
GoBack

May 10, 2006 IPDPS 2006

Parallel FPGA-based All-Pairs
Shortest-Paths in a Directed Graph

Uday Bondhugula

bondhugu@cse.ohio-state.edu

The Ohio State University

Uday Bondhugula, P. Sadayappan Ananth Devulapalli, Joseph Fernando Pete Wyckoff

Dept. of CSE, The Ohio State University OSC, Springfield OSC, Columbus

May 10, 2006 IPDPS 2006

Introduction

● Field-Programmable Gate Arrays (FPGAs) are
reconfigurable fabrics that can be programmed to
implement desired logic

● Modern FPGAs have a large amount of configurable
resources
◆ Enables highly parallel designs and effective data

reuse
◆ Very efficient use of resources
◆ Good trade-off between flexibility and performance

● Performance of modern FPGAs competing with that of
microprocessors for a wide variety of routines

May 10, 2006 IPDPS 2006

Overview – FPGAs

● An FPGA comprises a matrix of configurable logic
blocks connected by a configurable interconnection
matrix

● Each slice has two 4-input lookup tables (LUT), two
flip-flops, arithmetic and carry logic

● A large number of dual-ported on-chip block RAMs

● Sufficient resources for routing and global clocking

CLB CLB CLB CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB CLB CLB CLB

Configurable
Interconnect

Configurable Logic
Block

May 10, 2006 IPDPS 2006

FPGAs in HPC systems

FPGA
module

To switch

RapidArray

processor

fabric

communication

1.6 GB/s

1.6 GB/s

RAM
AMD

Opteron

Figure 1: A single node of the

Cray XD1

● FPGAs are becoming a viable
option for high performance
computing

● Several HPC systems – Cray XD1,
SRC Mapstation, and SGI RASC
employ FPGAs on their
interconnects

- Vendor API allows
hardware/software integration

May 10, 2006 IPDPS 2006

Motivation

● The All-Pairs Shortest-Paths problem is to find the shortest path
between each pair of vertices in a directed graph

● Applications in Internet topology, geography, interaction networks,
VLSI, etc.

● Accelerating a bio-informatics application – Galaxy
◆ Dynamic Transitive Closure analysis
◆ Multiple all-pairs shortest-paths evaluations on thousands of

nodes
◆ All edge weights between 0 and 1 with accuracy up to three

places of decimal desired
◆ Runs for several days on modern general-purpose processors

May 10, 2006 IPDPS 2006

Motivation

● The All-Pairs Shortest-Paths problem is to find the shortest path
between each pair of vertices in a directed graph

● Applications in Internet topology, geography, interaction networks,
VLSI, etc.

● Accelerating a bio-informatics application – Galaxy
◆ Dynamic Transitive Closure analysis
◆ Multiple all-pairs shortest-paths evaluations on thousands of

nodes
◆ All edge weights between 0 and 1 with accuracy up to three

places of decimal desired
◆ Runs for several days on modern general-purpose processors

May 10, 2006 IPDPS 2006

Overview – The Floyd-Warshall algorithm

for k← 1,N do

for i← 1,N do

for j← 1,N do

d[i, j]← min (d[i, j], d[i,k]+d[k, j])

end for

end for

end for

k

k

d[i, j]

d[k, j]

d[i, k]

+, min

● FW uses a dynamic
programming
approach to solve
APSP

● Regular access
pattern with
significant data
dependences

● θ(N3) operations

May 10, 2006 IPDPS 2006

Overview – The Floyd-Warshall algorithm

for k← 1,N do

for i← 1,N do

for j← 1,N do

d[i, j]← min (d[i, j], d[i,k]+d[k, j])

end for

end for

end for

k

k

d[i, j]

d[k, j]

d[i, k]

+, min

● FW uses a dynamic
programming
approach to solve
APSP

● Regular access
pattern with
significant data
dependences

● θ(N3) operations

May 10, 2006 IPDPS 2006

Challenges & Issues

● Design should be simple and modular

● Extracting parallelism in the presence of data
dependences

● Scalability with resources and System-FPGA I/O
bandwidth

● Naive approach: Extract parallelism from the two inner
loops – infeasible to build
◆ Very high complexity in distributing and addressing

data across block RAMs
◆ Does not scale with resources on an FPGA, fan-out

problem

● How do we extract parallelism from the k loop?

May 10, 2006 IPDPS 2006

Challenges & Issues

● Design should be simple and modular

● Extracting parallelism in the presence of data
dependences

● Scalability with resources and System-FPGA I/O
bandwidth

● Naive approach: Extract parallelism from the two inner
loops – infeasible to build
◆ Very high complexity in distributing and addressing

data across block RAMs
◆ Does not scale with resources on an FPGA, fan-out

problem

● How do we extract parallelism from the k loop?

May 10, 2006 IPDPS 2006

New Parallel Design – Our approach

● Organize the computation into two phases

◆ Phase 1 Compute the set of pivot rows and columns in
advance

◆ Phase 2 Use the stored pivot rows and columns to update the
matrix elements in a streamed fashion

● Linear array of B Processing Elements (PEs) each with l operators

PE1 PE(r)PE0

p2

l l l

Engine
I/O

PE(B−1)

Global PE
control

Results

k

l

p2

p1

d[i][t .. t+l−1]

k
+, min

control

p1

May 10, 2006 IPDPS 2006

New Parallel Design – Our approach

● Organize the computation into two phases
◆ Phase 1 Compute the set of pivot rows and columns in

advance

◆ Phase 2 Use the stored pivot rows and columns to update the
matrix elements in a streamed fashion

● Linear array of B Processing Elements (PEs) each with l operators

PE1 PE(r)PE0

p2

l l l

Engine
I/O

PE(B−1)

Global PE
control

Results

k

l

p2

p1

d[i][t .. t+l−1]

k
+, min

control

p1

May 10, 2006 IPDPS 2006

New Parallel Design – Our approach

● Organize the computation into two phases
◆ Phase 1 Compute the set of pivot rows and columns in

advance
◆ Phase 2 Use the stored pivot rows and columns to update the

matrix elements in a streamed fashion

● Linear array of B Processing Elements (PEs) each with l operators

PE1 PE(r)PE0

p2

l l l

Engine
I/O

PE(B−1)

Global PE
control

Results

k

l

p2

p1

d[i][t .. t+l−1]

k
+, min

control

p1

May 10, 2006 IPDPS 2006

New Parallel Design – Our approach

● Organize the computation into two phases
◆ Phase 1 Compute the set of pivot rows and columns in

advance
◆ Phase 2 Use the stored pivot rows and columns to update the

matrix elements in a streamed fashion

● Linear array of B Processing Elements (PEs) each with l operators

PE1 PE(r)PE0

p2

l l l

Engine
I/O

PE(B−1)

Global PE
control

Results

k

l

p2

p1

d[i][t .. t+l−1]

k
+, min

control

p1

May 10, 2006 IPDPS 2006

Parallel design: phase 1

● The rth pivot row and column is updated r−1 times by
upstreams PEs before storage at PE〈r〉

● Each PE first stores its pivot row and column, then
updates pivot rows and columns meant for downstream
PEs

● Latency of phase 1: T1(r) = 2B∗(B−r)
l clock cycles

PE1 PE(r)PE0

p2

l l l

Engine
I/O

PE(B−1)

Global PE
control

Results

control

p1

May 10, 2006 IPDPS 2006

Parallel design: phase 2

● Each PE (from left to right) streams its pivot row
downstream on its turn

● The row is updated by all downstream PEs

● The last PE outputs result matrix in row-major order

● Latency of phase 2: T2(r) = B∗(r+1)
l cycles

PE1 PE(r)PE0

p2

l l l

Engine
I/O

PE(B−1)

Global PE
control

Results

control

p1

May 10, 2006 IPDPS 2006

Parallel design: performance

● Parallelism extracted in both phases

● Latency for processing a single tile:

L = T1(0)+B∗ p−1+T2(B−1) cycles

=

(

3B2

l
+B∗ p−1

)

cycles

May 10, 2006 IPDPS 2006

Extending for a blocked algorithm

t+B−1

doubly−dependent

+, min

t

self−dependent

Iteration k=t to k=t+B−1

dependent
partial row/column

B

B

Figure 2: One of the N/B rounds of the

blocked algorithm

● Blocking Floyd-Warshall has
been addressed by
Venkatraman and Sahni.

● Tiles to be processed in a
particular order

● Minor changes in the design
to incorporate the blocked
algorithm

● Pivot rows and columns can
come from different tiles

May 10, 2006 IPDPS 2006

Extending for a blocked algorithm

t+B−1

doubly−dependent

+, min

t

self−dependent

Iteration k=t to k=t+B−1

dependent
partial row/column

B

B

Figure 2: One of the N/B rounds of the

blocked algorithm

● Blocking Floyd-Warshall has
been addressed by
Venkatraman and Sahni.

● Tiles to be processed in a
particular order

● Minor changes in the design
to incorporate the blocked
algorithm

● Pivot rows and columns can
come from different tiles

May 10, 2006 IPDPS 2006

Performance model

 0

 200

 400

 600

 800

 1000

 1200

 1400

 8

 16

 32

 64
B (# of PEs) 2

 4

 8

 16

l
 0

 200

 400

 600

 800

 1000

 1200

 1400

FW latency (ms)

cg: Global control, cp: PE
control, so: operator slices

● Area constraint:
soBl + cpB+ cg ≤ S

● I/O bandwidth constraint

● The product of B and l is the
degree of parallelism

● Scalable with FPGA slices and
FPGA–system I/O bandwidth

● Pipelined parallelism (B) more
expensive than doAll parallelism (l)

● Optimal values for B and l
◆ First, determine l to make full

use of I/O bandwidth
◆ Then, determine B from area

constraint

May 10, 2006 IPDPS 2006

Optimizations

● Optimizing control logic – move as much state and
control from the PEs to Global Control

● Instruction associated with each set of l elements

● Pipelining for a high frequency

– PE pipeline split into three stages
(decode, read from pivot memory, and compare/add)

● Overlapping computation of successive tiles

PE1 PE(r)PE0

p2

l l l

Engine
I/O

PE(B−1)

Global PE
control

Results

control

p1

May 10, 2006 IPDPS 2006

Implementation

Table 1: Resource utilization on the XD1 FPGA (XC2VP50)

Area group Number of Slices

8x8 16x16 32x32

Operator (so) 25 25 25

PE 584 550 553

Global control (cg) 73 73 73

FW 3,983 8,256 17,223

I/O subsystem 3,193

Total utilization 8,017 12,293 21,229

Available (A) 23,616

Used 34% 50% 90%

May 10, 2006 IPDPS 2006

Experimental setup

● CPU Implementation (CPU-FW)
◆ AMD Opteron 2.2 GHz with 64KB L1 cache
◆ All cases fit in L1 cache
◆ Compiled with GCC with -O3

● FPGA-based implementation (FPGA-FW)
◆ Cray XD1’s FPGA – Xilinx Virtex-II Pro XC2VP50
◆ 32x32 kernel is the best case
◆ Clocked at 200 MHz
◆ Xilinx ISE 7.1, Cray User FPGA version 1.2

● 16-bit precision for edge weights

May 10, 2006 IPDPS 2006

Measurements

Table 2: Measured performance: FPGA-FW vs. CPU-FW

Tile FPGA-FW CPU-FW

size Total Overhead Compute

8x8 2.49 µs 2.07 µs 0.42 µs 1.6 µs

16x16 3.36 µs 2.07 µs 1.29 µs 14.1 µs

32x32 6.91 µs 2.07 µs 4.84 µs 106.5 µs

Table 3: Estimated vs. measured performance & Speedup

Tile FPGA-FW CPU-FW Measured

size Estimated Measured Speedup

8x8 0.36 µs 0.42 µs 1.6 µs 3.8x

16x16 1.20 µs 1.29 µs 14.1 µs 11x

32x32 4.14 µs 4.84 µs 106.5 µs 22x

May 10, 2006 IPDPS 2006

Final speedup (FCCM 2006)

17x

16x

15x

14x

13x

12x

11x

10x

9x

8x

7x

6x

5x

4x

3x

2x

1x

 32 64 128 256 512 1024 2048 4096 8192

S
pe

ed
up

Matrix size

FPGA-FW-32
FPGA-FW-LT-32

FPGA-FW-LTOV-32

May 10, 2006 IPDPS 2006

Related work

● FW first proposed by Floyd in 1962

● Venkatraman proposed a blocked version of FW to
optimize for data locality [J. of Exp. Alg. 2003]

● Zhuo, Underwood have demonstrated competitiveness
of FPGAs for double precision floating-point routines

● Significant systolic literature on the Algebraic Path
Problem

● Effective hardware/software integration for FPGA-based
All-Pairs Shortest-Paths [FCCM 2006]

May 10, 2006 IPDPS 2006

Conclusions

● Proposed a highly parallel FPGA design for the
Floyd-Warshall algorithm

● Simple and modular design that maximizes parallelism
and makes maximal use of resources

● Model to determine the optimal values of parameters
that govern the exploitable degree of parallelism under
resource constraints

● Can be used for highly accelerated solution of large
instances of APSP

● Experimental results on the Cray XD1 show a speedup
of 22

● Future work: Automatic generation of parallel designs
for arbitrarily nested loops

May 10, 2006 IPDPS 2006

Acknowledgment

This work is supported in part by DOE’s ASC program.

May 10, 2006 IPDPS 2006

Questions?

	Introduction
	Overview -- FPGAs
	FPGAs in HPC systems
	Motivation
	Motivation

	Overview -- The Floyd-Warshall algorithm
	Overview -- The Floyd-Warshall algorithm

	Challenges & Issues
	Challenges & Issues

	New Parallel Design -- Our approach
	New Parallel Design -- Our approach
	New Parallel Design -- Our approach
	New Parallel Design -- Our approach

	Parallel design: phase 1
	Parallel design: phase 2
	Parallel design: performance
	Extending for a blocked algorithm
	Extending for a blocked algorithm

	Performance model
	Optimizations
	Implementation
	Experimental setup
	Measurements
	Final speedup (FCCM 2006)
	Related work
	Conclusions
	Acknowledgment
	Questions?

