
Compiling Affine Loop Nests for Distributed-Memory
Parallel Architectures

Uday Bondhugula
Indian Institute of Science

Department of Computer Science and Automation
Indian Institute of Science, Bangalore 560012, India

uday@csa.iisc.ernet.in

ABSTRACT

We present new techniques for compilation of arbitrarily nested
loops with affine dependences for distributed-memory parallel ar-
chitectures. Our framework is implemented as a source-level trans-
former that uses the polyhedral model, and generates parallel code
with communication expressed with the Message Passing Interface
(MPI) library. Compared to all previous approaches, ours is a sig-
nificant advance either (1) with respect to the generality of input
code handled, or (2) efficiency of communication code, or both. We
provide experimental results on a cluster of multicores demonstrat-
ing its effectiveness. In some cases, code we generate outperforms
manually parallelized codes, and in another case is within 25% of
it. To the best of our knowledge, this is the first work reporting
end-to-end fully automatic distributed-memory parallelization and
code generation for input programs and transformation techniques
as general as those we allow.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors—Compilers, Opti-

mization, Code generation

General Terms

Algorithms, Design, Experimentation, Performance

Keywords

Polyhedral model, distributed-memory, code generation, affine loop
nests, parallelization

1. INTRODUCTION ANDMOTIVATION
Shared memory for multiple processing elements is a useful ab-

straction for parallel programmers. However, due to limitations in
scaling shared memory to a large number of processors, the com-
pute power of shared-memory multiprocessor systems is limited.
To obtain greater processing power, multiple processing nodes are
connected with a high performance interconnect such as InfiniBand
or 10 Gigabit Ethernet to form a cluster. Each node has its own

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SC13 November 17-21, 2013, Denver, CO, USA
Copyright 2013 ACM 978-1-4503-2378-9/13/11 ...$15.00.
http://dx.doi.org/10.1145/2503210.2503289

memory space that is not visible to other nodes. The only way
to share data between nodes is by sending and receiving messages
over the interconnect. The Message Passing Interface (MPI) [28]
is the current dominant parallel programming model used to pro-
gram compute-intensive applications on such distributed-memory
clusters.

Distributed memory makes parallel programming even harder
from many angles. A programmer has to take care of distribution
and movement of data in addition to distribution of computation.
Data distribution and computation distribution are tightly coupled
– changing the data distribution in a simple way often requires a
complete rewrite of compute and communication code. Debugging
multiple processes that send and receive messages to and from each
other is also significantly more difficult. Parallelizing even simple
regular loop nests for distributed memory can be very error-prone
and unproductive. In addition, whenever pipelined parallelism ex-
ists, i.e., not all processors are active to start with, or when there
is a significant amount of discontiguous data to be transferred to
multiple nodes, which is often the case, MPI parallelization can be
a nightmare. Hence, a tool that can automatically parallelize for
distributed-memory parallel architectures can provide a big leap in
productivity.

In this paper, we propose techniques and optimizations for au-
tomatic translation of regular sequential programs to parallel ones
suitable for execution on distributed-memory machines: typically,
a cluster of multicore processors. We use the polyhedral compiler
framework to accomplish this in a portable and efficient manner.
As a result, we are able to handle sequences of arbitrarily nested
loops with regular (affine) accesses, also known as affine loop nests.
Affine loop nests appear in scientific and embedded computing do-
mains in applications such as dense linear algebra codes, stencil
computations, and image and signal processing applications. We
would like to emphasize that distributed-memory compilation of
even this restricted class of codes is very challenging and no auto-
matic solution exists despite decades of research. Larger programs
that comprise both affine and non-affine parts would also benefit
from such techniques for the affine portions.

The problem of distributed memory parallelization requires a so-
lution to several sub-problems. New techniques presented in this
paper are for efficient communication code generation, i.e., when a
transformed parallelized code is given as input. Hence, approaches
that determine computation or data partitioning are orthogonal to it.
A characteristic of the system we developed is that it is not driven
by a data distribution and no data distributions need to be specified.
Data moves from processor to another in a manner completely de-
termined by the computation partitioning and data dependences,
and there exists no fixed owner for data. An initial data distribution
can be specified, but it would only affect communication at the start

and at the end.
For experimental evaluation, we coupled our proposed code gen-

eration technique with a computation partitioning-driven polyhe-
dral parallelizer Pluto [9, 30]. Our framework is thus implemented
as a source-level transformer that generates parallel code using the
MPI library as its communication backend. No pragmas, directives,
or distributions are provided to our system, i.e., it is fully automatic.
Code we generate is parametric in the number of processors and
other problem sizes, and provably correct for any number of MPI
processes. Besides parallelizing for distributed memory, code we
generate is also optimized for locality on each core.

Our contributions over previous works are one or more of the fol-
lowing: (1) handling imperfect loop nests with affine dependences,
(2) significantly less communication in the presence of parametric
problem sizes and number of processors, and (3) fully automatic
end-to-end capability for distributed-memory parallelization.

The rest of this paper is organized as follows. Section 2 provides
background and notation. Section 3 provides some more detail on
the problem and challenges. Section 4 and Section 5 describe our
solution and optimizations. Section 6 provides experimental re-
sults. Discussion of related work is presented in Section 7 and con-
clusions are presented in Section 8.

2. BACKGROUND AND NOTATION
The polyhedral compiler framework is an abstraction for analy-

sis and transformation of programs. It captures the execution of a
program in a static setting by representing its instances as integer
points inside parametric polyhedra. Most publicly available tools
and compilers that use this framework extract such a representation
from C, C++, and Fortran programs.

Polyhedral representation of programs: Let S1, S2, . . . , Sn

be the statements of the program. Each dynamic instance of a state-
ment, S, is identified by its iteration vector~i that contains values for
indices of the loops surrounding S, from outermost to innermost.
Whenever the loop bounds are affine functions of outer loop indices
and program parameters, the set of iteration vectors belonging to a
statement form a convex polyhedron called its domain or index set.
Let IS be the index set of S and let its dimensionality be mS . Let
~p be the vector of program parameters. Program parameters are not
modified anywhere in the portion of code we are trying to model.

A function f on a domain IS is called an affine function if it can
be represented in the following form:

f(~i) = [c1 . . . cmS
] .

`

~i
´

+ c0, ~i ∈ IS

Regular data accesses in a statement are represented as multi di-
mensional affine functions of domain indices. Codes that satisfy
these constraints are also known as affine loop nests.

Polyhedral dependences: The data dependence graph (DDG)
is a directed multi-graph with each vertex representing a statement,
and an edge, e ∈ E, from node Si to Sj representing a polyhe-
dral dependence from an iteration of Si to an iteration of Sj : it is
characterized by a polyhedron, De, called the dependence polyhe-
dron that captures exact dependence information corresponding to
e. The dependence polyhedron is in the sum of the dimensionalities
of the source and target iterations spaces, and the number of pro-
gram parameters. At least one of the source and target accesses has
to be a write. Data dependence polyhedrons are important for our
approach since they dictate what communication needs to occur.

For example, for the code in Figure 1, the dependence between
the write a[i][j] at ~s = (t, i, j) and the read at ~t = (t′, i′, j′) at
a[i′−1][j′−1] is given by the dependence polyhedron, De(~s,~t, ~p, 1),

for (t=0; t<=T−1; t++)
for (i=1; i<=N−2; i++)

for (j=1; j<=N−2; j++)
a[i][j] = (a[i−1][j−1] + a[i−1][j] + a[i−1][j+1]

+ a[i][j−1] + a[i][j] + a[i][j+1] +
a[i+1][j−1] + a[i+1][j]+ a[i+1][j +1])/9.0;

Figure 1: Seidel-style code

which is a conjunction of the following equalities and inequalities:

i′ = i + 1, j′ = j + 1, t′ = t,

0 ≤ t ≤ T − 1, 1 ≤ i ≤ N − 3, 1 ≤ j ≤ N − 3

3. PROBLEM AND CHALLENGES
When compiling for shared memory, synchronization primitives

take care of preserving data dependences when dependent itera-
tions are mapped to different processors. Shared memory support
provided by hardware takes care of transparently providing data
that had been written to by one processor before a synchroniza-
tion point, to another one after it. However, in case of distributed-
memory systems, this movement of data has to be performed in
software via communication over the interconnect.

Code parametric in problem sizes and number of processors can
be very important for portability. For proprietary software that
is distributed, a developer or vendor would not be able to pro-
vide binaries for each problem size and processor configuration,
and a user would not be able to recompile. A number of difficul-
ties arise in compilation when the number of processors or prob-
lem size symbols are not known at compile time, and have to be
treated as parameters. This is not an issue with shared-memory
auto-parallelization. OpenMP support takes care of partitioning a
parallel loop with a choice of strategies, and since no software data
transfer is performed, the two steps of generation of parallel code
(marking a loop as parallel) and that of distributing the parallel loop
across processors are decoupled. No matter how the parallel iter-
ations are scheduled across processors, the hardware would trans-
parently guarantee visibility of correct data after synchronization
points.

Plugging in the number of processors as a parameter in the poly-
hedral representation does not help since it introduces non-affine
expressions. For example, a simple loop of N iterations, when di-
vided across nprocs processors in a block manner would lead to
the following SPMD code (even if N to be a multiple of nprocs
below):

for (i=my_rank∗N/nprocs; i<= (my_rank+1)∗N/nprocs−1; i++)

As can be seen, the number and identity of communication part-
ners as well as communication data may often depend on the to-
tal number of processors as well as other program symbols, actual
values of which will only be known at runtime. This is because
dependences, which are responsible for communication, will cross
over to an unknown number of processors, when viewed at com-
pile time. Thus, there is no trivial way to use polyhedral machin-
ery to provide a precise solution to this problem. As we will see,
existing works that are able to handle affine loop nests as well as
symbols lead to significant redundant communication. We provide
a much more efficient solution to this problem. We will also see
that the proposed solution is more efficient than previous schemes
even when these parameters are known at compile time. Moreover,
the above discussion assumes a block distribution. A block-cyclic
or a customized allocation that is determined at runtime (a-priori or

on-the-fly) makes the problem even harder.
In addition, before generation of distributed-memory code, a se-

quence of complex transformations may need to be applied to par-
allelize the code or to improve its locality. Such transformations
have already been shown to improve sequential performance sig-
nificantly [25, 13, 10, 32]. Applying such transformations provides
a distributed-memory code generator with only more complex in-
put and the ability to deal with it seamlessly is crucial to generate
high-performance code. The solution we propose is thus designed
to deal with any arbitrary composition of affine transformations ap-
plied on to a sequential affine loop nest.

4. DISTRIBUTED MEMORY CODE GEN-

ERATION
In this section, we describe all steps involved in obtaining com-

munication code given the original program and a transformation
or computation partitioning for it.

4.1 Dependences and communication
When code is partitioned across multiple processing elements,

any communication required arises out of data dependences. Re-
call that there are primarily three types of data dependences: flow
(Read-after-Write or RAW), anti (Write-after-Read or WAR), and
output (Write-after-Write dependences). It is interesting to con-
trast the effect of these dependences when compiling for shared-
memory versus for distributed-memory systems. Anti and output
dependences merely exist because the same memory location is be-
ing reused. In case of shared memory auto-parallelization, anti and
output dependences are still important – this is because when it-
erations that are dependent via such a dependence are mapped to
different processors, owing to the same shared memory location
they access, synchronization is needed. However, in case of dis-
tributed memory, each processor has its own address space. This
coupled with the fact that there is no flow of data associated with
anti and output dependences implies that they neither lead to com-
munication nor synchronization.

Note that our goal is to generate a distributed-memory program
that preserves semantics of the original sequential program. Once
the parallelized portion of the input code finishes execution, all re-
sults are to be available at a single process, say, the master process.
Thus, even in the absence of any dependences, communication is
needed to make sure that all results will have been gathered at the
master process by the time all parallel processes have finished ex-
ecuting. We show that this communication code can be generated
efficiently using output (WAW) dependences.

A loop that can be placed at any level (outermost to innermost)
and marked parallel is called an outer parallel or a communication-
free parallel loop – it will have no dependence components along
it. Outer parallelism will require no communication except a gather
of results at the master process. Wherever pure inner parallelism
exists, i.e., communication cannot be avoided via transformation,
generating efficient communication code is crucial. Note that inner
parallelism, wavefront parallelism, and pipelined parallelism can
all be converted into inner parallelism, i.e., one parallel loop fol-
lowed by a synchronization call when running on shared memory,
or communication code in case of distributed memory.

4.2 Computing communication sets
In the rest of this section, by tile we refer to the portion of com-

putation under a given iteration of the parallel dimension, i.e., all
dimensions surrounding it and including itself serve as parameters
for the tile. It may or not have been obtained as a result of loop

tiling. It is the smallest piece of computation for which we will
define communication sets. It is important to note that constraints
that describe a tile’s domain are affine at compile time. We classify
communication data for a tile into two classes:

1. Writes to locations that are read at another process either the
next time the same loop is run in parallel, i.e., for another
iteration of the surrounding (outer) sequential loop if any, or
at a subsequent parallel loop if any.

2. All results or the last writes need to be available at a root
node (or across nodes if an initial data distribution has been
specified) once parallelized computation has finished execut-
ing, i.e., final writes for all data spaces need to be aggregated
or rearranged.

We show that by computing two sets for each data variable, one
for each of the above cases, one can determine all that has to be
sent out from a process after it has finished executing a tile. We
call these the flow-out set and the write-out set. Each of these sets
can be a union of convex polyhedra. The integer points in these
polyhedra yield actual data elements to be communicated.

Running example: We use the code in Figure 2 as an exam-
ple to demonstrate all steps, showing results and code they yield
at each step. This is a typical Jacobi-style stencil with time along
the vertical axis and space along the horizontal. For simplicity, as-
sume that all dimensions are tiled by a factor of 32. Tiling serves
a number of purposes in our context: increasing granularity of par-
allelism and reducing the frequency of communication, improving
locality, and bounding buffer sizes by a factor proportional to tile
size where possible.

In the rest of this section, whenever we refer to a set, we mean
a union of convex polyhedra with integer points enclosed by them
being of interest to us. Whenever a set of linear equalities and
inequalities are listed, they represent a conjunction of those. Recall
notation introduced in Section 2. \ is used as the set difference
operator. In addition, some polyhedral operations are notated as
below:

project_out(D, p, n): eliminates n dimensions from set D
starting from pth dimension (p ≥ 1)

Ip(M,D, l) : image of D under a multi-
dimensional affine function M
while treating l outermost dimen-
sions as parameters

Algorithms for projection are provided by polyhedral libraries.
For parametric image, the chosen parameters are not projected out
of the image. In particular, if one needs data accessed for a given
set of outer loops through an access function M , the outer loops
are to be treated as parameters just like other program parameters
appearing in loop bounds, and M is used as the function for the
image operation. As an example, if D is

1 ≤ i ≤ N − 1, 1 ≤ j ≤ N − 1

32iT ≤ i ≤ 32iT + 31, 0 ≤ j − 32jT ≤ 31

and M = (i − 1, j − 1), l = 1. Then, Ip(M,D, l) is

0 ≤ d0 ≤ N − 2, 32iT ≤ d0 ≤ 32iT + 31

0 ≤ d1 ≤ N − 2

Let e be a RAW dependence from Si to Sj . We introduce the
following notation and symbols used in the algorithms that follow.
DT

e : dependence polyhedron for edge e in the transformed space
IT

Si
, IT

Sj
: domains of Si and Sj in the transformed space with di-

mensionalities mT
Si

and mT
Sj

respectively

for (i=1; i<=T−1; i++){
for (j=1; j<=N−1; j++){
u[i%2][j] = 0.333∗(u[(i−1)%2][j−1]

+ u[(i−1)%2][j] + u[(i−1)%2][j+1]);
}

}

Figure 2: Jacobi-style code j

i

N

T

DependenceTile
Iterations generating flow-out set

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

5

6

Figure 3: Iterations generating flow-out set for one tile of

code in Figure 2

It
e: iterations inside the tile reading data written to in the tile as a
result of dependence e
Ot

e: iterations of the tile whose (source) writes are read by itera-
tions outside the tile through dependence edge e
ti
k: kth dimension of IT

Si

Transformed dependence polyhedra, DT
e (and similarly trans-

formed index sets, IT
S) can be generated by taking the original

dependence polyhedra and augmenting them with transformation
functions (also called affine schedules) that map old iterators to
new ones, and then projecting out the old iterators. For a depen-
dence edge e, this yields the dependence relation between iterations
in the transformed space DT

e . Note that this is how algorithms pro-
posed below will work transparently in conjunction with any arbi-
trary composition of affine transformations on the original polyhe-
dral representation that was extracted, i.e., the code being generated
is for the transformed program (if transformations were applied)
and not the one extracted. Since multidimensional affine schedules
capture distribution and fusion within themselves [8], any sequence
of imperfect loop nests or transformations that lead to a sequence
of imperfect loop nests are naturally handled this way. Thus, there
is no explicit view of nesting in the algorithms below. Note that the
source and the target of a dependence could belong to statements
that appear in different loop nests, and communication across dif-
ferent parallel loop nests gets generated in this manner.

4.2.1 Flow-out set

The flow-out set of a tile is the set of all values that are writ-
ten to inside the tile, and then next read from outside the tile. The
first step is that of finding the subset of the transformed dependence
polyhedron that has both its source and target iterations in the same
tile. If l is the depth of the loop dimension being parallelized, this
can be obtained by intersecting DT

e with a set of equalities equat-
ing the first l dimensions of IT

Si
to those of IT

Sj
. Recall again the

connection, introduced in the beginning of Section 4.2, between a
tile and the loop dimension being parallelized. A single iteration of
the loop being parallelized is the tile for which communication sets
are being constructed. Let El be that set of equalities. Then,

El =
n

t
i
1 = t

j
1
∧ t

i
2 = t

j
2
∧ . . . ∧ t

i
l = t

j

l

o

We now obtain the set of all iterations of the tile that write to values

that are later read within the same tile through dependence edge e:

C
t
e = D

T
e ∩ El

I
t
e = project_out

`

C
t
e, mSi

+ 1, mSj

´

Next, subtracting It
e from the set of all source dependence iterations

in the tile yields those source dependence iterations whose writes
are read outside the tile:

O
t
e = project_out

“

D
T
e , mSi

+ 1, mSj

”

\ I
t
e

Now, computing the image of the source write access function,
Mw, on Ot

e yields the flow-out set for this particular write access
and dependence.

F
x
out = Ip(M

Si
w , O

t
e, l)

Algorithm 1 computes the entire flow-out set for a particular vari-
able. Note that the write access/statement pairs provided to it as
input are from statements that fall within the loop dimension being
parallelized.

Algorithm 1 Computing flow-out set for variable x

INPUT Depth of parallel loop: l; set Sw of 〈write access,
statement〉 pairs for variable x

1: F x
out = ∅

2: for each 〈Mw, Si〉 ∈ Sw do
3: for each dependence e(Si → Sj) ∈ E do
4: if e is of type RAW and source access of e is Mw then

5: El =
˘

ti
1 = t

j
1
∧ ti

2 = t
j
2
∧ . . . ∧ ti

l = t
j

l

¯

6: Ct
e = DT

e ∩ El

7: It
e = project_out

`

Ct
e, mSi

+ 1, mSj

´

8: Ot
e = project_out

`

DT
e , mSi

+ 1, mSj

´

\ It
e

9: F x
out = F x

out ∪ Ip(MSi
w , Ot

e, l)
10: end if
11: end for
12: end for
OUTPUT F x

out

Since anti and output dependences are ignored in the above con-
struction, multiple copies of the same location may exist with dif-
ferent processors during the parallelization. However, when a later
read to the same location happens, the correct written value would
end up being transferred due to the presence of a flow edge between
the write and the read.

4.2.2 Write-out set

The write-out set of a tile is the set of all those data elements
to which the last write access across the entire iteration space is
performed in the tile. We compute this by looking for any WAW
edges leaving the tile. If they do, subtracting the sources of those
edges from the set of all points written to in the tile in an iterative
manner across all WAW dependences leaves us with locations that
have been “finalized” by computation in the tile. A union has to be
taken across all write accesses to a given variable in a tile. For edge
e associated with variable x, let:
F t

e : iterations inside the tile that write to locations that will again
be written to outside the tile through edge e,
W x: write-out set due to a given write access for variable x, and
W x

out: write-out set for variable x.
Algorithm 2 below computes the write-out set for a variable.

Algorithm 2 Computing write-out set for variable x

INPUT Depth of parallel loop: l; set Sw of 〈write access,
statement〉 pairs for variable x

1: W x
out = ∅

2: for each 〈Mw, Si〉 ∈ Sw do

3: W x = Ip(Mw, IT
Si

, l)
4: for each dependence e(Si → Sj) ∈ E do
5: if e is of type WAW and source access of e is Mw then

6: El =
˘

ti
1 = t

j
1
∧ ti

2 = t
j
2
∧ . . . ∧ ti

l = t
j

l

¯

7: Ct
e = DT

e \ El

8: F t
e = project_out

`

Ct
e, mSi

+ 1, mSj

´

9: W x = W x \ Ip(Mw, F t
e , l)

10: end if
11: end for
12: W x

out = W x
out ∪ W

13: end for
OUTPUT W x

out

4.2.3 Example

For the code in Figure 2, Figure 3 shows the flow-out set (with
tile size reduced to 4x6 from 32x32 for easier illustration). It is
obtained as a union of the following two polyhedra:

1 ≤ i ≤ T − 2, 1 ≤ j ≤ N − 2

32iT + 30 ≤ d0 + d1 ≤ 32iT + 31

32iT ≤ d0 ≤ 32iT + 31

i = 32 ∗ iT + 31, 1 ≤ i ≤ T − 2

1 ≤ j ≤ N − 1, 32iT ≤ d0 + d1 ≤ 32iT + 31

The second one corresponds to the horizontal line, while the first to
the two oblique lines. d0 and d1 will index the array dimensions in
the copy-out code. Note that for simplicity, the above constraints
are expressed in terms of source iterators. They are actually com-
puted in the space of transformed iterators, i.e., in terms of (t1, t2)
where t1 = i, t2 = i + j, since tiling has been performed here
after a skewing of the space dimension. As for the write-out set,
writes that are part of the last two iterations of the outer loop here
are last writes, and only the tiles containing those iterations will
have a non-empty write-out set.

4.3 Packing and unpacking communication sets
With MPI, it is easy to transfer data from, and receive into, con-

tiguous buffers. However, in most cases, we require discontiguous
data to be sent and copied back on the receiver side. Hence, after

the above communication sets are computed, one has to, (1) pack
data to be sent in a contiguous buffer, (2) map to communication
library calls, (3) unpack data at receiver side, and (4) determine
send and receive buffer sizes for allocation. We construct additional
statements to add to the polyhedral representation of the source pro-
gram for copying out (pack) and copying back (unpack). The flow-
out and write-out sets serve as the domains for the copy statements.
The pack and the corresponding unpack statements have identical
domains with the copy assignment reversed. An alternative to pack-
ing and unpacking is to use MPI derived data types. However, we
find automating with MPI derived data types to be harder than with
a simple linearized pack, and we do not explore it further.

Reasonably tight upper bounds on send and receive buffer sizes
can be determined from tile constraints; we do not present details
on it here due to space constraints. Write-out sets are gathered at
the master process – in our case, this can be chosen to be the MPI
process with rank 0.

A naive approach: A naive approach would be for each proces-
sor to send its flow-out set to all other processors. This means that
all of the data to be sent is sent, but not just to the processors that
need them. Hence, a processor may receive more data than nec-
essary, and a processor that need not receive any data may receive
some. Obviously, this leads to a large amount of redundant commu-
nication. However, it provides a simple clean way to generate com-
munication code. Two of MPI’s collectives, MPI_Allgatherv
(all-to-all broadcast) and MPI_Gatherv perfectly fit. Allgather
can be used to broadcast flow-out sets to all processors. The Gather
call with process 0 as root is used to collect write-out sets. The next
section presents a more precise scheme.

5. OPTIMIZINGCOMMUNICATIONCODE
Recall that communication sets were defined per ‘tile’, for which

we have affine constraints at compile time. This allowed us to use
polyhedral machinery to compute them in the first place. Multiple
such tiles may get mapped to a single physical processor and com-
munication is done only after all of these tiles have been executed,
for every iteration of immediately surrounding sequential loop, if
any.

5.1 Precise determination of communication
partners

The naive scheme mentioned at the end of the previous sec-
tion broadcasts flow-out sets to all processors. In cases, where we
have inner parallelism, depending on communication latencies and
bandwidth, this will likely lead to a bottleneck. Recall again that
the problem in determining communication partners was that the
allocation of tiles to processors is not known at compile time. Con-
sider the simple scenario when the number of communication part-
ners itself depends on the total number of processors. Long depen-
dences may traverse any number of processors. However, in many
cases such as in the presence of uniform dependences, only near-
neighbor communication is needed. Even in these cases, if itera-
tion spaces are shaped peculiarly, one cannot predict near-neighbor
communication just based on dependence distances. Hence, even
for uniform dependences, the number and identity of communica-
tion partners cannot be determined at compile time.

We describe a solution below that achieves the following: the
flow-out set is not sent to processors that do not need any value
from this flow-out set. More precisely, we guarantee the following:

1. Every element in the flow-out set sent by a processor is needed
by at least one other processor

2. Only processors that expect to receive at least one value from

another processor receive the flow-out set

We define two functions as part of the output code for each data
variable, x, that can be a multidimensional array or a scalar. If
t1, t2, . . . , tl are the sequential dimensions surrounding the parallel
dimension tp, i.e., (t1, t2, . . . , tl) form a prefix for the complete
iteration vector, the functions are:

1. π(t1, t2, . . . , tl, tp): rank of processor that executes iteration
(t1, t2, . . . , tl, tp)

2. σx(t1, t2, . . . , tl, tp): set of processors that need the flow-
out set of (t1, t2, . . . , tl, tp) for data variable x.

Generating π and σ: Code for π and σ functions is meant to be
generated and added to output code. Constructing π is straightfor-
ward. It only requires the lower and upper bound expressions for
tp, and the number of processors. π is also used in computing σx.
σx can be expressed as follows.

σx(t1, t2, . . . , tl, tp) = {π(t′1, t
′

2, . . . , t
′

l, t
′

p) | ∃e ∈ E on x,

D
T
e (t1, t2, .., tp, .., t

′

1, t
′

2.., t
′

p, .., ~p, 1)}

σ can be constructed as follows for each variable x. For each
relevant RAW dependence polyhedron in the transformed space,
we eliminate all dimensions that are inner to tp. We then scan
the dependence polyhedron to generate loops for the target itera-
tors while treating source iterators as parameters, i.e., running the
generated loop nest at run-time will enumerate all dependent tiles,
(t′1, t

′

2, ..., t
′

l, t
′

p), given the coordinates of the source tile. However,
our goal is not to enumerate dependent tiles, but to determine pro-
cessors they are mapped to. Hence, σ makes use of π to aggregate a
set of distinct values corresponding to processor ranks that the tar-
get tiles were mapped to. The overhead of evaluating σ at runtime
is minimal since a call to it is made only once per all computation
for a given tp.

Send-synchronous scheme: With σ and π functions, generat-
ing more accurate communication code for a parametric number of
processors now becomes possible. Processes send out data to the
set of processor ranks returned by σ, and receivers are forced to
receive them. The receivers will use received data in one or more
future iterations. Hence, sends and receives are posted in a syn-
chronous manner, relatively speaking. Non-blocking sends and re-
ceives are used so that simultaneous progress is made on all sends
across all data variables when possible. We wait for their com-
pletion (MPI_Waitall) and copy-back received data to the right
place before the next iteration of the sequential loop outer to the
parallel one starts.

An arbitrary allocation: A powerful feature of this scheme is
that an arbitrary π function can be used. So far, we have only al-
luded to a block scheduling of the parallel loop. However, π can
be generated to achieve a block-cyclic scheduling, or any custom
allocation as long as the allocation is known a-priori at runtime,
i.e., the allocation of tiles to processors is not determined on-the-
fly during execution of a parallelized loop. Since σ makes use of
π, π has to be known at runtime a-priori, and it can be set appro-
priately to achieve the desired allocation. In addition, it is easy to
use a multidimensional π whenever there is more than one parallel
dimension. Such mappings to higher dimensional processor spaces
are known to achieve better computation to communication ratios,
for a given number of processors and problem size.

Figure 4 and Figure 5 shows the code for the Floyd-Warshall
algorithm and its communication pattern. If the flow-out set and
sigma is computed for each of the points (which in itself could be
a tile), and aggregated for all points mapped to a processor, we end

for (k=0; k < N; k++) {
for (y=0; y < N; y++) {
for (x=0; x < N; x++) {
pathDistanceMatrix [y][x] = min(pathDistanceMatrix [y][k] +

pathDistanceMatrix [k][x], pathDistanceMatrix [y][x]);
}

}
}

Figure 4: Floyd-Warshall algorithm

x

y

N

N

Iterations mapped to a single processor (tile size = 1 for parallel loops)
Flow-out set (row k, column k)

0 1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

Figure 5: Communication for Floyd-Warshall: at outer loop

iteration k − 1, processor(s) updating the kth row and kth col-

umn broadcast them to processors along their column and row

respectively.

up broadcasting the flow-out set to processors executing tiles along
the same row and along the same column.

5.2 Transitivity in dependences
We know that dependences that lead to communication of flow-

out sets are RAW dependences. If RAW dependences are transi-
tively covered by other dependences, one would end up communi-
cating from several sources instead of just the last one, i.e., the one
that writes last to the location as per the original program. We use
a dependence tester that can compute such last writers or the exact
data flow so that RAW dependence polyhedra do not contain any
redundancy.

Interestingly, one observes the converse of the above effect when
dealing with write-out sets. Note that transitivity can be eliminated
from write-after-write dependences as well. A WAW dependence
can be covered by other WAW dependences as well as through a
combination of RAWandWARdependences. If transitivity is elim-
inated for WAW dependences and with Algorithm 2 only looking
at WAW dependences, one would miss writes that happen outside
the tile and to the same locations written to in a tile. This leads to
a write-out set much larger than the actual one, often, almost the
entire set of locations written to. Hence, Algorithm 2 will only be
exact if all transitively covered WAW dependences are preserved.
In summary, one has to rely on the right dependence testing and
analysis techniques. ISL [37] provides functions to compute last
writers as desired as part of its dependence testing interface and we
use it.

5.3 Putting all communication code together
We compute domains, schedules for the additional copy-out, copy-

back, and communication statements, and they have all compo-
nents in the polyhedral representation just like the original compute

statements. The new program comprising these added statements
is given to the code generator, to generate final code in one pass.

Our framework is implemented as part of the publicly avail-
able source-to-source polyhedral tool chain. Clan [8], ISL [37],
Pluto [30], and Cloog-isl [12] are used to perform polyhedral ex-
traction, dependence testing, automatic transformation, and code
generation, respectively. The Pluto scheduling algorithm [9, 10] is
first used to determine a parallelizing transformation, i.e., a com-
putation partitioning. Such a parallelizing transformation is a com-
position of several simpler affine transformations (including loop
tiling) that specify a new execution order completely and identify
loops to be parallelized. To implement polyhedral operations for
all computations in Section 4 and Section 5, Polylib [31] was used.
A powerful feature of our framework is that it will work with any
other algorithm for transformation and detection of parallelism. As
a result of using the polyhedral representation as both the input and
output of our scheme, code can be generated after any sequence of
valid transformations have been applied. Our scheme can thus be
used in a system that specifies data and computation distributions
in a different way as long as these mappings can be expressed as
affine functions.

5.4 Data distribution free
The execution model of our distributed-memory parallelization

tool chain described above is computation-driven. Data moves from
one processor to another in a manner completely determined by
the computation partitioning and data dependences. There exists
no owning processor for data. A scalable execution model would
require an initial data distribution to be specified due to memory
space constraints at a single node. Such a data distribution would
only impose one-time communication at the start with our model.
A read-in set analogous to the write-out set can be constructed to
bring in only the first read data. Similarly, last writes can be put
back as per the initial distribution instead of being gathered at the
root node. The computation partitioning itself that was obtained
through an objective function (Pluto) to minimize communication
and maximize locality does not change. However, if the one-time
first read and last write communication costs are to be minimized, a
data distribution that aligns better with the computation partitioning
has to be specified.

With our current implementation, no pragmas, directives, or dis-
tributions are provided to the system, i.e., it is fully automatic with
initial data assumed to be present on all nodes. Generated code
is SPMD, and we choose to gather all results at process ‘0’ only
to provide exactly the same behavior as the unmodified sequential
input program for easy testing. Handling an initial data distribu-
tion automatically would also require a data allocation and index-
ing technique for computation on each node. We do not discuss
details on allocation of data in this paper, but techniques that deal
with this problem already exist in the literature [6, 19], and we plan
to integrate one in the future.

5.5 On communication optimality
In spite of the techniques proposed in this section, the amount

of data communicated is not optimal when different parts of the
flow-out set have different σs, i.e., different lists of receiving pro-
cessors. An approach explored by a recent work based on ours [15]
defines a “flow-in” set analogous to the flow-out set and intersects
the flow-out set of a sender with the receiver’s flow-in set to exactly
determine data required by a receiver tile. Though it would appear
to make the communication set more accurate, it introduces a prob-
lem that our current scheme does not exhibit. If two receiving tiles
map to the same processor, one would end up sending necessary

data multiple times. Hence, a different kind of redundancy of du-
plicate communication is introduced. This would be common in
broadcast or multicast style communication patterns and when the
number of tiles is larger than the number of processors – larger the
number of tiles, greater the duplicate communication. One would
need a combination of multiple techniques, possibly including run-
time ones, to deal with this problem. This is also the reason that in
spite of precise polyhedral dependences, owing to unknown prob-
lem sizes and number of processors, it is hard to achieve optimal
communication volume. Dathathri et al. [15] explores related prob-
lems and some solutions in more detail. An optimal decomposition
of flow-out sets if at all possible at compile time is still left for
future research.

5.6 Improvement over previous schemes
In this section, we describe in detail how our scheme improves

over existing ones for communication code generation. We con-
sider three past works that subsume others in the literature. These
are that of Amarasinghe and Lam [2], Adve andMellor-Crummey [1],
and Classen and Griebl [11]. The above schemes have the follow-
ing limitations that we have overcome:

1. All three approaches used a virtual processor to physical pro-
cessor mapping to deal with symbolic problem sizes and num-
ber of processors. Communication finally occurs between
virtual processors that do not map to the same physical pro-
cessor. In spite of this, if multiple receiving virtual proces-
sors map to the same physical processor and data being sent
to two or more of these is not disjoint, the receiving physical
processor ends up receiving necessary data multiple times.
For example, if a virtual processor Vi is mapped to physical
processor Pi and two other virtual processors Vj1 and Vj2

are both mapped to physical processor Pj (Pi 6= Pj), and
Vi(Pi) sends the same data or a large portion of the same
data to both Vj1(Pj) and Vj2(Pj). Avoiding it is not trivial
since one has to look for commonality in data being sent out
across a set of receiving virtual processors as well as deter-
mine the list of receivers – these are only known at runtime if
the number of processors and problem sizes are parametric.
The sigma function-based solution presented in this section
provided a solution to this problem.

2. [1] determine communication sets by directly looking at read
and write accesses as opposed to data dependences. Com-
munication is only needed at the last write before a read if
pushing data, or at the first read after a write if using a pull-
based mechanism. Algorithms presented in [1] do not appear
to consider this issue. Since our approach relies on depen-
dences, this requirement is easily captured in the lastwriter
property of flow dependences.

Note that the second limitation also compounds redundancy cre-
ated due to the first. Not eliminating transitive relations leads to
more one-to-many patterns and such one-to-many patterns that in
turn leads to greater redundant communication with a simple vir-
tual to physical processor model. The approach of Classen and
Griebl [11] does not suffer from the second limitation since it is
based on dependences like ours. Communication polytopes are
constructed for each flow dependence, and so communication code
is generated dependence-wise. Since communication sets for mul-
tiple dependences may often refer to the same values, a new source
of redundant communication is added. Their work was thus pre-
liminary and conceptual, and reported very limited implementation
and experimental evaluation.

6. EXPERIMENTAL EVALUATION
Setup: We conducted experiments on a 32-node InfiniBand clus-

ter of dual-SMP Xeon servers. Each node comprises two quad-core
Intel Xeon E5430 2.66 GHz processors with a 12 MB L2 cache and
16 GB of main memory. The InfiniBand host adapter is a Mellanox
MT25204. All run Linux 2.6.18 64-bit. MVAPICH2-1.8.1 [29]
(MPI over InfiniBand) is the MPI implementation used. On this
cluster, it provides a point-to-point latency of 3.36 µs, unidirec-
tional and bidirectional bandwidths of 1.5 GB/s and 2.56 GB/s re-
spectively. All codes were compiled with Intel C/C++ compiler
(ICC) version 11.1 with option -fast (implies ‘-O3 -ipo -static’ on
64-bit Linux). Portland Group’s compiler pghpf 12.1 (with -O4 -
Mmpi) was used where a comparison with HPF was performed – it
was the only publicly available HPF compiler we could find.

Input sequential code without any modification is taken in by
our system and compilable MPI code is generated fully automat-
ically in all cases. For the π function, a simple block scheduling
is used for rectangular iteration spaces and block-cyclic for non-
rectangular ones. The entire framework runs fast and the increase
in source-to-source transformation time due to distributed memory
compilation is less than 1.5s in all cases. We thus did not pay par-
ticular attention to optimize compilation time at this point.

Benchmark Problem size

strmm 10000
trmm 8000
dsyr2k 4096
covcol N = 8192
seidel N = 10000, T = 600
jac-2d N = 10000, T = 1000
fdtd-2d N = 6000, T = 256
2d-heat N = 10000, T = 1000
3d-heat N = 512, T = 256

lu N = 4096
floyd-warshall N = 8192

Table 1: Problem sizes used

Benchmarks: We evaluate performance on selected commonly
used routines and applications from dense linear algebra and stencil
computations. 2d-heat and 3d-heat are part of the Pochoir suite [35].
The rest are from the Polybench suite [36]. The reason for selecting
this set of benchmarks is two-fold. (1) A number of benchmarks in
polybench exhibit communication-free parallelism – though man-
ual distributed-memory parallelization of these is still difficult due
to the need for locality optimization in conjunction, handling non-
rectangular iteration spaces in some cases, and aggregating results
– all of them would show a similar pattern. Hence, most bench-
marks chosen were naturally those that had no communication-free
parallelism. (2) The chosen benchmarks exhibit different commu-
nication patterns on parallelization. Stencils require near-neighbor
communication while floyd-warshall and lu require broadcast and
multicast style communication. All computations use double pre-
cision floating point operations. Problem sizes used are given in
Table 1. All results are with strong scaling.

Comparison: Regarding experimental comparison with previ-
ous approaches, we were unable to find a publicly available sys-
tem that could perform such code generation. A number of tech-
niques from the literature only a address part of the problem, and
rebuilding an end-to-end system with them is unfeasible. We be-
lieve that the detailed discussion provided in Section 5.6 and re-
lated work demonstrates our contributions. Comparison is thus
provided with manually parallelized MPI versions of these codes,

and with HPF where possible. Though each node has eight cores
and our tool is able to generate MPI+OpenMP code, in order to
focus on the distributed-memory part, we run only one OpenMP
thread per process, and one MPI process per node. In these fig-
ures, seq refers to original code compiled with icc with flags men-
tioned earlier. our-commopt refers to our tool with the optimiza-
tion described in Section 5. our-allgather refers to the naive all-
to-all broadcast-based communication scheme described in Sec-
tion 4.3 – this is reported only to support the importance of de-
termining communication partners precisely. manual-mpi refers to
hand-parallelized MPI version of codes we developed. In the case
of floyd-warshall, the manual code was the best one selected
from submissions for a course assignment part of an advanced par-
allel programming course taken by 12 students. The students were
given two months to develop the code.

For the first four codes that exhibit outer parallelism, the only
communication that occurs is that of write-out sets. We see close
to ideal speedup for these. Results with our-allgather and manual-

mpi are not shown since they would yield the same performance.
Due to all of these codes involving non-rectangular iteration spaces,
manual parallelization still involves significant effort. pghpf was
unable to correctly compile HPF versions of these – further ex-
perimentation revealed that non-rectangularity was the most likely
cause.

Figure 6 show GFLOPs performance and scalability on the clus-
ter for codes that do incur flow-out communication as well. All
x-axes are on a logarithmic scale. Table 2 shows the actual exe-
cution times and speedup factors. For seidel, the original loop
nest has no parallel loops. Our approach includes automatic ap-
plication of such a transformation and then performing distributed
memory code generation. With approaches such as HPF, this code
cannot be parallelized unless the programmer manually transforms
it first before providing additional directives. Performing manual
MPI parallelization for it is extremely cumbersome, even without
tiling the time loop. Time tiling is almost never done manually
for these. As can be seen, automatically generated code performs
much better as a result of it being fully tiled (both space and time
dimensions) which in turn leads to better locality and a reduced
frequency of communication. It realizes a pipelined parallelization
of 3-d tiles. The same is also true for jac-2d and fdtd-2d,
improved locality and reduced frequency of communication leads
to a better solution. This explanation is also supported by the fact
that ‘manual-mpi’ exhibits super-ideal improvement when going
from 16 to 32 processors (for fdtd-2d), and in general performs
relatively better with higher number of processors – a decrease in
working set size hides poor locality for ‘manual-mpi’. Manually
parallelized code for jac-2d performs significantly poorer due
to lesser computation per communication call when compared to
fdtd-2d for example. Our code shows uniformly good scalabil-
ity throughout. The difference between seq and pluto-seq is as a
result of locality transformations performed by Pluto. Being able
to perform distributed memory code generation on input that has
complex transformation expressed on it thus a key strength of our
tool. For floyd-warshall, code we generate performs within
25% of hand-tuned code while running on 32 nodes (Figure 6(d)).
Though we achieve optimal communication volume here and so
does the manually parallelized code, the manual developed code
overlaps computation with communication and pack/unpack.

Figure 7 shows the split between compute time and other over-
head, i.e., time spent in communication, in packing to and unpack-
ing from communication buffers, and in computing the sigma func-
tion. Results from our fully optimized codes (‘our-commopt’) were
used for this plot. The sigma function computation itself takes

 0

 5

 10

 15

 20

1x1 2x1 4x1 8x1 16x1 32x1

G
F

L
O

P
s

Number of nodes (1 core per node)

our -commopt
our -allgather
manual mpi

(a) Seidel

 0

 5

 10

 15

 20

 25

1x1 2x1 4x1 8x1 16x1 32x1

G
F

L
O

P
s

Number of nodes (1 core per node)

our -commopt
our -allgather
manual mpi

pghpf
pluto-seq

seq

(b) Jac-2d

 0

 5

 10

 15

 20

1x1 2x1 4x1 8x1 16x1 32x1

G
F

L
O

P
s

Number of nodes (1 core per node)

our -commopt
our -allgather

manual mpi
pghpf

pluto-seq
seq

(c) FDTD-2d

 0

 20

 40

 60

 80

 100

 120

 140

 160

1x1 2x1 4x1 8x1 16x1 32x1

N
o
d
e
s
 p

e
r

s
e
c
o
n
d

Number of nodes (1 core per node)

our -commopt
manual mpi

pluto-seq
seq

(d) Floyd-Warshall

Figure 6: Performance of parallelized code on a 32-node cluster

Benchmark seq pluto-seq Execution time for our-commopt (number of procs) Speedup: our-commopt-32 over
(icc) 1 2 4 8 16 32 seq our-commopt-1

strmm 30.4m 247s 240s 124.6s 63.5s 33.6s 17.3s 9.4s 194 26.3
trmm 35.5m 91.8s 96.4s 51.3s 27.4s 15.3s 7.14s 3.74s 570 24.5
dsyr2k 127s 39s 38.8s 22.4s 13.5s 6.80s 3.80s 1.57s 80.8 24.7
covcol 462s 30.9s 30.7s 16.7s 8.8s 4.60s 2.48s 1.30s 355 23.8
seidel 17.3m 643.5s 692s 338.7s 174.3s 94s 65.6s 33.0s 31.0 20.8
jac-2d 21.9m 206.7s 218s 111.2s 62.3s 40.7s 29.3s 21.5s 61.3 9.6
fdtd-2d 139s 129.7s 95.2s 70.7s 40.3s 25.3s 16.8s 11.7s 11.9 11.0
2d-heat 19m 266s 280s 157s 81s 52s 33s 24.0s 47.5 11.7
3d-heat 590.6s 222s 236s 118s 68.7s 41.5s 26.3s 18.8s 31.4 12.6

lu 82.9s 28s 29.5s 18.8s 9.28s 5.67s 4.3s 3.9s 21.3 7.56
floyd-warshall 2012s 2012s 2062s 1041s 527s 273s 153s 112s 18.0 18.0

Table 2: Summary of performance: execution times and improvement factors

 0

 0.2

 0.4

 0.6

 0.8

 1

4 32 4 32 4 32 4 32 4 32 4 32 4 32 4 32 4 32 4 32

N
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t
im

e

compute
communication

pack/unpack + sigma function

floydheat2dfdtd2djac2dseidelssymmcovcoldsyr2kstrmmtmm

Figure 7: Breakdown of running times of parallelized codes on

4 and 32 processors (our-commopt-4, our-commopt-32)

much less time than packing and unpacking. The graph sheds fur-
ther light on the cause for less than ideal scaling where seen. Since
the presented results were for strong scaling, even an optimally effi-
cient oracle scheme will be communication bound for a sufficiently
large number of processors, given a problem size. Also, Infini-
Band interconnect hardware used by our cluster is much older than
the latest available. For example, MVAPICH2 1.8.1 [29] reports
1.2 µs of point-to-point latency, 12.6 billion B/s unidirectional, and
20.5 billion B/s bidirectional bandwidth for the latest InfiniBand
hardware; these are about three times better than those for our in-
terconnect (reported under Setup), and will cut down our commu-
nication time to a third in all cases.

We do not discuss the optimality of the communication code, in
terms of volume or otherwise, in this paper. It is possible that a
better partitioning of the flow-out sets leads to better communica-
tion. Studying this along with the question as to in which cases
(dependence patterns) compile-time optimality could be achieved
for criteria such as communication volume, given a particular exe-
cution order, is the subject of future work.

7. RELATED WORK
Several attempts have been made at achieving distributed mem-

ory parallelization. Most works [4, 2, 3, 34, 5, 38, 17] addressed
the problem in a limited way with the following limitations: (1)
applicable to restricted input such as perfectly nested loops with
uniform dependences (only near-neighbor communication), (2) ad-
dress only a few steps of the actual parallelization and code genera-
tion problem, (3) lead to redundant communication with a symbolic
number of processors or problem sizes (Section 5.6).

Researchers have looked at the steps of data decomposition and
computation decomposition while addressing distributed memory
compilation [33, 3, 20]. Computation transformation approaches
in the polyhedral framework have themselves undergone advances
through [16, 24, 23, 9] that result in better parallelization for shared
memory. Note that the affine partitioning works related to SUIF [24,
23] do not address distributed-memory code generation – they are
transformation and parallelization algorithms. The Pluto schedul-
ing algorithm has been shown to be a significant improvement on
those [9, 10], and we use it to apply parallelizing and locality en-
hancing transformations before communication code generation tech-
niques described in this paper are applied. As we have shown, gen-

erating efficient communication code on top of any automatic trans-
formation algorithm involves a number of non-trivial problems.
Without a good scheme, even the best computation partitioning is
unlikely to provide good parallel speedup.

Since the contributions of this paper are on communication code
generation as opposed to computation or data transformations, the
closely related works from literature are those of Amarasinghe and
Lam [2], Adve andMellor-Crummey [1], and Classen and Griebl [11].
[2] handled only perfectly nested loops, while [1] and [11] are
based on the polyhedral framework. As explained in Section 5.6, all
of these works result in a significantly large amount of redundant
communication than ours, in particular with parametric problem
sizes and number of processors. However, dHPF [27] implements
a number of optimizations (such as multipartitioning [14]) that are
useful for any distributed-memory compilation system. Our system
does not implement such an allocation scheme yet, but can do so.
The discussion at the end of Section 5.1 provides this evidence.

Griebl [18] provides a discussion on distributed-memory paral-
lelization using the polyhedral framework. The work proposes a
technique for scheduling and allocation keeping distributed mem-
ory architectures in mind. However, communication code genera-
tion is not discussed.

Works that translate OpenMP to MPI address a subset of prob-
lems that we addressed. The latest among them is [22]. Unlike our
work, it is restricted to a subset of affine loop nests that transfer the
same set of data every invocation of the parallel loop, and commu-
nication set construction is primarily done at runtime. In addition,
with OpenMP to MPI approaches, one may have to provide an opti-
mized/transformed OpenMP code to get good performance, adding
significant complexity to input taken in by such systems. A future
comparison with it if available will be interesting.

Baskaran et al. [7] presented a compiler-assisted dynamic schedul-
ing scheme that constructs and schedules the inter-tile dependence
graph on a multicore. Our communication code optimization scheme
in Section 5.1 can be viewed as a compiler-assisted scheme to de-
termine communication partners at runtime. Kim et al. [21] present
automatic pipelined parallelization for distributed memory with spec-
ulation. Their scheme is completely orthogonal to ours in the kind
of codes it is applicable to and beneficial for, and the way paral-
lelism is extracted. The R-STREAM compiler provides some sup-
port for distributed memory execution [26]. However, due to its
reliance on PGAS as its target instead of a message passing one, it
does not have to deal with communication code generation.

Recent concurrent work of Dathathri et al. [15] is based on con-
cepts introduced here – usage of flow-out sets and determining
communication partners using sigma and pi functions. It proposes
refinements to the scheme presented here and reports improved per-
formance on heterogeneous systems comprising CPU/multi-GPU
systems as well as distributed-memory clusters.

8. CONCLUSIONS
We presented techniques and optimizations for translation of se-

quential affine loop nests to code suitable for execution on distributed-
memory parallel architectures. Communication code generation
and optimizations to minimize associated overhead were the key
problems addressed. The scheme we proposed constructs commu-
nication sets while completely relying on data dependences. Helper
routines generated by the compiler by scanning dependence rela-
tions and evaluation of those routines at runtime provided an effi-
cient way to determine communication partners in the presence of
symbolic problem sizes or number of processors, and for arbitrary
allocations. These techniques were developed within a polyhedral
abstraction of the input program allowing sequences of complex

transformations to be automatically applied before code was gen-
erated. We have implemented them in a source-to-source trans-
formation tool for an end-to-end fully automatic application. Ex-
periments conducted on a 32-node InfiniBand cluster demonstrated
good results. In some cases, performance of our automatically gen-
erated code exceeded what could be achieved manually, while in
another case it was close to that achieved manually with a signif-
icant development effort. A beta release of our tool is publicly
available at [30].

ACKNOWLEDGMENTS

I would like to acknowledge the Department of Science and Tech-
nology (DST), India for a grant to Computer Science and Automa-
tion, Indian Institute of Science (IISc) under the DST FIST pro-
gram. Most of the infrastructure required for this work was ac-
quired through this grant. I would like to thank the reviewers of
SC 2013 very much for their detailed and insightful reviews. I
would also like to thank Roshan Dathathri and Chandan Reddy
from IISc for their comments.

9. REFERENCES
[1] V. S. Adve and J. M. Mellor-Crummey. Using integer sets for

data-parallel program analysis and optimization. In ACM
SIGPLAN conference on Programming Languages Design

and Implementation, pages 186–198, 1998.

[2] S. P. Amarasinghe and M. S. Lam. Communication
optimization and code generation for distributed memory
machines. In ACM SIGPLAN conference on Programming

Languages Design and Implementation, pages 126–138,
1993.

[3] J. Anderson, S. Amarasinghe, and M. Lam. Data and
Computation Transformations for Multiprocessors. In ACM
SIGPLAN symposium on Principles and Practice of Parallel

Programming, pages 166–178, July 1995.

[4] J. M. Anderson and M. S. Lam. Global optimizations for
parallelism and locality on scalable parallel machines. In
ACM SIGPLAN conference on Programming Languages

Design and Implementation, pages 112–125, 1993.

[5] P. Banerjee, J. A. Chandy, M. Gupta, J. G. Holm, A. Lain,
D. J. Palermo, S. Ramaswamy, and E. Su. The paradigm
compiler for distributed-memory multicomputers. IEEE
Computer, 28(10):37–47, 1995.

[6] M. Baskaran, U. Bondhugula, S. Krishnamoorthy,
J. Ramanujam, A. Rountev, and P. Sadayappan. Automatic
Data Movement and Computation Mapping for Multi-level
Parallel Architectures with Explicitly Managed Memories. In
ACM SIGPLAN symposium on Principles and Practice of

Parallel Programming, Feb. 2008.

[7] M. Baskaran, N. Vydyanathan, U. Bondhugula,
J. Ramanujam, A. Rountev, and P. Sadayappan.
Compiler-assisted dynamic scheduling for effective
parallelization of loop nests on multicore processors. In ACM
SIGPLAN symposium on Principles and Practice of Parallel

Programming, pages 219–228, 2009.

[8] C. Bastoul. Clan: The Chunky Loop Analyzer.
Documentation.

[9] U. Bondhugula, M. Baskaran, S. Krishnamoorthy,
J. Ramanujam, A. Rountev, and P. Sadayappan. Automatic
transformations for communication-minimized
parallelization and locality optimization in the polyhedral
model. In International conference on Compiler
Construction (ETAPS CC), pages 138–146, Apr. 2008.

[10] U. Bondhugula, A. Hartono, J. Ramanujam, and
P. Sadayappan. A practical automatic polyhedral program
optimization system. In ACM SIGPLAN conference on

Programming Languages Design and Implementation, pages
101–113, June 2008.

[11] M. Classen and M. Griebl. Automatic code generation for
distributed memory architectures in the polytope model. In
IEEE International Parallel and Distributed Processing

Symposium (IPDPS), Apr. 2006.

[12] CLooG: The Chunky Loop Generator. http://www.cloog.org.

[13] A. Cohen, S. Girbal, D. Parello, M. Sigler, O. Temam, and
N. Vasilache. Facilitating the search for compositions of
program transformations. In ACM International conference

on Supercomputing (ICS), pages 151–160, June 2005.

[14] A. Darte, J. Mellor-Crummey, R. Fowler, and
D. Chavarría-Miranda. Generalized multipartitioning of
multi-dimensional arrays for parallelizing line-sweep
computations. Journal of Parallel and Distributed
Computing, 63:887–911, Sep 2003.

[15] R. Dathathri, C. Reddy, T. Ramashekar, and U. Bondhugula.
Generating efficient data movement code for heterogeneous
architectures with distributed-memory. In International
conference on Parallel Architectures and Compilation

Techniques (PACT), Sept. 2013.

[16] P. Feautrier. Some efficient solutions to the affine scheduling
problem: Part I, one-dimensional time. International Journal
of Parallel Programming, 21(5):313–348, 1992.

[17] G. I. Goumas, N. Drosinos, M. Athanasaki, and N. Koziris.
Message-passing code generation for non-rectangular tiling
transformations. Parallel Computing, 32(10):711–732, 2006.

[18] M. Griebl. Automatic Parallelization of Loop Programs for
Distributed Memory Architectures. University of Passau,
2004. Habilitation thesis.

[19] A. Größlinger. Precise management of scratchpad memories
for localising array accesses in scientific codes. In
International conference on Compiler Construction (CC),
pages 236–250, 2009.

[20] K. Kennedy and U. Kremer. Automatic data layout for
distributed-memory machines. ACM Transactions on

Programming Languages and Systems, 20(4):869–916, 1998.

[21] H. Kim, A. Raman, F. Liu, J. W. Lee, and D. I. August.
Scalable speculative parallelization on commodity clusters.
In IEEE/ACM International Symposium on

Microarchitecture (MICRO), pages 3–14, 2010.

[22] O. Kwon, F. Jubair, R. Eigenmann, and S. Midkiff. A hybrid
approach of OpenMP for clusters. In ACM SIGPLAN

symposium on Principles and Practice of Parallel

Programming, pages 75–84, 2012.

[23] A. Lim, G. I. Cheong, and M. S. Lam. An affine partitioning
algorithm to maximize parallelism and minimize
communication. In ACM International conference on

Supercomputing (ICS), pages 228–237, 1999.

[24] A. Lim and M. S. Lam. Maximizing parallelism and
minimizing synchronization with affine partitions. Parallel
Computing, 24(3-4):445–475, 1998.

[25] A. Lim, S. Liao, and M. Lam. Blocking and array contraction
across arbitrarily nested loops using affine partitioning. In
ACM SIGPLAN symposium on Principles and Practice of

Parallel Programming, pages 103–112, 2001.

[26] B. Meister, A. Leung, N. Vasilache, D. Wohlford, C. Bastoul,
and R. Lethin. Productivity via automatic code generation for

pgas platforms with the R-Stream compiler. InWorkshop on

Asynchrony in the PGAS Programming Model, 2009.

[27] J. Mellor-Crummey, V. Adve, B. Broom,
D. Chavarria-Miranda, R. Fowler, G. Jin, K. Kennedy, and
Q. Yi. Advanced optimization strategies in the Rice dHPF
compiler. Concurrency: Practice and Experience, pages
741–767, 2002.

[28] MPI: A Message-Passing Interface Standard - version 2.2.
http://www.mpi-forum.org/docs/.

[29] MVAPICH: MPI over InfiniBand, 10 GigE/iWARP and
RoCE. http://mvapich.cse.ohio-state.edu.

[30] PLUTO: A polyhedral automatic parallelizer and locality
optimizer for multicores.
http://pluto-compiler.sourceforge.net.

[31] PolyLib - A library of polyhedral functions.
http://icps.u-strasbg.fr/polylib/.

[32] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen,
J. Ramanujam, and P. Sadayappan. Combined iterative and
model-driven optimization in an automatic parallelization
framework. In Supercomputing (SC’10), New Orleans, LA,

Nov. 2010.

[33] J. Ramanujam and P. Sadayappan. Compile-time techniques
for data distribution in distributed memory machines. IEEE
Transactions on Parallel and Distributed Systems,
2(4):472–482, 1991.

[34] P. Tang and J. N. Zigman. Reducing data communication
overhead for doacross loop nests. In International conference
on Supercomputing (ICS), pages 44–53, 1994.

[35] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and
C. E. Leiserson. The Pochoir stencil compiler. In ACM
Symposium on Parallelism in Algorithms and Architectures,
pages 117–128, 2011.

[36] Polybench. http://polybench.sourceforge.net.

[37] S. Verdoolaege. ISL: An integer set library for the polyhedral
model. InMathematical Software - ICMS 2010, volume 6327
of Lecture Notes in Computer Science, pages 299–302.
Springer, 2010.

[38] J. Xue. Loop tiling for parallelism. Kluwer Academic
Publishers, Norwell, MA, USA, 2000.

