
Parallel FPGA-based All-Pairs Shortest-Paths in a Directed Graph

Uday Bondhugula

bondhugu@cse.ohio-state.edu

The Ohio State University

Uday Bondhugula, P. Sadayappan
Dept. of CSE, The Ohio State University

Ananth Devulapalli, Joseph Fernando
OSC, Springfield

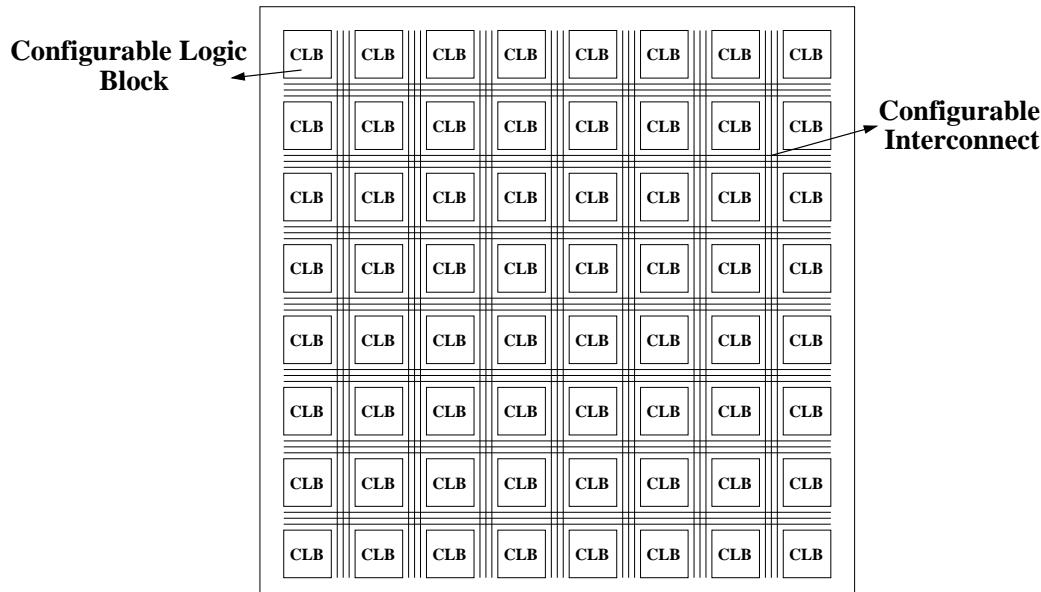
Pete Wyckoff
OSC, Columbus

Introduction

- Field-Programmable Gate Arrays (FPGAs) are reconfigurable fabrics that can be programmed to implement desired logic
- Modern FPGAs have a large amount of configurable resources
 - ◆ Enables highly parallel designs and effective data reuse
 - ◆ Very efficient use of resources
 - ◆ Good trade-off between flexibility and performance
- Performance of modern FPGAs competing with that of microprocessors for a wide variety of routines

Overview – FPGAs

- An FPGA comprises a matrix of configurable logic blocks connected by a configurable interconnection matrix
- Each slice has two 4-input lookup tables (LUT), two flip-flops, arithmetic and carry logic
- A large number of dual-ported on-chip block RAMs
- Sufficient resources for routing and global clocking



FPGAs in HPC systems

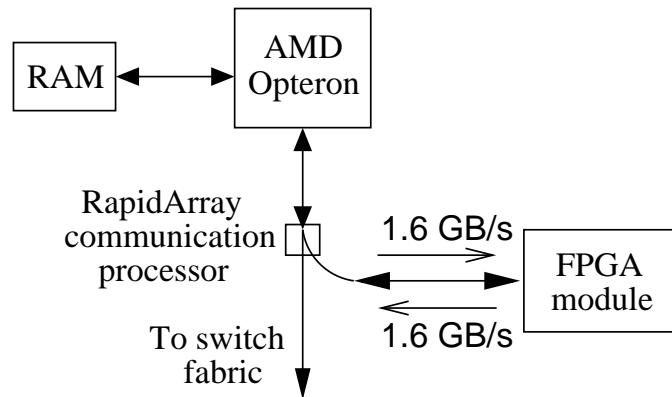


Figure 1: A single node of the Cray XD1

- FPGAs are becoming a viable option for high performance computing
- Several HPC systems – Cray XD1, SRC Mapstation, and SGI RASC employ FPGAs on their interconnects
 - Vendor API allows hardware/software integration

Motivation

- The All-Pairs Shortest-Paths problem is to find the shortest path between each pair of vertices in a directed graph
- Applications in Internet topology, geography, interaction networks, VLSI, etc.

Motivation

- The All-Pairs Shortest-Paths problem is to find the shortest path between each pair of vertices in a directed graph
- Applications in Internet topology, geography, interaction networks, VLSI, etc.
- Accelerating a bio-informatics application – *Galaxy*
 - ◆ Dynamic Transitive Closure analysis
 - ◆ Multiple all-pairs shortest-paths evaluations on thousands of nodes
 - ◆ All edge weights between 0 and 1 with accuracy up to three places of decimal desired
 - ◆ Runs for several days on modern general-purpose processors

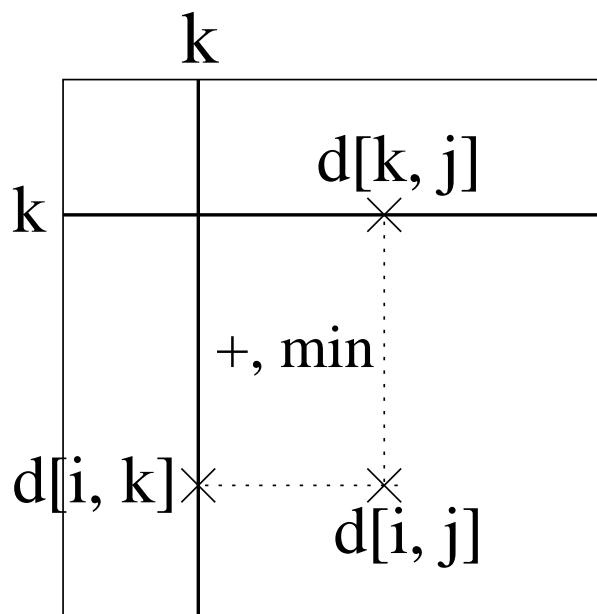
Overview – The Floyd-Warshall algorithm

```
for  $k \leftarrow 1, N$  do
    for  $i \leftarrow 1, N$  do
        for  $j \leftarrow 1, N$  do
             $d[i, j] \leftarrow \min(d[i, j], d[i, k] + d[k, j])$ 
        end for
    end for
end for
```

- FW uses a dynamic programming approach to solve APSP
- Regular access pattern with significant data dependences
- $\Theta(N^3)$ operations

Overview – The Floyd-Warshall algorithm

```
for  $k \leftarrow 1, N$  do
    for  $i \leftarrow 1, N$  do
        for  $j \leftarrow 1, N$  do
             $d[i, j] \leftarrow \min(d[i, j], d[i, k] + d[k, j])$ 
        end for
    end for
end for
```



- FW uses a dynamic programming approach to solve APSP
- Regular access pattern with significant data dependences
- $\Theta(N^3)$ operations

Challenges & Issues

- Design should be simple and modular
- Extracting parallelism in the presence of data dependences
- Scalability with resources and System-FPGA I/O bandwidth
- Naive approach: Extract parallelism from the two inner loops – infeasible to build
 - ◆ Very high complexity in distributing and addressing data across block RAMs
 - ◆ Does not scale with resources on an FPGA, fan-out problem

Challenges & Issues

- Design should be simple and modular
- Extracting parallelism in the presence of data dependences
- Scalability with resources and System-FPGA I/O bandwidth
- Naive approach: Extract parallelism from the two inner loops – infeasible to build
 - ◆ Very high complexity in distributing and addressing data across block RAMs
 - ◆ Does not scale with resources on an FPGA, fan-out problem
- How do we extract parallelism from the k loop?

New Parallel Design – Our approach

- Organize the computation into two phases

New Parallel Design – Our approach

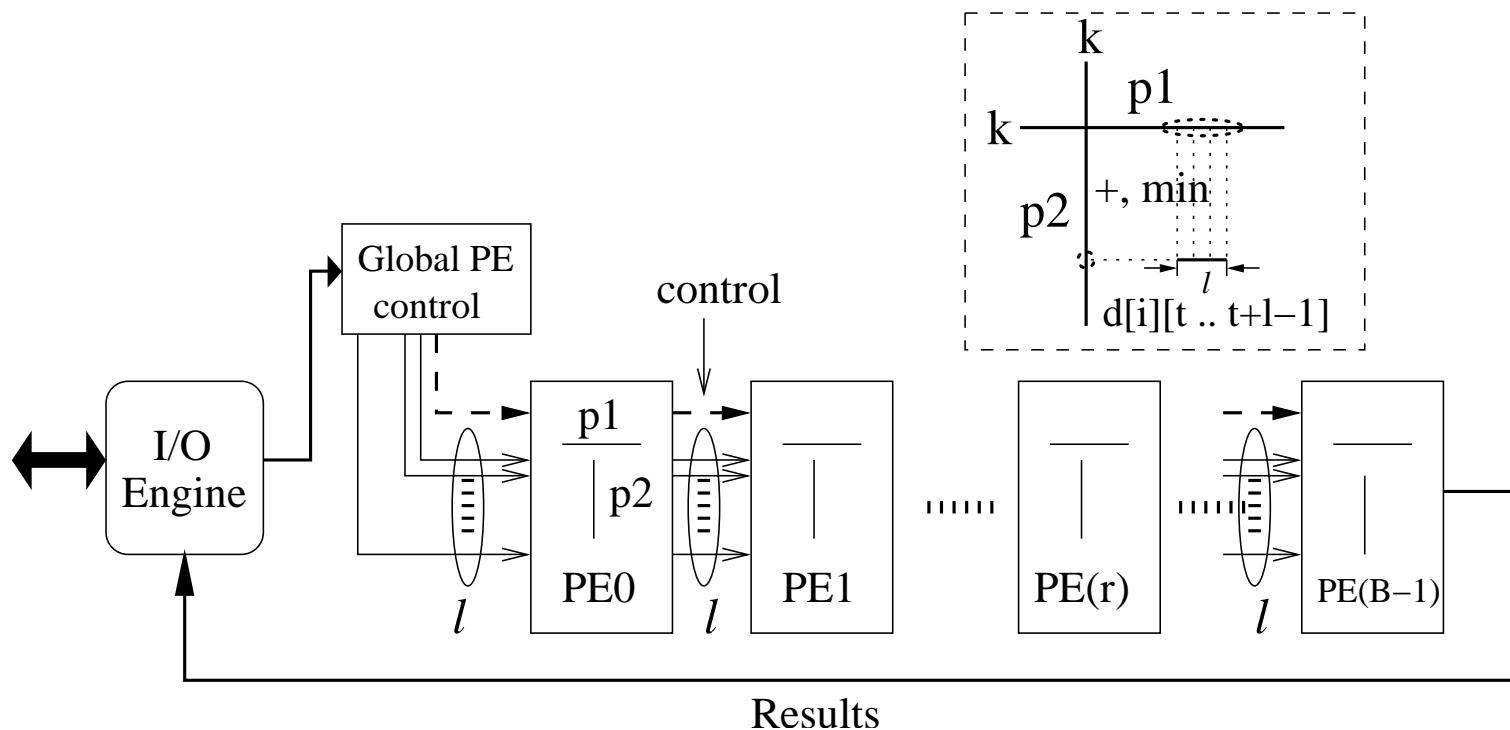
- Organize the computation into two phases
 - ◆ **Phase 1** Compute the set of *pivot* rows and columns in advance

New Parallel Design – Our approach

- Organize the computation into two phases
 - ◆ **Phase 1** Compute the set of *pivot* rows and columns in advance
 - ◆ **Phase 2** Use the stored pivot rows and columns to update the matrix elements in a streamed fashion

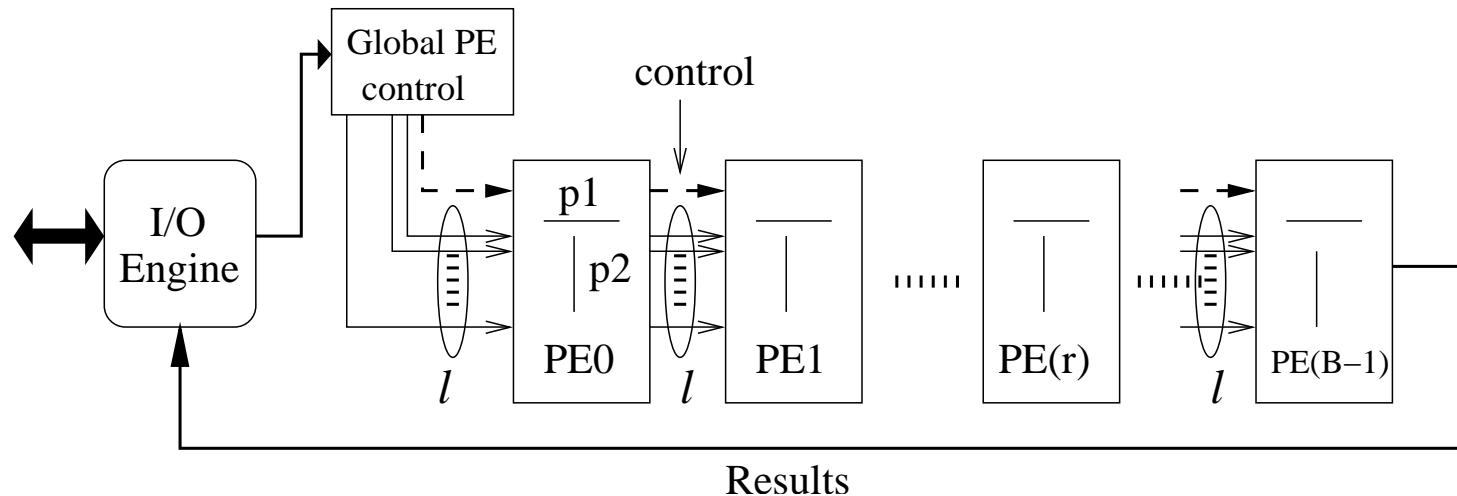
New Parallel Design – Our approach

- Organize the computation into two phases
 - ◆ **Phase 1** Compute the set of *pivot* rows and columns in advance
 - ◆ **Phase 2** Use the stored pivot rows and columns to update the matrix elements in a streamed fashion
- Linear array of B Processing Elements (PEs) each with l operators



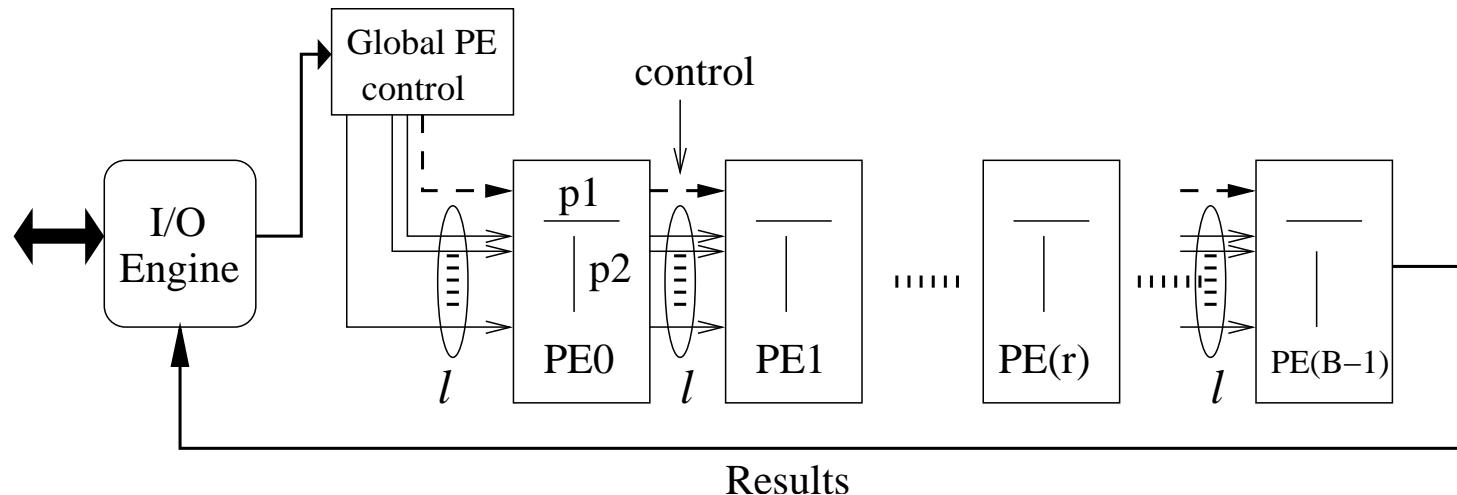
Parallel design: phase 1

- The r^{th} pivot row and column is updated $r - 1$ times by upstreams PEs before storage at $\text{PE}\langle r \rangle$
- Each PE first stores its pivot row and column, then updates pivot rows and columns meant for downstream PEs
- Latency of phase 1: $T_1(r) = \frac{2B*(B-r)}{l}$ clock cycles



Parallel design: phase 2

- Each PE (from left to right) streams its pivot row downstream on its turn
- The row is updated by all downstream PEs
- The last PE outputs result matrix in row-major order
- Latency of phase 2: $T_2(r) = \frac{B*(r+1)}{l}$ cycles

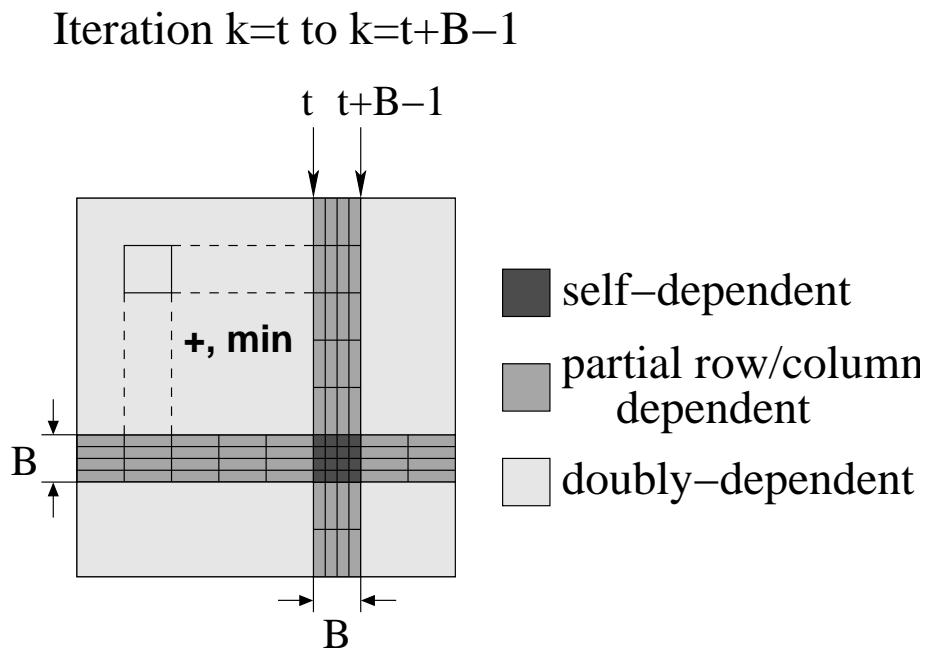


Parallel design: performance

- Parallelism extracted in both phases
- Latency for processing a single tile:

$$\begin{aligned} L &= T_1(0) + B * p - 1 + T_2(B - 1) \text{ cycles} \\ &= \left(\frac{3B^2}{l} + B * p - 1 \right) \text{ cycles} \end{aligned}$$

Extending for a blocked algorithm



- Blocking Floyd-Warshall has been addressed by Venkatraman and Sahni.
- Tiles to be processed in a particular order

Figure 2: One of the N/B rounds of the blocked algorithm

Extending for a blocked algorithm

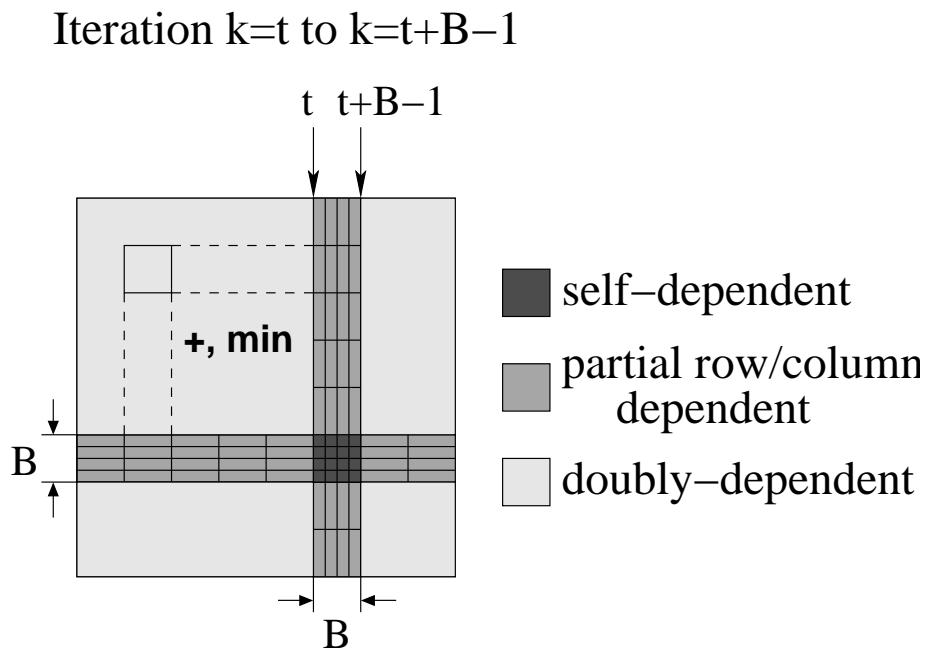
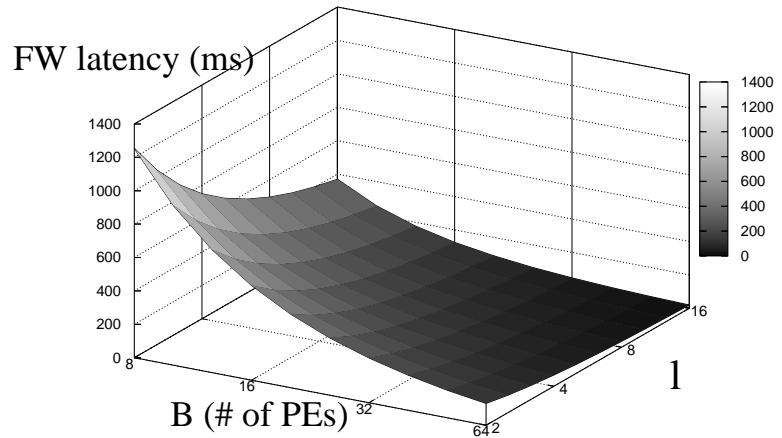


Figure 2: One of the N/B rounds of the blocked algorithm

- Blocking Floyd-Warshall has been addressed by Venkatraman and Sahni.
- Tiles to be processed in a particular order
- Minor changes in the design to incorporate the blocked algorithm
- Pivot rows and columns can come from different tiles

Performance model



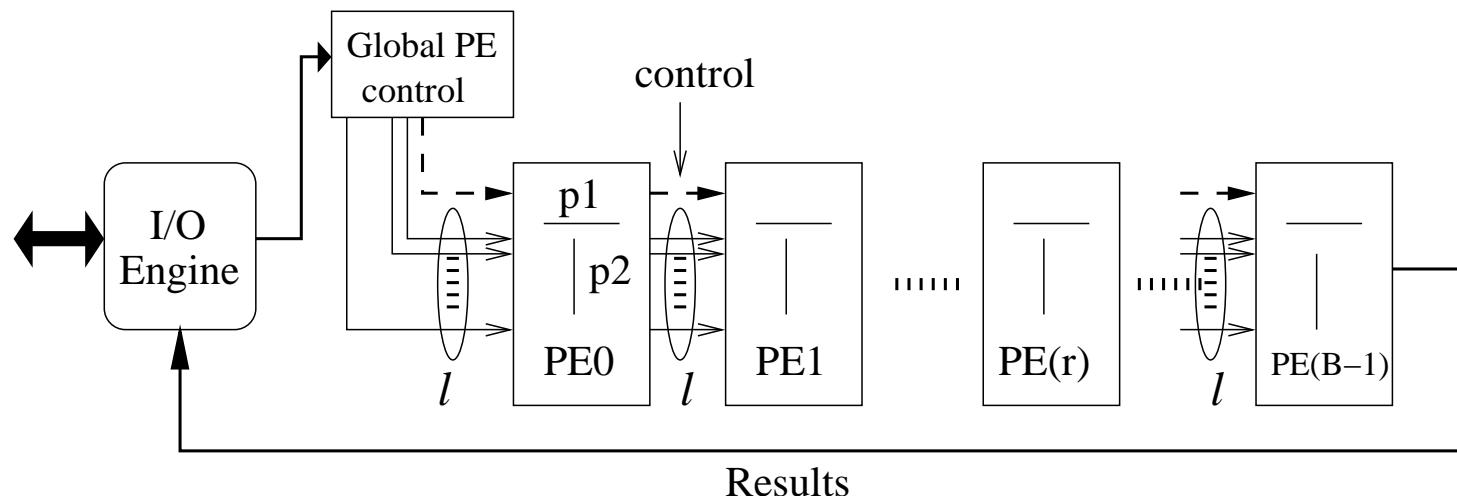
c_g : Global control, c_p : PE control, s_o : operator slices

- **Area constraint:**
$$s_o B l + c_p B + c_g \leq S$$
- **I/O bandwidth constraint**

- The product of B and l is the degree of parallelism
- Scalable with FPGA slices and FPGA–system I/O bandwidth
- Pipelined parallelism (B) more expensive than *doAll* parallelism (l)
- Optimal values for B and l
 - ◆ First, determine l to make full use of I/O bandwidth
 - ◆ Then, determine B from area constraint

Optimizations

- Optimizing control logic – move as much state and control from the PEs to Global Control
- Instruction associated with each set of l elements
- Pipelining for a high frequency
 - PE pipeline split into three stages (decode, read from pivot memory, and compare/add)
- Overlapping computation of successive tiles



Implementation

Table 1: Resource utilization on the XD1 FPGA (XC2VP50)

Area group	Number of Slices		
	8x8	16x16	32x32
Operator (s_o)	25	25	25
PE	584	550	553
Global control (c_g)	73	73	73
FW	3,983	8,256	17,223
I/O subsystem	3,193		
Total utilization	8,017	12,293	21,229
Available (A)	23,616		
Used	34%	50%	90%

Experimental setup

- CPU Implementation (CPU-FW)
 - ◆ AMD Opteron 2.2 GHz with 64KB L1 cache
 - ◆ All cases fit in L1 cache
 - ◆ Compiled with GCC with -O3
- FPGA-based implementation (FPGA-FW)
 - ◆ Cray XD1's FPGA – Xilinx Virtex-II Pro XC2VP50
 - ◆ 32x32 kernel is the best case
 - ◆ Clocked at 200 MHz
 - ◆ Xilinx ISE 7.1, Cray User FPGA version 1.2
- 16-bit precision for edge weights

Measurements

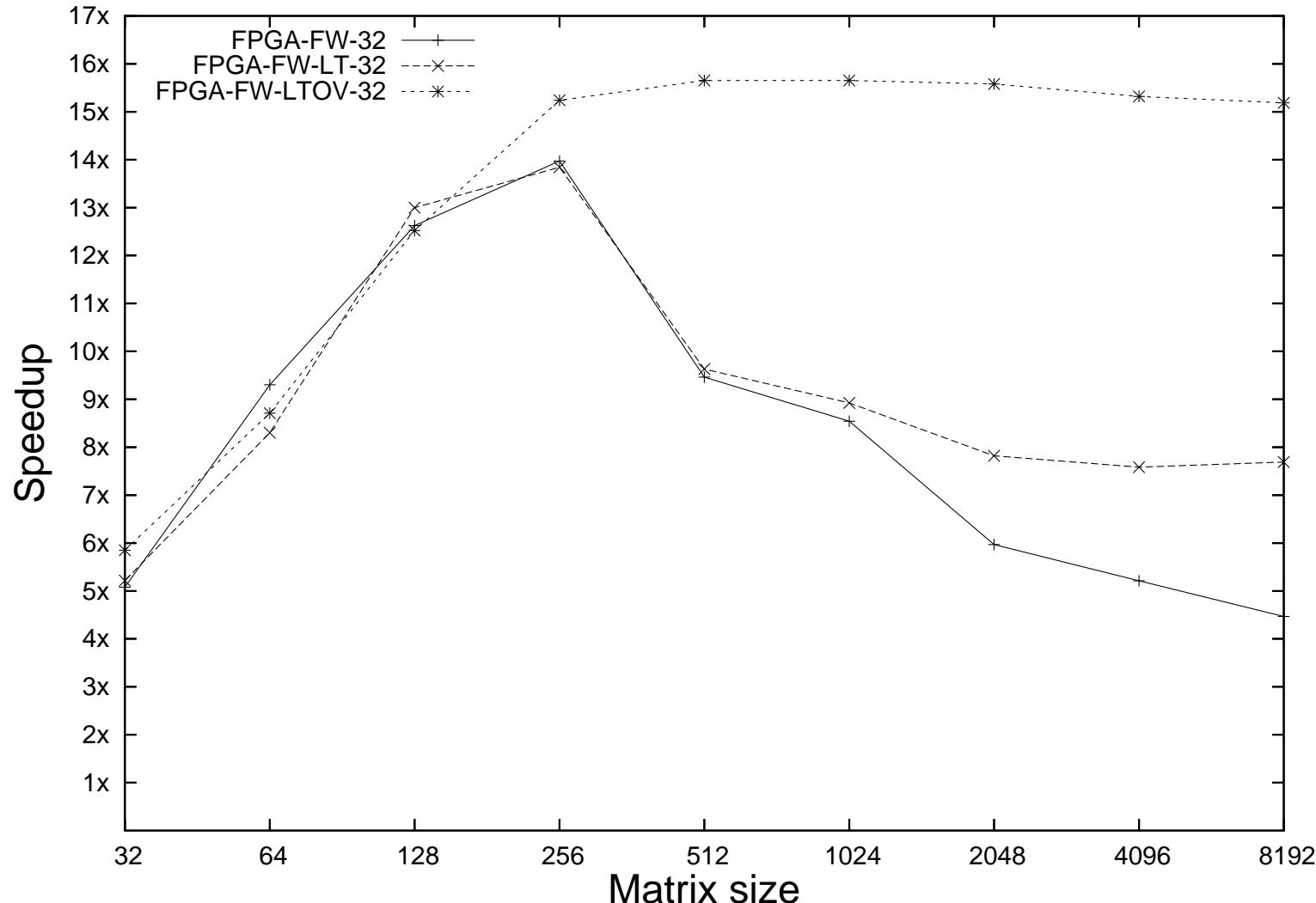
Table 2: Measured performance: FPGA-FW vs. CPU-FW

Tile size	FPGA-FW			CPU-FW
	Total	Overhead	Compute	
8x8	2.49 μ s	2.07 μ s	0.42 μ s	1.6 μ s
16x16	3.36 μ s	2.07 μ s	1.29 μ s	14.1 μ s
32x32	6.91 μ s	2.07 μ s	4.84 μ s	106.5 μ s

Table 3: Estimated vs. measured performance & Speedup

Tile size	FPGA-FW		CPU-FW	Measured Speedup
	Estimated	Measured		
8x8	0.36 μ s	0.42 μ s	1.6 μ s	3.8x
16x16	1.20 μ s	1.29 μ s	14.1 μ s	11x
32x32	4.14 μ s	4.84 μ s	106.5 μ s	22x

Final speedup (FCCM 2006)



Related work

- FW first proposed by Floyd in 1962
- Venkatraman proposed a blocked version of FW to optimize for data locality [J. of Exp. Alg. 2003]
- Zhuo, Underwood have demonstrated competitiveness of FPGAs for double precision floating-point routines
- Significant systolic literature on the Algebraic Path Problem
- Effective hardware/software integration for FPGA-based All-Pairs Shortest-Paths [FCCM 2006]

Conclusions

- Proposed a highly parallel FPGA design for the Floyd-Warshall algorithm
- Simple and modular design that maximizes parallelism and makes maximal use of resources
- Model to determine the optimal values of parameters that govern the exploitable degree of parallelism under resource constraints
- Can be used for highly accelerated solution of large instances of APSP
- Experimental results on the Cray XD1 show a speedup of 22
- **Future work:** Automatic generation of parallel designs for arbitrarily nested loops

Acknowledgment

This work is supported in part by DOE's ASC program.

Questions?
