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Introduction and Motivation
Stencil Computations

@ Used in iterative solution to finite element methods for partial
differential equations

@ Repeatedly perform computations on a data grid a certain
number of times or till convergence

@ Exhibit near-neighbor dependences



Introduction and Motivation

Stencils: Code Structure (non-periodic)

for (t=1; t<=T; t++) { /* Time loop */
for (x=1; x<=N—2; x++) { /* Space loop: x */
for (y=1; y<=N—2; y++) { /* Space loop: y */
for (z=1; z<=N-—2; z++) { /* Space loop: z x/
d[t%2][x][y][z] = f(d[(t 1%2][¥[yl[z],

d[(t—1)%2][x][y][z+1],

d[(t—1)%2][x][y][z—-1],

d[(t—1)%2][x—1][y][z],

d[(t—1)%2][x+1][y][z].

d[(t—1)%2][x][y+1][z],

)d[(t 1)%2][x]ly—1][z]

@ Run for a certain number of iterations (surrounding time loop)

@ Each time iteration sweeps a discretized data grid (typically
2-d or 3-d)

o Computationally intensive: O(N3) data, N® * T iterations

@ Memory bandwidth bound as per original specification



Introduction and Motivation
Stencils on Periodic Domains

@ The data domains can be non-periodic or periodic

@ Periodicity arises as a result of modeling a portion of a larger
domain

@ ... also as a results of a flattened domain (a ring modeled in a
linear array, cylinder, or sphere

@ Periodicity is a significant domain (swim SPECFP2000)
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Stencils on Periodic Domains

The data domains can be non-periodic or periodic
Periodicity arises as a result of modeling a portion of a larger
domain
@ ... also as a results of a flattened domain (a ring modeled in a
linear array, cylinder, or sphere
Periodicity is a significant domain (swim SPECFP2000)
Results in long dependences in both directions
These long dependences create a problem for tiling and other
optimizations
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Introduction and Motivation
Stencils on Periodic Domains

The data domains can be non-periodic or periodic

Periodicity arises as a result of modeling a portion of a larger
domain

@ ... also as a results of a flattened domain (a ring modeled in a
linear array, cylinder, or sphere

Periodicity is a significant domain (swim SPECFP2000)
Results in long dependences in both directions

These long dependences create a problem for tiling and other
optimizations
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Introduction and Motivation
Tiling or Blocking

@ Decomposes an iteration space uniformly into blocks; each
block is executed atomically (no cycle between tiles)

@ Proposed first by Irigoin and Triolet [POPL 1988], Wolf [SC
1989]
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Introduction and Motivation

Validity of Tiling

@ Non-negative dependence components along a contiguous set
of dimensions
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Introduction and Motivation
Validity of Tiling

@ Non-negative dependence components along a contiguous set
of dimensions

@ Short negative dependences can be made non-negative via
loop skewing (time skewing)

T-1 T-1 o 0 0 -0 -0
b EE%DXII%DXID i :
é 3 @ O NO I%!}
XX A
2 2 |- [0Ce" et Ce e
1 1 0 «%\(n 1%»\
0 1 2 3 - N-2 0 1 2 3 - N-2 ‘
Figure: Invalid tiling Figure: Valid tiling



Introduction and Motivation
Validity of Tiling

@ Non-negative dependence components along a contiguous set
of dimensions

@ Short negative dependences can be made non-negative via
loop skewing (time skewing)

= inter-tile dependence = inter-tile dependence

Figure: Two ways of tiling heat-1d (non-periodic): parallelogram &
diamond
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Introduction and Motivation
Validity of Tiling

@ Non-negative dependence components along a contiguous set
of dimensions

@ Short negative dependences can be made non-negative via
loop skewing (time skewing)
t

i
@ No affine transformation on this domain that can make
dependences non-negative along all dimensions

@ Periodic stencils cannot be tiled this way



Introduction and Motivation
Validity of Tiling

@ Non-negative dependence components along a contiguous set
of dimensions

(]

Short negative dependences can be made non-negative via
loop skewing (time skewing)

(]

Periodic stencils cannot be tiled this way

(]

Short dependences = Tiling is possible

©

Long edges in both directions = No tiling possible
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Our Technique: Index Set Splitting
Key ldea

@ Intuition: cut the iteration space close to the mid-point of all
long dependences simultaneously

@ Create multiple statements out of the domains that result out
of the cut



Our Technique: Index Set Splitting
Key ldea

@ Intuition: cut the iteration space close to the mid-point of all
long dependences simultaneously

@ Create multiple statements out of the domains that result out
of the cut

@ Schedule these “sub-statements” with a dependence distance
minimization objective (enlarges the space of transformations)



Our Technique: Index Set Splitting

Example: a 1-d domain
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@ Cut it along 2/
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Our Technique: Index Set Splitting
Example: a 1-d domain
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@ Cut it along 2i = N

@ Reverse the second domain (t,i) — (t,—1)
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Our Technique: Index Set Splitting
Example: a 1-d domain

o Cut it along 2i = N
@ Reverse the second domain (t,i) — (t, —1)

@ Shift it to the left (negative i direction) by N
(t, i) — (t,N =)
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Our Technique: Index Set Splitting
Example: a 1-d domain

(]

Cut it along 2i = N

Reverse the second domain (t,i) — (t,—1i)
Shift it to the left (negative i direction) by N
(t, i) — (t,N =)

Now, all dependences are short and can apply time skewing

(]

(]

(]

(]

Tiling transformations exist on the split index sets
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Our Technique: Index Set Splitting

@ How do you find such cuts in general?

@ How do you find the right sequence of transformations after
the cuts?
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Our Technique: Index Set Splitting

Finding near mid-point cuts

@ A hyperplane is used to characterize a cut
o h: orientation, k: position

h-@>p

i
h-Z<p == ==

@ Let the splitting hyperplane be /71; =p
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Our Technique: Index Set Splitting

Finding near mid-point cuts

@ A hyperplane is used to characterize a cut
o h: orientation, k: position

h-@>p

i
h-Z<p -— —

@ Let the splitting hyperplane be /71; =p
@ With such a cut, Is, is partitioned into two halves given by I§L
and Is: 1§ = Isn{h.is > p} I =Isn{his <p—1}
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Our Technique: Index Set Splitting

Near mid-point cuts - more examples

e W oa
e W oa

i

i

o ol A 2 3 4

@ Cutting along the red line allows transformations shortening
all dependences

@ Multiple cuts may be needed when dependences have long
components in multiple dimensions
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Our Technique: Index Set Splitting

Finding the Split: Linear-Algebraically

@ Recall: source iteration: s, target iteration: t his hyperplane
orientation, position of the hyperplane: p

hi>p

ol

i
h#<p -- —




Our Technique: Index Set Splitting

Finding the Split: Linear-Algebraically

@ Recall: source iteration: s, target iteration: t his hyperplane
orientation, position of the hyperplane: p

hi>p

=4

i
h#<p -- —

o p should be at fixed distance from mid-point of A.5 and h.t:

hs+ht
% < p+m, VY5t eP.

@ m € Z™" does not depend on problem sizes

p—m <



Our Technique: Index Set Splitting

Finding the Split: Linear-Algebraically

@ Recall: source iteration: §, target iteration: t, his hyperplane
orientation, position of the hyperplane: p

@ p should be at fixed distance from mid-point of h.5 and h.t:

h-§+ht
2

p—m < < p+m, Y& t)€ePe

@ m € 7" does not depend on problem sizes

@ There is a way to linearize these constraints (Farkas lemma)
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Our Technique: Index Set Splitting

Finding the Split: Linear-Algebraically

)

Recall: source iteration: §, target iteration: t, his hyperplane
orientation, position of the hyperplane: p

p should be at fixed distance from mid-point of h.5 and h.t:

©

h-§+ht
2

p—m < < p+m, V(i) €P.

m € 7" does not depend on problem sizes
There is a way to linearize these constraints (Farkas lemma)
Solve an LP

Unknowns: f_; p, m

¢ &6 ¢ ¢ ¢

Objective: minimize m to obtain h and p
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Our Technique: Index Set Splitting

Finding the Cut: Linear Algebraically

o If such an m exists, a split hyperplane exists that cuts all long
dependences within a fixed distance from their mid-points

@ Otherwise, no such splitting hyperplane exists

15 /40



Our Technique: Index Set Splitting

Finding the Cut: Linear Algebraically

o If such an m exists, a split hyperplane exists that cuts all long
dependences within a fixed distance from their mid-points

@ Otherwise, no such splitting hyperplane exists

@ Perform such a procedure for each dimension along which
dependences are long

15 /40



Our Technique: Index Set Splitting

Splitting a 2-d periodic domain with periodic conditions

2-d data grid and 1 time dimension

Splitting hyperplane
>

Dependence -7

@ Requires two cuts: {2/ = N}, {2j = N}

@ lterations are partitioned into 4 pieces
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Dependence Shortening

© Dependence Shortening
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Dependence Shortening
Dependence Shortening

@ Index set splitting allows the possibility of such a minimization
on the split domains
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Dependence Shortening
Dependence Shortening

@ Index set splitting allows the possibility of such a minimization
on the split domains

@ Pluto’s [CC 2008, PLDI 2008] cost functions transforms to
minimize dependence distances with a linear objective function

@ All techniques valid on non-periodic stencils can now be
applied here (parallelograms, trapezoids, diamond, overlapped,

split)
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Dependence Shortening
Dependence Distance Shortening

@ Original domain: /s, original schedule: T;, = (t,/)

@ Split with 2/ = N to obtain ST and S, consider this
sequence of transformations:
Reversal
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Dependence Shortening
Dependence Distance Shortening

@ Original domain: /s, original schedule: T;, = (t,/)

@ Split with 2/ = N to obtain ST and S, consider this
sequence of transformations:
Parametric shift

T,;(t,i) = (t,0)
T,g(t,i) = (t,—i+N)
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Dependence Shortening
Dependence Distance Shortening

@ Original domain: /s, original schedule: T;, = (t,/)

@ Split with 2/ = N to obtain ST and S, consider this
sequence of transformations:
Diamond tiling

T,;(t, i) = (t+it—1i)
T,-(t,i) (t—i+N,t+i—N)

S
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Dependence Shortening
Dependence Distance Shortening

@ Original domain: /s, original schedule: T;, = (t,/)
@ Split with 2/ = N to obtain ST and S, consider this
sequence of transformations:
Diamond tiling
T,S+(t, i) = (t+it—1i)
T’s‘(t’i) = (t—i+N,t+i—N)
o Consider a dependence from (t,0) to (t+1,N —1) —itis
originally long (distance is (1, N — 1))
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Dependence Shortening
Dependence Distance Shortening

@ Original domain: /s, original schedule: T;, = (t,/)
@ Split with 2/ = N to obtain ST and S, consider this
sequence of transformations:

o Consider a dependence from (t,0) to (t+1,N —1) —itis
originally long (distance is (1, N — 1))

@ The new dependence distance becomes:

[ (t+1)—(+N-1)+N
E) Tie(s) = [(t+1)+(0+N—1)—N}

“[io] = o

and this distance is short
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Dependence Shortening

Regaining lost single thread performance

@ Inside a tile, reverse the backward half-domains back

since, once tiled, the dependences can be made long inside
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Dependence Shortening

Regaining lost single thread performance

@ Inside a tile, reverse the backward half-domains back
since, once tiled, the dependences can be made long inside
@ Distribute the half-domains at the innermost level

@ Allows better locality, prefetching, and vectorization

20 /40



Dependence Shortening
Summary of Approach

Use the polyhedral framework to represent computation
(domains, schedules, and dependences)

©

(]

Cut close to mid-points of long dependences

(]

Reduce dependence distances on the new pieces created

(]

Perform complementary optimizations on a single tile

21 /40



Dependence Shortening
Summary of Approach

@ Use the polyhedral framework to represent computation
(domains, schedules, and dependences)

o Cut close to mid-points of long dependences

@ Reduce dependence distances on the new pieces created

@ Perform complementary optimizations on a single tile

@ [+] Allows seamless application of existing techniques for
non-periodic case

@ [+] Transparent to code generation
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Dependence Shortening

Splitting a 2-d periodic domain with periodic conditions

Splitting hyperplane

@ Requires two cuts: {2i = N}, {2j = N}

@ lterations are partitioned into 4 pieces

@ Stacking them as shown on the right results in a space with
short dependences only



Experimental Evaluation

@ Experimental Evaluation
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Experimental Evaluation
Experimental Setup

@ On a 12-core Intel Xeon E5645 (Westmere) (2 x 6)
@ On a 16-core AMD Opteron (Magny-cours) (2 x 8)

@ All codes compiled with icc 12.1.3 with “-O3 -fp-model
precise” on Linux (64-bit kernel 2.6.%)
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Experimental Evaluation
Experimental Setup

@ On a 12-core Intel Xeon E5645 (Westmere) (2 x 6)
@ On a 16-core AMD Opteron (Magny-cours) (2 x 8)

@ All codes compiled with icc 12.1.3 with “-O3 -fp-model
precise” on Linux (64-bit kernel 2.6.%)

@ heat-1d, heat-2d, heat-3d with periodic conditions, swim from
SPECFP2000

o Selected benchmarks cover the domain quite well

@ Comparison with pochoir [Tang et al SPAA'2011], icc
-parallel, our approach with parallelogram poly-pipeline and
diamond tiling poly-diamond after index set splitting

@ Implemented with open-source polyhedral libraries (pluto,
cloog, pet, isl)
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Experimental Evaluation

Swim benchmark (SPEC2000fp)
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Figure: on 2-way SMP Intel Xeon E5645 (12 cores)

@ A speedup of 5x with poly-diamond over icc -parallel on

12-cores (1.5x on single core) :
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Experimental Evaluation
Performance Counters

Hardware event Count (in billions)
ifort-par  poly-diamond
L2_RQSTS.LD_HIT 1.23 0.731
L2_RQSTS.LD_MISS | 1.74 0.238
L2_RQSTS.LOADS 2.97 0.977
L2_RQSTS.MISS 5.73 0.635
L2 prefetch requests 4.15 0.400
L2 prefetch hits 0.63 0.070
L2 prefetch misses 3.52 0.322

Table: Performance counters comparing Intel Fortran compiler with
poly-diamond for swim on 12 cores on the Intel multicore

@ The number of L2 misses reduce by almost 8 times
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Experimental Evaluation

Heat-2d on the Opteron
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Figure: Periodic heat-2d scaling on the Opteron system
@ Speedup of 3.1x on 1 core and of 37x on 16 cores over

icc-par
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Experimental Evaluation

Non-periodic vs Periodic

Non-periodic vs periodic stencil performance with time tiling
(poly-diamond)
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@ We obtain the same level of performance as for stencils with
periodic tiling
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Experimental Evaluation

Summary of Performance

Benchmark 1 core [ 12 cores [ Speedup over
icc-seq | pochoir | pipeline | diamond [ icc-par | pochoir | pipeline | diamond | icc-par | pochoir
heat-1dp 4.50s| 2.09s 4.41s 1.66s | 0.583s| 195ms 2.5s| 162.4ms| 26.50 1.20
heat-2dp 517.9s| 304.1s 459s| 305.8s| 570s| 26.7s| 65.5s 25.1s| 22.70 1.06
heat-3dp 39.17s| 50.27s 41.3s| 36.81s|38.19s| 11.5s| 10.78s 5.07s| 7.53 2.26
swim 45.04s - 34.05s 31.6s| 20.4s - 7.07s 4.07s| 5.00 -

@ Mean speedups of 12.3x and 12.0x over icc-par on Xeon and
Opteron systems respectively
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Summary of Performance

Benchmark 1 core [ 12 cores [ Speedup over
icc-seq | pochoir | pipeline | diamond [ icc-par | pochoir | pipeline | diamond | icc-par | pochoir
heat-1dp 4.50s| 2.09s 4.41s 1.66s | 0.583s| 195ms 2.5s| 162.4ms| 26.50 1.20
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heat-3dp 39.17s| 50.27s 41.3s| 36.81s|38.19s| 11.5s| 10.78s 5.07s| 7.53 2.26
swim 45.04s - 34.05s 31.6s| 20.4s - 7.07s 4.07s| 5.00 -

@ Mean speedups of 12.3x and 12.0x over icc-par on Xeon and
Opteron systems respectively

@ Mean speedup of 1.5x over a state-of-the-art domain-specific
stencil compiler (Pochoir)

@ Speedup of 5x and 4.2x over the highest SPEC performance
achieved by native compilers on Intel Xeon and AMD Opteron
multicore SMP systems

29 /40



Experimental Evaluation
Availability

@ The code generator at http://pluto-compiler.sourceforge.net

@ Codes are available at http://mcl.csa.iisc.ernet.in/

30 /40



Experimental Evaluation
Related Work

@ No prior compiler-based automatic approach to time tiling in
the presence of periodicity

@ Most prior work: CATS [Strzodka et al.], PATUS [Univ of
Basel], Pluto (prior) do not handle / cannot tile in the
presence of periodicity
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Experimental Evaluation
Related Work

@ No prior compiler-based automatic approach to time tiling in
the presence of periodicity

@ Most prior work: CATS [Strzodka et al.], PATUS [Univ of
Basel], Pluto (prior) do not handle / cannot tile in the
presence of periodicity

@ Smashing [Ossheim et al LCPC 2008] work uses the folding
concept but no automatic way to perform transformation or
code generation

@ Pochoir [SPAA 2011, MIT] - only tool to perform time tiling
with periodicity (domain-specific)

o Uses cache oblivious trapezoids

o A domain-specific as opposed to a dependence-driven compiler
approach — cannot handle swim

@ In comparison, we use diamond tiling (shown to be better even
for the non-periodic case [Bandishti SC'12])

31/40



Experimental Evaluation
Related Work: Past approaches conceptually applicable

Past approaches conceptually applicable for periodic stencils
o Cut and Paste / Circular skewing
@ Overlapped tiling
o Folding

32 /40



Experimental Evaluation
1. Cut and Paste

= inter-tile dependence

Figure: Cut and paste over diamond tiling

©

Break cycle by cutting and pasting dependent portion

(]

Similar to circular loop skewing

(]

[-] Very hard to impractical to determine what portion at the
boundaries should be cut

(]

[-] Code generation will be very hard
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Experimental Evaluation
2. Overlapped Tiling

tf

1 x— N

Figure: Overlapped tiling for 1-D Jacobi.

©

Break cycle by doing redundant computation [Krishnamoorthy
et al. PLDI'07]

[-] Performs redundant computations (higher for higher
dimensional data grids)

(]

(]

[-] Determining overlapping regions at boundaries is very hard

(]

[-] Code generation is very hard (esp. shared memory)
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Experimental Evaluation
3. Folding

@ [Choffrut and Ciulik 1983, Yaacoby and Cappello 1995] Used
in 1-d systolic arrays to reduce long wires at boundaries

A Ll A R 7_-»7

o] [ | ]
Pe0 |V | PE1 PEM |V |PE(B-1)

o Folding it at middle point brings the boundaries together
@ Smashing approach [Ossheim et al. 2010] motivated by folding
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Experimental Evaluation
3. Folding

@ [Choffrut and Ciulik 1983, Yaacoby and Cappello 1995] Used
in 1-d systolic arrays to reduce long wires at boundaries

A Ll A R 7_-»7

[P || [ T
Pe0 |V | PE1 PEM |V |PE(B-1)

o Folding it at middle point brings the boundaries together

@ Smashing approach [Ossheim et al. 2010] motivated by folding

@ Our approach is motivated by folding but much more general
and powerful
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Experimental Evaluation
Conclusions

@ Proposed a technique to allow tiling of stencil computations
over periodic domains

@ Viewed the problem as index set splitting + dependence
shortening

@ Index set splitting was driven by close to mid-point cutting
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Experimental Evaluation
Conclusions

@ Proposed a technique to allow tiling of stencil computations
over periodic domains

@ Viewed the problem as index set splitting + dependence
shortening

@ Index set splitting was driven by close to mid-point cutting

@ The resulting time tiling leads to dramatic speedups over
non-time-tiled code (5x on swim)

@ A fully automatic end-to-end tool to do this — can be used in
domain-specific compilers too
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Experimental Evaluation
Thank you

Acknowledgments
@ Reviewers of PACT 2014
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Experimental Evaluation
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Experimental Evaluation
Problem sizes

Benchmark | Problem size
heat-1dp 1.6x10° x 1000
heat-2dp 16000% x 500
heat-3dp 3003 x 200
swim 13352 x 800
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Experimental Evaluation

Periodic Stencils: The code

@ There are different ways to write periodic boundary conditions
© Conditionals
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Experimental Evaluation

Periodic Stencils: The code

@ There are different ways to write periodic boundary conditions

© Conditionals
© Copies (Swim SPEC FP 2000 code)

for (t=0; t<=T—1; t++) {
for (i=0; i<N;i++) {
A[(t+1)%2][] = Aft%2][ i==N—1? 0 : i-+1] + 2.0xA[t%2][i]
+ A[t%2][i==0? N—1 : i—1]))/4.0;
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