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Introduction and Motivation

Stencil Computations

Used in iterative solution to finite element methods for partial
differential equations

Repeatedly perform computations on a data grid a certain
number of times or till convergence

Exhibit near-neighbor dependences
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Introduction and Motivation

Stencils: Code Structure (non-periodic)

for (t=1; t<=T; t++) { /∗ Time loop ∗/
for (x=1; x<=N−2; x++) { /∗ Space loop: x ∗/
for (y=1; y<=N−2; y++) { /∗ Space loop: y ∗/
for (z=1; z<=N−2; z++) { /∗ Space loop: z ∗/

d[t%2][x][y ][ z] = f(d[( t−1)%2][x][y][z ],
d[( t−1)%2][x][y][z+1],
d[( t−1)%2][x][y][z−1],
d[( t−1)%2][x−1][y][z],
d[( t−1)%2][x+1][y][z],
d[( t−1)%2][x][y+1][z],
d[( t−1)%2][x][y−1][z]
);

}
}

}
}

Run for a certain number of iterations (surrounding time loop)

Each time iteration sweeps a discretized data grid (typically
2-d or 3-d)

Computationally intensive: θ(N3) data, N3 ∗ T iterations

Memory bandwidth bound as per original specification
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Introduction and Motivation

Stencils on Periodic Domains

The data domains can be non-periodic or periodic
Periodicity arises as a result of modeling a portion of a larger
domain
... also as a results of a flattened domain (a ring modeled in a
linear array, cylinder, or sphere
Periodicity is a significant domain (swim SPECFP2000)
Results in long dependences in both directions
These long dependences create a problem for tiling and other
optimizations
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Figure: no periodicity
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Introduction and Motivation

Tiling or Blocking

Decomposes an iteration space uniformly into blocks; each
block is executed atomically (no cycle between tiles)

Proposed first by Irigoin and Triolet [POPL 1988], Wolf [SC
1989]

[Locality] A way to exploit reuse in multiple directions

[Parallelism] A way to reduce frequency of synchronization
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Introduction and Motivation

Validity of Tiling

Non-negative dependence components along a contiguous set
of dimensions

Short negative dependences can be made non-negative via
loop skewing (time skewing)
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Figure: Invalid tiling

Periodic stencils cannot be tiled this way
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Introduction and Motivation

Validity of Tiling

Non-negative dependence components along a contiguous set
of dimensions

Short negative dependences can be made non-negative via
loop skewing (time skewing)

iteration dependence
inter-tile dependence

(0, 1)

(1, -1)

iteration dependence
inter-tile dependence

(1, 1)(1, -1)

Figure: Two ways of tiling heat-1d (non-periodic): parallelogram &
diamond

Periodic stencils cannot be tiled this way
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Introduction and Motivation

Validity of Tiling

Non-negative dependence components along a contiguous set
of dimensions

Short negative dependences can be made non-negative via
loop skewing (time skewing)
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dependences non-negative along all dimensions

Periodic stencils cannot be tiled this way
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Introduction and Motivation

Validity of Tiling

Non-negative dependence components along a contiguous set
of dimensions

Short negative dependences can be made non-negative via
loop skewing (time skewing)

Periodic stencils cannot be tiled this way

Short dependences ⇒ Tiling is possible

Long edges in both directions ⇒ No tiling possible
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Our Technique: Index Set Splitting

Key Idea

Intuition: cut the iteration space close to the mid-point of all
long dependences simultaneously

Create multiple statements out of the domains that result out
of the cut

Schedule these “sub-statements” with a dependence distance
minimization objective (enlarges the space of transformations)
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Our Technique: Index Set Splitting

Example: a 1-d domain
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2i = N
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Cut it along 2i = N

Reverse the second domain (t, i) −→ (t,−i)

Shift it to the left (negative i direction) by N

(t, i) −→ (t,N − i)

Now, all dependences are short and can apply time skewing

Tiling transformations exist on the split index sets
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Our Technique: Index Set Splitting

How do you find such cuts in general?

How do you find the right sequence of transformations after
the cuts?
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Our Technique: Index Set Splitting

Finding near mid-point cuts

A hyperplane is used to characterize a cut

~h: orientation, k : position

~h·
~x =

p

~s2 ~t2

~s1 ~t1

~h· ~x ≥ p

~h· ~x ≤ p

~h

Let the splitting hyperplane be ~h.~iS = p

With such a cut, IS , is partitioned into two halves given by I+S
and I−S : I+S = IS ∩ {~h.~iS ≥ p} I−S = IS ∩ {~h.~iS ≤ p − 1}
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Our Technique: Index Set Splitting

Near mid-point cuts - more examples

i
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Cutting along the red line allows transformations shortening
all dependences

Multiple cuts may be needed when dependences have long
components in multiple dimensions
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Our Technique: Index Set Splitting

Finding the Split: Linear-Algebraically

Recall: source iteration: ~s, target iteration: ~t, ~h is hyperplane
orientation, position of the hyperplane: p

~h·
~x =

p

~s2 ~t2

~s1 ~t1

~h· ~x ≥ p

~h· ~x ≤ p

~h

p should be at fixed distance from mid-point of ~h.~s and ~h.~t:

p −m ≤
~h·~s + ~h·~t

2
≤ p +m, ∀〈~s, ~t〉 ∈ Pe

m ∈ Z
+ does not depend on problem sizes

There is a way to linearize these constraints (Farkas lemma)
Solve an LP
Unknowns: ~h, p, m
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Our Technique: Index Set Splitting

Finding the Cut: Linear Algebraically

If such an m exists, a split hyperplane exists that cuts all long
dependences within a fixed distance from their mid-points

Otherwise, no such splitting hyperplane exists

Perform such a procedure for each dimension along which
dependences are long
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Our Technique: Index Set Splitting

Splitting a 2-d periodic domain with periodic conditions

2-d data grid and 1 time dimension

t = k

t = k+1

N

N

(+,+) (+,−)

(−,+)(−,−)

Dependence

Splitting hyperplane

Requires two cuts: {2i = N}, {2j = N}

Iterations are partitioned into 4 pieces
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Dependence Shortening

1 Introduction and Motivation

2 Our Technique: Index Set Splitting

3 Dependence Shortening

4 Experimental Evaluation

17 / 40



Dependence Shortening

Dependence Shortening

Index set splitting allows the possibility of such a minimization
on the split domains

Pluto’s [CC 2008, PLDI 2008] cost functions transforms to
minimize dependence distances with a linear objective function

All techniques valid on non-periodic stencils can now be
applied here (parallelograms, trapezoids, diamond, overlapped,
split)
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Dependence Shortening

Dependence Distance Shortening

Original domain: IS , original schedule: TIS = (t, i)

Split with 2i = N to obtain S+ and S−, consider this
sequence of transformations:

Reversal

TI+S
(t, i) = (t, i)

TI−S
(t, i) = (t,−i)

The new dependence distance becomes:

TI−S
(~t)− TI+S

(~s) =

[

(t + 1)− (0 + N − 1) + N

(t + 1) + (0 + N − 1)− N

]

−

[

t + 0
t − 0

]

=

[

1
0

]

and this distance is short
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Dependence Distance Shortening
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Dependence Shortening

Regaining lost single thread performance

Inside a tile, reverse the backward half-domains back

since, once tiled, the dependences can be made long inside

Distribute the half-domains at the innermost level

Allows better locality, prefetching, and vectorization
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Dependence Shortening

Summary of Approach

Use the polyhedral framework to represent computation
(domains, schedules, and dependences)

Cut close to mid-points of long dependences

Reduce dependence distances on the new pieces created

Perform complementary optimizations on a single tile

[+] Allows seamless application of existing techniques for
non-periodic case

[+] Transparent to code generation
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Dependence Shortening

Splitting a 2-d periodic domain with periodic conditions

t = k

N/2

N/2

t = k+1

(+,-)

(-,+)

(-,-)

(+,+)

t = k

t = k+1

N

N

(+,+) (+,-)

(-,+)
(-,-)

Dependence

Splitting hyperplane

Requires two cuts: {2i = N}, {2j = N}

Iterations are partitioned into 4 pieces

Stacking them as shown on the right results in a space with
short dependences only
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Experimental Evaluation
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Experimental Evaluation

Experimental Setup

On a 12-core Intel Xeon E5645 (Westmere) (2 x 6)

On a 16-core AMD Opteron (Magny-cours) (2 x 8)

All codes compiled with icc 12.1.3 with “-O3 -fp-model
precise” on Linux (64-bit kernel 2.6.*)

heat-1d, heat-2d, heat-3d with periodic conditions, swim from
SPECFP2000

Selected benchmarks cover the domain quite well

Comparison with pochoir [Tang et al SPAA’2011], icc
-parallel, our approach with parallelogram poly-pipeline and
diamond tiling poly-diamond after index set splitting

Implemented with open-source polyhedral libraries (pluto,
cloog, pet, isl)
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Experimental Evaluation

Swim benchmark (SPEC2000fp)
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Figure: on 2-way SMP Intel Xeon E5645 (12 cores)

A speedup of 5× with poly-diamond over icc -parallel on
12-cores (1.5× on single core)
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Experimental Evaluation

Performance Counters

Hardware event Count (in billions)
ifort-par poly-diamond

L2 RQSTS.LD HIT 1.23 0.731
L2 RQSTS.LD MISS 1.74 0.238
L2 RQSTS.LOADS 2.97 0.977
L2 RQSTS.MISS 5.73 0.635
L2 prefetch requests 4.15 0.400
L2 prefetch hits 0.63 0.070
L2 prefetch misses 3.52 0.322

Table: Performance counters comparing Intel Fortran compiler with
poly-diamond for swim on 12 cores on the Intel multicore

The number of L2 misses reduce by almost 8 times
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Experimental Evaluation

Heat-2d on the Opteron
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Figure: Periodic heat-2d scaling on the Opteron system

Speedup of 3.1× on 1 core and of 37× on 16 cores over
icc-par
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Non-periodic vs Periodic

Non-periodic vs periodic stencil performance with time tiling
(poly-diamond)
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We obtain the same level of performance as for stencils with
periodic tiling
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Summary of Performance

Benchmark 1 core 12 cores Speedup over
icc-seq pochoir pipeline diamond icc-par pochoir pipeline diamond icc-par pochoir

heat-1dp 4.50s 2.09s 4.41s 1.66s 0.583s 195ms 2.5s 162.4ms 26.50 1.20
heat-2dp 517.9s 304.1s 459s 305.8s 570s 26.7s 65.5s 25.1s 22.70 1.06
heat-3dp 39.17s 50.27s 41.3s 36.81s 38.19s 11.5s 10.78s 5.07s 7.53 2.26
swim 45.04s - 34.05s 31.6s 20.4s - 7.07s 4.07s 5.00 -

Mean speedups of 12.3x and 12.0x over icc-par on Xeon and
Opteron systems respectively

Mean speedup of 1.5× over a state-of-the-art domain-specific
stencil compiler (Pochoir)

Speedup of 5× and 4.2× over the highest SPEC performance
achieved by native compilers on Intel Xeon and AMD Opteron
multicore SMP systems
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Availability

The code generator at http://pluto-compiler.sourceforge.net

Codes are available at http://mcl.csa.iisc.ernet.in/
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Related Work

No prior compiler-based automatic approach to time tiling in
the presence of periodicity

Most prior work: CATS [Strzodka et al.], PATUS [Univ of
Basel], Pluto (prior) do not handle / cannot tile in the
presence of periodicity

Smashing [Ossheim et al LCPC 2008] work uses the folding
concept but no automatic way to perform transformation or
code generation

Pochoir [SPAA 2011, MIT] - only tool to perform time tiling
with periodicity (domain-specific)

Uses cache oblivious trapezoids
A domain-specific as opposed to a dependence-driven compiler
approach – cannot handle swim

In comparison, we use diamond tiling (shown to be better even
for the non-periodic case [Bandishti SC’12])
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Related Work: Past approaches conceptually applicable

Past approaches conceptually applicable for periodic stencils

Cut and Paste / Circular skewing

Overlapped tiling

Folding
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1. Cut and Paste

iteration dependence
inter-tile dependence

(1, 2)(1, -2)

Figure: Cut and paste over diamond tiling

Break cycle by cutting and pasting dependent portion

Similar to circular loop skewing

[-] Very hard to impractical to determine what portion at the
boundaries should be cut

[-] Code generation will be very hard
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2. Overlapped Tiling

Figure: Overlapped tiling for 1-D Jacobi.

Break cycle by doing redundant computation [Krishnamoorthy
et al. PLDI’07]

[-] Performs redundant computations (higher for higher
dimensional data grids)

[-] Determining overlapping regions at boundaries is very hard

[-] Code generation is very hard (esp. shared memory)
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3. Folding

[Choffrut and Ciulik 1983, Yaacoby and Cappello 1995] Used
in 1-d systolic arrays to reduce long wires at boundaries

p2

p1

PE1 PE(r)PE0 PE(B−1)

Folding it at middle point brings the boundaries together

Smashing approach [Ossheim et al. 2010] motivated by folding

Our approach is motivated by folding but much more general
and powerful
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Conclusions

Proposed a technique to allow tiling of stencil computations
over periodic domains

Viewed the problem as index set splitting + dependence
shortening

Index set splitting was driven by close to mid-point cutting

The resulting time tiling leads to dramatic speedups over
non-time-tiled code (5x on swim)

A fully automatic end-to-end tool to do this – can be used in
domain-specific compilers too
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Thank you

Acknowledgments

Reviewers of PACT 2014

INRIA for an Associate Team grant

Questions?

37 / 40



Experimental Evaluation

38 / 40



Experimental Evaluation

Problem sizes

Benchmark Problem size

heat-1dp 1.6x106 × 1000
heat-2dp 160002 × 500
heat-3dp 3003 × 200
swim 13352 × 800
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Periodic Stencils: The code

There are different ways to write periodic boundary conditions
1 Conditionals
2 Copies (Swim SPEC FP 2000 code)

for (t=0; t<=T−1; t++) {
for ( i=0; i<N; i++) {
A[(t+1)%2][i] = A[t%2][ i==N−1? 0 : i+1] + 2.0∗A[t%2][i]

+ A[t%2][i==0? N−1 : i−1]))/4.0;
}

}
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