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Introduction

o Field-Programmable Gate Arrays (FPGAS) are
reconfigurable fabrics that can be programmed to
Implement desired logic

« Modern FPGAs have a large amount of configurable
resources
0 Enables highly parallel designs and effective data
reuse
0 Very efficient use of resources
0 Good trade-off between flexibility and performance

« Performance of modern FPGAs competing with that of
microprocessors for a wide variety of routines
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Overview — FPGAS

« An FPGA comprises a matrix of configurable logic
blocks connected by a configurable interconnection
matrix

e Each slice has two 4-input lookup tables (LUT), two
flip-flops, arithmetic and carry logic

e A large number of dual-ported on-chip block RAMs
« Sufficient resources for routing and global clocking
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FPGAS in HPC systems

« FPGAs are becoming a viable

RAM [«——»{ Opteron option for high performance
| 4 computing
Csﬁg%y"’“ Lochs . Several HPC systems — Cray XD1,
Toswitch | 16 GBls SRC Mapstation, and SGI RASC
ey employ FPGAs on their
Interconnects

Figure 1. A single node of the
Cray XD1 - Vendor API allows

hardware/software integration
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Motivation

e The All-Pairs Shortest-Paths problem is to find the shortest path
between each pair of vertices in a directed graph

o Applications in Internet topology, geography, interaction networks,
VL3I, etc.
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Motivation

e The All-Pairs Shortest-Paths problem is to find the shortest path
between each pair of vertices in a directed graph

o Applications in Internet topology, geography, interaction networks,
VL3I, etc.

 Accelerating a bio-informatics application — Galaxy
0 Dynamic Transitive Closure analysis
0 Multiple all-pairs shortest-paths evaluations on thousands of
nodes
0 All edge weights between 0 and 1 with accuracy up to three
places of decimal desired
0 Runs for several days on modern general-purpose processors
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Overview — The Floyd-Warshall algorithm
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for k< 1,N do

for i — 1.N do « FW uses a dynamic
for j « 1,N do programming
dli, j] < min (d[i, j], d[i,k] +d[k, j]) approach to solve
end for APSP
end for « Regular access
end for

pattern with
significant data
dependences

« B(N3) operations
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Overview — The Floyd-Warshall algorithm
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for k< 1,N do
for i« 1,N do « FW uses a dynamic
for j < 1,N do programming
d[i, j] < min (d[i, j], d[i,k] +d[k, j]) approach to solve
end for APSP
end for « Regular access
end for :
pattern with
K significant data
dik, i dependences
K « B(N3) operations
+, min
i, K
d[i, j]
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Challenges & Issues

e Design should be simple and modular

o Extracting parallelism in the presence of data
dependences

o Scalability with resources and System-FPGA 1/O
bandwidth

« Nalive approach: Extract parallelism from the two inner
loops — infeasible to build
0 Very high complexity in distributing and addressing
data across block RAMs
0 Does not scale with resources on an FPGA, fan-out
problem
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Challenges & Issues

e Design should be simple and modular

o Extracting parallelism in the presence of data
dependences

o Scalability with resources and System-FPGA 1/O
bandwidth

« Nalive approach: Extract parallelism from the two inner
loops — infeasible to build
0 Very high complexity in distributing and addressing
data across block RAMs
0 Does not scale with resources on an FPGA, fan-out
problem

« How do we extract parallelism from the K loop?
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New Parallel Design — Our approach

e Organize the computation into two phases
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New Parallel Design — Our approach

e Organize the computation into two phases
0 Phase 1 Compute the set of pivot rows and columns in
advance
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New Parallel Design — Our approach

e Organize the computation into two phases
0 Phase 1 Compute the set of pivot rows and columns in
advance
0 Phase 2 Use the stored pivot rows and columns to update the
matrix elements in a streamed fashion
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New Parallel Design — Our approach

e Organize the computation into two phases
0 Phase 1 Compute the set of pivot rows and columns in
advance
0 Phase 2 Use the stored pivot rows and columns to update the
matrix elements in a streamed fashion
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Parallel design: phase 1

e Therth pivot row and column is updated r — 1 times by
upstreams PEs before storage at PE(r)

e Each PE first stores its pivot row and column, then
updates pivot rows and columns meant for downstream

PEs
o Latency of phase 1: Ty(r) = ZB*(lB_r> clock cycles
Global PE
control control

| i

10 G| | ] —
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Results
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Parallel design: phase 2

Each PE (from left to right) streams its pivot row
downstream on its turn

The row iIs updated by all downstream PEs

The last PE outputs result matrix in row-major order

Latency of phase 2: To(r) = w cycles

Global PE |
control contro

| i
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Parallel design: performance

« Parallelism extracted in both phases
« Latency for processing a single tile:

L = T1(0)+Bxp—1+To(B—1)cycles

2
= <3|—B+B* p—l) cycles
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Extending for a blocked algorithm

e Blocking Floyd-Warshall has

Iteration k=t to k=t+B-1
been addressed by

t t+B-1
Ly Venkatraman and Sahni.
****** I self-dependent  Tiles to be processed in a
-+, min : particular order
N partial row/column
Voo dependent
B? = || doubly—dependent
%B%

Figure 2: One of the N/B rounds of the
blocked algorithm
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Extending for a blocked algorithm
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Iteration k=t to k=t+B-1

t t+B-1
Y v
| . B self-dependent
+, min -
N partial row/column
Voo dependent
B? = || doubly—dependent
—» B [

Figure 2: One of the N/B rounds of the
blocked algorithm

May 10, 2006

Blocking Floyd-Warshall has
been addressed by
Venkatraman and Sahni.

Tiles to be processed in a
particular order

Minor changes in the design
to incorporate the blocked
algorithm

Pivot rows and columns can
come from different tiles
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Performance model

FW latency (ms) . ® The product of B and | is the
degree of parallelism

e Scalable with FPGA slices and
FPGA—-system I/O bandwidth

 Pipelined parallelism (B) more
expensive than doAll parallelism (l)

B (# of PES)

Cy: Global control, Cp: PE

_ « Optimal values for B and |
control, S;: operator slices

0 First, determine | to make full

e Area constraint: use of I/O bandwidth
SBl +cpB+cy <S 0 Then, determine B from area
e |/O bandwidth constraint constraint
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Optimizations

Optimizing control logic — move as much state and
control from the PEs to Global Control

Instruction associated with each set of | elements

Pipelining for a high frequency

— PE pipeline split into three stages
(decode, read from pivot memory, and compare/add)

Overlapping computation of successive tiles

Global PE
control control
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Implementation

Table 1: Resource utilization on the XD1 FPGA (XC2VP50)

Area group Number of Slices
8x8 | 16x16 | 32x32
Operator (S) 25 25 25
PE 584 550 553
Global control (Cgq) 73 73 73
FW 3,983 | 8,256 | 17,223
I/O subsystem 3,193
Total utilization 8,017 | 12,293 | 21,229
Available (A) 23,616
Used 34% 50% 90%
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Experimental setup

e CPU Implementation (CPU-FW)
0 AMD Opteron 2.2 GHz with 64KB L1 cache
0 All cases fit in L1 cache
0 Compiled with GCC with -O3

« FPGA-based implementation (FPGA-FW)

Cray XD1's FPGA — Xilinx Virtex-1l Pro XC2VP50
32x32 kernel is the best case

Clocked at 200 MHz

Xilinx ISE 7.1, Cray User FPGA version 1.2

« 16-bit precision for edge weights

[]
[]
[]
[]
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Measurements
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Table 2: Measured performance: FPGA-FW vs. CPU-FW

Tile FPGA-FW CPU-FW

size Total Overhead | Compute

8x8 2.49 us 2.07 s 0.42 us 1.6 s
16x16 || 3.36|s 2.07 s 1.29 s 14.1ps
32x32 || 6.91ps 2.07 s 4.84 s 106.5 s

Table 3: Estimated vs. measured performance & Speedup

Tile FPGA-FW CPU-FW |Measured
size |[Estimated [Measured Speedup
8x8 0.36 Us 0.42 s 1.6 Us 3.8x
16x16 | 1.20Us 1.29 us 14.1 s 11x
32x32 | 4.14 s 4.84 s 106.5 s 22X
May 10, 2006
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Final speedup (FCCM 2006)

17x T T T T T T T
FPGA-FW-32 —+—
16x FPGA-FW-LT-32 ---%--- S % .
15 FPGA-FW-LTOV-32 ---*--- W Ko *
X I = E

| | | | | | |

32 64 128 256 512 1024 2048 4096 8192
Matrix size

May 10, 2006 IPDPS 2006 ASC



Related work
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o FW first proposed by Floyd in 1962

« Venkatraman proposed a blocked version of FW to
optimize for data locality [J. of Exp. Alg. 2003]

e Zhuo, Underwood have demonstrated competitiveness
of FPGAs for double precision floating-point routines

 Significant systolic literature on the Algebraic Path
Problem

« Effective hardware/software integration for FPGA-based
All-Pairs Shortest-Paths [FCCM 2006]
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Conclusions

« Proposed a highly parallel FPGA design for the
Floyd-Warshall algorithm

o Simple and modular design that maximizes parallelism
and makes maximal use of resources

« Model to determine the optimal values of parameters
that govern the exploitable degree of parallelism under
resource constraints

e Can be used for highly accelerated solution of large
Instances of APSP

o Experimental results on the Cray XD1 show a speedup
of 22

e Future work: Automatic generation of parallel designs
for arbitrarily nested loops
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Questions?
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