

Parallel FPGA-based All-Pairs
Shortest-Paths in a Directed Graph

Uday Bondhugula
bondhugu@cse.ohio-state.edu

The Ohio State University
Uday Bondhugula, P. Sadayappan Ananth Devulapalli, Joseph Fernando Pete Wyckoff
Dept. of CSE, The Ohio State University OSC, Springfield OSC, Columbus

OHIO \
UNIVERSITY H 5 E)

Introduction

o Field-Programmable Gate Arrays (FPGAS) are
reconfigurable fabrics that can be programmed to
Implement desired logic

« Modern FPGAs have a large amount of configurable
resources
0 Enables highly parallel designs and effective data
reuse
0 Very efficient use of resources
0 Good trade-off between flexibility and performance

« Performance of modern FPGAs competing with that of
microprocessors for a wide variety of routines

T - H - E
OHIO
UNIVERSITY May 10, 2006 IPDPS 2006

Overview — FPGAS

« An FPGA comprises a matrix of configurable logic
blocks connected by a configurable interconnection
matrix

e Each slice has two 4-input lookup tables (LUT), two
flip-flops, arithmetic and carry logic

e A large number of dual-ported on-chip block RAMs
« Sufficient resources for routing and global clocking

Configurable Logic | |cts|||||cLe||||cLe|||||cue |||||cLe|||||cLe||||cLa|||||cLB
Block “T =

Configurable

CLB CLB CLB CLB CLB CLB CLB CLB
—T" I nter connect

CLB CLB CLB CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB CLB CLB CLB

T -H - E
OHIO CLB CLB CLB CLB CLB CLB CLB CLB
UNIVERSITY May 10, 2006 IPDPS 2006

FPGAS in HPC systems

« FPGAs are becoming a viable

RAM [«——»{ Opteron option for high performance
| 4 computing
Csﬁg%y"’“ Lochs . Several HPC systems — Cray XD1,
Toswitch | 16 GBls SRC Mapstation, and SGI RASC
ey employ FPGAs on their
Interconnects

Figure 1. A single node of the
Cray XD1 - Vendor API allows

hardware/software integration

T - H - E
OHIO
UNIVERSITY May 10, 2006 IPDPS 2006 ASC

Motivation

e The All-Pairs Shortest-Paths problem is to find the shortest path
between each pair of vertices in a directed graph

o Applications in Internet topology, geography, interaction networks,
VL3I, etc.

T - H - E
OHIO
UNIVERSITY May 10, 2006 IPDPS 2006 ASC

Motivation

e The All-Pairs Shortest-Paths problem is to find the shortest path
between each pair of vertices in a directed graph

o Applications in Internet topology, geography, interaction networks,
VL3I, etc.

 Accelerating a bio-informatics application — Galaxy
0 Dynamic Transitive Closure analysis
0 Multiple all-pairs shortest-paths evaluations on thousands of
nodes
0 All edge weights between 0 and 1 with accuracy up to three
places of decimal desired
0 Runs for several days on modern general-purpose processors

T - H - E
OHIO
UNIVERSITY May 10, 2006 IPDPS 2006 ASC

Overview — The Floyd-Warshall algorithm

OHIO
SIAIE

for k< 1,N do

for i — 1.N do « FW uses a dynamic
for j « 1,N do programming
dli, j] < min (d[i, j], d[i,k] +d[k, j]) approach to solve
end for APSP
end for « Regular access
end for

pattern with
significant data
dependences

« B(N3) operations

May 10, 2006 IPDPS 2006 ASC

Overview — The Floyd-Warshall algorithm

OHIO
SIAIE

for k< 1,N do
for i« 1,N do « FW uses a dynamic
for j < 1,N do programming
d[i, j] < min (d[i, j], d[i,k] +d[k, j]) approach to solve
end for APSP
end for « Regular access
end for :
pattern with
K significant data
dik, i dependences
K « B(N3) operations
+, min
i, K
d[i, j]

May 10, 2006 IPDPS 2006 ASC

Challenges & Issues

e Design should be simple and modular

o Extracting parallelism in the presence of data
dependences

o Scalability with resources and System-FPGA 1/O
bandwidth

« Nalive approach: Extract parallelism from the two inner
loops — infeasible to build
0 Very high complexity in distributing and addressing
data across block RAMs
0 Does not scale with resources on an FPGA, fan-out
problem

T - H - E
OHIO
UNIVERSITY May 10, 2006 IPDPS 2006

Challenges & Issues

e Design should be simple and modular

o Extracting parallelism in the presence of data
dependences

o Scalability with resources and System-FPGA 1/O
bandwidth

« Nalive approach: Extract parallelism from the two inner
loops — infeasible to build
0 Very high complexity in distributing and addressing
data across block RAMs
0 Does not scale with resources on an FPGA, fan-out
problem

« How do we extract parallelism from the K loop?

T - H - E
OHIO
UNIVERSITY May 10, 2006 IPDPS 2006

New Parallel Design — Our approach

e Organize the computation into two phases

May 10, 2006 IPDPS 2006 ASC

New Parallel Design — Our approach

e Organize the computation into two phases
0 Phase 1 Compute the set of pivot rows and columns in
advance

T - H - E
OHIO
UNIVERSITY May 10, 2006 IPDPS 2006 ASC

New Parallel Design — Our approach

e Organize the computation into two phases
0 Phase 1 Compute the set of pivot rows and columns in
advance
0 Phase 2 Use the stored pivot rows and columns to update the
matrix elements in a streamed fashion

T - H - E
OHIO
UNIVERSITY May 10, 2006 IPDPS 2006 ASC

New Parallel Design — Our approach

e Organize the computation into two phases
0 Phase 1 Compute the set of pivot rows and columns in
advance
0 Phase 2 Use the stored pivot rows and columns to update the
matrix elements in a streamed fashion

 Linear array of B Processing Elements (PEs) each with | operators

ko l

I 1 I

K

l 02 +, min | I

Global PE | oo

control control | d[il[t .. t+1-1] !
|

¢ _________________

/0 o B AT — — |] —
Engine l; ‘pz E ‘ - ‘ ,,,,, ‘

IV PEO \f PE1 PE(r)

PE(B-1
T -H - E (: \
OHIO
SIAI E Results N
UNIVERSITY May 10, 2006 IPDPS 2006 ASC

O —
—_— 1

Parallel design: phase 1

e Therth pivot row and column is updated r — 1 times by
upstreams PEs before storage at PE(r)

e Each PE first stores its pivot row and column, then
updates pivot rows and columns meant for downstream

PEs
o Latency of phase 1: Ty(r) = ZB*(lB_r> clock cycles
Global PE
control control

| i

10 G| |] —
Engine (;) ‘pz (;) ‘ ,,,,,, ‘ ,,,, ‘
| \/

Vol peo |V | PEL PE(r) | PEE-D

Results

T - H - E
OHIO
UNIVERSITY May 10, 2006 IPDPS 2006

Parallel design: phase 2

Each PE (from left to right) streams its pivot row
downstream on its turn

The row iIs updated by all downstream PEs

The last PE outputs result matrix in row-major order

Latency of phase 2: To(r) = w cycles

Global PE |
control contro

| i

110 Ao B AT — — | nl—
Engine H ‘p2 H ‘ ‘ ‘

IU PEO |V | PEL PE(r) | ey

Results

T - H - E
OHIO
UNIVERSITY May 10, 2006 IPDPS 2006

Parallel design: performance

« Parallelism extracted in both phases
« Latency for processing a single tile:

L = T1(0)+Bxp—1+To(B—1)cycles

2
= <3|—B+B* p—l) cycles

OHIO

UNIVERSITY May 10, 2006 IPDPS 2006 AsC

=

Extending for a blocked algorithm

e Blocking Floyd-Warshall has

Iteration k=t to k=t+B-1
been addressed by

t t+B-1
Ly Venkatraman and Sahni.
****** I self-dependent Tiles to be processed in a
-+, min : particular order
N partial row/column
Voo dependent
B? = || doubly—dependent
%B%

Figure 2: One of the N/B rounds of the
blocked algorithm

T - H - E
OHIO
UNIVERSITY May 10, 2006 IPDPS 2006 ASC

Extending for a blocked algorithm

OHIO
SIAIE

Iteration k=t to k=t+B-1

t t+B-1
Y v
| . B self-dependent
+, min -
N partial row/column
Voo dependent
B? = || doubly—dependent
—» B [

Figure 2: One of the N/B rounds of the
blocked algorithm

May 10, 2006

Blocking Floyd-Warshall has
been addressed by
Venkatraman and Sahni.

Tiles to be processed in a
particular order

Minor changes in the design
to incorporate the blocked
algorithm

Pivot rows and columns can
come from different tiles

IPDPS 2006 AsC

Performance model

FW latency (ms) . ® The product of B and | is the
degree of parallelism

e Scalable with FPGA slices and
FPGA—-system I/O bandwidth

 Pipelined parallelism (B) more
expensive than doAll parallelism (l)

B (# of PES)

Cy: Global control, Cp: PE

_ « Optimal values for B and |
control, S;: operator slices

0 First, determine | to make full

e Area constraint: use of I/O bandwidth
SBl +cpB+cy <S 0 Then, determine B from area
e |/O bandwidth constraint constraint

T -H - E \
OHIO /‘
SIALE May 10, 2006 IPDPS 2006 ASC

Optimizations

Optimizing control logic — move as much state and
control from the PEs to Global Control

Instruction associated with each set of | elements

Pipelining for a high frequency

— PE pipeline split into three stages
(decode, read from pivot memory, and compare/add)

Overlapping computation of successive tiles

Global PE
control control

| i

'

Engine ; ‘pz ; ‘ - ‘ i

IU PEO \I/ PE1 PE(r)

’—‘
—
—
—

— >

PE(B-1)

T - H - E
OHIO Results
UNIVERSITY May 10, 2006 IPDPS 2006

Implementation

Table 1: Resource utilization on the XD1 FPGA (XC2VP50)

Area group Number of Slices
8x8 | 16x16 | 32x32
Operator (S) 25 25 25
PE 584 550 553
Global control (Cgq) 73 73 73
FW 3,983 | 8,256 | 17,223
I/O subsystem 3,193
Total utilization 8,017 | 12,293 | 21,229
Available (A) 23,616
Used 34% 50% 90%

OHIO

UNIVERSITY May 10, 2006 IPDPS 2006 AsC

=

Experimental setup

e CPU Implementation (CPU-FW)
0 AMD Opteron 2.2 GHz with 64KB L1 cache
0 All cases fit in L1 cache
0 Compiled with GCC with -O3

« FPGA-based implementation (FPGA-FW)

Cray XD1's FPGA — Xilinx Virtex-1l Pro XC2VP50
32x32 kernel is the best case

Clocked at 200 MHz

Xilinx ISE 7.1, Cray User FPGA version 1.2

« 16-bit precision for edge weights

[]
[]
[]
[]

T - H - E
OHIO
UNIVERSITY May 10, 2006 IPDPS 2006

Measurements

OHIO
SIAIE

Table 2: Measured performance: FPGA-FW vs. CPU-FW

Tile FPGA-FW CPU-FW

size Total Overhead | Compute

8x8 2.49 us 2.07 s 0.42 us 1.6 s
16x16 || 3.36|s 2.07 s 1.29 s 14.1ps
32x32 || 6.91ps 2.07 s 4.84 s 106.5 s

Table 3: Estimated vs. measured performance & Speedup

Tile FPGA-FW CPU-FW |Measured
size |[Estimated [Measured Speedup
8x8 0.36 Us 0.42 s 1.6 Us 3.8x
16x16 | 1.20Us 1.29 us 14.1 s 11x
32x32 | 4.14 s 4.84 s 106.5 s 22X
May 10, 2006

IPDPS 2006

Final speedup (FCCM 2006)

17x T T T T T T T
FPGA-FW-32 —+—
16x FPGA-FW-LT-32 ---%--- S % .
15 FPGA-FW-LTOV-32 ---*--- W Ko *
X I = E

| | | | | | |

32 64 128 256 512 1024 2048 4096 8192
Matrix size

May 10, 2006 IPDPS 2006 ASC

Related work

OHIO
SIAIE

o FW first proposed by Floyd in 1962

« Venkatraman proposed a blocked version of FW to
optimize for data locality [J. of Exp. Alg. 2003]

e Zhuo, Underwood have demonstrated competitiveness
of FPGAs for double precision floating-point routines

 Significant systolic literature on the Algebraic Path
Problem

« Effective hardware/software integration for FPGA-based
All-Pairs Shortest-Paths [FCCM 2006]

May 10, 2006 IPDPS 2006

Conclusions

« Proposed a highly parallel FPGA design for the
Floyd-Warshall algorithm

o Simple and modular design that maximizes parallelism
and makes maximal use of resources

« Model to determine the optimal values of parameters
that govern the exploitable degree of parallelism under
resource constraints

e Can be used for highly accelerated solution of large
Instances of APSP

o Experimental results on the Cray XD1 show a speedup
of 22

e Future work: Automatic generation of parallel designs
for arbitrarily nested loops

T - H - E
OHIO
UNIVERSITY May 10, 2006 IPDPS 2006 ASC

Acknowledgment

This work is supported in part by DOE’s ASC program.

\

e \
ASC

T - H - E
OHIO
UNIVERSITY May 10, 2006 IPDPS 2006 ASC

Questions?

T -H - E
OHIO
UALE May 10, 2006 IPDPS 2006 A5C

	Introduction
	Overview -- FPGAs
	FPGAs in HPC systems
	Motivation
	Motivation

	Overview -- The Floyd-Warshall algorithm
	Overview -- The Floyd-Warshall algorithm

	Challenges & Issues
	Challenges & Issues

	New Parallel Design -- Our approach
	New Parallel Design -- Our approach
	New Parallel Design -- Our approach
	New Parallel Design -- Our approach

	Parallel design: phase 1
	Parallel design: phase 2
	Parallel design: performance
	Extending for a blocked algorithm
	Extending for a blocked algorithm

	Performance model
	Optimizations
	Implementation
	Experimental setup
	Measurements
	Final speedup (FCCM 2006)
	Related work
	Conclusions
	Acknowledgment
	Questions?

