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ABSTRACT

GPUs are a class of specialized parallel architectures with tremen-
dous computational power. The new Compute Unified Device Ar-
chitecture (CUDA) programming model from NVIDIA facilitates
programming of general purpose applications on their GPUs. How-
ever, manual development of high-performance parallel code for
GPUs is still very challenging. In this paper, a number of issues
are addressed towards the goal of developing a compiler frame-
work for automatic parallelization and performance optimization
of affine loop nests on GPGPUs: 1) approach to program transfor-
mation for efficient data access from GPU global memory, using
a polyhedral compiler model of data dependence abstraction and
program transformation; 2) determination of optimal padding fac-
tors for conflict-minimal data access from GPU shared memory;
and 3) model-driven empirical search to determine optimal param-
eters for unrolling and tiling. Experimental results on a number of
kernels demonstrate the effectiveness of the compiler optimization
approaches developed.

Categories and Subject Descriptors: D.3.4 [Programming Lan-
guages]: Processors — Compilers, Optimization

General Terms: Algorithms, Design, Performance

Keywords: GPU, Polyhedral Model, Memory Access Optimiza-
tion, Empirical Tuning

1. INTRODUCTION

Graphics Processing Units (GPUs) are now among the most pow-
erful computational systems on a chip. For example, the NVIDIA
GeForce 8800 GTX GPU chip uses over 680 million transistors
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and has a peak performance of over 350 GFLOPS [19]. In addi-
tion to the primary use of GPUs in accelerating graphics render-
ing operations, there has been considerable interest in General Pur-
pose computation on GPUs (GPGPU) [8, 13, 12]. Until very re-
cently, general-purpose computations on GPUs were performed by
transforming matrix operations into specialized graphics process-
ing, such as texture operations. The introduction of the CUDA
(Compute Unified Device Architecture) programming model by
NVIDIA provided a general-purpose multi-threaded SIMD/MIMD
architectural model for implementation of general-purpose compu-
tations on GPUs. Although more convenient than previous graph-
ics programming APIs for developing GPGPU codes, the manual
development of high-performance codes with the CUDA model is
still much more complicated than the use of parallel programming
models such as OpenMP for general-purpose multi-core systems.
It is therefore of great interest, for enhanced programmer produc-
tivity and for software quality, to develop compiler support to fa-
cilitate the automatic transformation of sequential input programs
into efficient parallel CUDA programs.

There has been significant progress over the last two decades
in the development of powerful compiler frameworks for depen-
dence analysis and transformation of loop computations with affine
bounds and array access functions [1, 22, 16, 14, 9, 23, 21, 3]. For
such regular programs, compile-time optimization approaches have
been developed using affine scheduling functions with a polyhe-
dral abstraction of programs and data dependencies. Although the
polyhedral model of dependence abstraction and program trans-
formation is much more powerful than the traditional model of
data dependencies currently used in production optimizing com-
pilers, early polyhedral approaches were not practically efficient.
Recent advances in dependence analysis and code generation [23,
3, 28] have addressed many of these issues, resulting in polyhe-
dral techniques being applied to code representative of real appli-
cations such as the spec2000fp benchmarks. CLooG [3, 7] is a
powerful state-of-the-art code generator that captures most of these
advances. Building on these developments, we have recently devel-
oped the PLuTo compiler framework that enables end-to-end auto-
matic parallelization and locality optimization of affine programs
for general-purpose multi-core targets [4, 5, 20]. The effectiveness
of the transformation system has been demonstrated on a number of



non-trivial application kernels for multi-core processors. However,
building such a framework for GPUs requires attention to several
additional issues. In this paper we identify and characterize key
factors that affect GPGPU performance and develop compile-time
transformation approaches for GPGPU optimization.

The paper is organized as follows. In Section 2, we provide a
brief overview of the NVIDIA GeForce 8800 GTX GPU. Section 3
develops an empirical characterization pertaining to three signifi-
cant performance issues: efficient global memory access, efficient
shared memory access, and reduction of dynamic instruction count
by enhancing data reuse in registers. In the next three sections, we
discuss compilation techniques for GPGPUs that systematically ad-
dress these performance-critical issues. Section 7 presents exper-
imental performance results that demonstrate the effectiveness of
the developed techniques. Related work is discussed in Section 8.
We conclude in Section 9.

2. OVERVIEW OF GPU ARCHITECTURE
AND CUDA PROGRAMMING

The NVIDIA GeForce 8800 GTX has 16 multiprocessor units,
each consisting of 8 processor cores that execute in SIMD man-
ner. The processors (SIMD units) within a multiprocessor unit
communicate through a fast on-chip shared memory, while the dif-
ferent multiprocessor units communicate through a slower off-chip
DRAM, also called global memory. Each multiprocessor unit also
has a fixed number of registers. The GPU code is launched for ex-
ecution in the GPU device by the CPU (host). The host transfers
data to and from GPU’s global memory.

Programming GPUs for general-purpose applications is enabled
through an easy-to-use C interface exposed by the NVIDIA Com-
pute Unified Device Architecture (CUDA) model [18]. The CUDA
programming model abstracts the processor space as a grid of thread
blocks (that are mapped to multiprocessors in the GPU device),
where each thread block is a grid of threads (that are mapped to
SIMD units within a multiprocessor). More than one thread block
can be mapped to a multiprocessor unit, and more than one thread
can be mapped to a SIMD unit in a multiprocessor. Threads within
a thread block can efficiently share data through the fast on-chip
shared memory and can synchronize their execution to coordinate
memory accesses. Each thread in a thread block is uniquely identi-
fied by its thread block id and thread id. A grid of thread blocks is
executed on the GPU by running one or more thread blocks on each
multiprocessor. Threads in a thread block are divided into SIMD
groups called warps (the size of a warp for the NVIDIA GeForce
8800 GTX is 32 threads) and periodic switching between warps is
done to maximize resource utilization.

The shared memory and the register bank in a multiprocessor
are dynamically partitioned among the active thread blocks on that
multiprocessor. The GeForce 8800 GTX GPU has 16 KB of shared
memory and 8192 registers per multiprocessor. If the shared mem-
ory usage per thread block is 8 KB or the register usage is 4096,
at most 2 thread blocks can be concurrently active on a multipro-
cessor. When any of the two thread blocks complete execution,
another thread block can become active on the multiprocessor. In
general, in a multiprocessor unit of a GPU device that has R reg-
isters and M KB shared memory, if the number of registers used
per thread is r, the shared memory required per thread block is m
KB, and the number of threads per thread block is p, the maximum
number of active concurrent thread blocks in the multiprocessor at
any time cannot exceed min( L[% , [% ).

The various memories available in GPUs for a programmer are
as follows: (1) off-chip global memory (768MB on the 8800 GTX),

[ M [ Block (GBps) | Cyclic (GBps) |

2048 4.11 2291
4096 4.78 37.98
8192 5.11 48.20
16384 5.34 56.50
32768 6.43 68.51

Table 1: Global memory bandwidth for block and cyclic access
patterns

(2) oft-chip local memory, (3) on-chip shared memory (16KB per
multiprocessor in 8800 GTX), (4) off-chip constant memory with
on-chip cache (64KB in 8800 GTX), and (5) off-chip texture mem-
ory with on-chip cache.

3. PERFORMANCE CHARACTERIZATION
OF GPGPU

In this section, micro-benchmarks are used to characterize key
factors that affect GPGPU performance and the implications for
compiler optimization are discussed.

3.1 Global Memory Access

The off-chip DRAM in the GPU device (i.e., the global memory)
has latencies of hundreds of cycles. While maximizing data reuse
helps to improve the performance of programs with temporal local-
ity, reducing the latency in accessing data from global memory is
critical for good performance.

The cost of global memory access was characterized by measur-
ing the memory read bandwidth achieved for different data sizes,
for blocked and cyclic distribution of computation amongst the
threads. In the micro-benchmark used for bandwidth measurement,
a one-dimensional array of size M (where M = 16 x N) was ac-
cessed from global memory by 16 thread blocks (one mapped to
each multiprocessor unit), where each thread block was a grid of T’
threads. Each thread in a thread block accessed N/T elements of
the array (N was chosen as a multiple of 7). Two different access
patterns were compared: (1) blocked access, where thread O ac-
cesses the first N/T elements, thread 1 accesses the next set of N/T
elements, ..., and thread 7 — 1 accesses the last N/T elements, and
(2) cyclic access, where thread 0 accesses element 0, thread 1 ac-
cesses element 1, ..., thread T — 1 accesses element 7 — 1, and the
threads cyclically repeat the same access pattern. The bandwidth
achieved is shown in Table 1. Although the threads in both cases
accessed the same number of elements from global memory, cyclic
access resulted in significantly higher memory bandwidth — up to
68.5GBps, improvement by a factor of 10, compared to blocked
access.

The significant difference in performance of the two versions is
due to a hardware optimization — global memory access coalescing.
Accesses from adjacent threads in a half-warp to adjacent locations
(that are aligned to 4, 8, or 16 bytes) in global memory are coa-
lesced into a single contiguous aligned memory access. Interleaved
access to global memory by threads in a thread block is essential to
exploit this architectural feature.

Using cyclic data access by threads, the effect on achieved mem-
ory bandwidth was evaluated for different numbers of threads per
thread block. In addition, the impact of strided data access on
memory performance was evaluated. The stride of access across
threads was varied from 1 through 64, and the number of threads
per thread block was varied from 32 through 512. The results from
this experiment are shown in Figure 1. It may be observed that non-
unit strides across threads lead to significant degradation in perfor-
mance. This is because global memory coalescing only happens
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Figure 1: Global memory bandwidth for different access strides
for varying number of threads per thread block

with unit stride access across threads. With non-unit access strides,
all accesses are issued individually to memory, resulting in poor
performance. With unit access stride, as the number of threads per
thread block is increased, an increase in the memory bandwidth is
observed, with the maximum bandwidth achieved for 512 threads.
This is due to better ability to mask global memory access latencies
with increase in the number of warps per multiprocessor.

The significant performance benefits due to coalesced access of
memory make it one of the most important optimizations to be en-
abled by a compiler framework for GPGPUs. Also, the high latency
of global memory access highlights the importance of reducing the
number of global memory loads/stores.

3.2 Shared Memory Access

The shared memory is a fast on-chip software-managed memory
space that can be accessed by all threads within a thread block. The
shared memory space is divided into equal-sized memory modules
called banks, which can be accessed in parallel. In the NVIDIA
GeForce 8800 GTX, the shared memory is divided into 16 banks.
Successive 32-bit words are assigned to successive banks. Hence,
if the shared memory addresses accessed by a half-warp (i.e., the
first 16 threads or the next 16 threads of a warp) map to different
banks, there are no conflicting accesses, resulting in 16 times the
bandwidth of one bank. However if n threads of a half-warp access
the same bank at a time, there is an n-way bank conflict, resulting
in n sequential accesses to the shared memory. In our further dis-
cussion, we refer to the number of simultaneous requests to a bank
as degree of bank conflicts. Hence k degree of bank conflicts means
a k-way bank conflict and 1 degree of bank conflicts means no bank
conflicts (since there is only one simultaneous request to a bank).
The bandwidth of shared memory access is inversely proportional
to the degree of bank conflicts.

We conducted an experiment to study the effect of bank con-
flicts, by measuring the shared memory access time for different
access strides (strides from O to 16) across threads. 32 threads per
thread block were used for the experiment and each thread accessed
100 data elements (100 32-bit words). When access stride is 0, all
threads access the same word. When access stride is 1, succes-
sive threads in a thread block access successive words in shared
memory, which fall in different banks. Hence there are no bank
conflicts between the thread accesses. When access stride is 2, the
first thread accesses a word from bank i, the second thread accesses
a word from bank i+ 2 and so on. Thus there is a 2-way conflict,
i.e., conflict between the accesses of thread 0 and thread 8, thread
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Figure 2: Shared memory access time for different access
strides across threads

1 and thread 9, ..., thread 7 and thread 15. Figure 2 shows the ob-
served behavior. There are no bank conflicts when the access stride
is odd and hence the observed access time is fastest for odd access
strides. From Figure 2, we clearly observe that shared memory ac-
cess time depends on the degree of bank conflicts and access time
is almost the same for access strides that lead to the same degree of
bank conflicts. From Figure 2, we also observe that the access time
when all threads access the same word is as fast as that when there
are no bank conflicts. This is due to a hardware optimization in the
shared memory that enables broadcast of a 32-bit word to several
threads simultaneously when servicing one memory read request.

The importance of the fast on-chip shared memory space that is
introduced in GPU architectures to improve the memory access per-
formance elucidates the fact that minimizing shared memory bank
conflicts is an important optimization to be handled by a compiler
framework for GPGPUs.

3.3 Degree of Parallelism vs Register Pressure

One of the important optimizations to be performed in the thread-
level computation code is to reduce the number of dynamic instruc-
tions in the run-time execution. Loop unrolling is one of the tech-
niques that reduces loop overhead and increases the computation
per loop iteration. Also, register-level tiling through unroll-and-
jam to reduce number of loads/stores per computation is a well
known program optimization when there is sufficient reuse in the
data accessed. Though loop unrolling reduces dynamic instruc-
tions and register tiling reduces the number of loads/stores, they
increase register usage. The number of threads that can be con-
currently active in a multiprocessor unit depends on the availability
of resources such as shared memory and registers. A thread block
of threads can be launched in a multiprocessor unit only when the
number of registers required by its threads and the amount of re-
quired shared memory are available in the multiprocessor. Clearly,
increased register pressure may reduce the active number of threads
in the system.

For code for which performance is limited by memory access,
having more threads can efficiently mask global memory access
latency. Figure 1 clearly illustrates the impact of parallelism on
the bandwidth of global memory access. Hence a memory-access-
bound code requires more threads to efficiently overcome the global
memory access latency.

Putting the issues together, a computation that has large global
memory access overhead requires higher concurrency and also de-
mands more registers to enable the benefits of loop unrolling such
as loop overhead reduction and reduction of number of loads/s-



tores. Hence there is a clear trade-off between number of active
concurrent threads and number of registers available for a thread
in a thread block to exploit the above benefits. Due to such a tight
coupling of GPU resources, an empirical evaluation becomes nec-
essary to select an optimal choice of program parameters such as
unroll factors and tile sizes, and system parameters such as number
of threads and thread blocks.

Having identified the key performance-influencing characteris-
tics of GPUs, we now discuss the compile-time optimization ap-
proaches developed to address these issues, towards the goal of de-
veloping a compiler framework for automatic parallelization and
performance optimization of affine loop nests on GPGPUs.

4. OPTIMIZING GLOBAL MEMORY
ACCESS

In this section, we develop an approach for performing program
transformations that enable interleaved access to global memory
by threads in a thread block which is necessary to facilitate coa-
lesced global memory accesses and thereby improve global mem-
ory access performance. The approach is based on the polyhedral
model, a powerful algebraic framework for representing programs
and transformations [17, 21]. The focus is on loop-based computa-
tions where loop bounds are affine functions of outer loop indices
and global parameters (e.g., problem sizes). Similarly, array access
functions are also assumed to be affine functions of loop indices
and global parameters. Such code plays a critical role in many
computation-intensive programs, and has been the target of a con-
siderable body of compiler research.

4.1 Background

A statement S surrounded by m loops is represented by an m-
dimensional polytope, referred to as an iteration space polytope.
The coordinates of a point in the polytope (called the iteration vec-
tor xg) correspond to the values of the loop indices of the surround-
ing loops, starting from the outermost one. Each point of the poly-
tope corresponds to an instance of statement S in program execu-
tion. The iteration space polytope is defined by a system of affine
inequalities, Dg(xs) > 6, derived from the bounds of the loops sur-
rounding S. Using matrix representation in homogeneous form to
express systems of affine inequalities, the iteration space polytope
is equivalently represented as

Ds. >0

— =L

where Dy is a matrix representing loop bound constraints and 7 is
a vector of global parameters (e.g., problem sizes).

Affine array access functions are also represented using matrices.
If Fras(Xs) represents the access function of the k' reference to an
array A in statement S, then

Fras(¥s) = Fas-

N A

where Fiag is a matrix representing an affine mapping from the
iteration space of statement S to the data space of array A. Each row
in the matrix defines a mapping corresponding to one dimension of
the data space.

When the rank of the access matrix of an array reference is less
than the iteration space dimensionality of the statement in which
it is accessed, the array is said to have an order of magnitude (or
higher-order) reuse due to the reference. Thus, the condition for

mv kernel : tmv kernel :
for (i=0;i<n;i++) {
P: x[1]=0;
for (j=0;j<n;j++)
Q: x[il+=alilljIxyl[j I;

for (i=0;i<n;i++) {
S: x[1]=0;
for (j=0;j<n;j++)
T: x[il+=alj[il*xy[j ];

Figure 3: mv and tmv kernels

higher-order reuse of an array A due to a reference Fras(Xs) is:
rank(Fyas) < dim(xs). Loops whose iterators do not occur in the
affine access function of a reference are said to be redundant loops
for the reference.

Given an iteration space polytope I and a set of array access
functions 1, Fp,..., Fr of k references to an array in the iteration
space, the set of array elements accessed in the iteration space (fur-
ther referred to as accessed data space) is given by

k
DS = J Fil

J=1

where #;1 is the image of the iteration space polytope I formed
by the affine access function ¥; and it gives the set of elements
accessed by the reference ¥ in 1.

Consider the Matrix Vector (mv) multiply and Transpose Matrix
Vector (tmv) Multiply kernels in Figure 3. The iteration space poly-
tope of statement 7 is defined by {i,j | 0<i<n—1 A 0<j<
n—1}. The access function of the reference to array « in statement
T is represented as

X7
~ 0100
,'TlaT(xT): |: 1 0 0 0 :| M n
1

where x7 = (;) is the iteration vector of statement 7. The rank
of the access matrix is 2 and the iteration space dimensionality is
2, indicating that the array has no higher-order reuse due to this
reference.

Affine transformation of a statement S is defined as an affine
mapping that maps an instance of S in the original program to an
instance in the transformed program. The affine mapping function
of a statement S is given by

ds(xs) = Cs-

— = En

When (s is a row vector, the affine mapping ¢ is a one-dimensional
mapping. An m-dimensional mapping can be represented as a com-
bination of m (linearly independent) one-dimensional mappings, in
which case (s is a matrix with m rows. In further discussion, we
use Og to denote affine time mapping (to time points) and Tg to
denote affine space mapping (to virtual processors).

There has been much work on dependence analysis in the poly-
hedral model [9, 22]. Feautrier [10, 11] defines affine time sched-
ule, which is one-dimensional (single sequential loop in the trans-
formed program) or multi-dimensional (nested sequential loops in
the program). The schedule associates a timestamp with each state-
ment instance. Statement instances are executed in increasing or-
der of timestamps to preserve data dependencies. Two statement
instances that have the same timestamp can be executed in parallel.
The time schedule constraint in Feautrier’s framework, needed to



preserve a data dependence, is as follows.
Vis € Ds,Vy: € Dy s.t. 3 depends on X5, 6;(3;) —05(%5) >0

Using such constraints, one can define a system that character-
izes the time schedule coefficients, taking into account all depen-
dencies. The system is then solved to find the legal time sched-
ules. There has been a significant body of work (e.g., [10, 16]) on
the procedure to solve a system of constraints for affine partition
mappings, using the affine form of Farkas’ Lemma and Fourier-
Motzkin projection algorithm.

4.2 Global Memory Access Coalescing

In GPUs, execution of a program proceeds by distributing the
computations across thread blocks and across threads within a thread
block. In a thread block, data required for computation can be
either accessed directly from global memory or copied to shared
memory and then accessed. We focus on the code executed in a
thread block to optimize for global memory access. We develop the
global memory access optimization approach on top of PLuTo [20],
an effective automatic transformation framework. PLuTo optimizes
sequences of imperfectly nested loops, simultaneously for paral-
lelism and locality, through tiling transformations. We use PLuTo
to generate tiling transformations to distribute tiles across thread
blocks and a tile (with iteration space defined by the shape of the
tile) is given as input to the global memory access optimization
approach.

We first determine array references whose accessed data space
have either higher-order reuse or sufficient constant reuse and mark
them as candidates that have to be copied from global memory to
shared memory for efficient performance. Array references whose
accessed data space have no reuse are candidates for direct access
from global memory. But inefficient access to global memory may
degrade the performance as illustrated in Section 3.1. We find pro-
gram transformations that can lead to efficient direct global mem-
ory access of as many ‘candidate’ array references as possible. If
a resulting program transformation does not optimize access of an
array reference, then the data accessed by the reference is copied
(efficiently) to shared memory.

To enable global memory coalescing for an array reference in a
statement, iterations accessing adjacent elements (along the fastest
varying dimension) of the array due to the reference have to be exe-
cuted simultaneously (in time) by distinct virtual processors that are
consecutive in processor space. This is enforced by the time sched-
ule adjacency constraint which enforces two statement instances
that access adjacent elements of an array to be executed at the time
instance. The time schedule adjacency constraint is defined (as-
suming row major storage of arrays) as:

Vi € Dy, Vs € Dy site Frag(%) +(0... 1)1 = Fre(35),
ex(ffv) = es(ﬁv) (1)

In addition to the above constraint, iterations accessing adjacent
data elements of an array have to be in adjacent space partitions so
that they are accessed by adjacent virtual processors. This is en-
forced by the space partition adjacency constraint which enforces
two statement instances that access adjacent elements of an array
to be executed by adjacent processors in the processor space. The
space partition adjacency constraint is defined as:

Vs € QmW? € Dy s.t. :Trzs(frv)'ﬁ-(o... 1)T = -r}vl”ZX(_)?XL
() = ms(%)+1 ()

The space adjacency constraint also enforces cyclic distribution of
virtual processors to physical processors as block distribution may

nullify the effect of optimization achieved by the transformation
satisfying space adjacency constraint.

We now explain the procedure used to determine transforma-
tions, that enable interleaved global memory access by threads, for
code executed in a thread block. In our approach, we solve for a
time schedule (for each statement) that preserves all dependencies
and satisfies time schedule adjacency constraint (Equation 1) for all
candidate array references whose accessed data space do not have
enough reuse in the program. If there does not exist a solution, we
try all subsets of those array references and generate time schedules
that satisfy the time schedule adjacency constraint and potentially
generate space partitions that satisfy the space partition adjacency
constraint (Equation 2). Once a ¢t dimensional time schedule is de-
termined for a statement with m loops surrounding it, we find a
m —t dimensional space partition mapping such that each of the
m —t mappings are linearly independent of each other and the time
schedule, and one of the space mappings (treated as the innermost
space partition) satisfies the space partition adjacency constraint.
If there is no valid space-time transformation satisfying dependen-
cies and adjacency constraints, for all statements, for any non-
empty subset of array references considered, then we use PLuTo-
generated tiling transformation (space-time transformation gener-
ated without enforcing adjacency constraints) for each statement.
The procedure is summarized in Algorithm 1. All valid transforma-
tions that are determined by the procedure are considered as can-
didate transformations for an empirical search (discussed in Sec-
tion 6).

Algorithm 1 Finding transformations enabling coalesced global
memory access

Input Set of statements - §, Iteration Space Polytopes of all state-
ments I;,s € S, Array references (whose accessed data space
do not have reuse) - { %5}, Set of Dependencies - R

1: for all non-empty subsets G of array references do
2:  Find a time schedule 6 for each statement s that preserves
all dependencies in R and satisfies time schedule adjacency
constraint (1) for all references in G.
3:  for each statement s (with dimensionality of iteration space
being m and dimensionality of time schedule being ¢) do
4: Find a space partition 7; that is linearly independent to
0 and satisfies space partition adjacency constraint (2)
for all references in G. Mark this space partition as the
innermost space partition.

5: Find m —t — 1 space partitions that are linearly indepen-
dent to each other and also to 7 and 6.

6: end for

7: end for

8: if no valid space-time transformation (satisfying adjacency
constraints) exists for all statements, for any non-empty sub-
set of array references considered then

9:  Use tiling transformation (space-time transformation) gener-

ated by PLuTo without enforcing adjacency constraints, for
each statement.
10: end if
Output Transformations enabling coalesced global memory ac-
cess along with marking of references for which copy to shared
memory is needed

4.3 Examples

Consider the kernels in Figure 3. Array a in mv and tmv kernels
has no reuse and is considered for direct global memory access.
Without applying the constraints defined by Equations 1 and 2, we



get the following valid time schedule and space partition mapping
for statement Q in mv kernel and statement 7 in tmv kernel.

60(ip) = j and o (i) =

Or(x7)=j and mp(x7) =i

where xp = (;) and X7 = (’1)

Applying adjacency constraints for the mv kernel (in a system
with row major storage) yields no valid transformation. Adjacent
global memory access by distinct threads is possible only across
different j-loop iterations of an i-loop iteration. Hence the time
schedule adjacency constraint results in a time schedule 89 (xXp) =
i, which does not dismiss all dependencies. Hence there is no valid
transformation possible that can enable coalesced global memory
access. Hence the transformation (time schedule and space parti-
tion mapping) obtained without applying adjacency constraints is
used and array @ in mv kernel is copied to shared memory and ac-
cessed, but not accessed directly from global memory.

On the other hand, applying adjacency constraints for the tmv
kernel, yields a time schedule 67 (x7) = j (as adjacent global mem-
ory access by distinct threads is possible across different i-loop
iterations of an j-loop iteration) and a space partition mapping
nr (¥7) = i, which preserve data dependencies, and hence results
in a valid transformation that can enable coalesced global memory
access.

4.4 Effective Use of Register and Non-register
Memories

The approach not only makes decision on what data needs to be
moved to shared memory and what needs to be accessed directly
from global memory, but also makes decisions on effectively us-
ing register memory and non-register memories such as constant
memory, and thereby reduces the number of global memory ac-
cesses. Constant memory has an on-chip portion in the form of
cache which can be effectively utilized to reduce global memory
access. Access to constant memory is useful when a small portion
of data is accessed by threads in such a fashion that all threads in
a warp access the same value simultaneously. When threads in a
warp access different values in constant memory, then the requests
are serialized.

We determine arrays that are read-only and whose access func-
tion does not vary with respect to the loop iterators correspond-
ing to the parallel loops that are used for distributing computation
across threads, and consider them as candidates for storing in con-
stant memory. Similarly arrays whose access function varies only
with respect to the loop iterators corresponding to the parallel loops
are considered as candidates for storing in registers in each thread.

4.5 Optimized Copy from Global Memory to
Shared Memory

Array references that have sufficient reuse and array references
that are marked to be copied to shared memory because of infea-
sible transformation for coalesced global memory access, have to
be efficiently copied from/to shared memory. A detailed discussion
on the approach to determine accessed data spaces of array refer-
ences, automatically allocate storage space in the form of arrays
in shared memory, and generate code to move data between global
and shared memories is presented in one of our earlier works [2].
The loop structure of the data movement code (copy code) is a per-
fect nest of n loops, where n is the dimensionality of the accessed
data space. By using a cyclic distribution of the innermost loop
across threads of a warp, we enable interleaved access of global
memory by threads.

4.6 Model to Estimate Memory Traffic

In this subsection, we discuss a model to estimate memory traffic
expected during the execution of a tile. This is then used to guide
the empirical search on tile sizes and unroll factors (as explained
later in Section 6). Consider a tile to be executed by a thread block
or a thread. The iteration space of statements in the tile is param-
eterized by the tile sizes of the loops defining the tile. Consider a
tile of n loops with tile sizes being #,t,,...,t,. Consider k arrays
(ay,as,...,a) being accessed in the tile. Let r; be the number of
read references and w; be the number of write references of array
a;. Let Fi1, Fio, ..., Fir, be the read accesses of array g; in the tile
and Gj1, Gin, - - -, Giw, be the write accesses of array a; in the tile.
Let I be the iteration space of the tile parameterized by the tile
sizes. Let f be a function that counts the number of integer points
in a polytope given the parameters. Let DS, denote the accessed
data space of read references of array a;. The number of integer
points in polytope DS, gives the number of loads due to array a;.
Let DS, denote the accessed data space of write references of ar-
ray a;. The number of integer points in DSy, gives the number of
stores due to array a;.

The model to estimate memory loads and stores in a tile can be
characterized as follows.

Ti Wi
DS, = U FijI and DSy = U Gij1
J=1 J=1

The number of loads and stores in a tile =
k
Y F(DS; 110, t) + f(DSsstr 12, )
i=1

Having modeled the number of loads and stores in a tile, the total
memory traffic is estimated based on the number of tiles in the tiled
iteration space.

5. OPTIMIZING SHARED MEMORY
ACCESS

This section describes our approach to optimize access of on-
chip shared memory in GPU multiprocessor units. Following the
observation from Section 3.2, optimization of shared memory ac-
cess can be equivalently viewed as minimization of bank conflicts.
The strategy to minimize bank conflicts in shared memory access
is to pad the arrays copied into shared memory. However, finding a
suitable padding factor for an array in shared memory is not trivial.
The procedure of finding a padding factor for an array in order to
minimize bank conflicts has to consider the effects of padding on
all references made to the array. Padding to minimize bank conflict
with respect to one reference might have a negative impact with
respect to another reference.

We define a formal relation between the degree of bank conflicts
and the access stride across threads in a half warp that determine
the degree of bank conflicts and hence the shared memory access
bandwidth. With shared memory organized into banks and succes-
sive words stored in successive banks in a cyclic pattern, the degree
of bank conflicts is given by GCD(stride of array access across
threads of a half warp, number of bank modules). When the stride
of array access across threads is zero, i.e. when all threads ac-
cess the same word, there is a special hardware optimization in the
GPU architecture that enables broadcast of the word to all threads.
Hence in that case, the degree of bank conflicts is considered as one
as there is only one simultaneous bank request.

We model the cost of accessing a word from a shared memory
bank as a linear function of the degree of bank conflicts. Let C(n)



be the cost of accessing a word from a shared memory bank when
there are n simultaneous requests to the bank (possibly by different
threads of a half warp). The cost function is given by

C(”) = tstart + trequest X 1 3)

where t,,+ is the startup time to access a bank when there is one
or more requests to the bank and #yeguesr is the time to service a re-
quest. Figure 4 shows the trend of the linear shared memory bank
access cost function (plotted using data obtained from the experi-
ment described in Section 3.2).
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Figure 4: Shared memory bank access time for varying simul-
taneous bank requests

The algorithm to find optimal padding factors for arrays in shared
memory focuses on the code to be executed in a thread block which
has been transformed for global memory coalescing using the ap-
proach described in Section 4.2. The algorithm has information re-
garding arrays that need to be copied into shared memory, as well as
the space and time partitions of each statement in the code. For each
reference, based on the distribution of innermost space loop across
threads (block or cyclic), the distance between data points accessed
by successive threads is calculated and it defines the access stride
across threads for that reference. For each array in shared memory,
the algorithm enumerates all padding factors and finds the optimal
one that minimizes the total number of bank conflicts caused by all
the references to the array.

6. MODEL-DRIVEN EMPIRICAL SEARCH
FOR OPTIMAL TILE SIZES AND
UNROLL FACTORS

In this section, we discuss optimization of program parameters
such as tile sizes and unroll factors that are closely linked with the
choice of system parameters such as number of threads and number
of thread blocks used for execution, and the availability of GPU
local resources such as shared memory and registers.

We perform multiple levels of tiling for exploiting parallelism
across thread blocks and threads, and also perform register-level
tiling through unroll-and-jam to optimize thread-level code. The
first level of tiling is done to exploit parallelism across thread blocks.
In GPUs, the size of a tile executing in a thread block at a time
instance depends on the amount of shared memory available for
execution of the thread block. The second level of tiling within
a thread block is done, if needed, to bound shared memory us-
age within available limits. When the number of iteration points
in a loop executed within a thread block is more than the num-
ber of threads, one more level of tiling is needed to distribute the

Algorithm 2 Finding Optimal Padding Factor

Input Input array for which padding is to be determined - A, Num-
ber of references to A in the sub-program - Nz, Original ac-
cess strides across threads for the N,,s references - AS[N,],
Number of bank modules - NB, Cost function from Eq. (3) - C

1: MinAccessCost = o

2: OptPadding =0

3: for pad =0to NB—1 do

4. TotalAccessCost =0

5:  for ref =110 Ny do

6: Calculate new access stride ASpey[ref] for reference ref

using original access stride AS[ref] and padding factor
pad

7: if ASyew[ref] = 0 then

8: BankConflict[ref] = 1

9: else
10: BankConflict[ref] = GCD(ASpew|[ref], NB)
11: end if
12: AccessCost|ref] = C(BankConflict|ref])
13: TotalAccessCost+ = AccessCost[ref]
14:  end for
15:  if TotalAccessCost < MinAccessCost then
16: OptPadding = pad
17: MinAccessCost = TotalAccessCost
18:  endif
19: end for

QOutput Optimal padding factor for A - OptPadding

computation across threads. Finally, if there is enough reuse to be
exploited, register-level tiling is done to reduce the number of load-
s/stores from global/shared memory.

For a GPU architecture, performance is enhanced by optimizing
memory access and exploiting parallelism, as illustrated in Sec-
tion 3. Hence it would be ideal to characterize and model tile size
determination based on the number of loads/stores between global
and shared memory, and the number of loads/stores between shared
memory and registers. Using the polyhedral model discussed in
Section 4.6, we can obtain an accurate estimate of memory loads/-
stores. However, because of the lack of control on the number of
registers actually used by NVIDIA CUDA C Compiler (NVCC),
and because of the tight coupling of the GPU resources, optimal
tile sizes and unroll factors cannot be determined by a cost model
alone. An empirical search is needed to find an optimal set of tile
sizes for the tiled loops and optimal unroll factors for the loops that
are unrolled. Hence we employ an empirical search to pick the
optimal code variant among various code variants resulting due to
different transformations enabling efficient global memory access,
different tile sizes at multiple levels, and different unroll factors.
The search space due to different choices of tile sizes and unroll
factors are pruned with the help of the cost model that estimates
memory loads/stores.

The model-guided empirical search procedure used in our com-
piler framework is outlined below.

e For each valid program transformation structure obtained by
the approach described in Section 4.2, perform multi-level
tiling (except register-level tiling).

e Generate optimal copy code for arrays that need to be copied
to shared memory (as explained in Section 4.5).

e For each tiled loop structure, determine the register usage r
and determine the maximum concurrency (L threads) possi-
ble within a multiprocessor. (There is an option in NVCC



to generate a low-level object code file called the cubin file
that provides information on the amount of shared memory
used by a thread block and the number of registers used by a
thread in a thread block). Set the exploration space of num-
ber of threads in a thread block to be T, T /2,T /4, where T is
the nearest multiple of warp size of the GPU device less than
L and 512.

e For all valid tile sizes that distribute computation equally am-
ong thread blocks and among threads within a thread block,
and satisfy shared memory limit constraint, estimate the total
number of global memory loads/stores using the polyhedral
model in Section 4.6. Discard loop structures that have p%
more loads/stores than the structure with lowest number of
loads/stores.

e For all selected loop structures, do register-level tiling and
explicit unrolling, instrument the register usage and discard
those for which register pressure is increased to an extent
where concurrency is reduced to less than 25% of maximum
possible concurrency.

e In all selected code versions, pad the arrays in shared mem-
ory with optimal padding factor determined using Algorithm 2.

e Search empirically among the selected code versions by ex-
plicitly running them and timing the execution time, and se-
lect the best one.

7. EXPERIMENTAL RESULTS

Experiments were conducted on an NVIDIA GeForce 8800 GTX
GPU device. The device has 768 MB of DRAM and has 16 multi-
processors (MIMD units) clocked at 675 MHz. Each multiproces-
sor has 8 processor cores (SIMD units) running at twice the clock
frequency of the multiprocessor and has 16 KB of shared mem-
ory. CUDA version 1.0 was used for the experiments. The CUDA
code was compiled using the NVIDIA CUDA Compiler (NVCC)
to generate the device code that is launched from the CPU (host).
The CPU was a 2.13 GHz Intel Core2 Duo processor with 2 MB
L2 cache. The GPU device was connected to the CPU through a
16-x PCI Express bus. The host programs were compiled using the
icc compiler at -O3 optimization level.

7.1 Performance Evaluation on Kernels

Figure 5 shows the performance of several kernels — Matrix
Vector multiply (mv), Transposed Matrix Vector multiply (tmv),
Matrix Vector Transpose (mvt), and Matrix Matrix multiply (mm)
— that were optimized using the compile-time techniques devel-
oped in this paper. The comparison was done with the vendor-
optimized CUBLAS library (version 1.0) supplied by NVIDIA.
The effectiveness of the compile-time optimizations developed in
this paper is evident from these results: for mv, tmv and mvt ker-
nels, the performance achieved is better than that of the vendor-
optimized CUBLAS implementation, and for mm kernel, the per-
formance is close to that of CUBLAS implementation.

7.2 Optimized Global and Shared Memory
Access

The mv and tmv kernels (Figure 3) are used to illustrate the ben-
efits of global and shared memory access optimization. Table 2
shows the performance of mv kernel implemented using space and
time partition mappings, as discussed in Section 4.3. Our approach
makes a decision to copy the elements of array a in to shared mem-
ory though there is no reuse of the elements copied. An imple-
mentation with efficient copy of elements of array a from global

memory to shared memory (column “Non-optimized Shared”) pro-
vides an order of magnitude better performance than the version
implemented with direct access of a from global memory (column
“Direct Global”). The implementation with copy to shared mem-
ory is further enhanced by minimizing the shared memory bank
conflicts through effective padding of the shared memory buffer
created to hold the elements of array a. A further 2x improvement
in performance is achieved (column “Optimized Shared”) due to
this shared memory access optimization.

[ N [ Direct Global [ Optimized Shared | Non-optimized Shared |

4K 0.43 13.18 5.61
5K 0.48 13.87 5.79
6K 0.35 14.37 6.04
7K 0.30 13.86 5.78
8K 0.24 13.63 5.52

Table 2: Performance comparison (in GFLOPS) of mv kernel

Table 3 shows the performance of the tmv kernel implemented
using the space and time partition mappings discussed in Section 4.3.
When tiling along space loops is done in a blocked fashion to map
virtual processors in a space partition mapping to threads, it vi-
olates the coalesced memory access constraints and performance
degrades (column ‘“Non-optimized Global”). Hence tiling along
space loops is done in a cyclic fashion (column “Optimized Global”),
as inferred by our approach.

[ N [ Non-optimized Global | Optimized Global |

4K 4.22 25.21
5K 3.09 28.90
6K 3.24 33.47
7K 3.70 33.58
8K 4.13 34.93

Table 3: Performance comparison (in GFLOPS) of tmv kernel

Matrix Vector Transpose (mvt) is a kernel that involves two matrix-
vector multiplies, where one matrix is the transpose of the other,
and hence it encompasses the computations involved in mv and tmv
kernels. Our approach identifies the data space accessed by array
reference involved in mv kernel computation as a candidate to be
copied to shared memory and on the other hand identifies the data
space accessed by array reference involved in tmv kernel computa-
tion as a candidate for direct global memory access, and results in
optimized global memory access.

7.3 Model-driven Empirical Search on
Matrix-Matrix Multiply (MM) kernel

The MM kernel is used to illustrate the steps involved in the
model-driven empirical search procedure explained in Section 6.
A problem size of 4K x 4K (that was barely able to fit in the GPU
DRAM) was used.

For the multi-level tiled code generated using the program trans-
formations (without loop unrolling and register-level tiling), the
register usage per thread was estimated using cubin as 13, lead-
ing to a possibility of 512 concurrent threads. Further experiments
were done for 128, 256 and 512 threads per thread block. The num-
ber of thread blocks was varied between 16, 32 and 64.

For various tile sizes that distribute the computation equally am-
ong thread blocks and among threads within a thread block, and
satisfy the shared memory limit constraint, the total global mem-
ory loads varied from the order of 4K3 /27 to 4K3/2*. All code
versions which had loads in the order of 4K>/27 to 4K3/2° were
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Figure 5: Performance of Matrix kernels

considered and various combinations of loop unrolling and register-
level tiling were performed for the selected code versions. Since
the choices of register-level tiling depend on the size of the tile be-
ing executed in a thread, the choices were limited. The register
usage of each unrolled, register-tiled version was determined, and
those versions with excessive register usage (those which restricted
the number of concurrent threads to below 128) were eliminated.
Figure 6 illustrates the performance of the selected candidates that
were run empirically to select the best one. The code version that
was selected by the search procedure resulted in a performance of
around 97 GFLOPS - compared to vendor-optimized MM kernel
performance of around 101 GFLOPS.
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Figure 6: Performance of MM kernel for various code ver-
sions

8. RELATED WORK

Prior to the introduction of CUDA [18], GPU programming sys-
tems have relied on graphics API-based implementations, which
have limited the size and kind of codes that are implementable on
GPUs. In addition, CUDA has significantly enhanced programmer
productivity by relieving the programmer of the burden of think-
ing in terms of graphics operations. Previous GPU generations and
their APIs had restrictive memory access patterns such as allowing
only sequential writes to a linear array. For example, Accelerator
[27] does not allow access to an individual element in parallel ar-
rays and operations are performed on all array elements. Brook [6]
is a stream-based model that executes its kernel for every element
in the stream with restrictions. The GeForce 8800 allows for gen-
eral addressing of memory by each thread, which supports a much
wider variety of algorithms. With this general addressing, it is im-
portant to apply data locality optimizations in order to exploit high
bandwidth and hide memory latency.

Traditional GPUs also provided limited cache bandwidth for gen-
eral purpose applications. Fatahalian et al. [8] mention that low-
bandwidth cache designs on GPUs prevent general purpose appli-
cations from benefiting from the available computational power.
Govindaraju et al. [12] use an analytical cache performance pre-
diction model for GPU-based algorithms. Their results indicate
that memory optimization techniques designed for CPU-based al-
gorithms may not directly translate to GPUs.

Liao et al. [15] have developed a framework that works with
Brook [6] to perform aggressive data and computation transforma-
tions. Recently, Ryoo et al. [25, 24] have presented experimental
studies on program performance on NVIDIA GPUs using CUDA;
they do not use or develop a compiler framework for optimizing



applications, but rather perform the optimizations manually. Ryoo
et al. [26] have presented performance metrics to prune the opti-
mization search space on a pareto-optimality basis. However, they
manually generate the performance metrics data for each applica-
tion they have studied.

9. CONCLUSIONS

In this paper, critical performance-influencing factors on GPUs
were characterized and techniques were developed to address the
issues, that include 1) generation of effective program transforma-
tions for GPUs that enable efficient global memory access, 2) deter-
mination of optimal padding factors for conflict-minimal data ac-
cess from shared memory, and 3) model-driven empirical optimiza-
tion approach to optimize values for system and program parame-
ters. The effectiveness of the developed techniques was demon-
strated with various kernels.
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