
A Model for Fusion and Code Motion in an Automatic
Parallelizing Compiler

Uday Bondhugula
Advanced Compiler Technologies
IBM T.J. Watson Research Center
Yorktown Heights, New York, USA

ubondhug@us.ibm.com

Oktay Gunluk
Business Analytics and Mathematical Sciences

IBM T.J. Watson Research Center
Yorktown Heights, New York, USA

gunluk@us.ibm.com
Sanjeeb Dash

Business Analytics and Mathematical Sciences
IBM T.J. Watson Research Center
Yorktown Heights, New York, USA

sdash@us.ibm.com

Lakshminarayanan Renganarayanan
Advanced Compiler Technologies

IBM T.J. Watson Research Center, USA
Yorktown Heights, New York
lrengana@us.ibm.com

ABSTRACT
Loop fusion has been studied extensively, but in a man-
ner isolated from other transformations. This was mainly
due to the lack of a powerful intermediate representation
for application of compositions of high-level transformations.
Fusion presents strong interactions with parallelism and lo-
cality. Currently, there exist no models to determine good
fusion structures integrated with all components of an auto-
parallelizing compiler. This is also one of the reasons why all
the benefits of optimization and automatic parallelization of
long sequences of loop nests spanning hundreds of lines of
code have never been explored.

We present a fusion model in an integrated automatic
parallelization framework that simultaneously optimizes for
hardware prefetch stream buffer utilization, locality, and
parallelism. Characterizing the legal space of fusion struc-
tures in the polyhedral compiler framework is not difficult.
However, incorporating useful optimization criteria into such
a legal space to pick good fusion structures is very hard. The
model we propose captures utilization of hardware prefetch
streams, loss of parallelism, as well as constraints imposed
by privatization and code expansion into a single convex op-
timization space. The model scales very well to program
sections spanning hundreds of lines of code. It has been
implemented into the polyhedral pass of the IBM XL opti-
mizing compiler. Experimental results demonstrate its effec-
tiveness in finding good fusion structures for codes including
SPEC benchmarks and large applications. An improvement
ranging from 5% to nearly a factor of 2.75× is obtained over
the current production compiler optimizer on these bench-
marks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’10, September 11–15, 2010, Vienna, Austria.
Copyright 2010 ACM 978-1-4503-0178-7/10/09 ...$10.00.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compil-
ers, Optimization, Code generation

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Automatic parallelization, Loop fusion, Polyhedral model,
Prefetching, Locality optimization

1. INTRODUCTION
Currently, the trend in microarchitecture design is towards

more processing elements on a single chip. Until the early
2000s, increasing clock frequencies boosted software perfor-
mance without additional programming effort, or improve-
ments in compiler and language design. This is well-known
to no longer be true. There is a greater need for effective
auto-parallelization in compilers.

Loop nest optimization [1] has been studied extensively
for several decades. Before the 2000s, most works were re-
stricted to very narrow domains, typically perfect nests, with
a single nest optimized at a time. There was less focus on
composing a long sequence of transformations, as is nec-
essary in practice to generate high performance code. As
a result, analyses were restricted to small sections, and a
very small subset of transformations were explored. Syner-
gistic effects between various transformations were also lost.
For example, it is known that parallelization on multicores
does not provide good scaling unless single thread locality is
simultaneously improved. Similarly, without privatization
of data, parallelization often cannot be achieved. Signifi-
cant improvement in performance can come from movement
and fusion of code in large sections with several hundreds of
lines of code. Hence, without a framework that can repre-
sent large sections of code to perform a number of high-level
transformations in an integrated manner, the full benefits of
automatic parallelization can neither be seen nor any con-
clusions be made about its effectiveness.

In the past eight years or so, the polyhedral model [2, 9,
1] has emerged as a robust intermediate representation to

343

extract from within a compiler for application of nearly all
high-level optimizations. Contrary to common belief, the
framework is not restricted to code with affine data accesses
or static control flow. With recent advances, nearly any sec-
tion of code within a single procedure, that only makes pure
function calls if any, can be handled. This includes code
with dynamic control flow [3], while loops, and indirect data
accesses. Conservative assumptions are made when neces-
sary and to the extent needed. With recent advances in
automatic transformation [4, 5], it is possible to find good
sequences of transformations for coarse-grained outer par-
allelism, pipelined parallelism, cache and register tiling for
locality, and generate very efficient code [22, 5, 19]. How-
ever, the lack of a fusion model is a roadblock in optimizing
large applications. In particular, choosing the right outer-
most fusion structure has a big impact on how well the code
can be transformed. It is this problem that we address here
in a manner integrated with all other optimization compo-
nents of an auto-parallelizer.

The choice of a fusion structure has trade-offs with par-
allelism and locality. Fusing maximally can hinder paral-
lelization as it would typically increase the number of depen-
dences satisfied on fused loops. Secondly, processors provide
a limited number of hardware prefetch stream buffers, and
excessive fusion may not utilize hardware prefetching well.
One would like to use a number of prefetch streams that is
as close as possible to the available number. On the other
hand, distributing maximally maximizes parallelization op-
portunities, but leads to loss of locality as well as possibly
reduced utilization of prefetching.

To the best of our knowledge, the fusion model we pro-
pose in this paper is the first one in a generic automatic
transformation framework. It is also the first to capture
prefetch stream buffer utilization as well as parallelization
and privatization issues. The framework has been imple-
mented in the polyhedral pass of the IBM XL compiler for
C/C++/Fortran. Past works [9] have shown feasibility of
polyhedral techniques on SPEC benchmarks through man-
ual application of transformations and for sequential compi-
lation. This work demonstrates its fully automatic applica-
tion to complete benchmarks along with parallelization.

The rest of this paper is organized as follows. Section 2
provides background and introduces notation used. Sec-
tion 3 briefly describes how a legal fusion space is obtained
from dependences to serve as the starting point for opti-
mization. Sections 4 and 5 describe our new fusion model
in detail. Section 6 presents results from experimental eval-
uation. Conclusions and directions for future research are
presented in Section 8.

2. BACKGROUND AND NOTATION
The program or a section of it that has been extracted for

optimization is a set of statements, S1, S2, . . . , Sn. Loops
surrounding each statement form its computational domain,
and the iterations of the loops can be represented by integer
points in a convex polyhedron.

Data Dependence Graph: The Data Dependence Graph
(DDG) G = (V,E) is a directed multi-graph with each ver-
tex representing a statement. An edge, e ∈ E, from node
Si to Sj represents a dependence with the source and target
conflicting accesses in Si and Sj respectively. The condi-
tions on when the dependence exists are captured by the
dependence polyhedron, P

e
Si→Sj , that relates the depen-

dent source and target iterations through a system of linear
constraints. The DDG and strongly-connected components
(SCC) of the DDG are important entities when considering
fusion.

Lemma 1. All statements belonging to a strongly-connected
component of the data dependence graph have a common sur-
rounding loop, i.e., they cannot be distributed [12].

Transformations: loop hyperplanes and partition-
ings: A transformation for a program is a statement-wise
multi-dimensional affine function. Let ~iS be an iteration in
the domain of a statement S. Each dimension or level of a
statement-wise transformation can be represented as follows:

φS(~iS) =
`
c1S c2S . . . cmS

S

´ `
~iS
´

+ c0S (1)

Let φ refer to {φS1 , φS2 , . . . , φSn}. φ is a fusion partitioning
if c1S = c2S = · · · = cmS

S = 0, ∀S. In this case, φ partitions the
set of statements in a particular order, c0S being the partition
number for S. φ is a loop hyperplane if

`
c1S c2S . . . cmS

S

´
6= ~0,

∀S.
Loop hyperplanes specify a fused loop while a partition

serves the purpose of distributing statements. Hence, some
rows of the multidimensional affine transformation represent
loops while the rest are partitions interspersing them. In the
literature, there exist techniques to find loop hyperplanes
that maximize tiling opportunity in order to simultaneously
optimize for coarse-grained parallelism and locality. The
focus of this paper is on fusion partitionings, but we will
need the following condition. For a loop hyperplane to not
violate an unsatisfied dependence edge e ∈ E, the following
must hold true.

φSj

`
~t
´
− φSi (~s) ≥ 0,

˙
~s,~t
¸
∈ P

e
Si→Sj (2)

The above constraint can be cast into a set of linear inequal-
ities just involving φ’s coefficients with techniques known in
the polyhedral literature [12, 4]. In the rest of this paper,
we refer to the constant c0Si

of a particular statement Si as
ci whenever φ represents a partitioning as in the context of
fusion.

3. LEGAL SPACE OF FUSION
For any two statements, Si and Sj , one of the following

can be concluded from data dependences:

(i) Strong fuse: ci = cj

(ii) Weak fuse (forward): ci ≤ cj

(iii) Weak fuse (backward): cj ≤ ci

(iv) Strong distribute (forward): ci ≤ cj + 1

(v) Strong distribute (backward): cj ≤ ci + 1

(vi) Unrestricted: ci, cj unconstrained with respect to each
other

Case (i) applies when Si and Sj are in the same SCC; by
Lemma 1 they must be fused together. Case (vi) applies if
Si and Sj are unconnected in the DDG. Cases (ii), (iii), (iv),
and (v) apply when Si and Sj are weakly connected in the
dependence graph, i.e., either when there exists a path from
Si to Sj , or from Sj to Si: the former would lead to either
(ii) or (iv), while the latter will lead to (iii) or (v). However,
distinguishing between (ii) and (iv), or between (iii) and (v),

344

requires more analysis. Certain dependences do not permit
fusion. This analysis can be done using constraint (2), but
by restricting it to dependences that have the concerned
statements as their source and target. Consider the following
condition:

φSy

`
~t
´
− φSx (~s) ≥ 0,

˙
~s,~t
¸
∈ PeSx→Sy ,

∀e ∈ E such that Sx, Sy ∈ {Si, Sj} (3)

If valid φ loop hyperplane solutions cannot be found for the
above, we infer case (iv) as opposed to (ii), or (v) as opposed
to (iii). Also, if two statements are to be distributed, all
statements in the SCC comprising the first one need to be
distributed away from all statements in the SCC comprising
the second; this is obviously implied by case (i). Hence, the
above analysis can be done on an SCC pair-wise basis, as
opposed to statement pair-wise. In fact, all six conditions
above can be written on an SCC-basis. We still choose to
present on a statement-wise basis for better clarity. Thus, a
system of linear equalities and inequalities can be built by
deducing one of the six cases for every (Si, Sj). This convex
space in the cis is the set of all legal fusion choices, and we
denote this by L.

Consistency and Transitivity: Pouchet et al. [16] pro-
vide detailed properties related to transitivity while con-
structing the set of all legal distinct fusion structures for the
purpose of iterative search. Fusion is not transitive when
permutation and skewing interfere. In such cases, a fusion
structure represented by a particular point in L will need
further distribution in order to represent a partitioning. In
practice, we find that such cases arise in a very small fraction
of codes, and we thus stick to the above simple construction.
A fallback solution is easily obtained when such interference
exists. If need be, a complete and consistent legal space
can be constructed at a higher cost using [16]. The model
proposed in this paper can be applied to it as well.

4. FUSION MODEL
In this section, we describe the optimization criteria and

cost models to pick a single good fusion structure from the
space of all possible legal choices.

4.1 Optimizing for prefetch stream buffers
The problem now is to augment the legal space of fusion

structures with cost models for optimization criteria. One
of the desired goals is to ensure that no fused nest con-
sumes more than the available number of hardware prefetch
streams. Other goals are to make sure that fusion is con-
ducive for parallelization as well as respects constraints im-
posed by privatization of data. Optimizing for utilization of
prefetch stream buffers is the most challenging of these, and
we address it in this section.

Most modern hardware supports prefetching. Data re-
quired by accesses to contiguous locations of the memory can
be prefetched instead of being supplied on-demand. Hence,
an array access a[i][j] with i, j being the loop iterators in
that order, can make use a hardware prefetch stream buffer
while accessing along a row. Compilers can insert code to
initiate prefetch streams for candidate accesses. Constant
strided accesses are also candidates for prefetching. Fusion
of statements that access the same data would allow data
reuse as well as reuse or sharing of a prefetch stream. Hence,
the number of prefetch streams that will be used is not sim-

Stmts/Data spaces D1 D2 . . . DM

S1 1 1 . . . 0
S2 0 1 . . . 0
...

...
...

...
...

Sn 1 0 . . . 1

Table 1: Statement / prefetch stream requirement
table: T

ply the sum of those used individually by each of the state-
ments in the same partition.

It is difficult to determine a priori the requirements of
each statement since the inner loop structure of the fused
program itself would not be known while determining the
outermost fusion structure. We go with a worst-case esti-
mation here. Such an estimation is more accurate because,
especially when we perform tiling, we often end up choos-
ing that particular intra-tile loop permutation which would
bring as many stride-1 (contiguous) accesses to the inner-
most loop as possible. This is done as part of a cost function
that considers spatial, temporal, and group reuse.

From the linear constraints in Section 3, the set of legal
fusion/distributions is a convex space in the cis, i.e., parti-
tion numbers. A challenge in constructing an objective is
the hardness of encapsulating optimization criteria involv-
ing just cis, i.e., partition numbers the statements belong
to. This problem is addressed by introducing a set of binary
decision variables that provide greater power in capturing
statements comprising a partition. Let xij be a binary de-
cision variable such that

xij =


1, if Si is in partition j
0, if Si is not in partition j

Due to Lemma 1, the number of partitions can never be
greater than the number of SCCs. Let the number of parti-
tions be N . N is a variable and will only be known when a
solution is found.

Let T be the following constant table, i.e., its values are
known at compile-time: rows correspond to statements and
columns correspond to prefetch stream requirements of state-
ments. Let M be the number of columns of the table. In
some cases, a single data space may need multiple prefetch
streams. For example, in C code, accesses a[i][j], a[i +
1][j], with loop iterators, i and j would require separate
prefetch streams, and so they will have distinct columns in
T . M is thus roughly of the order of the number of distinct
data spaces (arrays/matrices) accessed across all statements.
Based on prefetch stream requirements of each statement,
one can populate T as follows. Table 1 shows a sample ta-
ble.

Tik =


1, if Si requires a stream for array k
0, if Si does not require a stream for array k

Let zkj be a binary decision variable such that

zkj =


1, if a stream is needed for array k in partition j
0, if no stream is needed for array k in partition j

With these variables, it is now possible to add constraints
that capture prefetch stream requirement. We can express

345

the relation between the z and x variables as follows:

zkj =
_

i|Tik=1

xij (4)

Since zkj ∈ {0, 1}, xij ∈ {0, 1}, the above in turn can be
written as:

zkj ≥ xij , ∀i such that Tik = 1 (5)

One can express the partition number as:

ci =

NX
j=1

j ∗ xij (6)

Now, the number of prefetch streams for partition j is justP
k zkj , and can be enforced, for a processor with 7 prefetch

streams, as:

MX
k=1

zkj ≤ 7, 1 ≤ j ≤ N (7)

The number on the RHS is known at compile-time based on
the target processor and on whether the compiler has been
asked to auto-parallelize. Streams are shared equally among
all threads on a chip. Seven to twelve streams are common
for example.

The objective that now really fits well is one that mini-
mizes the number of partitions subject to above constraints.
We now combine all the above constraints and specify the
Integer Programming formulation. All constraints in L, as
defined in Section 3, fall into one of the following three sets.

P=
i = {k | ci − ck = 0} (8)

P+
i = {k | ci − ck ≥ 0} (9)

P++
i = {k | ci − ck ≥ 1} (10)

Therefore, the minimum number of partitions can be ob-
tained by solving the following integer program (IP):

minimize cmax (11)

NX
j=1

xij = 1 ∀i (12)

ci =

NX
j=1

j ∗ xij ∀i (13)

ci = ck ∀i, k such that k ∈ P=
i (14)

ci ≥ ck ∀i, k such that k ∈ P+
i (15)

ci ≥ ck + 1 ∀i, k such that k ∈ P++
i (16)

cmax ≥ ci ∀i (17)

zkj ≥ xij ∀i, j, k with Tik = 1 (18)

MX
k=1

zkj ≤ 7 ∀j (19)

xij ∈ {0, 1}, zkj ∈ {0, 1} (20)

where the number of variables and constraints linearly de-
pend on N . Clearly, from a computational point of view, it
is desirable to obtain a formulation with fewer variables and
constraints and therefore it is desirable to choose the num-
ber N as small as possible. Notice that N can be chosen to
be as small as cmax which is not known in advance. Instead,
we use heuristics to obtain an upper bound on cmax and use
the resulting bound as the number N .

4.1.1 A greedy heuristic
The first heuristic we use to find an upper bound on cmax

is a very fast and simple greedy heuristic. In this heuristic,
we construct partitions sequentially by simply picking the
first feasible statement and assigning it to the current par-
tition. A statement is considered feasible if it does not have
any fusion/distribution restrictions (modulo current partial
solution) and if its data streams can be prefetched without
violating the limit. Statements that must be fused with the
current statement in consideration (i.e. the set P=

i if the
current statement is i) are assigned to the same partition
simultaneously. If no more statements can be assigned to
the current batch, we simply start a new batch.

Any solution found by this simple procedure is clearly an
upper bound on cmax and therefore can be used as N in
the formulation. But if the above procedure fails to find a
solution (due to fusion/distribution restrictions), this does
not necessarily mean that no feasible solution exists. More
precisely, if the precedence graph has directed cycles formed
by pairs of statements that can be fused, for example, let
ci ≥ cj , cj ≥ ck, ck ≥ ci, then the above procedure will get
stuck as all statements in this example, namely, i, j and k
can be assigned to a batch only after their predecessors are
already assigned. To solve this problem, one needs to iden-
tify the strongly connected components in the precedence
graph to identify collections of statements that need to be
fused. Consequently, if the heuristic fails to find a solu-
tion, we perform an extra step and find all directed cycles
to identify the implied fusion requirements. With this extra
information, the heuristic can now find a feasible solution if
one exists.

4.1.2 Dealing with infeasibility
There are two possible reasons for the IP in Section 4.1 to

be infeasible. The first reason is that any feasible solution
satisfying the fusion/distribution restrictions requires more
hardware prefetch streams than specified by constraint (19).
In this case, one needs to increase the number of prefetch
streams to make the problem feasible. If we define the min-
imum “spill” to be the minimum increase in this number,
what we do in this case is to find a solution which first mini-
mizes the spill and then minimizes the number of partitions
with that spill. We do this in two steps.

To find the minimum “spill” we simply use binary search
on the size of the spill and check if the resulting relaxed
IP is feasible using the heuristic described above. Once we
find the minimum “spill”, we increase the right hand side
of constraint (19) in the IP by this number. Now that the
relaxed problem is feasible, the second step is to first apply
the heuristic to find the number N and then solve the IP
to obtain the minimum number of partitions. We note that
it is also possible to find the minimum spill using integer
programming by formulating a different model.

Note that IP can also be infeasible due to inconsistent
fusion/distribution restrictions. More precisely, there might
be a collection of distribution restrictions forming a directed
cycle. For example, if one has the following restrictions ci ≥
cj , cj ≥ ck, ck ≥ ci + 1, then there is no feasible solution to
the problem. To identify this type of infeasibility, we check
if having as many prefetch streams as there are data streams
in the problem has a feasible solution. If there is, we can
be sure that by increasing the spill, we can obtain a feasible
problem. If not, we conclude that the infeasibility is due

346

to inconsistent fusion/distribution restrictions. Clearly, this
should never be the case.

4.1.3 Solving the IP
We use the Coin-Cbc [6] package to solve the integer pro-

gram formulated with N defined as the upper bound found
by the heuristic minus 1. If the resulting IP is feasible, we
obtain a solution that is strictly better than the solution
found by the heuristic. If, on the other hand, the IP is in-
feasible, we conclude that the solution found by the heuristic
is already optimal. This simple idea in practice speeds up
the IP solution time noticeably.

4.2 Interaction with parallelization
Modeling fusion while also enabling good parallelization is

known to be notoriously hard. In this section, we propose an
approach that is computationally efficient, but makes some
practical trade-offs. It can be described in terms of addi-
tional constraints that can be added to L, the legal fusion
space constructed in Section 3.

Examples: Note the way variable data is used in the sec-
ond nest in Figure 1(a). Fusing the first with the second will
result in a nest that has no outer parallelism. No permu-
tation or any other affine transformation of the fused nest
will yield an outer loop that can be parallelized. We show
we are able to capture such interaction in the fusion model
directly.

An SCC Ci has outer parallelism if there exists loop hy-
perplane φ satisfying

φSy

`
~t
´
− φSx (~s) = 0,

˙
~s,~t
¸
∈ PeSx→Sy ,

∀e ∈ E such that Sx, Sy ∈ Ci (21)

Outer parallelism is preserved by fusion of SCC Ci and SCC
Cj if

φSy

`
~t
´
− φSx (~s) = 0,

˙
~s,~t
¸
∈ PeSx→Sy ,

∀e ∈ E such that Sx, Sy ∈ {Ci ∪ Cj} (22)

1. Check each SCC individually for outer parallelism by
checking (21)

2. For every pair of SCCs in the dependence graph that
are (weakly) connected and with at least one of them
parallel, check for loss of outer parallelism using (22).
If parallelism is lost, add a constraint to L for strong
distribution of this pair of SCCs.

Due to Step 2, any loss in outer parallelism that is by itself
due to fusion of the two SCCs is detected. Except for the
caveat mentioned in Section 3, the resulting constraints com-
pletely capture any loss in parallelism due to fusion choice.
These constraints by themselves do not add any inconsis-
tency since they merely convert “weak fuse” (Section 3) to
“strong distribute”. For the code in Fig. 1(b), the above leads
to a constraint that separates S3 and S4, i.e., c4 − c3 ≥ 1.
The partitioning we finally end up with is {S1, S2}, {S3},
{S4} – with all four fused nests exhibiting outer parallelism
as well as improved reuse within the first partition.

Just like loss of parallelism, fusion can also cause a loss
in the ability to tile for cache and/or registers. The loss of
tilability can be modeled in the same way as loss of paral-
lelism, but this is beyond the scope of what we intend to
address in this work. It would incur a much higher cost,
if done naively, compared to loss of parallelism. This is

due to its multidimensional nature. Besides parallelization
and tiling, we are not aware of any other significant trans-
formations that might take a negative hit from fusion. If
tiling and parallelization are taken care of while perform-
ing fusion, nearly all other optimizations such as intra-tile
interchange, unroll-jam, transformations for SIMD [14], pri-
vatization, and array contraction can be performed on the
fused nest in a complementary manner. Modeling this in-
teraction with tiling is something we plan to include in an
extended version of this work.

4.3 Interaction with privatization
When developing a sequential application, a programmer

usually reuses the same storage repeatedly in every loop it-
eration. This introduces unnecessary false dependences that
can be eliminated by privatizing or expanding the variable.
Such variables or temporaries can also be generated by other
passes of the compiler itself. Two choices arise when han-
dling these expanded variables after transformation.

1. The variable can be left expanded and a buffer be cre-
ated for it

2. If transformations permit, the variable can be marked
as local to a transformed loop. If the loop is paral-
lelized, it will be made OpenMP private.

If Option 1 is chosen and loop trip counts are not known at
compile time or when they are large, one could either end
up with large buffers or buffers of unknown size that have
to be allocated dynamically. This is a scenario we would
always like to avoid in generated compiler code: the allo-
cated buffer may cause cache pollution. With Option 2, one

for (r=0; r< N; r++) {
for (q=0; q< N; q++) {

for (p=0; p< N; p++) {
sum[p] = 0.0; // S1
for (s = 0; s< N; s++) {

sum[p] = sum[p] + A[r][q][s]∗C4[s][p]; // S2
}
}
for (p=0; p< N; p++) {

A[r][q][p] = sum[p]; // S3
}
}
}

Figure 2: Fusion privatization issues

would end up with exactly as many copies as the number of
processors if the loop is parallelized. However, for this to be
achieved, transformations should not distribute statements
accessing a privatized variable along its expanded dimen-
sions. Distribution would necessitate expansion. To prevent
such distribution, additional constraints can be added to L.
These constraints keep necessary statements together on all
levels at which the variable had been privatized. For the
example below in Figure 2, we end up adding c1 − c2 = 0,
c2 − c3 = 0. In some cases, though tiling can necessitate
creation of buffers for these expanded variables, they are
of a fixed size proportional to tile sizes and do not pose a
problem.

347

/∗ Center the column vectors. ∗/
for (i = 1; i <= n; i++)
for (j = 1; j <= m; j++)
data[i][j] −= mean[j];

/∗ Calculate m∗m covariance matrix. ∗/
for (j1 = 1; j1 <= m; j1++) {
for (j2 = j1; j2 <= m; j2++) {

symmat[j1][j2] = 0.0;
for (i = 1; i <= n; i++) {
symmat[j1][j2] += data[i][j1]∗data[i][j2];
}
symmat[j2][j1] = symmat[j1][j2];
}
}

(a) Covcol

for (i=0; i<N; i++)
for (j=0; j<N; j++)
B[i][j] = A[i][j]+u1[i]∗v1[j]+u2[i]∗v2[j]; //S1

for (i=0; i<N; i++)
for (j=0; j<N; j++)
x[i] = x[i] + beta∗ B[j][i]∗y[j]; //S2

for (i=0; i<N; i++)
x[i] = x[i] + z[i]; //S3

for (i=0; i<N; i++)
for (j=0; j<N; j++)
w[i] = w[i] + alpha∗ B[i][j]∗x[j]; //S4

(b) GEMVER

Figure 1: Fusion parallelization issues

5. PUTTING IT ALL TOGETHER
Once L is constructed as per Section 3, constraints im-

posed by privatization (Section 4.3) are added followed by
constraints for parallelization (Section 4.3). We also have a
heuristic to prevent fusion that would result in code expan-
sion. Code expansion can occur due to fusion of statements
with iteration spaces bounded by different symbols. Again,
constraints to distribute them can be added.

Conflicts in precedence constraints: Since constraints
enforced to prevent loss of parallelism would separate par-
ticular SCCs while privatization would try to keep a set of
statements together, there could be an inherent conflict be-
tween the two. This is easy to check by verifying feasibility
of the space before parallelization constraints are added: if
the resulting space becomes infeasible, parallelization con-
straints are discarded in favor of privatization constraints.
A conflict due to code expansion constraints are dealt with
similarly.

Once the above space is built, it is provided to the LP/IP-
based model described in Section 4.1. Since the solution
provided by it minimizes the number of partitions, local-
ity optimization is automatically achieved subject to those
constraints. Improvement in locality due to fusion is fur-
ther exploited by both tiling and register tiling of the fused
nests. The fusion model is used to first determine the out-
ermost fusion structure, and maximal fusion is employed for
all subsequent inner levels.

5.1 Impact on Compilation time
The fusion model implementation runs very fast and has

negligible impact on the overall compilation time. For the
codes evaluated in the next section, which we believe are
substantial, in no case does the fusion model take more than
one second to provide a solution. In any case, we also use a
time bound on the IP formulation, i.e., if it were to take more
than a certain number of seconds, the best of the heuristic
solution and the IP solution found till then, if any, is taken
not worrying about provable optimality. In fact, among all
steps, construction of the legal fusion space (Section 3) is
the more expensive one that is sensitive to the number of
strongly connected components in the dependence graph and
the number of dependences between statements belonging to
different strongly connected components. Currently, given
the size of program sections that we extract for polyhedral

optimization, we have not found this to be an issue. If larger
sections are extracted for optimization through extensions to
the polyhedral framework, faster ways of constructing the
legal fusion space have to be explored.

6. EXPERIMENTAL EVALUATION
The proposed fusion model has been implemented in the

polyhedral optimization pass of the IBM XL compiler for C,
C++, and Fortran, targeting IBM’s processors. Experimen-
tal results are reported and analyzed in this section.

6.1 Setup and comparison
The machine used for experiments is an IBM Power5 4-

way SMP system, with each Power5 processor being a 1.65 GHz
dual-core with a 32 KB L1 D cache, a 1.9 MB shared L2
cache, and a 36 MB off-chip L3 cache. SMT functionality
was not used.

The IBM XL compiler v11.1 for C/C++ and v13.1 for For-
tran was used with optimization flags: -O3 -qhot -qtune=pwr5
-qarch=pwr5 with -qsmp -qthreaded added to enable auto-
parallelization. At -O3 -qhot -qsmp, the existing optimizer
in XL performs significant loop and high-level optimizations
of its own, including a heuristic to perform fusion based on
similar optimization criteria; it is referred to as xl-seq and
xl-smp, depending on sequential or parallelized code. The
polyhedral pass is enabled by providing additional flags. xl-
poly-smartfuse refers to our new fusion model. We also com-
pare with simple fusion choices of “maximal fusion” as well
as “no fusion”, referred to as xl-poly-maxfuse and xl-poly-
nofuse in the graphs respectively. A solution that minimizes
the number of partitions at each level is a (greedy) max-
imal fusion solution. Completely distributing all strongly-
connected components is also a valid solution and this would
lead to no fusion. Both maxfuse and nofuse, like smartfuse,
get all benefits of the polyhedral pass. Results in all cases
show the combined benefit from complementary transforma-
tions which include all affine transformations, cache tiling,
and register tiling. The polyhedral pass of the compiler in-
corporates state-of-the-art techniques for these orthogonal
components – to find loop hyperplanes [4, 5], to perform
register tiling [20, 19] with efficient code generation.

348

 0

 0.5

 1

 1.5

 2

 2.5

w
upw

ise

covcol

corcol

eon
gem

ver

facerec

ls3df-cg

hm
m

er

m
ilc

advect3d

astar

cactus

Im
p
ro

v
e
m

e
n
t

xl-smp
xl-poly-maxfuse

xl-poly-nofuse
xl-poly-smartfuse

Figure 3: Performance improvement for all benchmarks with new fusion model

6.2 Benchmarks
We consider benchmarks that are expected to be sen-

sitive to fusion. gemver is a linear algebra routine used
in householder transformations, in matrix bidiagonalization
and tridiagonalization. ls3df-cg is the Conjugate Gradient
routine from ls3df, a program used for electronic structure
calculations. covcol and corcol are from the Principal Com-
ponent Analysis (PCA) benchmark suite. eon is a SPEC2000-
INT benchmark while wupwise and facerec are from SPEC2000-
FP. hmmer, milc, astar, and cactus are from SPEC2006, that
nearly all major hardware vendors publish results for. Ad-
vect3D is an weather modeling application also reported
in [18]. Parallelization results presented are on up to four
cores, except in some cases where we see a different trend
with more cores.

6.3 Analysis
Fig. 3 shows a summary of improvement over the exist-

ing compiler while running all codes on 4 cores. The fusion
model is able to find the best performing fusion structure in
nearly all cases. Though in some cases nofuse or maxfuse it-
self might be a good solution, the model’s ability to capture
the one that is the best is particularly interesting and im-
portant to note. In several cases, smartfuse provides a struc-
ture that is significantly better than nofuse and maxfuse, be-
ing different from either of those. For the three SPEC2000
benchmarks – eon, facerec, and wupwise, improvements of
5%, 6%, and 30% respectively, are obtained over the existing
compiler. For the SPEC2006 benchmarks – hmmer, milc, as-
tar, and cactusADM, improvements of 2%, 5.5%, 2.5%, and
16% respectively, are obtained.

For covcol and corcol, smartfuse partitions statements into

two groups even though all of them are fusable and dis-
tributable. For gemver (Fig. 1(b)), the first two statements
are fused with the first one being permuted: this improves lo-
cality, while the third and fourth statements are distributed.
This solution preserves outer parallelism in all three fused
nests, and the resulting code scales almost linearly with the
number of cores. Maximal fusion destroys pure outer paral-
lelism in this case, and only wavefront pipelined paralleliza-
tion can be performed. nofuse leads to a complete loss of
locality and hence performs poorly. The solution obtained
by existing compiler optimizer (without the polyhedral pass)
is closer to nofuse. Figures 4(a), 4(b), and 4(c) show exact
GFLOPs performances. maxfuse leads to a loss of outer
parallelism. nofuse performance for covcol does not show
any improvement with parallelization due to an unknown
interaction with later compiler passes.

smartfuse provides a different fusion structure depending
on whether the compiler is asked to auto-parallelize (Sec-
tion 4.1). Hence, code generated for the sequential case with
just locality optimization will typically use fewer partitions.
In Figure 4(a) and Figure 4(b), note that the performance
of poly-smartfuse-seq is significantly better.

For ls3df-cg in Fig. 4(d), a solution closer to maxfuse is
the best one, and there is a small improvement over nofuse.
In this case, improvement with polyhedral techniques irre-
spective of the fusion structure is obtained as a result of
an interchange on the key imperfect nest making a parallel
loop outermost. All fusion structures get this benefit, and
the benefits of inner loop fusion can be seen with smartfuse
and maxfuse when running on fewer cores when the data set
accessed by each thread is larger.

Figure 4(e) shows smartfuse achieving nearly linear speedup

349

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

1 2 4 8

G
F

L
O

P
s

Number of cores

xl-seq
poly-smartfuse-seq

xl-smp
xl-poly-maxfuse

xl-poly-nofuse
xl-poly-smartfuse

(a) GEMVER

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4

G
F

L
O

P
s

Number of cores

xl-seq
poly-smartfuse-seq

xl-smp
xl-poly-maxfuse

xl-poly-nofuse
xl-poly-smartfuse

(b) Covcol

 0

 2

 4

 6

 8

 10

 12

 1 2 3 4

G
F

L
O

P
s

Number of cores

xl-seq
xl-poly-smartfuse-seq

xl-smp
xl-poly-maxfuse

xl-poly-nofuse
xl-poly-smartfuse

(c) Corcol

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 3 4

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Number of cores

xl-smp
xl-poly-maxfuse

xl-poly-nofuse
xl-poly-smartfuse

(d) ls3df-cg

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 3 4

Im
p

ro
v
e

m
e

n
t

o
v
e

r
s
in

g
le

 t
h

re
a

d
 c

o
m

p
ile

r

Number of cores

xl-smp
xl-poly-smartfuse

(e) SPEC2006 CactusADM

Figure 4: Improvement with new fusion model

350

for cactus. The improvement is seen with any number of
threads due to improved single thread locality. Nearly all
time in cactus is spent in a single, very large imperfect loop
nest; compiler auto-parallelization of this nest is very effec-
tive.

7. RELATED WORK
Traditional works on loop fusion [11, 13, 21, 10, 18] are

restricted in their ability to find complex fusion structures.
This is mainly due to the lack of a powerful representation
for dependences and transformations. Hence, non-polyhedral
approaches typically study fusion in an manner isolated with
other transformations. Darte et al. [8, 7] study fusion with
parallelization, but only in combination with shifting. Our
work on the other hand enables fusion in the presence of all
polyhedral transformations which include those that make
tiling legal and enable better parallelization and locality op-
timization.

Megiddo and Sarkar [13] proposed a way to perform fusion
for an existing parallel program by grouping components in
a way that parallelism is not disturbed. Decoupling paral-
lelization and fusion clearly misses several interesting solu-
tions that would have been captured if both were treated
together. Examples in Section 4.2 demonstrate this.

Lim et al.’s [12] affine partitioning algorithm treats each
SCC independently. Hence, no choice of fusion structures
across SCCs is considered. Bondhugula et al [4, 5]’s frame-
work implemented in Pluto [15] performs transformations to
enable coarse-grained parallelization and locality optimiza-
tion through tiling and maximal fusion; it subsumes previ-
ous works based on affine partitioning [12]. The tool can
also perform complete distribution separating all SCCs if
needed. However, no model exists to choose a good fusion
structure based on any criteria.

Pouchet et al. [16] provide properties and techniques to
build a convex space comprising the set of all legal and dis-
tinct fusion structures. The space is built in order to allow
iterative empirical search through systematic enumeration,
and for hybrid iterative and model-driven optimization [17].
The space they construct can be used in place of the simpler
one that we proposed in Section 3. Though it would incur
higher cost, all optimization metrics developed in this paper
can be applied to it.

8. CONCLUSIONS AND FUTURE WORK
We presented a fusion model for an integrated automatic

parallelization framework that simultaneously optimizes for
hardware prefetch stream buffer utilization, locality, and
parallelism. The proposed model also captures constraints
imposed by privatization and code expansion. A single con-
vex optimization space with an objective function is built
incorporating all these. Results show that it scales very well
to large applications including SPEC benchmarks. It has
been fully implemented into the polyhedral pass of the IBM
XL compiler’s optimizer. Experimental results demonstrate
its effectiveness in finding good fusion structures. An im-
provement ranging from 5% to nearly a factor of 2.75× is
obtained over a highly tuned optimizing production com-
piler over a range of selected benchmarks on a multicore.
To the best of our knowledge, this is the first fusion model
to incorporate such concrete optimization criteria as well

as demonstrate improvement on large applications with the
polyhedral framework.

Recently proposed extensions [3] to the polyhedral frame-
work allow program sections with dynamic and irregular
control flow to be represented through a predication scheme.
In future, we would like to explore fusion issues arising in
the context of transforming and parallelizing such programs.
In addition, we would also like to model interaction of fusion
with cache/register tiling: this is much more challenging due
to the multi-dimensional nature of the latter.

Acknowledgments
We would like to acknowledge Louis-Noel Pouchet for past
joint work on construction of legal fusion spaces. We are
thankful to Alexandre Eichenberger for suggesting prefetch
stream buffer utilization as an optimization criterion. We
are also thankful to Salem Derisavi and Yaoqing Gao from
the IBM Toronto Lab for their comments and help. This
work was supported in part by the Defense Advanced Re-
search Projects Agency (DARPA) under its PERCS pro-
gram through contract HR0011-07-9-0002.

9. REFERENCES
[1] A. Aho, M. Lam, R. Sethi, and J. Ullman. Compilers:

Principles, Techniques, and Tools. Addison Wesley,
second edition, 2006.

[2] C. Bastoul. Extracting polyhedral representation from
high level languages. Technical report, LRI, Paris-Sud
University, 2008. Clan tool.

[3] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen,
and C. Bastoul. The polyhedral model is more widely
applicable than you think. In International conference
on Compiler Construction (CC), 2010.

[4] U. Bondhugula, M. Baskaran, S. Krishnamoorthy,
J. Ramanujam, A. Rountev, and P. Sadayappan.
Automatic transformations for
communication-minimized parallelization and locality
optimization in the polyhedral model. In International
conference on Compiler Construction (CC), Apr. 2008.

[5] U. Bondhugula, A. Hartono, J. Ramanujam, and
P. Sadayappan. A practical automatic polyhedral
program optimization system. In ACM SIGPLAN
conference on Programming Languages Design and
Implementation, June 2008.

[6] Computational Infrastructure for Operations
Research. http://www.coin-or.org.

[7] A. Darte and G. Huard. Loop shifting for loop
parallelization. Technical Report RR2000-22, ENS
Lyon, May 2000.

[8] A. Darte, G.-A. Silber, and F. Vivien. Combining
retiming and scheduling techniques for loop
parallelization and loop tiling. Parallel Processing
Letters, 7(4):379–392, 1997.

[9] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen,
D. Parello, M. Sigler, and O. Temam. Semi-automatic
composition of loop transformations. International
Journal of Parallel Programming, 34(3):261–317, June
2006.

[10] K. Kennedy. Fast greedy weighted fusion. In ACM
International conference on Supercomputing, pages
131–140, 2000.

351

[11] K. Kennedy and K. McKinley. Maximizing loop
parallelism and improving data locality via loop fusion
and distribution. In Languages and Compilers for
Parallel Computing, pages 301–320, 1993.

[12] A. Lim and M. S. Lam. Maximizing parallelism and
minimizing synchronization with affine partitions.
Parallel Computing, 24(3-4):445–475, 1998.

[13] N. Megiddo and V. Sarkar. Optimal weighted loop
fusion for parallel programs. In Symposium on Parallel
Algorithms and Architectures, pages 282–291, 1997.

[14] D. Nuzman and A. Zaks. Outer-loop vectorization:
revisited for short simd architectures. In International
conference on Parallel architectures and compilation
techniques, pages 2–11, 2008.

[15] PLUTO: A polyhedral automatic parallelizer and
locality optimizer for multicores.
http://pluto-compiler.sourceforge.net.

[16] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen,
J. Ramanujam, and P. Sadayappan. Hybrid iterative
and model-driven optimization in the polyhedral
model. Technical Report 6962, INRIA Research
Report, June 2009.

[17] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen,
J. Ramanujam, and P. Sadayappan. Combined

iterative and model-driven optimization in an
automatic parallelization framework. In
Supercomputing (SC), Nov. 2010. To appear.

[18] A. Qasem and K. Kennedy. Profitable loop fusion and
tiling using model-driven empirical search. In ACM
International conference on Supercomputing (ICS),
pages 249–258, 2006.

[19] L. Renganarayana, U. Bondhugula, S. Derisavi, A. E.
Eichenberger, and K. O’Brien. Compact
multi-dimensional kernel extraction for register tiling.
In Supercomputing (SC), 2009.

[20] L. Renganarayana, D. Kim, S. Rajopadhye, and M. M.
Strout. Parameterized tiled loops for free. In ACM
SIGPLAN conference on Programming Languages
Design and Implementation, pages 405–414, 2007.

[21] S. Singhai and K. McKinley. A Parameterized Loop
Fusion Algorithm for Improving Parallelism and Cache
Locality. The Computer Journal, 40(6):340–355, 1997.

[22] N. Vasilache, C. Bastoul, and A. Cohen. Polyhedral
code generation in the real world. In International
conference on Compiler Construction (CC), pages
185–201, Mar. 2006.

352

