E0358

Uday Kumar Reddy B

uday@csa.iisc.ernet.in

Dept of CSA, Indian Institute of Science, Bangalore, India

A course on advanced compilation at
Dept of CSA
IISc

@ Current:
o C, C++,Java, Python, MATLAB, R, ...

RESEARCH IN PROGRAMMING AND COMPILER
TECHNOLOGIES

@ Current:
e C, C++, Java, Python, MATLAB, R, ...

e What will the new and disruptive programming
technologies of the 21st century be?

RESEARCH IN PROGRAMMING AND COMPILER
TECHNOLOGIES

@ What do programmers want?
© How are architectures evolving?

e Multiple cores and many cores on a chip

e GPUs, accelerators, and heterogeneous parallel
architectures

e Wider vector processing units

e Deep memory hierarchies

HIGH-PERFORMANCE COMPILATION: WHAT DO YOU
WANT TO PROGRAM?

@ Scientific and engineering simulations
e Eg: Solving partial differential equations numerically

Embedded vision (Eg: Autonomous/self-driving cars)

Smartphones — HPC in data centers and cloud drives a
number of smartphone technologies

Scientific and Engineering simulations

°

e Data Analytics
@ Deep Learning
°

Artificial Intelligence

QUESTIONS TO THINK ABOUT

e What will the new programming technologies for the
emerging domains be?
e Current: C, C++, Fortran with OpenMP, MPI, CUDA,
OpenCL, ...
o Future: New languages, compilers, libraries, and DSLs

QUESTIONS TO THINK ABOUT

e What will the new programming technologies for Deep
Learning be?
e Caffe, Theano, Torch, TensorFlow, ... are library-based
approaches
o Just scratches the surface

THE NEED FOR HIGH PERFORMANCE

@ More/Larger Data

e Instagram — 60 million photos / day
e YouTube — 100 hours of video uploaded every minute

@ Need for a fast/real-time response in some domains
@ More complex algorithms

@ Science/Engineering simulations/modeling: Time to
solution

PROGRAMMING MODERN HARDWARE EFFECTIVELY

e Compute speed: 4 multiply-adds per cycle

@ Synchronization (2 cores 0.25 s, 8 cores 1.25 s, 2x8 cores
1.54 ps); memory bandwidth (20 GB/s)

PROGRAMMING MODERN HARDWARE EFFECTIVELY

e Compute speed: 4 multiply-adds per cycle

@ Synchronization (2 cores 0.25 s, 8 cores 1.25 s, 2x8 cores
1.54 ps); memory bandwidth (20 GB/s)
e High-Performance Programming and Compilation

e Exploiting locality (caches, registers)

e Reduce synchronization and communication as much as
possible

e Exploit single core hardware well (vectorization)

e Multi-core parallelism

@ Good scaling without good single thread performance is a
great waste of resources (power, equipment cost)

A CLASSIFICATION OF VARIOUS APPROACHES

@ Manual low-level (C, C++) with parallel programming
models (OpenMP, CUDA, MPI) with the best optimizing
compilers

A CLASSIFICATION OF VARIOUS APPROACHES

@ Manual low-level (C, C++) with parallel programming
models (OpenMP, CUDA, MPI) with the best optimizing
compilers

@ Library-based: C, C++, Python with libraries/packages:
MKL, ScaLAPACK, CuBLAS, CuDNN

A CLASSIFICATION OF VARIOUS APPROACHES

@ Manual low-level (C, C++) with parallel programming
models (OpenMP, CUDA, MPI) with the best optimizing
compilers

@ Library-based: C, C++, Python with libraries/packages:
MKL, ScaLAPACK, CuBLAS, CuDNN

@ Ultra-high level languages/packages (R, MATLAB, ...)

A CLASSIFICATION OF VARIOUS APPROACHES

@ Manual low-level (C, C++) with parallel programming
models (OpenMP, CUDA, MPI) with the best optimizing
compilers

@ Library-based: C, C++, Python with libraries/packages:
MKL, ScaLAPACK, CuBLAS, CuDNN

@ Ultra-high level languages/packages (R, MATLAB, ...)

@ DSLs: Obtain productivity of the last class and the
performance of the first

EXAMPLE 1: UNSHARP MASK — AN IMAGE
PROCESSING PIPELINE

(C) Bernie Saunders, CC BY-NC-ND 3.0

UNSHARP MASK: COMPUTATION

for (i = 0; i <= 2; i++)
for (j =2; j <= (R+ 1); j++)
for (k = 0; (k <= (C + 3)); k++)
blurx[1i][j-21[K] = img[i][j-2][k]*0.0625f + img[i][j-1][K]*0.25F

+ img[1i]1[j]1[k]1*0.375f + img[i][j+1][k]*0.25f + img[i][j+2][k]*0.0625F; Ii”
for (i = 0; (i <= 2); i++) l
for (j = 2; (j <= (R+ 1)); j++)
for (k = 2; (k <= (C + 1)); kt+) blury

blury[i1[j1[k-2] = blurx[i]1[j-2]1[k-2]%0.0625f + blurx[i][j-2]1[k-1]%0.25f l
+ blurx[i][j-2]1[k]*0.375f + blurx[i][j-2]1[k+1]1%0.25f + blurx[i][j-2][k+2]1x0.0625f;
for (i = 0; (i <= 2); i++) blury
for (j =2; (j <= (R+ 1)); j++)
for (k = 2; (k <= (C + 1)); k++) l
sharpen[i][j]1[k-2] = img[i][j]1[k]*(1 + weight) + blury[i][j-2][k-2]*(-weight);

sharpen
for (i = 0; i <= 2; i++)
for (j =2; j <= R + 1; j++) l
for (k = 2; k <= C + 1; k++) {
_ct0 = img[i][j1(K]; masked
_ctl = sharpen[i][j-2][k-2];
_ct2 =

(std::abs((img[i1[j]1[k] - blury[i][j-2][k-2])) < threshold)? _ctO: _ctl;
mask[i][j-2]1[k-2] = _ct2;
}

A sequential version in C: 18.6 ms / frame
(using GCC with opts, quad-core Nehalem, 720p video)

UNSHARP MASK - A NAIVE OPENMP VERSION

for (i = 0; i <= 2; i++)
#pragma omp parallel for
for (j =2; j <= (R+ 1); j++)
#pragma ivdep
for (k = 0; k <= C + 3; k++)
blurx[i][j-2][k] = img[i][j-2][k]+0.0625f + img[i][j-1][k]*0.25f I
+ img[i]1[j1[k]1*0.375f + img[i][j+1]1[k]*0.25f + img[i][j+2][k]*0.0625F; in

for (i = 0; i <= 2; i++) l
#pragma omp parallel for
for (j =2; j <=R+ 1; j++)
#pragma ivdep blurx
for (k = 2; k <= C + 1; k++)
blury[i1[j1[k-2] = blurx[i][j-2][k-2]%0.0625f + blurx[i][j-2][k-1]1%0.25f
+ blurx[i][j-2]1[k]*0.375f + blurx[i][j-2]1[k+1]1%0.25f + blurx[i][j-2][k+2]%0.0625f;
for (i = 0; i <= 2; i++) blury
#pragma omp parallel for
for (j =2; j <= R+ 1; j++) l
#pragma ivdep
for (k = 2; k <= C + 1; k++)
sharpen[i]l[j]1[k-2] = img[i]1[j1[k]*(1 + weight) + blury[i][j-2][k-2]*(-weight); shurpen
for (i = 0; i <= 2; i++) l
#pragma omp parallel for private(_ct0,_ctl,_ct2)

for (j = 2; j <= R+ 1; j++)
#pragma ivdep masked

for (k = 2; k <= C + 1; k++) {
_ct0 = img[il[j1[k];
,ctl = sharpen[i][j-2][k-

2];
(std: abs((1mg[1][]][k] - blury[il[j-21[k-2])) < threshold)? _ct0: _ctl;
mask[l][] 2][k-2] = _ct2;
}

20.2 ms / frame on 1 thread, 18.02 ms / frame on 4 threads

UNSHARP MASK - A BETTER OPENMP VERSION

#pragma omp parallel for
for (j =2; j <= (R+1); j++)
for (i = 0; i <= 2; i++)
#pragma ivdep
for (k = 0; (k <= (C + 3)); k++)
blurx[i][j-2][k] = img[i][j-2][k]+0.0625f + img[i][j-1][k]*0.25f I
+ img[i]{j1[k]*0.375f + img[i]1[j+1][k]*0.25f + img[i][j+2][k]*0.0625f; n

#pragma omp parallel for l
for (j =2; (j <= (R+1)); j++)

for (i = 0; i <= 2; i++)
#pragma ivdep blurx

for (k = 2; (k <= (C + 1)); k++) l
blury[i][j1[k-2] = blurx[i][j-2][k-2]+0.0625f + blurx[i][j-2][k-1]0.25f
+ blurx[i][j-2]1[k]*0.375f + blurx[i][j-2]1[k+1]%0.25f + blurx[i][j-2]1[k+2]1%0.0625f;

#pragma omp parallel for blury
for (j = 2; (j <= (R+1)); j++)

for (i =0; i <= 2; i++) l
#pragma ivdep

for (k = 2; (k <= (C + 1)); k++)
sharpen(i]1(j1(k-2] = img{i][31[k]*(1 + weight) + blury[i][j-2][k-2]#(-weight); sharpen
#pragma omp parallel for private(_ct0,_ctl,_ct2) l
for (j = 2; j <= R+ 1; j++)

for (i = 0; i <= 2; i++)

#pragma ivdep masked

for (k = 2; k <= C + 1; k++) {
_ct0 = img[il[j1[k];
,ctl = sharpen[i][j-2][k-

2];
(std: abs((1mg[1][]][k] - blury[il[j-21[k-2])) < threshold)? _ct0: _ctl;
mask[l][] 2][k-2] = _ct2;
}

18.6 ms / frame on 1 thread, 15.03 ms / frame on 4 threads

OPTIMIZING UNSHARP MASK

@ Write with OpenCV library (with Python bindings)

@jit("float32[::]1(uint8[::],_int64)", cache = True, nogil = True)
def unsharp_cv(frame, lib_func):

frame_f = np.float32(frame) / 255.0

res = frame_f

kernelx = np.array([1, 4, 6, 4, 1], np.float32) / 16

kernely = np.array([[1], [4], [6]1, [4], [11], np.float32) / 16
blury = sepFilter2D(frame_f, -1, kernelx, kernely)

sharpen = addWeighted(frame_f, (1 + weight), blury, (-weight), 0)
th, choose = threshold(absdiff(frame_f, blury), thresh, 1, THRESH_BINARY)
choose = choose.astype(bool)

np.copyto(res, sharpen, ’same_kind’, choose)

return res

Performance: 35.9 ms / frame

OPTIMIZING UNSHARP MASK

@ Write with OpenCV library (with Python bindings)

@jit("float32[::]1(uint8[::],_int64)", cache = True, nogil = True)
def unsharp_cv(frame, lib_func):

frame_f = np.float32(frame) / 255.0

res = frame_f

kernelx = np.array([1, 4, 6, 4, 1], np.float32) / 16

kernely = np.array([[1], [4], [6]1, [4], [11], np.float32) / 16
blury = sepFilter2D(frame_f, -1, kernelx, kernely)

sharpen = addWeighted(frame_f, (1 + weight), blury, (-weight), 0)
th, choose = threshold(absdiff(frame_f, blury), thresh, 1, THRESH_BINARY)
choose = choose.astype(bool)

np.copyto(res, sharpen, ’same_kind’, choose)

return res

Performance: 35.9 ms / frame

© Write in a dynamic language like Python and use a JIT (Numba) —
performance: 79 ms / frame

OPTIMIZING UNSHARP MASK

@ Write with OpenCV library (with Python bindings)

@jit("float32[::]1(uint8[::],_int64)", cache = True, nogil = True)
def unsharp_cv(frame, lib_func):

frame_f = np.float32(frame) / 255.0

res = frame_f

kernelx = np.array([1, 4, 6, 4, 1], np.float32) / 16

kernely = np.array([[1], [4], [6]1, [4], [11], np.float32) / 16
blury = sepFilter2D(frame_f, -1, kernelx, kernely)

sharpen = addWeighted(frame_f, (1 + weight), blury, (-weight), 0)
th, choose = threshold(absdiff(frame_f, blury), thresh, 1, THRESH_BINARY)
choose = choose.astype(bool)

np.copyto(res, sharpen, ’same_kind’, choose)

return res

Performance: 35.9 ms / frame

© Write in a dynamic language like Python and use a JIT (Numba) —
performance: 79 ms / frame

@ A naive C version parallelized with OpenMP: 18.02 ms / frame

OPTIMIZING UNSHARP MASK

@ Write with OpenCV library (with Python bindings)

@jit("float32[::]1(uint8[::],_int64)", cache = True, nogil = True)
def unsharp_cv(frame, lib_func):

frame_f = np.float32(frame) / 255.0

res = frame_f

kernelx = np.array([1, 4, 6, 4, 1], np.float32) / 16

kernely = np.array([[1], [4], [6]1, [4], [11], np.float32) / 16
blury = sepFilter2D(frame_f, -1, kernelx, kernely)

sharpen = addWeighted(frame_f, (1 + weight), blury, (-weight), 0)
th, choose = threshold(absdiff(frame_f, blury), thresh, 1, THRESH_BINARY)
choose = choose.astype(bool)

np.copyto(res, sharpen, ’same_kind’, choose)

return res

Performance: 35.9 ms / frame

© Write in a dynamic language like Python and use a JIT (Numba) —
performance: 79 ms / frame

@ A naive C version parallelized with OpenMP: 18.02 ms / frame

© A version with sophisticated optimizations (fusion + overlapped tiling):
8.97 ms / frame (in this course, we will study how to get to this, and
build compilers/code generators that can achieve this automatically)

@ Video demo

UNSHARP MASK - A HIGHLY OPTIMIZED VERSION

Note: Code below is indicative and not meant for reading! Zoom into
soft copy or browse source code repo listed in references.

Iin

}

blur,

!

blury

!

sharpen

!

masked

15.5 ms / frame on 1 threads, 8.97 ms / frame on 4 threads

EXAMPLE 2: GEMVER

for (i=0; i<N; i++)
for (j=0; j<N; j++)
B[i1[j]1 = A[i1[j] + ul[il*v1[]j] + u2[il*v2[j];

— T T for (i=0; i<N; i++)
B - A + ul * 01 + uz * UZ for (j=0; j<N; j++)
X = x4+ BTy x[il = x[i] + beta* B[j1[il*y[jl;
for (i=0; i<N; i++)
X = X+2z x[i] = x[i] + z[i];
— for (i=0; i<N; i++)
w o= w + B * X for (j=0; j<N; j++)

w[i] = w[i] + alphax B[il[j]*x[j];

The second loop nest operates in parallel along columns of B
The fourth loop nest operates in parallel along rows of B

EXAMPLE 2. GEMVER — BLOCK DISTRIBUTION

@ The first loop nest requires distributing B column-wise:

PO | P1 | P2 | P3
PO | P1 | P2 | P3
PO | P1 | P2 | P3
PO | P1 | P2 | P3

@ And the second loop nest requires it row-wise:

PO | PO | PO | PO
P1|P1|P1|P1
P2 | P2 | P2 | P2
P3| P3| P3| P3

@ One needs a transpose in between (an all-to-all
communication) to extract parallelism from both steps
(ignore reduction parallelism)

@ O(N?) communication for matrix B

EXAMPLE 2. GEMVER WITH A BLAS LIBRARY

@ With a library, one would just use a block cyclic
distribution:

deopy(m *n, A, 1, B, 1);
dger(m,n,1.0,ul,1,v1,1, B, m);
dger(m,n,1.0,u2,1,v2,1, B, m);
dcopy(n,z,1,x,1);

dgemv("T’, m, n, beta, B, m,y, 1, 1.0, x, 1);
dgemv(’N’, m, n, alpha, B, m, x, 1, 0.0, w, 1);

@ Can we do better?

EXAMPLE 2. GEMVER: SUDOKU MAPPING

@ Use a Sudoku-style mapping [NAS MG, BT, dHPF]

@ Both load balance and O(N) communication on x and w
(no communication for B) (optimal)

PO | P1 | P2 | P3
P1|P2|P3|PO
P2 | P3| PO | P1
P3 | PO | P1 | P2
@ A compiler can derive such a mapping based on a model

and generate much better code — mapping that is globally
good

EXAMPLE 2. GEMVER: PERFORMANCE

@ A compiler optimizer or code generator can select a
globally good transformation

20

- scalapack
= pluto-data-tile-gp (sudoku)
| — pluto-data-tile-block- cychc/*fff

B S B /

—_
(9]

Execution time in seconds
) =

1 2 4 9 16 25 32
Number of processors

@ On a 32-node InfiniBand cluster (32x8 cores) (weak scaling:
same problem size per node)

DOMAIN-SPECIFIC LANGUAGES (DSL)

@ Both examples above motivate a domain-specific
language + compiler approach

DOMAIN-SPECIFIC LANGUAGES (DSL)

@ Both examples above motivate a domain-specific
language + compiler approach

e High-performance domain-specific language + compiler:
productivity similar to ultra high-level or high-level but
performance similar to manual or even better!

DOMAIN-SPECIFIC LANGUAGES (DSL)

DSLs

e Exploit domain information to improve programmability,
performance, and portability

DOMAIN-SPECIFIC LANGUAGES (DSL)

DSLs

e Exploit domain information to improve programmability,
performance, and portability

@ Expose greater information to the compiler and
programmer specifies less

@ abstract away many things from programmers
(parallelism, memory)

DSL compilers
@ can “see” across routines — allow whole program
optimization
@ generate optimized code for multiple targets

@ Programmers say what to execute and not how to execute

BIG PICTURE: ROLE OF COMPILERS

General-Purpose Domain-Specific
@ Improve existing @ Build new domain-specific
general-purpose compilers languages and compilers
(for C, C++, Python, ...) @ Programmers say WHAT
@ Programmers say a LOT they execute and not
e LLVM/Polly, HOW they execute

GCC/Graphite @ SPIRAL, Halide

BIG PICTURE: ROLE OF COMPILERS

General-Purpose Domain-Specific

@ Improve existing @ Build new domain-specific
general-purpose compilers languages and compilers
(for C, C++, Python, ...) @ Programmers say WHAT

@ Programmers say a LOT they execute and not

e LLVM/Polly, HOW they execute
GCC/Graphite @ SPIRAL, Halide

@ Limited improvements, @ Dramatic speedups,
not everything is possible Automatic parallelization

@ Broad impact e Narrower impact and

adoption

BIG PICTURE: ROLE OF COMPILERS

EVOLUTIONARY approach REVOLUTIONARY approach
@ Improve existing
general-purpose compilers @ Build new domain-specific
(for C, C++, Python, ...) languages and compilers
@ Programmers say a LOT @ Programmers say WHAT
e LLVM/Polly, they execute and not
GCC/Graphite HOW they execute

° SPIRAL Halide

«rf&ﬂ“

BIG PICTURE: ROLE OF COMPILERS

EVOLUTIONARY approach REVOLUTIONARY approach
@ Improve existing
general-purpose compilers @ Build new domain-specific
(for C, C++, Python, ...) languages and compilers
@ Programmers say a LOT @ Programmers say WHAT
e LLVM/Polly, they execute and not
GCC/Graphite HOW they execute

° SPIRAL Halide

«rf&ﬂ“

@ Both approaches share infrastructure
@ Important to pursue both

OUTLINE

© Optimizations for Parallelism, Locality and More
@ Polyhedral Framework
o Affine Transformations
@ Tiling
@ Concurrent Start in Tiled Spaces

HANDS-ON TRIAL

@ Tools/Infrastructure to install and try

e Barvinok tool: http://barvinok.gforge.inria.fr/
e Pluto http://pluto-compiler.sourceforge.net (pet
branch of git version)

@ For assignment at the end of second lecture

e PolyMage: https:/ /bitbucket.org/udayb/polymage.git
e0358 git branch

http://barvinok.gforge.inria.fr/
http://pluto-compiler.sourceforge.net

COMPILERS: WHAT COMES TO MIND?

e GCC,LLVM

@ Scanning, Parsing, Semantic analysis

@ Scalar optimizations: SSA, constant propagation, dead
code elimination

e High-level optimizations

@ Backend: Register allocation, Instruction scheduling

WHAT SHOULD A COMPILER DESIGNER THINK
ABOUT?

@ Productivity: how easy it is to program?
@ Performance: how well does the code perform?

© Portability: how portable is your code? Will it run on a
different architecture?

HIGH-PERFORMANCE LANGUAGE /COMPILER DESIGN

@ Productivity
e Expressiveness: ease of writing, lines of code
° Productivity in writing a correct program, and in writing a
performing parallel program
e Library support, Debugging support, Interoperability

HIGH-PERFORMANCE LANGUAGE /COMPILER DESIGN

@ Productivity
e Expressiveness: ease of writing, lines of code
° Productivity in writing a correct program, and in writing a
performing parallel program
e Library support, Debugging support, Interoperability

@ Performance

Locality (spatial, temporal, ...)

Multi-core parallelism, coarse-grained parallelization
SIMD parallelism, vectorization

Parallelism granularity, Synchronization, Communication
Dynamic scheduling, Load balancing

Data allocation, Memory mapping and optimization

HIGH-PERFORMANCE LANGUAGE /COMPILER DESIGN

@ Productivity
e Expressiveness: ease of writing, lines of code
° Productivity in writing a correct program, and in writing a
performing parallel program
e Library support, Debugging support, Interoperability

@ Performance

Locality (spatial, temporal, ...)

Multi-core parallelism, coarse-grained parallelization
SIMD parallelism, vectorization

Parallelism granularity, Synchronization, Communication
Dynamic scheduling, Load balancing

Data allocation, Memory mapping and optimization

© Portability

e Given a new machine, how much time does it take to port?
e How well will it perform? How much more time to tune
and optimize?

AUTOMATIC PARALLELIZATION

Automatic parallelization: programmer provides a sequential
specification, and the compiler or compiler+runtime
parallelizes it

AUTOMATIC PARALLELIZATION

Automatic parallelization: programmer provides a sequential
specification, and the compiler or compiler+runtime
parallelizes it
e Myths
e Automatic parallelization is about just detecting and
marking loops parallel

e Has been a failure
e Scope restricted to general-purpose compilers

AUTOMATIC PARALLELIZATION

Automatic parallelization: programmer provides a sequential
specification, and the compiler or compiler+runtime
parallelizes it

e Myths

e Automatic parallelization is about just detecting and
marking loops parallel

e Has been a failure

e Scope restricted to general-purpose compilers

@ What it really is

e Execution and data restructuring to execute in parallel
efficiently

e Important in DSL compilers

o Can be used for library creation/generation

o Introduction, Motivation, and Foundations

@ Optimizations for Parallelism, Locality and More
@ Polyhedral Framework
@ Affine Transformations
e Tiling
@ Concurrent Start in Tiled Spaces
© High-Performance DSL Compilation
@ Image Processing Pipelines

@ Solving PDEs Numerically
@ Deep Neural Networks

@ Conclusions

POLYHEDRAL FRAMEWORK

for (t =0; t < T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
ALt)%2] 131 [3] = FO(A[B2][+11[3], ALt%2] (31151, Alt2][i-11(3],
ATER21 [1115+11, Alts2] [1115-11)
© Domains
e Every statement has a domain or an index set — instances
that have to be executed
o Each instance is a vector (of loop index values from
outermost to innermost)
Ds ={[t,i,j]|0<t<T-1,1<i,j<N}
© Dependences
e A dependence is a relation between domain / index set
instances that are in conflict (more on next slide)
© Schedules
e are functions specifying the order in which the domain
instances should be executed
e Specified statement-wise and typically one-to-one

o T((i,f)) = (i+j.j)or {[ijl = [i+jfl |-}

DOMAINS, DEPENDENCES, AND SCHEDULES

for (i=1; i<=N-1; i++)
for (j=1; j<=N-1; j++)
A[L1[j] = f(A[L-11[j], A[il[j-1]1);

J
o o o o o
3fe-e 0 0 0.
2fe e ee e
1 o 0 0 0 0
0 1 2 3 - N-1 i

Figure: Original space (i,])

@ Domain: {[i,j] | 1<i,j<N-1}

DOMAINS, DEPENDENCES, AND SCHEDULES

for (i=1; i<=N-1; i++)
for (j=1; j<=N-1; j++)
A[il[j] = f(A[i-11[j], A[il[j-11);

]

Figure: Original space (i,)

@ Dependences:
Q {i,j] - [i+1,j]|1<i<N-20<j<N-1}—(1,0)
Q {[i,jl=[i,j+1]|1<i<N-1,0<j<N-2}—(0,1)

DOMAINS, DEPENDENCES, AND SCHEDULES

for (i=1; i<=N-1; i++)
for (j=1; j<=N-1; j++)
A[il[j] = f(A[i-11[j], A[il[j-11);

Figure: Original space (i,)

@ Dependences:
Q {[ij] »[i+1.7]1
Q {lij] = [Lj+1][1

<i<N-20<j<N-1}—(1,0
<i<N-1,0<j<N-2}—(01)

DOMAINS, DEPENDENCES, AND SCHEDULES

for (i=1; i<=N-1; i++)
for (j=1; j<=N-1; j++)
A[i1[j] = f(A[i-11[j1, AL[il1[j-11);

] j
vif Qee—e—e—e Nab o e—e—e—e—e
. A N N N N N N I/ N / N / N / N / N
b e— = i 0> @—>0—>@ il
\ : S S
3 = CIN SRRREEREES O—>0—>0—0—@ i
oSS S
2 —@ 2 ._)._)._)._)‘:
) N / N / N / N / N / B
1 ® 1 P> @—=>@—@—>@
0 1 2 3 seees N-1 i 0 1 2 3 4 5 6 7 8 ----- 2N-2
Figure: Original space (i,) Figure: Transformed space (i + j, j)

@ Schedule: T(i,j) = (i+j,))
@ Dependences: (1,0) and (0,1) now become (1,0) and (1,1) resp.

DOMAINS, DEPENDENCES, AND SCHEDULES

for (i=1; i<=N-1; i++)
for (j=1; j<=N-1; j++)

A[Ll[3] = T(A[L-11031, ALillj-11);

] J
vl D AT
: ot Sl
3 F 3 O—>0—>@ i
Z/ .
2 2 ._>., R
I/ B
1 1 @
0 1 2 3 seees N-1 0 1 2 3 4 5 6 7 8 ----- 2N-2

Figure: Original space (i,)

@ Schedule: T(i,j) = (i +,j)

Figure: Transformed space (i + j, j)

@ Dependences: (1,0) and (0,1) now become (1,0) and (1,1) resp.
o Inner loop is now parallel

LEXICOGRAPHIC ORDERING

o Lexicographic ordering: >, > 0

@ Schedules/Affine Transformations/Polyhedral
Transformations as a way to provide multi-dimensional
timestamps

@ Code generation: Scanning points in the transformed
space in lexicographically increasing order

POLYHEDRAL FRAMEWORK: SCHEDULES

for (i=1 i<N; i++)
P(i); /* Produces B[i] using another array A x/

for (i=1; i<N; i++)
C(i); /* Consumes B[i] and B[i-1] to create D[i] */

@ Original schedule: Tp(i) = (0,1), Tc(i) = (1,1)

POLYHEDRAL FRAMEWORK: SCHEDULES

for (i=1 i<N; i++)
P(i); /* Produces B[i] using another array A x/

for (i=1; i<N; i++)
C(i); /* Consumes B[i] and B[i-1] to create D[i] */
@ Original schedule: Tp(i) = (0,1), Tc(i) = (1,1)
@ Fused
e Schedule: Tp(i) = (i,0), Tc(i) = (i,1).
for (t1l=1; tl<N; tl++) {
P(t1);

C(tl);
}

@ A code generator needs domains and schedules

POLYHEDRAL FRAMEWORK: SCHEDULES

for (i=1 i<N; i++)
P(i); /* Produces A[i] */

for (i=1; i<N; i++)
C(i); /* Consumes A[i] and A[i-1] */
@ Original schedule: Tp(i) = (0,1), Tc(i) = (1,1)
@ Fused + Tiled
e Schedule: Tp(i) = (i/32,i,0), Tc(i) = (i/32,i,1).
for (t1=0;tl<=floord(N-1,32);tl++) {
for (t3=max(1,32xtl);t3<=min(N-1,32*t1+31);t3++) {
P(t3);
C(t3);

}
}

@ A code generator needs domains and schedules

POLYHEDRAL FRAMEWORK: SCHEDULES

for (i=1 i<N; i++)
P(i); /* Produces A[i] */

for (i=1; i<N; i++)
C(i); /* Consumes A[i] and A[i-1] */

@ Original schedule: Tp(i) = (0,1), Tc(i) = (1,1)
@ Fused + Tiled + Innermost distribute

e Produce a chunk of A and consume it before a new chunk is
produced
e Schedule: Tp(i) = (i/32,0,i), Tc(i) = (i/32,1,i).

for (t1=0;tl<=floord(N-1,32);tl++) {
for (t3=max(1,32*tl;t3<=min(N-1,32xt1+31);t3++)
P(t3);
for (t3=max(1,32%tl);t3<=min(N-1,32*t1+31);t3++)
C(t3);
}

@ A code generator needs domains and schedules

o Introduction, Motivation, and Foundations

@ Optimizations for Parallelism, Locality and More
@ Polyhedral Framework
o Affine Transformations
e Tiling
@ Concurrent Start in Tiled Spaces

© High-Performance DSL Compilation
@ Image Processing Pipelines
@ Solving PDEs Numerically
@ Deep Neural Networks

@ Conclusions

@ Examples of affine functions of i, j: i +j,i —j,i4+1,2i +5
e Not affine: 7j, %, i + 2, a[j]

AFFINE TRANSFORMATIONS

e Examples of affine functions of i, j: i +j,i —j,i+1,2i +5
e Not affine: ij, i2, i + 2, aj]

! e o o
A4 A
L] L] L]
A A
L] L]
A
B I S B e ey B
Figure: Iteration space Figure: Transformed space
for (i =0; i < N; i++)
for (3 =0; j <M j++) #pragma omp parallel for private(t2)
AlL+1103+1] = F(A[L113]) for (tl=-M+l; tl<=N-1; t1++)
. . ce s s . for (t2=max(0,-tl); t2<=min(M-1,N-1-t1); t2++)
/* 0(N) synchronization if j is parallelized x*/ ALt1+t2+1] [t2+1] = F(A[t1+t2][t2]);

/* Synchronization-free */

@ Transformation: (i,j) — (i —j,j)

AFFINE TRANSFORMATIONS

°o>e
e >e0e>e

Figure: Iteration space Figure: Transformed space

@ Affine transformations are attractive because:

e Preserve collinearity of points and ratio of distances
between points

e Code generation with affine transformations has thus been
studied well (CLooG, ISL, OMEGA+)

e Model a very rich class of loop re-orderings

e Useful for several domains like dense linear algebra, stencil
computations, image processing pipelines, deep learning

FINDING GOOD AFFINE TRANSFORMATIONS

(i,]) Identity
(j, 1) Interchange
(i+7,7) Skew i (by a factor of one w.r.tj)
(i—7j,—j) Reverse j and skew i
(i,2i+7) Skew j (by a factor of two w.r.t i)
(2i,7) Scale i by a factor of two

(i,j+1) Shift
(i+j,i—j) More complex
(i/32,j/32,i,7) Tile (rectangular)

@ One-to-one functions

FINDING GOOD AFFINE TRANSFORMATIONS

(i,]) Identity
(j, 1) Interchange
(i+7,7) Skew i (by a factor of one w.r.tj)
(i—7j,—j) Reverse j and skew i
(i,2i+7) Skew j (by a factor of two w.r.t i)
(2i,7) Scale i by a factor of two

(i,j+1) Shift
(i+j,i—j) More complex
(i/32,j/32,i,7) Tile (rectangular)

@ One-to-one functions
e Can be expressed using matrices:

T(i,j) = (i+],]) = [(1) H <;)

e Validity: dependences should not be violated

DEPENDENCES

@ Dependences are determined pairwise between conflicting
accesses
for (t =0; t <T; t++)
for (i = 1; i < N+#1; i++)
for (j = 1; j < N+1; j++)

AL(t+1)%2] [11[]] = FO(A[t%2][1+1][5], A[t%2][i][j], Alt%2][i-11[j],
A[t%2] [1]1[j+1], A[t%2][1i][j-11);

@ Dependence notations
e Distance vectors: (1,-1,0), (1,0,0), (1,1,0), (1,0,-1), (1,0,1)
e Direction vectors
e Dependence relations as integer sets with affine constraints

and existential quantifiers or Presburger formulae —
powerful

@ Consider the dependence from the write to the third read:
Al(t+ D)%2][i][j] = At %2][i" — 1]]]']
Dependence relation: {[t,i,j] — [t',i,]] | =t+1,i' =
i+1,j/=j,0<t<T-1,0<i<N-1,0<j<N}

PRESERVING DEPENDENCES

for (t =0; t <T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
AL(t+1)%2] [11[]] = F((A[t%2][1+1][j], A[t%2][1i][j], Alt%2][i-1][j],
A[t%2] [1][j+1], A[t%2][i][j-1]);

e For affine loop nests, these dependences can be analyzed
and represented precisely

@ Side note: A DSL simplifies dependence analysis

PRESERVING DEPENDENCES

for (t =0; t <T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
AL(t+1)%2] [11[]] = F((A[t%2][1+1][j], A[t%2][1i][j], Alt%2][i-1][j],
A[t%2] [1][j+1], A[t%2][i][j-1]);

e For affine loop nests, these dependences can be analyzed
and represented precisely

@ Side note: A DSL simplifies dependence analysis

@ Next step: Transform while preserving dependences

e Find execution reorderings that preserve dependences and
improve performance

e Execution reordering as a function: T(?)
e For all dependence relation instances (5
T(H) - T6) - G,
i.e., the source should precede the target even in the
transformed space

@ What is the structure of T?

—

—f),

VALID TRANSFORMATIONS

for (t =0; t <T; t++)
for (i = 1; 1 < N+1; i++)
for (j = 1; j < N+1; j++)
AL(t+1)%2] [1]1[j] = f((A[t%2][i+1]1[j], A[t%2][i][j], Al[t%2][i-11[]],
Alt%2][1]1[j+1], Al[t%2][i][]j-11);

° DependenceS' (1,0,0), (1,0,1), (1,0,-1), (1,1,0), (1,-1,0)
o Validity: T(f) — T(5) > 0, i.e., T(f—5) = 0
e Examples of invalid transformations
o T(ti,j) = (i,j,t)
o Similarly, (i,t,]), (j,i,t), (t +1,1,7), (t +i+7,1,j) are all
invalid transformations
@ Valid transformations

o (t,j,i), (t,t+i,t+]), (t,t+it+i+])
e However, only some of the infinitely many valid ones are
interesting

o Introduction, Motivation, and Foundations

@ Optimizations for Parallelism, Locality and More
@ Polyhedral Framework
@ Affine Transformations
e Tiling
@ Concurrent Start in Tiled Spaces

© High-Performance DSL Compilation
@ Image Processing Pipelines
@ Solving PDEs Numerically
@ Deep Neural Networks

@ Conclusions

TILING (BLOCKING)

@ Partition and execute iteration space in blocks

A tile is executed atomically

@ Benefits: exploits cache locality & improves parallelization in the presence
of synchronization

@ Allows reuse in multiple directions

@ Reduces frequency of synchronization for parallelization:
synchronization after you execute tiles (as opposed to points) in parallel

i i
T - @& @& @ @ @ T @& @& @& @ @

| A48 0 NP2V
R AN 7%

NI 44 %43 N vivgvivgy
NR%% %% | izt

T 1 2 5N T 2 s N

(i,j) = (i/50,j/50,1,j); (i,j) = (i/50 +j/50,j/50,1, j)

e Validity of tiling
@ There should be no cycle between the
tiles

VALIDITY OF TILING (BLOCKING)

e Validity of tiling
@ There should be no cycle between the
tiles
o Sufficient condition: All dependence
components should be non-negative
along dimensions that are being tiled

VALIDITY OF TILING (BLOCKING)

e Validity of tiling

o There should be no cycle between the for (i=1; i<T; i+)
. for (j=1; j<N-1; j++)
tiles AL+1)%2][3] = F(A[L%2][3-11,

o Sufficient condition: All dependence AtE21], ALl (3D

components should be non-negative
along dimensions that are being tiled ™
@ Dependences: (1,0), (1,1), (1,-1)

3

2
1
o

Figure: Iteration space

L d
I
L]
1
L4
i
L]
i
L]

1 2 3 --N2

Figure: Invalid tiling

VALIDITY OF TILING (BLOCKING)

e Validity of tiling

o There should be no cycle between the for (i=1; i<T; i+)
. for (j=1; j<N-1; j++)
tiles AL+1)%2][3] = F(A[L%2][3-11,

o Sufficient condition: All dependence AtE21], ALl (3D

components should be non-negative
along dimensions that are being tiled
@ Dependences: (1,0), (1,1), (1,-1)

L d
I
L]
1
L4
i
L]
i
L]

1 2 3 N2 ol 1 2 3 N2

Figure: Invalid tiling Figure: valid tiling

TILING

(BLOCKING)

e Affine transformations can enable tiling
o First skew: T(i,j) = (i,i +/)

e Then, create a wavefront of tiles:
T(i,j) = (i/64 + (i +])/64, (i +])/64,1,i +)
i

1
'1.(.1,’0) NC11) b

T} @ @ ° @ TLfrioeie e o 0 0 0
I 1 AA22L

L | REXEXEXE o R CACa

2 TXTXiXiXi 2 9.0 .0 e e ...

1 TXTXiXiXi 1 o 0 0 @ @ il

o1 2 5 e o7 1 2 5 4 5 6 7T

Figure: Original space (i, j)

Figure: Transformed space (7,1 + j)

TILING (BLOCKING)

e Affine transformations can enable tiling
o First skew: T(i,j) = (i,i+])
e Then, apply (rectangular) tiling:
T(i,j) = (i/64, (i +)/64, 1,1 +)
e iand i+ jare also called tiling hyperplanes
e Then, create a wavefront of tiles:
T(j) = (i/64 + (i +j)/64 (i +)/64 11+))

i
oo
Tl e e e e @
3.
2.
1
0 1 2 3 seees N-2] 0 1 2 3 4 5 6 7 ----N+T-3

Figure: Original space (i,) Figure: Transformed space (i, + j)

ALGORITHMS TO FIND TRANSFORMATIONS

@ The Past
e A data locality optimizing algorithm, Wolf and Lam, PLDI
1991
Improve locality through unimodular transformations
@ Characterize self-spatial, self-temporal, and group reuse
e Find unimodular transformations (permutation, reversal,
skewing) to transform to permutable loop nests with reuse,
and subsequently tile them

@ Several advances on polyhedral transformation algorithms
through 1990s and 2000s — Feautrier [1991-1992], Lim and
Lam — Affine Partitioning [1997-2001], Pluto [2008 —
present]

@ The Present

e Polyhedral framework provides a powerful mathematical
abstraction (away from the syntax)

e A number of new techniques, open-source libraries and
tools have been developed and are actively maintained

BACK TO 3-D EXAMPLE

for (t =0; t <T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
AL(t+1)%2][11[]] = TO(A[t%2][1+1]1[j], A[t%2][i][j1, Alt%2][i-11[j],
A[t%2][1]1[j+1], A[t%2]1[i][j-11);

@ What is a good transformation here to improve parallelism
and locality?
@ Steps

BACK TO 3-D EXAMPLE

for (t =0; t <T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
AL(t+1)%2][11[]] = TO(A[t%2][1+1]1[j], A[t%2][i][j1, Alt%2][i-11[j],
A[t%2][1]1[j+1], A[t%2]1[i][j-11);

@ What is a good transformation here to improve parallelism
and locality?
@ Steps
o Skewing: (¢,t+1i,t+])

BACK TO 3-D EXAMPLE

for (t =0; t <T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
AL(t+1)%2][11[]] = TO(A[t%2][1+1]1[j], A[t%2][i][j1, Alt%2][i-11[j],
A[t%2][1]1[j+1], A[t%2]1[i][j-11);

@ What is a good transformation here to improve parallelism
and locality?
@ Steps
o Skewing: (¢,t+1i,t+])
o Tiling: (t/64, (t+1)/64, (t+7)/1000, t, t +i, t+j)

BACK TO 3-D EXAMPLE

for (t =0; t <T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
AL(t+1)%2][11[]] = TO(A[t%2][1+1]1[j], A[t%2][i][j1, Alt%2][i-11[j],
A[t%2][1]1[j+1], A[t%2]1[i][j-11);

@ What is a good transformation here to improve parallelism
and locality?
@ Steps
o Skewing: (¢,t+1i,t+])
o Tiling: (t/64, (t+1)/64, (t+7)/1000, t, t +i, t+j)
e Parallelize by creating tile wavefront:
(t/64 + (t+1)/64, (t+1)/64, (t+7)/1000, t, t +1i, t+7)

POLYHEDRAL TRANSFORMATION ALGORITHMS

@ Feautrier [1991-1992] scheduling

@ Lim and Lam, Affine Partitioning [1997-2001]
@ Pluto algorithm [Bondhugula et al. 2008]
o Finds a sequence of affine transformations to improve
locality and parallelism
e Transforms to bands of tilable dimensions
e Bounds dependence distances and minimizes them
e Objective: minimize dependence distances while
maximizing tilability

@ PPCG [Verdoolaege et al. 2013] (mainly for GPUs) — can
generate CUDA or OpenCL code

A COST FUNCTION TO SELECT AFFINE

TRANSFORMATIONS

o Ti(ti) = (t/64+ (F+1i)/64, /64t t+ 1)
o To(t,i) = (£/64+ (t+1)/64, (t+1)/64, .t +1)
o Ts(t,i) = (£/64 + (2t +1)/64, (2t + 1) /64, 1,2t + i)

One line Two lines of
of communication of communication

(1,0) (1,0)
sPaceV (O timeV D
fime space

Three lines
of communication

L0 42,1

time T space

...... G o o
-PZ\:PNP= [P3
t .Q:\\H\Q: R t e
e 2
by :PO. P- P- ! 0 0 0 ¥
i i

Figure: Communication volume with different valid hyperplanes for 1-d Jacobi:

shaded tiles are to be executed in parallel

@ Select the /1 that minimizes /1. (tf — §), i.e., minimizes h.d
e Examples: h = (2,1),h.(1,1) =3, h = (1,0), h.(1,1) = 1.

o Introduction, Motivation, and Foundations

@ Optimizations for Parallelism, Locality and More
@ Polyhedral Framework
@ Affine Transformations
e Tiling
@ Concurrent Start in Tiled Spaces
© High-Performance DSL Compilation
@ Image Processing Pipelines

@ Solving PDEs Numerically
@ Deep Neural Networks

@ Conclusions

PIPELINED START AND LOAD IMBALANCE

f (1,0)
for (t = 0; t <= T-1; t++)
‘concurrent start face for (i = 1; i <= N-2; i++)
. t : A[(t+1)%2][1] = 0.125 * (A[t%2][i+1]
- 2.0 x A[t%2][1] + A[t%2][i-1]);

Tif 0 @ @ @ @

PIPELINED START AND LOAD IMBALANCE

Classical time skewing suffers from pipelined startup

t
: |(1,0>\(('1,1)
B
3 1
2
1
0 1 2 3 ----- N-2 i

Figure: Pipelined start

PIPELINED START AND LOAD IMBALANCE

Classical time skewing suffers from pipelined startup

t t
: _L(LO) \((’1,1)

B T1

2 2
1 1
0 1 2 3 -eeen N-2 i 0 1 2 3 seees N-2 i

Figure: Pipelined start Figure: Group as diamonds

PIPELINED START AND LOAD IMBALANCE

Classical time skewing suffers from pipelined startup

t t (17_1)
| fooon N

B T1

2 2

1 1

0 1 2 3 -eeen N-2 i 0 1 2 3 seees N-2 1
Figure: Pipelined start Figure: Concurrent start possible

@ Diamond tiling
@ Face allowing concurrent start should be strictly within the cone
of the tiling hyperplanes
@ Eg: (1,0) is in the cone of (1,1) and (1,-1)

CLASSICAL TIME SKEWING VS DIAMOND TILING

= inter-tile dependence = inter-tile dependence

Figure: Two ways of tiling heat-1d: parallelogram & diamond

@ Classical time skewing: (¢,i) — (¢, + 1)
e Diamond tiling: (¢,i) — (¢t +1i,t — i)

for (t = 0; t <T; t++)
for (1 = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
A[(t+1)%2] [11[]] = fO(Alt%2][i+1][j], A[t%2][1i][j], Alt%2][i-1][j],
Alt%2] [1][j+1], A[t%2][i]1[j-11, A[t%2][i]1[j]);

@ Enabling transformation for diamond tiling

T((t7 l:])) = (t+ iat_ lat+])

A SEQUENCE OF TRANSFORMATIONS FOR 2-D JACOBI
RELAXATIONS

for (t = 0; t < T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
A[(t+1)%2] [11[]] = fO(Alt%2][i+1][j], A[t%2][1i][j], Alt%2][i-1][j],
Alts2] [1]1[j+1], Alt%2][il[j-1]1, Alt%2][i][j]);

@ Enabling transformation for diamond tiling

T((t,i,))) = (t+it —it+]).

@ Derform the actual tiling (in the transformed space)

T'((t,i,])) = (%,%,%,Hi,t—i,tﬂ)

A SEQUENCE OF TRANSFORMATIONS FOR 2-D JACOBI
RELAXATIONS

for (t = 0; t < T; t++)
for (i = 1; 1 < N+1; i++)
for (j = 1; j < N+1; j++)
A[(t+1)%2] [11[]] = fO(Alt%2][i+1][j], A[t%2][1i][j], Alt%2][i-1][j],
Alts2] [1]1[j+1], Alt%2][il[j-1]1, Alt%2][i][j]);

@ Enabling transformation for diamond tiling

T((t,i,))) = (t+it —it+]).

@ Derform the actual tiling (in the transformed space)

.. t+i t—1i t+j . . .
T'((t,z,])) = (Hya,ﬁj,t—kz,t—z,t—&-])

© Create a wavefront of tiles

M L. t j t—i t—i t i X ,
T'((t,i,)) = (LI St 0 t,t+z,t+1>

64 647 64’ 64
© Choose tile sizes in Step 2 such that vectorization and prefetching
works well (for the innermost dimension)

TRANSFORMED CODE

/* Start of CLooG code */
for (tl=-1; tl<=31; tl++) {
int lbp=ceild(tl,2), ubp=floord(t1+125,2);
#pragma omp parallel for private(lbv,ubv,t3,t4,t5,t6)
for (t2=1lbp; t2<=ubp; t2++)
for (t3=max(0,ceild(tl-1,2)); t3<=floord(t1+126,2); t3++)
for (t4=max(max(max(0,32*tl),64+t3-4000),64xt1-64*t2+1);
td4<=min(min(min(999,32*t1+63),64%t2+62),64%t3+62); td++)
for (t5=max(max(64*t2,t4+1),-64*t1+64*xt2+2*t4-63);
t5<=min(min(64+t2+63,14+4000), -64*t1+64+t2+2xt4); t5++)

#pragma ivdep
#pragma vector always
for (t6=max(64%t3,t4+1); t6<=min(64*t3+63,t4+4000); t6++)
A[(t4 + 1) % 2][(-t4+t5)][(-t4+t6)] = (((0.125 * ((A[t4 % 2][(-t4+t5) + 1]1[(-t4+t6)]
- (2.0 x A[t4 % 2][(-t4+t5)][(-t4+t6)])) + A[t4 % 2][(-t4+t5) - 1]1[(-t4+t6)]))
+ (0.125 * ((A[t4 % 2][(-t4+t5)][(-t4+t6) + 1] - (2.0 * A[t4 % 2][(-t4+t5)]1[(-t4+t6)]))
+ A[t4 % 2][(-t4+t5)]1[(-t4+t6) - 11))) + A[t4 % 2][(-t4+t5)]1[(-t4+t6)]);

}
/* End of CLooG code */
Performance on an 8-core Intel Xeon Haswell (all code compiled with ICC

16.0), N=4000, T=1000
@ Original: 6.2 GFLOPS

TRANSFORMED CODE

/* Start of CLooG code */
for (tl=-1; tl<=31; tl++) {
int lbp=ceild(tl,2), ubp=floord(t1+125,2);
#pragma omp parallel for private(lbv,ubv,t3,t4,t5,t6)
for (t2=1lbp; t2<=ubp; t2++)
for (t3=max(0,ceild(tl-1,2)); t3<=floord(t1+126,2); t3++)
for (t4=max(max(max(0,32*tl),64+t3-4000),64xt1-64*t2+1);
td4<=min(min(min(999,32*t1+63),64%t2+62),64%t3+62); td++)
for (t5=max(max(64*t2,t4+1),-64*t1+64*xt2+2*t4-63);
t5<=min(min(64+t2+63,14+4000), -64*t1+64+t2+2xt4); t5++)

#pragma ivdep
#pragma vector always
for (t6=max(64%t3,t4+1); t6<=min(64*t3+63,t4+4000); t6++)
A[(t4 + 1) % 2][(-t4+t5)][(-t4+t6)] = (((0.125 * ((A[t4 % 2][(-t4+t5) + 1]1[(-t4+t6)]
- (2.0 x A[t4 % 2][(-t4+t5)][(-t4+t6)])) + A[t4 % 2][(-t4+t5) - 1]1[(-t4+t6)]))
+ (0.125 * ((A[t4 % 2][(-t4+t5)][(-t4+t6) + 1] - (2.0 * A[t4 % 2][(-t4+t5)]1[(-t4+t6)]))
+ A[t4 % 2][(-t4+t5)]1[(-t4+t6) - 11))) + A[t4 % 2][(-t4+t5)]1[(-t4+t6)]);

}
/* End of CLooG code */
Performance on an 8-core Intel Xeon Haswell (all code compiled with ICC
16.0), N=4000, T=1000

@ Original: 6.2 GFLOPS

@ Straightforward OMP: 21.8 GFLOPS

TRANSFORMED CODE

/* Start of CLooG code */
for (tl=-1; tl<=31; tl++) {
int lbp=ceild(tl,2), ubp=floord(t1+125,2);
#pragma omp parallel for private(lbv,ubv,t3,t4,t5,t6)
for (t2=1lbp; t2<=ubp; t2++)
for (t3=max(0,ceild(tl-1,2)); t3<=floord(t1+126,2); t3++)
for (t4=max(max(max(0,32*tl),64+t3-4000),64xt1-64*t2+1);
td4<=min(min(min(999,32*t1+63),64%t2+62),64%t3+62); td++)
for (t5=max(max(64*t2,t4+1),-64*t1+64*xt2+2*t4-63);
t5<=min(min(64+t2+63,14+4000), -64*t1+64+t2+2xt4); t5++)
#pragma ivdep
#pragma vector always
for (t6=max(64%t3,t4+1); t6<=min(64*t3+63,t4+4000); t6++)
A[(t4 + 1) % 2][(-t4+t5)][(-t4+t6)] = (((0.125 * ((A[t4 % 2][(-t4+t5) + 1]1[(-t4+t6)]
- (2.0 x A[t4 % 2][(-t4+t5)][(-t4+t6)])) + A[t4 % 2][(-t4+t5) - 1]1[(-t4+t6)]))
+ (0.125 * ((A[t4 % 2][(-t4+t5)][(-t4+t6) + 1] - (2.0 * A[t4 % 2][(-t4+t5)]1[(-t4+t6)]))
+ A[t4 % 2][(-t4+t5)]1[(-t4+t6) - 11))) + A[t4 % 2][(-t4+t5)]1[(-t4+t6)]);

}
/* End of CLooG code */

Performance on an 8-core Intel Xeon Haswell (all code compiled with ICC
16.0), N=4000, T=1000

@ Original: 6.2 GFLOPS

@ Straightforward OMP: 21.8 GFLOPS

@ Classical time skewing: 52 GFLOPS (2.39x over simple OMP)

TRANSFORMED CODE

/* Start of CLooG code */
for (tl=-1; tl<=31; tl++) {
int lbp=ceild(tl,2), ubp=floord(t1+125,2);
#pragma omp parallel for private(lbv,ubv,t3,t4,t5,t6)
for (t2=1lbp; t2<=ubp; t2++)
for (t3=max(0,ceild(tl-1,2)); t3<=floord(t1+126,2); t3++)
for (t4=max(max(max(0,32*tl),64+t3-4000),64xt1-64*t2+1);
td4<=min(min(min(999,32*t1+63),64%t2+62),64%t3+62); td++)
for (t5=max(max(64*t2,t4+1),-64*t1+64*xt2+2*t4-63);
t5<=min(min(64+t2+63,14+4000), -64*t1+64+t2+2xt4); t5++)
#pragma ivdep
#pragma vector always
for (t6=max(64%t3,t4+1); t6<=min(64*t3+63,t4+4000); t6++)
A[(t4 + 1) % 2][(-t4+t5)][(-t4+t6)] = (((0.125 * ((A[t4 % 2][(-t4+t5) + 1]1[(-t4+t6)]
- (2.0 x A[t4 % 2][(-t4+t5)][(-t4+t6)])) + A[t4 % 2][(-t4+t5) - 1]1[(-t4+t6)]))
+ (0.125 * ((A[t4 % 2][(-t4+t5)][(-t4+t6) + 1] - (2.0 * A[t4 % 2][(-t4+t5)]1[(-t4+t6)]))
+ A[t4 % 2][(-t4+t5)]1[(-t4+t6) - 11))) + A[t4 % 2][(-t4+t5)]1[(-t4+t6)]);

}
/* End of CLooG code */

Performance on an 8-core Intel Xeon Haswell (all code compiled with ICC
16.0), N=4000, T=1000

@ Original: 6.2 GFLOPS

@ Straightforward OMP: 21.8 GFLOPS

@ Classical time skewing: 52 GFLOPS (2.39x over simple OMP)
@ Diamond tiling: 91 GFLOPS (4.17x over simple OMP)

WHERE ARE AFFINE TRANSFORMATIONS USEFUL?

@ Application domains

e Optimize Jacobi and other relaxations via time tiling

e Optimize pre-smoothing steps at various levels of
Geometric Multigrid method
Optimize Lattice Boltzmann Method computations
Image Processing Pipelines
Convolutional Neural Network computations
Wherever you have loops and want to transform loops

@ Architectures

e General-purpose multicores
e GPUs, accelerators
e FPGAs: transformations for HLS

PUTTING TRANSFORMATIONS INTO PRACTICE

@ Where are these transformations useful?

e In general-purpose compilers: LLVM, GCC, ...
e In DSL compilers

@ Tools: How to use these?

e ISL http://isl.gforge.inria.fr —an Integer Set Library

e CLooG - polyhedral code generator/library
http://cloog.org

e Pluto http://pluto-compiler.sourceforge.net-a
source-to-source automatic transformation framework that
uses a number of libraries including Pet, Clan, Cand]l, ISL,
Cloog, Piplib

e PPCG - Polyhedral parallel code generation for CUDA
http:/ /repo.or.cz/ppcg.git

e Polly http://polly.llvm.org — Polyhedral infrastructure
in LLVM

@ An exercise now

http://isl.gforge.inria.fr
http://cloog.org
http://pluto-compiler.sourceforge.net
http://polly.llvm.org

REFERENCES

@ Reading material, tutorials, and slides

o Presburger Formulas and Polyhedral Compilation by Sven
Verdoolaege
http://isl.gforge.inria.fr/

e Barvinok tutorial at http:/ /barvinok.gforge.inria.fr/

e Background and Theory on Automatic Polyhedral
Transformations
http://www.csa.iisc.ernet.in/~uday/
poly-transformations-intro.pdf

e Polyhedral.info http://polyhedral.info

@ Tools/Infrastructure to try

e Barvinok tool: http://barvinok.gforge.inria.fr/

o Pluto http://pluto-compiler.sourceforge.net —use
pet branch of git version

e PPCG - Polyhedral parallel code generation for CUDA
http://repo.or.cz/ppcg.git

e Polly http://polly.llvm.org

http://isl.gforge.inria.fr/
http://www.csa.iisc.ernet.in/~uday/poly-transformations-intro.pdf
http://www.csa.iisc.ernet.in/~uday/poly-transformations-intro.pdf
http://polyhedral.info
http://barvinok.gforge.inria.fr/
http://pluto-compiler.sourceforge.net
http://repo.or.cz/ppcg.git
http://polly.llvm.org

ASSIGNMENT 1

@ Download PolyMage’s e0358 branch
$ git clone https://bitbucket.org/udayb/polymage.git -b e0358

@ Modify sandbox/video_demo/harris_corner/harris_opt.cpp to improve
performance over harris_naive.cpp

@ Test performance through the video demo (see README.md in
sandbox/video_demo/

@ Use any 1080p video for testing

@ Either transform manually or consider using Barvinok (iscc):
http://barvinok.gforge.inria.fr/

@ Optimize for performance targeting 4 cores of a CL workstation

@ What to submit: harris_opt.cpp and report.pdf, a report describing
optimizations you performed, and the performance you observed (in
ms) when running on 4 cores of the CL workstation; also report
execution times and scaling from 1 to 4 cores. Use the printout when
you exit the video demo to report timing. Submit by email in a single
compressed tar file named <your name>.tar.gz

@ Deadline: Fri Oct 7, 4:59pm

http://barvinok.gforge.inria.fr/

OUTLINE

© High-Performance DSL Compilation
@ Image Processing Pipelines
@ Solving PDEs Numerically
@ Deep Neural Networks

DOMAIN-SPECIFIC LANGUAGES

e Standalone DSLs: own syntax

e Embedded DSLs: embedded in/hosted by an existing
language

DOMAIN-SPECIFIC LANGUAGES

@ Standalone DSLs: own syntax

o Embedded DSLs: embedded in/hosted by an existing
language

@ Arguments against DSLs

e Too specialized
e Need to learn a new language!

A Dodo (highly spe-
cialized, but extinct)

DOMAIN-SPECIFIC LANGUAGES

@ Standalone DSLs: own syntax

e Embedded DSLs: embedded in/hosted by an existing
language
@ Arguments against DSLs
e Too specialized
e Need to learn a new language!
But

e DSLs can be embedded in
existing languages

e Can grow and become more
general-purpose

A Dodo (generalized)

DSL COMPILATION

@ Frameworks studied for general-purpose
languages/compilation can be reused
@ Customized optimization strategies necessary

e Examples of high-performance DSLs: SPIRAL,
Green-Marl, Halide, PolyMage, SystemML

PROGRAMMING /COMPILER TECHNOLOGIES FOR
EMERGING DOMAINS

@ Catch 22

e Progress requires the right programming, compiler, and
hardware technologies

e Architects of programming, compiler, and hardware
technologies cannot build these unless they know what the
domain experts want

e Tough problem: solutions?

PROGRAMMING /COMPILER TECHNOLOGIES FOR
EMERGING DOMAINS

@ Catch 22

e Progress requires the right programming, compiler, and
hardware technologies

e Architects of programming, compiler, and hardware
technologies cannot build these unless they know what the
domain experts want

e Tough problem: solutions?

o Get lucky with the right hardware / primitives (Deep
learning? — relies on BLAS, FFT)

e Work closely with domain scientists

e Domain scientist does both

o Introduction, Motivation, and Foundations

© Optimizations for Parallelism, Locality and More
@ Polyhedral Framework
o Affine Transformations
e Tiling
@ Concurrent Start in Tiled Spaces

© High-Performance DSL Compilation
@ Image Processing Pipelines
@ Solving PDEs Numerically
@ Deep Neural Networks

@ Conclusions

WHERE ARE IMAGE PROCESSING PIPELINES USED?

e Computational photography, computer vision, medical
imaging, ...

@ On images uploaded to social networks like Facebook,
Google+

@ On all camera-enabled devices, embedded systems

e Everyday workloads from data center to mobile device
scales

Google+ Auto Enhance

IMAGE PROCESSING PIPELINES

Graphs of interconnected processing stages

Harris e—

Figure: Harris corner detection

COMPUTATION PATTERNS

Point-wise

f(xvy) = Wy 'g(x?y’.) +wg '8(9@% .) +wp 'g(xay’.)

COMPUTATION PATTERNS

+1 +1

fxyy)= > > glx+oxy+oy) wloyoy)

oy=—1oy=-1

COMPUTATION PATTERNS

Downsample

fap= 5 5 g@ton2ytoy) wlonoy)

oy=—10y=-1

COMPUTATION PATTERNS

Upsample

+1 +1
fry)= > 3 g((x+02)/2,(y +0y)/2) - w(ox, 0y, %, Y)

oy=—10oy=—

EXAMPLE: PYRAMID BLENDING PIPELINE

—

86

|

Image courtesy: Kyros Kutulakos

NAIVE VS OPTIMIZED IMPLEMENTATION

e Naive implementation in C

e Naive parallelization — 7x
OpenMP, Vector pragmas (icc)

Execution time (ms)

e Manual optimization — 29 x
Seq Par Tuned Locality, Parallelism, Vector
intrinsics

Harris corner detection
(16 cores)

o Manually optimizing pipelines is hard

o Goal: Performance levels of manual tuning
without the pain

A DSL APPROACH

e High-level language (DSL embedded in a language
like Python or C++)
— Allow expressing common patterns intuitively
— Enable precise compiler analysis and
optimization
e Automatic Optimizing Code Generator
— Use domain-specific cost models to apply
complex combinations of scaling, alignhment,

tiling and fusion to optimize for parallelism and
locality

EMBEDDED DSL. — AN EXAMPLE

R, C = Parameter(Int), Parameter(Int)
I'= Image(Float, [R+2, C+2])

X, y = Variable(), Variable
row, col = Interval(0,R+1, 1), Interval (0,C+1,1)

Condition (x, '>=",1) & Condition(x,
Condition(y, '>=",1) & Condition(y,

= Condition(x, '>=",2) & Condition(x, <
Condition(y, '>=',2) & Condition(y, "

= Function(varDon = ([x,y], [row,col]),Float)
Iy.defn = [Case(c, Stencil(I(x,y), 1.0/12,

(-1, -2, -1,
[oe, o, o],
(12, 1N

= Function(varDom = ([x,y], [row,col]),Float)
Ix.defn = [Case(c, Stencil(I(x,y), 1.6/12,

Ixx = Function(varDom = ([x,y], [row, (ul]) Float)
Ixx.defn = [Case(c, Ix(x,y) = Ix(x,y))

Tyy = Function(varDom = ([x,y], [row,col]),Float)
Tyy.defn = [Case(c, Ty(x,y) = Iy(x,y))]

Ixy = Function(varDom = ([x,y], [row, col]) Float)
Ixy.defn = [Case(c, Ix(x,y) = Iy(x,

Function (varDon = ([x,y], [row,col]),Float)

Function(vardom = ([x,y], [row,col]),Float)

Function(varDom = ([x,y], [row,col]),Float)

for pair in [(Sxx, Ixx), (Syy, TIyy), (Sxy, Ixy)]
pair(0].defn = [Case(cb, Stencil(pair(1], 1,

[, 1, 11,

1,1, 1],

1,1, 101

det = Function(varDom = ([x,y], [row,col]),Float)
d xx(x,y) * Syy(x,y) - Sxy(x,y) * Sxy(x,y)
det.defn = [Case(cb, d)]

| Embedded in Python |

trace = Function(varDom = ([x,y], [row,col]),Float)
trace.defn = [Case(cb, Sxx(x,y) + Syy(x,y))]

harris = Function(varDom = ([x,y], [row,col]),Float)

coarsity = det(xry) - .04 + trace(x,y) + trace(x,y) | Functional, domain-level operations |

harris.defn = [Case(cb, coarsity)]

POLYHEDRAL REPRESENTATION

| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
fUM,,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
fz,,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
fl,,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,
ST T T S R N S S S S R TR
L L L L L L L L L L L L L L L L L L
X = Variable()
fin = Image(Float, [18])
f1 = Function(varDom = ([x], [Interval(®, 17, 1)1), Float)
fi.defn = [fi,(x) + 11
fo = Function(varDom = ([x], [Interval(l, 16, 1)]), Float)

fo.defn = [fi(x-1) + f1(x+1)]
fout = Function(varDom = ([x],
fout-defn = [f(x-1) + fr(x+1) 1]

[Interval(2, 15, 1)]), Float)

POLYHEDRAL REPRESENTATION

Domains

| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
fui| -6 @6 6eeeeeeeeee
| | | | | | | | | | | | | | | | | |
LI A A 240 40 A 40 40 A A0 A0 A A0 J0 A SRS
| | | | | | | | | | | | | | | | | |
fif 0606666060000 000000 0
| | | | | | | | | | | | | | | | | |
L L L L L L L L L L L L L L L L L L
x = Variable()
fin = Image(Float, [18])
f1 = Function(varDom = ([x], [Interval(®, 17, 1)1), Float)
fi.defn = [fi,(x) + 11
fo = Function(varDom = ([x], [Interval(l, 16, 1)]), Float)
fo.defn = [fi(x-1) + f1(x+1)]

fout = Function(varDom =
faut-defn =

([x1,
[/(x-1) + f(x+1)]

[Interval(2, 15, 1)]), Float)

POLYHEDRAL REPRESENTATION

Dependence vectors

Function Dependence Vectors

Jour(¥) = folx =1)-o(x + 1) (1,1),(1, 1)
LE)=Ax-D+A+1D) 1,1),1,-1)
fi(x) = fin(x)

POLYHEDRAL REPRESENTATION

Live-outs

Function Dependence Vectors

Jour(¥) = folx =1)-o(x + 1) (1,1),(1, 1)
LE)=Ax-D+A+1D) 1,1),1,-1)
fi(x) = fin(x)

SCHEDULING TECHNIQUES

Parallelism Locality Storage

SCHEDULING TECHNIQUES

Default schedule

SCHEDULING TECHNIQUES

Default schedule

SCHEDULING TECHNIQUES

Default schedule

)

2 @@ e e e e e @ e e e e @@ @ ®

VTRV VIV

=

f

@ Load balanced parallelization

@ But does not exploit locality

SCHEDULING TECHNIQUES

Parallelogram tiling / shift + fuse + tile + distribute inner

BRI

-

fl?i\i\

@ Loss of parallelism (for a coarse-grained mapping)

@ (or) High synchronization (% synchronizations!) for a
fine-grained one

SCHEDULING TECHNIQUES

Split tiling

e Split tiling for GPUs: Grosser et al. GPGPU 2013

@ Similar scheme also used in Pochoir [Tang et al. SPAA
2011]

SCHEDULING TECHNIQUES

Split tiling

@ Data is live out of left and right boundaries (in addition to
top)
e Local buffering (scratchpads for tiles) is difficult!

SCHEDULING TECHNIQUES

Overlapped tiling

@ Break dependence at boundaries through redundant
computation

OVERLAPPED TILING FOR HETEROGENEOUS
FUNCTIONS

fiz
fn

Function Schedule

fr2(x) =fuu2x—=1)-f1(2x+1) (x) = (2,%)
fr(x) =f@2x = 1)-f(2x +1)-f(2x) (x) = (1,%)
f(x) = fin(x) (x) = (0,x)

e Some approaches to overlapped tiling only consider
homogeneous time-iterated stencils

OVERLAPPED TILING FOR HETEROGENEOUS
FUNCTIONS

fiz
fn

Function Schedule

fr2(x) =fuu2x—=1)-f1(2x+1) (x) = (2,%)
fr(x) =f@2x = 1)-f(2x +1)-f(2x) (x) = (1,%)
f(x) = fin(x) (x) = (0,x)

e Cannot have a fixed tile shape when dependence
vectors are non-constant

OVERLAPPED TILING FOR HETEROGENEOUS

FUNCTIONS

e

1
(x) = (2,4x)
(x) = (1,2x)

Schedu
(x) = (0,x)

Function

fra(x)

fr1(x—=1)-fl1(2x+1)

f@2x —=1)-f(2x +1)-f(2x)

fin(x)

fr(x)
f(x)

e Scaling and aligning the schedules

OVERLAPPED TILING FOR HETEROGENEOUS

FUNCTIONS

fut | 90000000 O 0000 OO0 ®OO®OOO®O®®

fT | 5 e - i . d - e . 5 e < = -l <

s | R ESRE T ESRETS

f [o¥e¥ouvouvevevouvevwoeovue
Function Schedule
Jour(x) = fr(x/2) (x) = (4,%)
fr(x) = fra(x/2) fla(x/2 4+ 1) (x) = (3,2x)
fa(x) =fa2x=1)-fu2x+1) (x) = (2,4x)
fa() =f@x—=1)-f(2x+1)-f(2x) (x) = (1,2x)
F(x) = fin(x) (x) = (0,x)

OVERLAPPED TILING FOR HETEROGENEOUS

FUNCTIONS

e Determining tile shape

e Conservative vs precise bounding faces

OVERLAPPED TILING FOR HETEROGENEOUS

FUNCTIONS

e Determining tile shape

e Conservative vs precise bounding faces

OVERLAPPED TILING FOR HETEROGENEOUS

FUNCTIONS

e Determining tile shape

e Conservative vs precise bounding faces

OVERLAPPED TILING FOR HETEROGENEOUS
FUNCTIONS

four |
fr
fo
fu
f

e Significant reduction in redundant computation

OVERLAPPED TILING FOR HETEROGENEOUS
FUNCTIONS

@ Tile size 7, overlap O, height

e Trade-off between fusion height and overlap

@ More fusion provides more locality, but also a greater
fraction of redundant computation

OVERLAPPED TILING FOR HETEROGENEOUS
FUNCTIONS

@ Tile size 7, overlap O, height

e Trade-off between fusion height and overlap

@ More fusion provides more locality, but also a greater
fraction of redundant computation

OVERLAPPED TILING FOR HETEROGENEOUS
FUNCTIONS

uOOOuOO ﬁuOOUOOOOOOO ®®

f uﬂt:x} %‘

T | 5 e ‘M T’ e < = -l - -l = -
\ \ -

ol B i i”i
1
Jf i ilmAvAvMAvMAVA\

:9

Scratchpads
o Reduction in intermediate storage
o Better locality and reuse
o Privatized for each thread

SOME BENCHMARKS IN THIS DOMAIN

Seven benchmarks of varying structure and

complexity

Benchmark Stages Lines Image size
Unsharp Mask 4 16 2048x2048x3
Bilateral Grid 7 43 2560x1536
Harris Corner 11 43 6400x 6400
Camera Pipeline 32 86 2528x1920
Pyramid Blending 44 71 2048x2048x3
Multiscale Interpolate 49 41 2560x1536x3
Local Laplacian 99 107 2560x1536x3

@ Video demo

EFFECTIVENESS OF TRANSFORMATIONS

Speedup of grouped and tiled implementations over naively
parallelized and vectorized ones

6.33
3.27 2.88 2.82
2.13
1.36 . 1.57
Unsharp Bilateral Harris Camera Pyramid Multiscale Local
Mask Grid Corner Pipeline Blending Interpolate Laplacian

16 threads and vectorization enabled
On a 2-socket 16-core Intel Xeon SandyBridge
Source: [Mullapudi et al. ASPLOS 2015 PolyMage]

A DEEPER LOOK: HARRIS CORNER DETECTION

&
50 5
5
. I PolyOpt(opt+vec)
% 08 PolyOpt(opt)
:: 40 |- 0o PolyOpt(base-+vec)
~ 1] PolyOpt(base)
?
g
2 00 3
©) 3
i
Q
20
(5] N
2
e 10 3|
g 10+ 2 N
@ N = &
q;i AR 31"‘3"
2 e - H
0 Jlﬂm Il
1 2 8

Number of cores

Source: PolyMage, Mullapudi et al. ASPLOS 2015

REFERENCES

@ Delite: A compiler/runtime framework for embedded
DSLs
http://stanford-ppl.github.io/Delite/ (read
papers)

e Halide http://halide-lang.org (tutorial and code)
http://halide-1lang.org/cvpr2015.html

e PolyMage:
http://mcl.csa.iisc.ernet.in/polymage.html (code,
slides, and paper)
Mullapudi et al. Automatic Optimization of Image
Processing Pipelines, ASPLOS 2015.

http://stanford-ppl.github.io/Delite/
http://halide-lang.org
http://halide-lang.org/cvpr2015.html
http://mcl.csa.iisc.ernet.in/polymage.html

o Introduction, Motivation, and Foundations

© Optimizations for Parallelism, Locality and More
@ Polyhedral Framework
o Affine Transformations
e Tiling
@ Concurrent Start in Tiled Spaces

© High-Performance DSL Compilation
@ Image Processing Pipelines
@ Solving PDEs Numerically
@ Deep Neural Networks

@ Conclusions

SOLVING PARTIAL DIFFERENTIAL EQUATIONS
NUMERICALLY

@ A number of science and engineering problems involve
solving a partial differential equation (PDE)

@ Numerous techniques exist varying in computational
complexity, convergence properties, amenability to
optimization

@ A discretization strategy is chosen first

@ Finite difference

@ Finite volume
@ Finite element

Poisson’s equation — the mother of all PDEs:

Viu =f.

EXAMPLE: POISSON’S EQUATION

Poisson’s equation — the mother of all PDEs:

Viu =f.

@ Approximate the second derivative (Laplacian) using finite
difference. Eg: for a 2-d grid,

1 -1
h7 -1 4 -1 uy :fh'
-1

EXAMPLE: POISSON’S EQUATION

Poisson’s equation — the mother of all PDEs:

Viu =f.

@ Approximate the second derivative (Laplacian) using finite
difference. Eg: for a 2-d grid,

1 -1
h7 -1 4 -1 uy :fh'
-1

@ We are solving y = Ax, where A is a sparse banded matrix
(x is a linearization of the unknown on the
multi-dimensional grid)

@ What about A~1?

GEOMETRIC MULTIGRID METHOD

@ Use a hierarchical structure — a multi-scale representation
of the grid

@ Perform pre-smoothing at a finer level
@ Restrict the error to a coarser grid
@ Solve for the error at a coarser level (recursion)

@ Interpolate the error to the finer level

@ Run multiple iterations of the above

Tiling techniques can be used to readily optimize the
pre-smoothing or post-smoothing steps

HIERARCHICAL MESH STRUCTURE

Figure: Hierarchical mesh structure for Multigrid levels

MULITIGRID V-CYCLE: ALGORITHM

Input : ", f"
1 Relax o for ny iterations: " < (1 — wD~1A")o" 4 wD~!f"
// pre-smoothing

2 if coarsest level then

3 ‘ Relax " for n, iterations // coarse smoothing
4 1M i — Alh

5 12 Iﬁhrh // restriction
6 e 0

7 ¥ Vecycle™ (e, 12

8 el IgheZh // interpolation
9 U« v et // correction
10 Relax ¢" for n3 iterations // post smoothing
11 return v"

// residual

@ Animation

‘Muumero V-cvere
. .
\ //
\/

(a) V-cycle

.B‘-H ° '—JO—>-»

—— 0 o—»k—»

Hﬁfﬁ

(b) V-cycle: complete DAG

(c) NAS-PB MG V-cycle

MULTIGRID W-CYCLE

\, : /
\ [] ./ \. [] ./
NAVERVaY,

(d) W-cycle
= Smoother ¢ Defect/Residual - Restrict/Reciprocate . Interpolate/Prolongation e Correction
S\ =) . ;L B
> Vo> mm> > atatal

>

(e Inp— NS - fv L
O s

|

(e) W-cycle: complete DAG
Figure: DAG representation of (a) V-cycle and (b) W-cycle

Input

GMG: SMOOTHER SCALING

45 i |
a0 | naive 7 i
pluto
35 - : : —
30 - i
25 [B B B B B —

20 - B

10/ =
51 i
0 | | | | | |

0 5 10 15 20 25 30 35

threads

GFlop/s

Scalability of 10 iterations of the Jacobi smoother on an 80002
domain on a 16-core Intel Sandy Bridge

Source: Ghysels (LBNL) and Vanroose (University of Antwerp)
SIAM J. Scientific Computing 2015

GMG: EXECUTION TIME (2-D)

—_
(=)

T T T T T
naive —+— o
pluto

naive model ---%--
roofline model —-=—-

time (S)
O = N0 W ke N3 0 O

I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20

smoothing steps

Timings for a full solve on a 81912 domain using V -cycles with
a relative stopping tolerance 1012

Source: Ghysels and Vanroose (University of Antwerp) SIAM]J.
Scientific Computing 2015

GMG: EXECUTION TIME (3-D)

40 T T
naive —+—

35 ‘. : pluto - » -

time (s)
(3]
S
T

10 - : gl o SRR T

e Ky 2

0 I I I I I I I
0O 2 4 6 8 10 12 14 16 18 20

smoothing steps

Timings for a full solve on a 511> domain using V -cycles with a relative
stopping tolerance 10™'? on a dual socket Sandy Bridge machine for a 3D
domain

Source: Ghysels and Vanroose (University of Antwerp) SIAM J. Scientific
Computing 2015

GMG: CONVERGENCE FOR SMOOTHING STEPS

60 T
2 grid theory —+—
50 - V-cycle experiment - % - _|

40

30 -

V-cycles

20

0 5 10 15 20

smoothing steps

The corresponding number of V-cycles required to reach a 107" relative
stopping criterion for both two-grid and multigrid. Source: Ghysels and
Vanroose (University of Antwerp) SIAM]. Scientific Computing 2015

REFERENCES

@ P. Ghysels and W. Vanroose, Modeling the performance of
geometric multigrid on many-core computer architectures,
SIAM J. Scientific Computing (2015).

@ Knabner P, Angerman L. Numerical Methods for Elliptic
and Parabolic Partial Differential Equations. Texts in
Applied Mathematics, Springer, 2003.

@ Saad Y. Iterative Methods for Sparse Linear Systems,
Second Edition. SIAM: Philadelphia, 2003.

o Introduction, Motivation, and Foundations

© Optimizations for Parallelism, Locality and More
@ Polyhedral Framework
e Affine Transformations
e Tiling
@ Concurrent Start in Tiled Spaces

© High-Performance DSL Compilation
@ Image Processing Pipelines
@ Solving PDEs Numerically
@ Deep Neural Networks

@ Conclusions

DEEP CONVOLUTIONAL NEURAL NETWORKS

@ Shown to be effective in image classification, speech
recognition, and at many more tasks

@ A domain currently of high interest

Feature maps

C i i Fully

DEEP CONVOLUTIONAL NEURAL NETWORKS

@ Shown to be effective in image classification, speech
recognition, and at many more tasks

@ A domain currently of high interest
@ Training these networks requires HPC!

@ Inference requires high performance or real-time
response

Feature maps

Convolutions i C lutis b li Fully

DEEP CONVOLUTIONAL NEURAL NETWORKS

@ Training these networks requires HPC!

@ Inference requires high performance or real-time
response

Feature maps

S
nput B . . B

Convolutions Fully

@ The network is trained by sending through training data
(in batches) forward and then backward, multiple times

DEEP CONVOLUTIONAL NEURAL NETWORKS

@ Training these networks requires HPC!

@ Inference requires high performance or real-time
response

Feature maps

Input B . . B vvveee. -
3 ‘\,_Ouipul

Convolutions Fully

@ The network is trained by sending through training data
(in batches) forward and then backward, multiple times

@ Extremely compute intensive!

@ Think about running numerous matrix-matrix
multiplications in parallel (with all of them sharing data
along multiple dimensions)

CNN CONVOLUTION AS A LOOP NEST

for (n = 0; n < N; n++) /* Samples in a batch x/
for (o = 0; o < Oc; o++) /x Output feature channels */
for (i = 0; 12 < Ic; i++) /* Input feature channels x/

for (y = 0; i3 < Y; i3++) /* Layer height x/
for (x = 0; i4 < X; i4++) /x Layer width x/

for (kh = 0; i5 < Kh; i5++) /% Convolution kernel height x/

for (kw = 0; i6 < Kw; i6++) /* Convolution kernel width x/

output[n, o, y, x] += input[n, i, y+kh, x+kw] * weights[o, i, kh, kw];

CNN CONVOLUTION AS A LOOP NEST

for (n = 0; n < N; n++) /% Samples in a batch x/
for (0o = 0; o < Oc; o++) /* Output feature channels x/
for (i = 0; i2 < Ic; i++) /* Input feature channels x/

for (y = 0; i3 < Y; i3++) /* Layer height */
for (x = 0; i4 < X; 1i4++) /x Layer width x/

for (kh = 0; i5 < Kh; i5++) /% Convolution kernel height x/

for (kw = 0; i6 < Kw; i6++) /* Convolution kernel width */

output[n, o, y, x] += input[n, i, y+kh, x+kw] * weights[o, i, kh, kw];

© Abundant parallelism

e Batch-level parallelism (N)
e Parallelism from feature channels and layer (Y, X, Oc)
e Parallelism when using BLAS calls?

© Locality?
e output: reuse along i, kh, kw
e input: reuse along o (along kh, kw as well if no replicate)
e weights (reuse along 1, y, x)
e In addition, multiple convolutions performed successively

© Data allocation, layout, and management?

OPTIMIZING CNNSs

e High-dimensional iteration spaces, high-dimensional
arrays

@ A playground for optimization

@ Parallelization, locality optimization, data allocation /
layout optimization, computation reduction?

e Take advantage of existing vendor libraries (MKL,
CuDNN)

@ New CNN and other DNN architectures, very deep neural
networks, upcoming parallel architectures

CNNS: STATE-OF-THE-ART

@ GPUs are used: NVIDIA CuDNN provides tuned
primitives for well-known/widely used layers
(convolutions, max pooling)

o Caffe (C++-based), Torch (Lua), Theano (Python),
TensorFlow (Python) are library-based approaches that
wrap around calls to libraries (CuDNN)

CNNS: STATE-OF-THE-ART

@ GPUs are used: NVIDIA CuDNN provides tuned
primitives for well-known/widely used layers
(convolutions, max pooling)

o Caffe (C++-based), Torch (Lua), Theano (Python),
TensorFlow (Python) are library-based approaches that
wrap around calls to libraries (CuDNN)

@ State-of-the-art implementations sustain excellent
performance on GPUs
On an NVIDIA GeForce Titan X with a peak of 6.97
TFLOPS (single-precision), VGGNet network E with fp32
data, NVIDIA CuDNN v3 obtains 44% and 90% of
machine peak respectively for N=1 and N=64.

@ What will the role of DSL compilers and code generators
be?

REFERENCES

@ Coarse grain parallelization of deep neural networks, Marc
Gongzalez Tallada, PPoPP 2016

@ Latte: a language, compiler, and runtime for elegant and efficient
deep neural networks, Truong et al. PLDI 2016
@ Fuast Algorithms for Convolutional Neural Networks, Andrew

Lavin, Scott Gray, Nov 2015
http://arxiv.org/abs/1509.09308

http://arxiv.org/abs/1509.09308

Q Introduction, Motivation, and Foundations

© Optimizations for Parallelism, Locality and More
@ Polyhedral Framework
o Affine Transformations
e Tiling
@ Concurrent Start in Tiled Spaces
© High-Performance DSL Compilation
@ Image Processing Pipelines

@ Solving PDEs Numerically
@ Deep Neural Networks

© Conclusions

TAKEAWAYS FOR THE DOMAINS PRESENTED

The presented domains have abundant parallelism, reuse,
and optimization opportunity

There is more parallelism than the number of processors

One may be ultimately memory bandwidth bound (even
after optimization) on a large number of cores

A naive parallelization is often easy
But while parallelizing, pay attention to:
e Tiling for locality
e Fusion
e Synchronization costs
e Local buffering (easier/feasible in DSL compilation)

BIG PICTURE: ROLE OF COMPILERS

General-purpose: Domain-specific:
EVOLUTIONARY REVOLUTIONARY
@ Improve existing @ Build new domain-specific
general-purpose compilers languages and compilers

(for C, C++, Python, ...) e Dramatic speedups
@ Limited improvements but
wide impact

ceS 488

© Important to pursue both

@ Need to build reusable infrastructure to
share among various DSLs

© Reduce multiplicity of DSL environments

[

CONCLUSIONS

@ Tremendous opportunities in high-performance
compilation — both domain-specific and
general-purpose

@ Several emerging domains that require
high-performance compilation

— will impact both embedded and big data crunching
architectures

@ These domains are a perfect fit for HiPEAC (eg:
high-performance embedded vision)

Thank You!

	Introduction, Motivation, and Foundations
	Optimizations for Parallelism, Locality and More
	Polyhedral Framework
	Affine Transformations
	Tiling
	Concurrent Start in Tiled Spaces

	High-Performance DSL Compilation
	Image Processing Pipelines
	Solving PDEs Numerically
	Deep Neural Networks

	Conclusions

