used to maintain the tasks that are ready to execute. Parametric bounds of each dimen-
sion in the task_id tuple are determined, and these, at runtime, yield bounds for each
of the outer dimensions that were treated as parameters. A multi-dimensional array
of dimensionality equal to that of the task_id tuple is allocated at runtime. The extent
of each dimension of this array corresponds to the difference of the upper and lower
bounds of the corresponding dimension in the task_id tuple. This is used to maintain
the task statuses numTasksToWait and numReceivesToWait as arrays instead of hash
maps. The status of a task_id can then be accessed by offsetting each dimension in the
array by the lower bound of the corresponding dimension in the task_id tuple. Thus, the
memory required to store the task status is minimized, while accessing it is efficient.
Asynchronous non-blocking MPI primitives are used to communicate between nodes
in the distributed-memory system.

5. EXPERIMENTAL EVALUATION

Benchmarks: We present results for Floyd-Warshall (f1oyd), LU Decomposition (1u),
Cholesky Factorization (cholesky), Alternating Direction Implicit solver (adi), 2d Fi-
nite Different Time Domain Kernel (fdtd-2d), Heat 2d equation (heat-2d) and Heat

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January 2015.

A7

3d equation (heat-3d) benchmarks. The first five are from the publicly available Poly-
bench/C 3.2 suite [Polybench 2012]; heat-2d and heat-3d are widely used stencil com-
putations [Tang et al. 2011]]. All benchmarks use double-precision floating-point op-
erations. The compiler used for all experiments is ICC 13.0.1 with options ‘-O3 -ansi-
alias -ipo -fp-model precise’. These benchmarks were selected from a larger set since
(a) their parallelization involves communication and synchronization that cannot be
avoided, and (b) they capture different kinds of communication patterns that result
from uniform and non-uniform dependences including near-neighbor, multicast, and
broadcast style communication. Table lists the problem sizes and tile sizes used.
We found the variation in performance over multiple runs negligible — the standard
deviation over at least three runs was less than 1.8% of the mean in all cases. The
results presented hereafter are for a single execution of a benchmark.

Shared memory Distributed memory
Benchmarks Tile sizes Tile sizes
Problem sizes Problem size
auto manual-CnC auto manual-CnC
adi - - - N=8192, T=128 256 (2d) -
heat-2d N=8192, T=1024 64 (3d) 256 (2d) N=8192, T=1024 16 (3d) 256 (2d)
heat-3d N=512, T=256 16 (4d) 64 (3d) - - -
fdtd-2d N=4096, T=1024 16(3d) 256 (2d) N=8192, T=1024 32(3d) 256 (2d)
floyd N=4096 256 (2d) 256 (2d) N=8192 512(2d) 512 (2d)
cholesky N=8192 8 (3d) 128 (3d) N=16384 128 (3d) 128 (3d)
lu N=8192 64 (3d) 128 (3d) N=16384 256 (3d) 128 (3d)

Table III: Problem sizes and tile sizes:

— auto represents auto-DFDS, auto-static, and auto-graph-dynamic;

— data is tiled in manual-CnC but not in auto;

— tiling transformations for auto and manual-CnC may differ;

— auto uses load-balanced (diamond) tiling transformations for heat-2d, heat-3d, and fdtd-2d (stencil codes);

— on distributed memory, auto uses block-cyclic placement for lu and cholesky (non-rectangular iteration
spaces) and block placement for the rest.

Intel Concurrent Collections (CnC) implementations: To compare our auto-
matically generated codes against a manually optimized implementation, we imple-
mented heat-2d, heat-3d, fdtd-2d and lu using Intel Concurrent Collections [Intel
CnC 2013]. We include floyd and cholesky from the Intel CnC samples; the cholesky
benchmark we compare against does not use MKL routines. The Intel CnC version
used is 0.9.001 for shared-memory experiments, and 0.8.0 for distributed-memory ex-
periments.

The cholesky implementation is detailed in a previous performance evaluation of
Intel CnC [Chandramowlishwaran et al. 2010]. Our Intel CnC implementations use
computation and data tiling for coarsening task granularity and improving locality. Ta-
ble [L1I| shows the tile sizes chosen for each benchmark. In case of distributed-memory,
we also ensure that communication is precise, i.e., we only communicate that which
is necessary to preserve program semantics. Tiling and precise data communication
constitute most of the programming effort. Additionally, we specify the nodes that con-
sume the data produced in a task (the consumed_on() tuner), which helps the runtime
to push the data to be communicated to the nodes that require it. We observe that the
push model performs much better than the default pull model (pulling data when it
is required) in our context. We also provide the exact number of uses for each data
buffer so that the CnC runtime can efficiently garbage collect it and reduce memory

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January 2015.

A:18

footprint. For each benchmark, we assign higher priority to tasks that communicate to
other nodes. Thus, our Intel CnC implementations have been tuned with considerable
effort to extract high performance. Note that all these components which are tedious
and error prone to write manually are automatically generated by our framework.

5.1. Shared-memory architectures

Setup: The experiments were run on a four socket machine of AMD Opteron 6136
2.4 GHz, 128 KB L1, 512 KB L2, and 6 MB L3 cache. The memory architecture is
NUMA, and we use numactl to bind threads and pages suitably for all our experiments.

Evaluation: We compare the performance of our automatic approach (auto-DFDS)
with:

— hand-optimized Intel CnC codes (manual-CnC),

— state-of-the-art automatic dynamic scheduling approach [Baskaran et al. 2009] that
constructs the entire task dependence graph in memory (auto-graph-dynamic), and

— state-of-the-art automatic static scheduling approach [Bondhugula et al. 2008; Ban-
dishti et al. 2012]] that uses bulk-synchronization (auto-static).

For auto-graph-dynamic, the graph is constructed using Intel Thread Building Blocks
[Intel TBB 2014] Flow Graph (TBB is a popular work stealing based library for task
parallelism). All the automatic schemes use the same polyhedral compiler transforma-
tions (and the same tile sizes). The performance difference in the automatic schemes
thus directly relates to the efficiency in their scheduling mechanism.

Analysis: Figure [4 shows the scaling of all approaches relative to the sequential
version (seq) which is the input to our compiler. Note that the performance of auto-
DFDS and auto-static on a single thread is different from that of seq due to automatic
transformations for the former. auto-DFDS scales well with an increase in the number
of threads, and yields a geometric mean speedup of 22.8 x (7.9x to 44.7x) on 32 threads
over the sequential version. The runtime overhead of auto-DFDS (to create and manage
tasks) on 32 threads is less than 1% of the overall execution time for all benchmarks,
except cholesky for which it is less than 3%.

auto-DFDS scales better than or comparably to both auto-graph-dynamic and auto-
static. For auto-DFDS and auto-static, we measured the computation time of each
thread, and calculated the mean and standard deviation of these values. Table
shows the standard deviation divided by mean, which provides a fair measure of
the load balance. auto-DFDS balances load much better than auto-static, thereby de-
creasing the overall execution time. We also measured the maximum idle time across
threads for both auto-DFDS and auto-static, which includes the synchronization time.
Figure |5 shows that all threads are active for most of the time in auto-DFDS, unlike
auto-static.

Figure[6]shows the speedup of auto-DFDS over manual-CnC on both 1 thread and 32
threads. The speedup on 32 threads is as good as or better than that on 1 thread, except
for floyd. This shows that auto-DFDS scales as well as or better than manual-CnC. In
the CnC model, programmers specify tasks along with data they consume and produce.
As a result, data is decomposed along with tasks, i.e., data is also tiled. For example,
a 2d array when 2d tiled yields a 2d array of pointers to a 2d sub-array (tile) that is
contiguous in memory. Such explicit data tiling transformations yield better locality
at all levels of memory or cache. Due to this, manual-CnC outperforms auto-DFDS for
floyd, lu, and cholesky. manual-CnC also scales better for floyd because of privati-
zation of data tiles with increase in the number of threads; privatization allows reuse
of data along the outer loop, thereby achieving an effect similar to that of 3d tiling.
To evaluate this, we implemented manual-CnC without the data tiling optimizations
for both floyd and lu. Figure [4) validates our hypothesis by showing that manual-CnC-

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January 2015.

Speedup

Speedup

Speedup

64
© auto-DFDS
32 | ¥ auto-static
manual-CnC

16 | manual-CnC-no-data-tiling
@ auto-graph-dynamic

05 1 1 1 1 J
1 2 4 8 16 32
Number of Threads
(a) floyd — seq time is 231s
32 r
© auto-DFDS
16 #®* auto-static
manual-CnC

@ auto-graph-dynamic

1 2 4 8 16 32
Number of Threads
(c) fdtd-2d — seq time is 222s
32 r
© auto-DFDS
16 L % auto-static
manual-CnC
@ auto-graph-dynami
8

05 1 1 1 1 J
4 8 16 32

Number of Threads
(e) heat-3d — seq time is 609s

Speedup

Speedup

Speedup

A:19

128
© auto-DFDS
64 [% auto-static
manual-CnC

32 [& manual-CnC-no-data-tiling _
@ auto-graph-dyhamic

—_

1 2 4 8 16 32
Number of Threads

(b) lu — seq time is 796s

© auto-DFDS
32 | % auto-static
manual-CnC
16 | @ auto-graph-dynamic
8
4
2
1 -
05 1 1 1 1 J
1 2 4 8 16 32

Number of Threads
(d) heat-2d — seq time is 875s

64
© auto-DFDS
32 | ¥ auto-static
manual-CnC

@ auto-graph-dynamic

05 1 1 1 1 J
1 2 4 8 16 32

Number of Threads
(f) cholesky — seq time is 640s

Fig. 4: Speedup of auto-DFDS, auto-static, and manual-CnC over seq on a shared-
memory multicore

no-data-tiling versions perform similar to auto-DFDS, indicating the need for improved
compiler transformations for data tiling. For fdtd-2d, heat-2d, and heat-3d, automatic
approaches find load-balanced computation tiling transformations [Bandishti et al.|

|[ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January 2015.]

A:20

100
= auto-static
m auto-DFDS

80 |

60 |

40 [

% of total time

20 |

lu

e, e, o,
G ¢ Q.
Woy Rty 2

Cho, /QS@ o Vo
Fig. 5: Maximum idle time across 32 threads on a shared-memory multicore

2012] that also tile the outer serial loop. These are hard and error prone to implement
manually and almost never done in practice. Consequently, manual-CnC codes only
tile the parallel loops and not the outer serial loop. In these cases, auto-DFDS signif-
icantly outperforms manual-CnC: this highlights the power of automatic task gener-
ation frameworks used in conjunction with runtimes. Storage mapping or automatic
data tiling transformations [Yuki and Rajopadhye 2013; Reddy and Bondhugula 2014]
can make our approach even more effective, and match the performance of manual
implementations like CnC.

Shared-memory Distributed-memory

Benchmarks (32 threads) (32 nodes)
static DFDS static DFDS
adi - - 2.58 3.12
heat-2d 23.74 0.65 3.67 2.22
heat-3d 46.66 0.09 - -
fdtd-2d 22.28 1.14 3.52 1.29
lu 37.48 1.36 67.45 16.13
cholesky 57.34 0.39 48.96 8.09
floyd 102.35 0.08 174.78 3.25

Table IV: Standard-deviation over mean of computation times of all threads in %: lower
value indicates better load balance

5.2. Distributed-memory architectures

Setup: The experiments were run on a 32-node InfiniBand cluster of dual-SMP Xeon
servers. Each node on the cluster consists of two quad-core Intel Xeon E5430 2.66
GHz processors with 12 MB L2 cache and 16 GB RAM. The InfiniBand host adapter
is a Mellanox MT25204 (InfiniHost III Lx HCA). All nodes run 64-bit Linux kernel
version 2.6.18. The cluster uses MVAPICH2-1.8.1 as the MPI implementation. It pro-
vides a point-to-point latency of 3.36 us, unidirectional and bidirectional bandwidths of
1.5 GB/s and 2.56 GB/s respectively. The MPI runtime used for running CnC samples
is Intel MPI as opposed to MVAPICH2-1.8.1, as CnC works only with the Intel MPI
runtime.
Evaluation: We compare our fully automatic approach (auto-DFDS) with:

— hand-optimized Intel CnC codes (manual-CnC), and

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January 2015.

A:21

1-thread 1-node
== 32-threads == 32-nodes

Speedup
Speedup

05 0.5

025 | + + 0.25

0.125

0.125
e, he, g, u Ch, o, he, g,
3 8 (8 0/ QL. Q.
gy U5y Ty sk, Yo 2y 2y

%

C’V%S " Moy
y

Fig. 6: Speedup of auto-DFDS over Fig. 7: Speedup of auto-DFDS over
manual-CnC - shared-memory manual-CnC - distributed-memory

— arecent automatic parallelization approach on distributed-memory [Dathathri et al.
2013] that uses bulk synchronization (auto-static).

All the automatic schemes use the same polyhedral compiler transformations, and the
same tile sizes. The performance difference in the automatic schemes thus directly
relates to the efficiency in their scheduling mechanism.

Analysis: Figure [8] shows the scaling of all approaches relative to the sequential
version (seq) which is the input to our compiler. Note that the performance of auto-
DFDS and auto-static on a single thread is different from that of seq due to automatic
transformations for the former. auto-DFDS scales well with an increase in the number
of nodes, and yields a geometric mean speedup of 143.6 x (70.3x to 474.7x) on 32 nodes
over the sequential version. The runtime overhead of auto-DFDS (to create and manage
tasks) on 32 nodes is less than 1% of the overall execution time for all benchmarks.

auto-DFDS yields a geometric mean speedup of 1.64x (1.04x to 2.42x) over auto-
static on 32 nodes. For both of them, we measured the computation time of each thread
on each node, and calculated the mean and standard deviation of these values. Ta-
ble [[V|shows the standard deviation divided by mean, which provides a fair measure
of the load balance. auto-DFDS achieves good load balance even though the computa-
tion across nodes is statically distributed. auto-DFDS balances load much better than
auto-static, thereby decreasing the overall execution time.

We measured the maximum communication time across all threads in auto-static,
and the maximum idle time across all threads in auto-DFDS, which would include the
non-overlapped communication time. Figure@compares the maximum communication
time and the maximum computation time for auto-static on 32 nodes, and shows that
communication is a major component of the overall execution time. Figure [10| shows
the reduction factor in non-overlapped communication time achieved by auto-DFDS on
32 nodes. The graphs show that auto-DFDS outperforms auto-static mainly due to bet-
ter communication-computation overlap achieved by performing asynchronous point-
to-point communication.

Figure [7| shows the speedup of auto-DFDS over manual-CnC on both 1 node and 32
nodes. The speedup on 32 nodes is as good as or better than that on 1 node. This
shows that auto-DFDS scales as well as or better than manual-CnC. The performance
difference between auto-DFDS and manual-CnC on 32 nodes is due to the performance
difference between them on a single node (shared-memory multicore). Hence, as shown
in our shared-memory evaluation in Section auto-DFDS outperforms manual-CnC
when compiler transformations like computation tiling and time skewing [Wonnacott

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January 2015.

|A:22

256 1024
© auto-DFDS © auto-DFDS
108 | ¥ auto-static 512 | % auto-static /6
manual-CnC o56 | manual-CnC /v
128 e
o o
° 3 64
[0 [0}
< g 32
%) %)
16
8
2 1 1 1 1 J 1 1 1 1 J
1 2 4 8 16 32 1 2 4 8 16 32
Number of Nodes (x 8 Threads) Number of Nodes (x 8 Threads)
(a) floyd — seq time is 2012s (b) lu — seq time is 5354s
256 256
© auto-DFDS © auto-DFDS
108 | # auto-static 128 | ¥ auto-static
manual-CnC manual-CnC
64 64
g_ Q
2 3 2 3
[0} [0}
s 6 a8 16
8 8
4[E 4
2 1 1 1 1 J 2 1 1 1 1 J
1 2 4 8 16 32 1 2 4 8 16 32
Number of Nodes (x 8 Threads) Number of Nodes (x 8 Threads)
(c) fdtd-2d — seq time is 1432s (d) heat-2d — seq time is 796s
128 512
© auto-DFDS © auto-DFDS
64 #* auto-static /9 256 - ¥ auto-static
manual-CnC
128
a 27 o 64
= =
2 16 g 32
@ / a6l
8
% 8
4 4
2 1 1 1 1 J 2 1 1 1 1 J
1 2 4 8 16 32 1 2 4 8 16 32
Number of Nodes (x 1 Threads) Number of Nodes (x 8 Threads)
(e) adi — seq time is 2717s (f) cholesky — seq time is 2270s

Fig. 8: Speedup of auto-DFDS, auto-static, and manual-CnC over seq on a cluster of
multicores

2000; [Song and Li 1999} Bondhugula et al. 2008] are better than manual implementa-
tions, and manual-CnC outperforms auto-DFDS in other cases due to orthogonal explicit
data tiling transformations.

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January 2015.

A:23

computation time m—m
communication time —

% of their sum

Reduction factor
o = N W H»h OO N @

Fig. 9: Maximum computation time and max- Fig. 10: Non-overlapped communica-
imum communication time across all threads tion time reduction: auto-DFDS over
on 32 nodes in auto-static auto-static on 32 nodes

6. RELATED WORK

This sections compares our work with existing automatic parallelization frameworks
and other dynamic scheduling dataflow runtime frameworks.

6.1. Automatic parallelization frameworks

A large number of distributed-memory code generation algorithms for uniform depen-
dences were explored in the 90s; we focus our attention on those that handle affine
dependences. Previous techniques for automatic parallelization of affine loop nests
for distributed-memory architectures [[Adve and Mellor-Crummey 1998; (Clafien and
Griebl 2006; Bondhugula 2013a; |[Dathathri et al. 2013]] perform static scheduling of
loops across nodes, either block or block-cyclic. They perform communication in a bulk-
synchronous manner, i.e., after the loop is executed in parallel, communication and
synchronization is performed using a “push” approach before the parallel loop is in-
voked again due to an outer surrounding sequential loop. They do not overlap commu-
nication with computation. Our approach uses dynamic scheduling on each node and
communication across nodes is done in an asynchronous fashion, thereby achieving
communication-computation overlap. Our evaluation demonstrates that it scales bet-
ter than bulk-synchronous approaches. Our framework builds upon the state-of-the-art
automatic distributed-memory parallelization framework [[Dathathri et al. 2013]] and
subsumes it to target a dataflow runtime.

[Reddy and Bondhugula 2014 build upon the work presented in this paper. They use
our dynamic scheduling dataflow runtime framework in conjunction with techniques
for on-demand data allocation via data tiling, and more general computation place-
ment schemes including sudoku mappings as well as arbitrary ones. The computation
placement schemes used in their work are all dynamic a priori, but the choice of the
placement function is made at compiler time itself. The placements determined op-
timize communication volume and maintain load balance. Placement and scheduling
are two different aspects — the former determines where iterations will execute while
the latter determines when they will execute. Our work enables dynamic scheduling
to improve load balance for a given placement. Tasks placed at a node are not moved
across nodes but only scheduled dynamically across cores of a node — it is thus comple-
mentary to approaches that determine balanced placements across nodes.

Prior works that automatically parallelized code for dynamic scheduling or dataflow
runtimes target only shared-memory architectures [Baskaran et al. 2009; Vasilache

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January 2015.

A:24

et al. 2014; [Pop and Cohen 2013; Kong et al. 2015]]. As a consequence, they only deal
with synchronization of tasks unlike ours which also deals with communication of
data between tasks. Our framework, unlike past works, has been designed to target
distributed-memory in addition to shared-memory, and both in conjunction.

[Baskaran et al. 2009]] provide techniques for extracting tasks from affine loop nests
and constructing the task dependence graph using the polyhedral framework. They
construct the entire task dependence graph in memory, and then schedule it. Since the
task graph is shared and modified across all threads, it becomes a bottleneck when
there are a large number of threads. More importantly, their compiler-assisted run-
time is limited to shared-memory and does not deal with challenges associated with
distributed-memory. Our work was motivated by theirs, and our goal has been to tar-
get a distributed-memory cluster of multicores. In contrast to their technique, our ap-
proach does not build the entire task dependence graph in memory but uses compiler
generated routines that semantically encapsulate it. We also generate runtime com-
ponents to manage memory-based dependences and communication across nodes in
distributed-memory. Our tool generates code that can be executed on shared-memory,
distributed-memory, or a combination of both. Our evaluation shows that the perfor-
mance of our approach on shared-memory is similar to or better than that of their
approach. Thus, our framework builds upon and subsumes it.

[Vasilache et al. 2014] use the polyhedral framework to generate code from
affine loop nests that targets Concurrent Collections (CnC) [Budimlic et al. 2009],
SWARM [Lauderdale and Khan 2012]], and Open Community Runtime [OCR 2013],
with a goal of comparing these runtimes. Their framework, unlike ours, is applica-
ble only for shared-memory systems. Moreover, their approach conservatively approxi-
mates any dependence on permutable loops with distance-one dependences between all
adjacent iterations of such loops. Such an over-approximation of dependences restricts
scheduling choices, and for loop nests with long dependences, a dynamic scheduling
runtime may no longer be able to overcome the imbalance that exists when using bulk-
synchronous runtimes (like OpenMP).

[Kong et al. 2015] provide techniques for generating OpenStream [Pop and Cohen
2013|] code from affine loop nests using the polyhedral framework. Their primary fo-
cus was on exploiting temporal reuse across distinct loop nests, i.e., dynamically fuse
tasks across loop nests by scheduling them to execute one after the other at runtime.
Although such reuse can also be exploited in our framework, their main contribution of
selecting the most profitable synchronization idiom (whether to dynamically fuse loop
nests or use a soft barrier between loop nests) is orthogonal to our work. In addition,
unlike ours, their design and evaluation is for shared-memory systems alone.

6.2. Dataflow runtime frameworks

A number of works have focused on building scalable frameworks for a certain class of
applications like linear algebra kernels [Bosilca et al. 2012; [Bosilca et al. 2010; |Song
and Dongarra 2012|l. These frameworks are typically driven by a domain specific lan-
guage in which the user is expected to express the computation as a DAG of tasks,
where the nodes are sequential computation tasks, and the edges are dependences be-
tween tasks. Hence, the burden of expressing parallelism and locality is shifted to the
user. In contrast, our framework automatically extracts such a DAG of tasks. The Di-
rected Acyclic Graph Engine (DAGuE) [Bosilca et al. 2012]] framework does not build
or unroll the entire task graph in memory, but encapsulates the DAG concisely in
memory using a representation conceptually similar to the Parameterized Task Graph
(PTG) [Cosnard and Loi 1995]. Our techniques to compactly represent the task graph
use Parameterized Task Functions (PTFs). In contrast to PTG, PTFs encapsulate dif-
ferences in dependences between tasks on the same node and dependences between

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January 2015.

A:25

tasks on different nodes, thereby allowing handling of memory-based dependences;
PTFs also encapsulate precise communication semantics (at the granularity of array
elements). Our work has been motivated by these approaches, with the main difference
being that we intend to provide a fully automatic solution through compiler support.

In the system designed by [Song and Dongarra 2012f|, the node that will execute a
task instance maintains its inputs, output, and the ready status of each input. Each
node, therefore, has a partition of the DAG of tasks in memory, using which tasks
are scheduled dynamically driven by data-availability; the partial task graph is built
without any coordination with other nodes. Our framework, on the other hand, does
not maintain even a partial task graph in memory, but only maintains status on tasks
that is built and maintained without any coordination with other nodes. Communica-
tion in their system is determined by the dataflow between tasks at the granularity of
data tiles, whereas communication in our system is precise at the granularity of array
elements. Communication is asynchronous and is overlapped with computation. There
is a separate thread each for intra-node and inter-node communication. The inter-node
communication thread preemptively posts an anonymous receive, and checks whether
it has finished with busy-polling. Our communication framework is designed similarly.

There are several recent works that focus on providing high-level programming
models or extensions that enable easy expression of parallelism, like Concurrent Col-
lections (CnC) [Budimlic et al. 2009|], StarPU [Augonnet et al. 2011]l, the codelet
model [Zuckerman et al. 2011; |Lauderdale and Khan 2012|] (which is inspired by the
EARTH system [Theobald 1999; Hendren et al. 1997]), OpenStream [Pop and Cohen
2013]], OmpSs [[Fernandez et al. 2014], and TERAFLUX [Giorgi et al. 2014]]. These mod-
els decouple scheduling and program specification, which is tightly coupled in current
programming models. The notion of a “task” in our work is conceptually similar to that
of a “codelet” in the codelet model, a “task” in StarPU, and a “step” in CnC. In these
models, the application developer or user specifies the program in terms of tasks along
with its inputs and outputs, while the system (or system developer) is responsible for
scheduling the tasks efficiently on the parallel architecture. However, the user is not
completely isolated from locality aspects of modern architectures. As an example, one
of the key issues in leveraging task scheduling runtimes such as CnC is in determining
the right decomposition into tasks, i.e., the shape of blocks or tiles, and the granularity
for the tasks, i.e., the block or tile size. The shape of blocks decides available asyn-
chronous parallelism, communication, and synchronization costs; a smaller block size
increases the degree of available asynchronous parallelism thereby improving load
balance, but also increases the overhead in synchronization, maintaining tasks and
managing data. Choosing the right decomposition can improve performance by orders
of magnitude — this is evident from our experimental results. The decomposition into
tasks has a direct connection with loop transformations such as tiling, making a strong
case for integration of compiler support.

Many new dynamic scheduling runtimes have emerged in the recent past and
are under active development. These include Intel CnC [Budimlic et al. 2009],
StarPU [Augonnet et al. 2010; |/Augonnet et al. 2011], codelet model runtimes like ETI
SWARM [Lauderdale and Khan 2012] and [Suettlerlein et al. 2013], and Open Com-
munity Runtime [[OCR 2013]. They share some of the same design objectives as those
of our work, like providing load balance and overlapping data movement with compu-
tation. Our techniques are sufficiently generic and could possibly be adapted to gen-
erate code for these runtimes. However, the thrust of our work is in coupling runtime
support with powerful compiler transformation, parallelization, and code generation
support to provide a fully automatic solution. This is done so that efficient execution
on shared as well as distributed memory is achieved with no programmer input.

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January 2015.

A:26

The choice to develop our own runtime was driven by the need to allow sufficient
customization for affine loop nests, as opposed to replacing or competing with existing
ones. SWARM |[Lauderdale and Khan 2012] is not designed to natively support de-
pendences between remote tasks — such dependences are different from dependences
between local tasks. There is also no direct way to make it ignore memory-based depen-
dences at runtime exclusively in the situation that the dependent tasks are scheduled
on different nodes. Other existing runtimes are similar. In CnC, there are no memory-
based dependences because it adheres to dynamic single assignment. In contrast, our
runtime enforces memory-based dependences only for local tasks and ignores it for
remote tasks (except to unpack received data). Communication semantics in SWARM
and CnC are designed such that tasks can directly operate on data in the buffer com-
municated. Consequently, if tasks operate on local memory different from communica-
tion buffers, it is the programmer’s responsibility to copy data. In other words, those
runtimes do not intrinsically support packing and unpacking of data from application
memory to communication buffer and vice versa respectively. In our compiler-runtime
co-design, data from a remote task is unpacked only once, even if there are several
local tasks waiting for the data, and it is only unpacked after all memory-based de-
pendences between that remote task and local tasks are satisfied. It is non-trivial to
generate such code targeting runtimes that do not support packing and unpacking
intrinsically. On the other hand, our runtime incorporates precise communication se-
mantics by natively supporting packing and unpacking values of array elements to
and from buffers.

As our evaluation demonstrated, the performance benefits of using a dataflow run-
time are not only due to avoiding bulk-synchronization but also due to overlapping
computation with communication. There have been plenty of works that overlap com-
putation with communication within a bulk-synchronous schedule so as to reduce ef-
fective communication time [Marjanovic et al. 2010; Nguyen et al. 2012; Bao et al.
2012]. The main disadvantage with such works is that the amount of computation
that could be overlapped with communication is restricted due to the bulk-synchronous
schedule, whereas in our framework, it is limited only by the dataflow dependences.

7. CONCLUSIONS

We described the design and implementation of a new dataflow runtime system
for modern parallel architectures that is suitable for target by compilers capable of
extracting tasks and dependence information between tasks. We coupled the run-
time with a source-to-source polyhedral optimizer to enable fully automatic dynamic
scheduling on a distributed-memory cluster of multicores. The design of the runtime
allows load-balanced execution on shared and distributed memory cores, handling of
memory-based dependences, and asynchronous point-to-point communication. The re-
sulting system is also the first automatic parallelizer that uses dynamic scheduling
for affine loop nests on distributed-memory. On 32 nodes with 8 threads per node,
our compiler-assisted runtime yields a geometric mean speedup of 1.64x (1.04x to
2.42x) over the state-of-the-art automatic approach, and a geometric mean speedup
of 143.6x (70.3x to 474.7x) over the sequential version. On a shared-memory system
with 32 cores, our runtime yields a speedup of up to 2.5x over the state-of-the-art dy-
namic scheduling approach, and a geometric mean speedup of 22.8x (7.9x to 44.7x)
over the sequential version. Our automatic framework also significantly outperformed
hand-optimized Intel CnC codes in some cases due to benefit from complex compiler
transformations. We believe our approach is a significant advance to compiler/runtime
technology necessary to leverage dynamic scheduling and task-level data flow paral-
lelism automatically on both shared and distributed memory. The detailed experimen-

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January 2015.

A:27

tal evaluation presented offers compelling evidence and quantifies the exact benefits
of such an approach.

REFERENCES

Vikram Adve and John Mellor-Crummey. 1998. Using integer sets for data-parallel program anal-
ysis and optimization. In Proceedings of the ACM SIGPLAN 1998 conference on Program-
ming Language Design and Implementation (PLDI °98). ACM, New York, NY, USA, 186-198.
DOI:http://dx.doi.org/10.1145/277650.277721

Cédric Augonnet, Samuel Thibault, and Raymond Namyst. 2010. StarPU: a Runtime System for Schedul-
ing Tasks over Accelerator-Based Multicore Machines. Technical Report 7240. INRIA. http://hal.inria.fr/
inria-00467677

Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier. 2011. StarPU: A Uni-
fied Platform for Task Scheduling on Heterogeneous Multicore Architectures. Concurrency and Com-
putation: Practice and Experience, Special Issue: Euro-Par 2009 23 (Feb. 2011), 187-198. Issue 2.
DOI:http://dx.doi.org/10.1002/cpe.1631

Vinayaka Bandishti, Irshad Pananilath, and Uday Bondhugula. 2012. Tiling stencil computations to maxi-
mize parallelism. In Proceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis (SC ’12). IEEE Computer Society Press, Los Alamitos, CA, USA, Article
40, 11 pages. http://dl.acm.org/citation.cfm?id=2388996.2389051

Bin Bao, Chen Ding, Yaoqing Gao, and Roch Archambault. 2012. Delta Send-Recv for Dynamic Pipelining
in MPI Programs. In Proceedings of the 2012 12th IEEE /ACM International Symposium on Cluster,
Cloud and Grid Computing (Ccgrid 2012) (CCGRID ’12). IEEE Computer Society, Washington, DC,
USA, 384-392. DOI : http://dx.doi.org/10.1109/CCGrid.2012.113

Muthu Manikandan Baskaran, Nagavijayalakshmi Vydyanathan, Uday Kumar Reddy Bondhugula, J. Ra-
manujam, Atanas Rountev, and P. Sadayappan. 2009. Compiler-assisted Dynamic Scheduling for Effec-
tive Parallelization of Loop Nests on Multicore Processors. In Proceedings of the 14th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP ’09). ACM, New York, NY, USA,
219-228. DOI : http://dx.doi.org/10.1145/1504176.1504209

Cedric Bastoul. 2004. Code Generation in the Polyhedral Model Is Easier Than You Think. In Proceedings
of the 13th International Conference on Parallel Architectures and Compilation Techniques (PACT ’04).
IEEE Computer Society, Washington, DC, USA, 7-16. DOI: http://dx.doi.org/10.1109/PACT.2004.11

Cédric Bastoul. 2012. Clan: The Chunky Loop Analyzer. (2012). http://icps.u-strasbg.fr/people/bastoul/
public_html/development/clan/.

Cédric Bastoul. 2013. CLooG: The Chunky Loop Generator. (2013). http:/www.cloog.org.

Uday Bondhugula. 2013a. Compiling Affine Loop Nests for Distributed-memory Parallel Architec-
tures. In Proceedings of SC13: International Conference for High Performance Computing, Net-
working, Storage and Analysis (SC ’13). ACM, New York, NY, USA, Article 33, 12 pages.
DOI: http://dx.doi.org/10.1145/2503210.2503289

Uday Bondhugula. 2013b. PLUTO: A polyhedral automatic parallelizer and locality optimizer for multicores.
(2013). http://pluto-compiler.sourceforge.net.

Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. 2008. A practical automatic poly-
hedral parallelizer and locality optimizer. In Proceedings of the 2008 ACM SIGPLAN conference on
Programming Language Design and Implementation (PLDI °08). ACM, New York, NY, USA, 101-113.
DOI:http://dx.doi.org/10.1145/1375581.1375595

George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Azzam Haidar, Thomas Herault,
Jakub Kurzak, Julien Langou, Pierre Lemarinier, Hatem Ltaief, Piotr Luszczek, Asim Yarkhan, and
Jack Dongarra. 2010. Distibuted Dense Numerical Linear Algebra Algorithms on massively parallel
architectures: DPLASMA. Univ. of Tennessee, CS Technical Report, UT-CS-10-660 (2010).

George Bosilca, Aurelien Bouteiller, Anthony Danalis, Thomas Herault, Pierre Lemarinier, and Jack Don-
garra. 2012. DAGuE: A generic distributed DAG engine for high performance computing. Parallel Com-
put. 38,1(2012), 37-51.

Zoran Budimlic, Aparna Chandramowlishwaran, Kathleen Knobe, Geoff Lowney, Vivek Sarkar, and Leo
Treggiari. 2009. Multi-core Implementations of the Concurrent Collections Programming Model. In
CPCO09: 14th International Workshop on Compilers for Parallel Computers.

Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. 2009. A class of parallel tiled linear
algebra algorithms for multicore architectures. Parallel Comput. 35, 1 (2009), 38-53.

Aparna Chandramowlishwaran, Kathleen Knobe, and Richard Vuduc. 2010. Performance eval-
uation of concurrent collections on high-performance multicore computing systems. In

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January 2015.

http://dx.doi.org/10.1145/277650.277721
http://hal.inria.fr/inria-00467677
http://hal.inria.fr/inria-00467677
http://dx.doi.org/10.1002/cpe.1631
http://dl.acm.org/citation.cfm?id=2388996.2389051
http://dx.doi.org/10.1109/CCGrid.2012.113
http://dx.doi.org/10.1145/1504176.1504209
http://dx.doi.org/10.1109/PACT.2004.11
http://icps.u-strasbg.fr/people/bastoul/public_html/development/clan/
http://icps.u-strasbg.fr/people/bastoul/public_html/development/clan/
http://www.cloog.org
http://dx.doi.org/10.1145/2503210.2503289
http://pluto-compiler.sourceforge.net
http://dx.doi.org/10.1145/1375581.1375595

A:28

2010 IEEE International Symposium on Parallel Distributed Processing (IPDPS). 1-12.
DOI : http://dx.doi.org/10.1109/IPDPS.2010.5470404

Michael Claflen and Martin Griebl. 2006. Automatic Code Generation for Distributed Memory Architectures
in the Polytope Model. In 11¢h International Workshop on High-Level Parallel Programming Models and
Supportive Environments, Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th
International.

M. Cosnard and M. Loi. 1995. Automatic Task Graph Generation Techniques. In Proceedings of the 28th
Hawaii International Conference on System Sciences (HICSS ’95). IEEE Computer Society, Washington,
DC, USA, 113-. http:/dl.acm.org/citation.cfm?1d=795695.798168

Roshan Dathathri, Chandan Reddy, Thejas Ramashekar, and Uday Bondhugula. 2013. Generating Efficient
Data Movement Code for Heterogeneous Architectures with Distributed-memory. In Proceedings of the
22nd International Conference on Parallel Architectures and Compilation Techniques (PACT ’13). IEEE
Press, Piscataway, NdJ, USA, 375-386. http://dl.acm.org/citation.cfm?id=2523721.2523771

Alejandro Fernandez, Viceng Beltran, Xavier Martorell, Rosa M Badia, Eduard Ayguadé, and Jesus Labarta.
2014. Task-Based Programming with OmpSs and Its Application. Workshop on Software for Exascale
Computing (SPPEXA) (Aug 2014), 602—613. jp;Euro-Par 2014 Workshop, Part II, Lecture Notes in Com-
puter Science vol. 8806;/p;.

Roberto Giorgi, Rosa M. Badia, Franois Bodin, Albert Cohen, Paraskevas Evripidou, Paolo Faraboschi,
Bernhard Fechner, Guang R. Gao, Arne Garbade, Rahul Gayatri, Sylvain Girbal, Daniel Goodman,
Behran Khan, Souad Kolia, Joshua Landwehr, Nhat Minh L}, Feng Li, Mikel Lujn, Avi Mendelson,
Laurent Morin, Nacho Navarro, Tomasz Patejko, Antoniu Pop, Pedro Trancoso, Theo Ungerer, Ian Wat-
son, Sebastian Weis, Stphane Zuckerman, and Mateo Valero. 2014. TERAFLUX: Harnessing dataflow
in next generation teradevices. Microprocessors and Microsystems 38, 8, Part B (2014), 976 — 990.
DOI:http:/dx.doi.org/10.1016/j.micpro.2014.04.001

Laurie J Hendren, Xinan Tang, Yingchun Zhu, Shereen Ghobrial, Guang R Gao, Xun Xue, Haiying Cai, and
Pierre Ouellet. 1997. Compiling C for the EARTH multithreaded architecture. International Journal of
Parallel Programming 25, 4 (1997), 305-338.

Intel CnC 2013. Intel® Concurrent Collections (CnC) for C/C++. (2013). http:/software.intel.com/en-us/
articles/intel-concurrent-collections-for-cc.

Intel TBB 2014. Intel® Thread Building Blocks (TBB). (2014). https://www.threadingbuildingblocks.org/.

Martin Kong, Antoniu Pop, Louis-Noél Pouchet, R. Govindarajan, Albert Cohen, and P. Sadayappan. 2015.
Compiler/Runtime Framework for Dynamic Dataflow Parallelization of Tiled Programs. ACM Trans.
Archit. Code Optim. 11, 4, Article 61 (Jan. 2015), 30 pages. DOI :http://dx.doi.org/10.1145/2687652

Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita Bala, and L. Paul Chew.
2007. Optimistic Parallelism Requires Abstractions. In Proceedings of the 2007 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI °07). ACM, New York, NY, USA,
211-222. DOI : http://dx.doi.org/10.1145/1250734.1250759

Christopher Lauderdale and Rishi Khan. 2012. Towards a Codelet-based Runtime for Exascale Com-
puting: Position Paper. In Proceedings of the 2nd International Workshop on Adaptive Self-Tuning
Computing Systems for the Exaflop Era (EXADAPT °’12). ACM, New York, NY, USA, 21-26.
DOI:http://dx.do1.org/10.1145/2185475.2185478

Vladimir Marjanovi¢, Jests Labarta, Eduard Ayguadé, and Mateo Valero. 2010. Overlapping Commu-
nication and Computation by Using a Hybrid MPI/SMPSs Approach. In Proceedings of the 24th
ACM International Conference on Supercomputing (ICS ’10). ACM, New York, NY, USA, 5-16.
DOI:http:/dx.doi.org/10.1145/1810085.1810091

Tan Nguyen, Pietro Cicotti, Eric Bylaska, Dan Quinlan, and Scott B. Baden. 2012. Bamboo: Translating MPI
Applications to a Latency-tolerant, Data-driven Form. In Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis (SC ’12). IEEE Computer Society
Press, Los Alamitos, CA, USA, Article 39, 11 pages. http://dl.acm.org/citation.cfm?1d=2388996.2389050

OCR 2013. The Open Community Runtime Project. (2013). https://01.org/projects/open-community-runtime.

Polybench 2012. PolyBench/C - the Polyhedral Benchmark suite. (2012). http://polybench.sourceforge.net.

Polylib 2010. PolyLib - A library of polyhedral functions. (2010). http://icps.u-strasbg.fr/polylib/.

Antoniu Pop and Albert Cohen. 2013. OpenStream: Expressiveness and Data-flow Compilation of OpenMP
Streaming Programs. ACM Trans. Archit. Code Optim. 9, 4, Article 53 (Jan. 2013), 25 pages.
DOI:http:/dx.doi.org/10.1145/2400682.2400712

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Ama-
rasinghe. 2013. Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Recompu-
tation in Image Processing Pipelines. In Proceedings of the 34th ACM SIGPLAN Conference on Pro-

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January 2015.

http://dx.doi.org/10.1109/IPDPS.2010.5470404
http://dl.acm.org/citation.cfm?id=795695.798168
http://dl.acm.org/citation.cfm?id=2523721.2523771
http://dx.doi.org/10.1016/j.micpro.2014.04.001
http://software.intel.com/en-us/articles/intel-concurrent-collections-for-cc
http://software.intel.com/en-us/articles/intel-concurrent-collections-for-cc
https://www.threadingbuildingblocks.org/
http://dx.doi.org/10.1145/2687652
http://dx.doi.org/10.1145/1250734.1250759
http://dx.doi.org/10.1145/2185475.2185478
http://dx.doi.org/10.1145/1810085.1810091
http://dl.acm.org/citation.cfm?id=2388996.2389050
https://01.org/projects/open-community-runtime
http://polybench.sourceforge.net
http://icps.u-strasbg.fr/polylib/
http://dx.doi.org/10.1145/2400682.2400712

A:29

gramming Language Design and Implementation (PLDI ’13). ACM, New York, NY, USA, 519-530.
DOI :http://dx.doi.org/10.1145/2491956.2462176

Chandan Reddy and Uday Bondhugula. 2014. Effective Automatic Computation Placement and Data allo-
cation for Parallelization of Regular Programs. In International Conference on Supercomputing.

Fengguang Song and Jack Dongarra. 2012. A scalable framework for heterogeneous GPU-based clusters. In
Proceedings of the 24th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA ’12).
ACM, New York, NY, USA, 91-100. DOI : http://dx.doi.org/10.1145/2312005.2312025

Y. Song and Z. Li. 1999. New Tiling Techniques to Improve Cache Temporal Locality. In Proc. ACM SIGPLAN
Conference Programming Language Design and Implementation. 215-228.

Joshua Suettlerlein, Stéphane Zuckerman, and Guang R Gao. 2013. An implementation of the codelet model.
In Euro-Par 2013 Parallel Processing. Springer, 633—644.

Yuan Tang, Rezaul Alam Chowdhury, Bradley C. Kuszmaul, Chi-Keung Luk, and Charles E. Leis-
erson. 2011. The Pochoir Stencil Compiler. In Proceedings of the 23rd ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA ’11). ACM, New York, NY, USA, 117-128.
DOI : http://dx.doi.org/10.1145/1989493.1989508

Kevin Bryan Theobald. 1999. Earth: An Efficient Architecture for Running Threads. Ph.D. Dissertation.
Montreal, Quebec, Canada. Advisor(s) Gao, Guang R. AAINQ50269.

Nicolas Vasilache, Muthu Manikandan Baskaran, Thomas Henretty, Benoit Meister, Harper Langston, San-
ket Tavarageri, and Richard Lethin. 2014. A Tale of Three Runtimes. CoRR abs/1409.1914 (2014).
http://arxiv.org/abs/1409.1914

Sven Verdoolaege. 2014. Integer Set Library - an integer set library for program analysis. (2014). http:
/lwww.ohloh.net/p/isl.

David Wonnacott. 2000. Using time skewing to eliminate idle time due to memory bandwidth and network
limitations. In Parallel and Distributed Processing Symposium, 2000. IPDPS 2000. Proceedings. 14th
International. IEEE, 171-180.

Tomofumi Yuki and Sanjay Rajopadhye. 2013. Memory Allocations for Tiled Uniform Dependence Programs.
In Proceedings of the 3rd International Workshop on Polyhedral Compilation Techniques. 13-22.

Stéphane Zuckerman, Joshua Suetterlein, Rob Knauerhase, and Guang R. Gao. 2011. Using a "Codelet”
Program Execution Model for Exascale Machines: Position Paper. In Proceedings of the 1st International
Workshop on Adaptive Self-Tuning Computing Systems for the Exaflop Era (EXADAPT ’11). ACM, New
York, NY, USA, 64-69. D01 : http:/dx.doi.org/10.1145/2000417.2000424

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January 2015.

http://dx.doi.org/10.1145/2491956.2462176
http://dx.doi.org/10.1145/2312005.2312025
http://dx.doi.org/10.1145/1989493.1989508
http://arxiv.org/abs/1409.1914
http://www.ohloh.net/p/isl
http://www.ohloh.net/p/isl
http://dx.doi.org/10.1145/2000417.2000424

	Introduction
	Motivation and Design Challenges
	Dataflow and memory-based dependences
	Terminology
	Synchronization and communication code
	Objectives

	Compiler-Assisted Dataflow Runtime
	Overview
	Synthesized Runtime Interface (SRI)
	Distributed Function-based Dynamic Scheduling (DFDS)

	Implementation
	Experimental Evaluation
	Shared-memory architectures
	Distributed-memory architectures

	Related Work
	Automatic parallelization frameworks
	Dataflow runtime frameworks

	Conclusions

