

E0358

Uday Kumar Reddy B

uday@csa.iisc.ernet.in

Dept of CSA, Indian Institute of Science, Bangalore, India

A course on **advanced compilation** at
Dept of CSA
IISc

RESEARCH IN PROGRAMMING AND COMPILER TECHNOLOGIES

- **Current:**
 - C, C++, Java, Python, MATLAB, R, ...

RESEARCH IN PROGRAMMING AND COMPILER TECHNOLOGIES

- **Current:**
 - C, C++, Java, Python, MATLAB, R, ...
- **What will the new and disruptive programming technologies of the 21st century be?**

RESEARCH IN PROGRAMMING AND COMPILER TECHNOLOGIES

① **What do programmers want?**

② **How are architectures evolving?**

- Multiple cores and many cores on a chip
- GPUs, accelerators, and heterogeneous parallel architectures
- Wider vector processing units
- Deep memory hierarchies

HIGH-PERFORMANCE COMPILATION: WHAT DO YOU WANT TO PROGRAM?

- Scientific and engineering simulations
 - Eg: Solving partial differential equations numerically
- Embedded vision (Eg: Autonomous/self-driving cars)
- Smartphones — HPC in data centers and cloud drives a number of smartphone technologies
- **Scientific and Engineering simulations**
- **Data Analytics**
- **Deep Learning**
- **Artificial Intelligence**

QUESTIONS TO THINK ABOUT

- **What will the new programming technologies for the emerging domains be?**
 - **Current:** C, C++, Fortran with OpenMP, MPI, CUDA, OpenCL, ...
 - **Future:** New languages, compilers, libraries, and DSLs

QUESTIONS TO THINK ABOUT

- **What will the new programming technologies for Deep Learning be?**
 - Caffe, Theano, Torch, TensorFlow, ... are library-based approaches
 - Just scratches the surface

THE NEED FOR HIGH PERFORMANCE

- **More/Larger Data**
 - Instagram — 60 million photos / day
 - YouTube — 100 hours of video uploaded every minute
- **Need for a fast/real-time response in some domains**
- **More complex algorithms**
- **Science/Engineering simulations/modeling: Time to solution**

- Compute speed: 4 multiply-adds per cycle
- Synchronization (2 cores $0.25 \mu\text{s}$, 8 cores $1.25 \mu\text{s}$, 2x8 cores $1.54 \mu\text{s}$); memory bandwidth (20 GB/s)

PROGRAMMING MODERN HARDWARE EFFECTIVELY

- Compute speed: 4 multiply-adds per cycle
- Synchronization (2 cores $0.25 \mu\text{s}$, 8 cores $1.25 \mu\text{s}$, 2x8 cores $1.54 \mu\text{s}$); memory bandwidth (20 GB/s)
- High-Performance Programming and Compilation
 - Exploiting locality (caches, registers)
 - Reduce synchronization and communication as much as possible
 - Exploit single core hardware well (vectorization)
 - Multi-core parallelism
- Good scaling without good single thread performance is a great waste of resources (power, equipment cost)

A CLASSIFICATION OF VARIOUS APPROACHES

- ① Manual low-level (C, C++) with parallel programming models (OpenMP, CUDA, MPI) with the best optimizing compilers

A CLASSIFICATION OF VARIOUS APPROACHES

- ① Manual low-level (C, C++) with parallel programming models (OpenMP, CUDA, MPI) with the best optimizing compilers
- ② Library-based: C, C++, Python with libraries/packages: MKL, ScaLAPACK, CuBLAS, CuDNN

A CLASSIFICATION OF VARIOUS APPROACHES

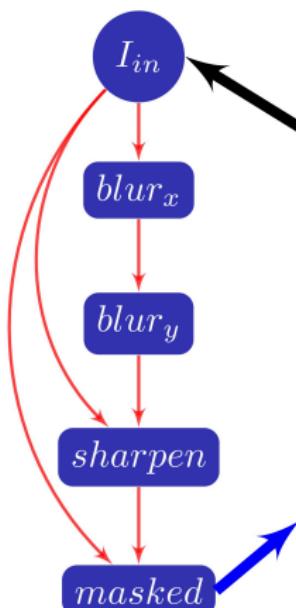
- ① Manual low-level (C, C++) with parallel programming models (OpenMP, CUDA, MPI) with the best optimizing compilers
- ② Library-based: C, C++, Python with libraries/packages: MKL, ScaLAPACK, CuBLAS, CuDNN
- ③ Ultra-high level languages/packages (R, MATLAB, ...)

A CLASSIFICATION OF VARIOUS APPROACHES

- ① Manual low-level (C, C++) with parallel programming models (OpenMP, CUDA, MPI) with the best optimizing compilers
- ② Library-based: C, C++, Python with libraries/packages: MKL, ScaLAPACK, CuBLAS, CuDNN
- ③ Ultra-high level languages/packages (R, MATLAB, ...)
- **DSLs:** Obtain productivity of the last class and the performance of the first

EXAMPLE 1: UNSHARP MASK – AN IMAGE PROCESSING PIPELINE

(C) Bernie Saunders, CC BY-NC-ND 3.0



UNSHARP MASK: COMPUTATION

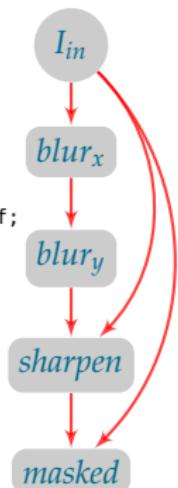
```
for (i = 0; i <= 2; i++)
  for (j = 2; j <= (R + 1); j++)
    for (k = 0; (k <= (C + 3)); k++)
      blurx[i][j-2][k] = img[i][j-2][k]*0.0625f + img[i][j-1][k]*0.25f
        + img[i][j][k]*0.375f + img[i][j+1][k]*0.25f + img[i][j+2][k]*0.0625f;

for (i = 0; (i <= 2); i++)
  for (j = 2; (j <= (R + 1)); j++)
    for (k = 2; (k <= (C + 1)); k++)
      blury[i][j][k-2] = blurx[i][j-2][k-2]*0.0625f + blurx[i][j-2][k-1]*0.25f
        + blurx[i][j-2][k]*0.375f + blurx[i][j-2][k+1]*0.25f + blurx[i][j-2][k+2]*0.0625f;

for (i = 0; (i <= 2); i++)
  for (j = 2; (j <= (R + 1)); j++)
    for (k = 2; (k <= (C + 1)); k++)
      sharpen[i][j][k-2] = img[i][j][k]*(1 + weight) + blury[i][j-2][k-2]*(-weight);

for (i = 0; i <= 2; i++)
  for (j = 2; j <= R + 1; j++) {
    for (k = 2; k <= C + 1; k++) {
      _ct0 = img[i][j][k];
      _ct1 = sharpen[i][j-2][k-2];
      _ct2 = (std::abs((img[i][j][k] - blury[i][j-2][k-2])) < threshold)? _ct0: _ct1;
      mask[i][j-2][k-2] = _ct2;
    }
  }
```

A sequential version in C: **18.6 ms** / frame
(using GCC with opts, quad-core Nehalem, 720p video)



UNSHARP MASK - A NAIVE OPENMP VERSION

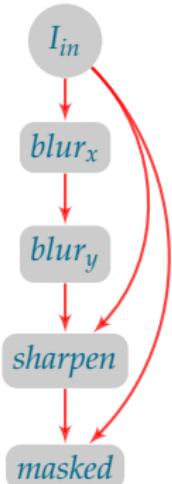
```
for (i = 0; i <= 2; i++)
#pragma omp parallel for
  for (j = 2; j <= (R + 1); j++)
#pragma ivdep
  for (k = 2; k <= C + 3; k++)
    blurx[i][j-2][k] = img[i][j-2][k]*0.0625f + img[i][j-1][k]*0.25f
    + img[i][j][k]*0.375f + img[i][j+1][k]*0.25f + img[i][j+2][k]*0.0625f;

for (i = 0; i <= 2; i++)
#pragma omp parallel for
  for (j = 2; j <= R + 1; j++)
#pragma ivdep
  for (k = 2; k <= C + 1; k++)
    blury[i][j][k-2] = blurx[i][j-2][k-2]*0.0625f + blurx[i][j-2][k-1]*0.25f
    + blurx[i][j-2][k]*0.375f + blurx[i][j-2][k+1]*0.25f + blurx[i][j-2][k+2]*0.0625f;

for (i = 0; i <= 2; i++)
#pragma omp parallel for
  for (j = 2; j <= R + 1; j++)
#pragma ivdep
  for (k = 2; k <= C + 1; k++)
    sharpen[i][j][k-2] = img[i][j][k]*(1 + weight) + blury[i][j-2][k-2]*(-weight);

for (i = 0; i <= 2; i++)
#pragma omp parallel for private(_ct0,_ct1,_ct2)
  for (j = 2; j <= R + 1; j++)
#pragma ivdep
  for (k = 2; k <= C + 1; k++) {
    _ct0 = img[i][j][k];
    _ct1 = sharpen[i][j-2][k-2];
    _ct2 = (std::abs((img[i][j][k] - blury[i][j-2][k-2])) < threshold)? _ct0: _ct1;
    mask[i][j-2][k-2] = _ct2;
  }
```

20.2 ms / frame on 1 thread, 18.02 ms / frame on 4 threads



UNSHARP MASK - A BETTER OPENMP VERSION

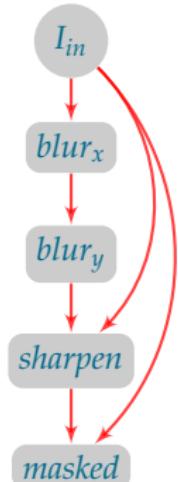
```
#pragma omp parallel for
for (j = 2; j <= (R + 1); j++)
    for (i = 0; i <= 2; i++)
#pragma ivdep
    for (k = 2; (k <= (C + 3)); k++)
        blurx[i][j-2][k] = img[i][j-2][k]*0.0625f + img[i][j-1][k]*0.25f
        + img[i][j][k]*0.375f + img[i][j+1][k]*0.25f + img[i][j+2][k]*0.0625f;

#pragma omp parallel for
for (j = 2; (j <= (R + 1)); j++)
    for (i = 0; i <= 2; i++)
#pragma ivdep
    for (k = 2; (k <= (C + 1)); k++)
        blury[i][j][k-2] = blurx[i][j-2][k-2]*0.0625f + blurx[i][j-2][k-1]*0.25f
        + blurx[i][j-2][k]*0.375f + blurx[i][j-2][k+1]*0.25f + blurx[i][j-2][k+2]*0.0625f;

#pragma omp parallel for
for (j = 2; (j <= (R + 1)); j++)
    for (i = 0; i <= 2; i++)
#pragma ivdep
    for (k = 2; (k <= (C + 1)); k++)
        sharpen[i][j][k-2] = img[i][j][k]*(1 + weight) + blury[i][j-2][k-2]*(-weight);

#pragma omp parallel for private(_ct0,_ct1,_ct2)
for (j = 2; j <= R + 1; j++)
    for (i = 0; i <= 2; i++)
#pragma ivdep
    for (k = 2; k <= C + 1; k++) {
        _ct0 = img[i][j][k];
        _ct1 = sharpen[i][j-2][k-2];
        _ct2 = (std::abs((img[i][j][k] - blury[i][j-2][k-2])) < threshold)? _ct0: _ct1;
        mask[i][j-2][k-2] = _ct2;
    }
```

18.6 ms / frame on 1 thread, 15.03 ms / frame on 4 threads



OPTIMIZING UNSHARP MASK

- ① Write with OpenCV library (with Python bindings)

```
@jit("float32[:,::](uint8[:,::],_int64)", cache = True, nogil = True)
def unsharp_cv(frame, lib_func):
    frame_f = np.float32(frame) / 255.0
    res = frame_f
    kernelx = np.array([1, 4, 6, 4, 1], np.float32) / 16
    kernely = np.array([[1], [4], [6], [4], [1]], np.float32) / 16
    blury = sepFilter2D(frame_f, -1, kernelx, kernely)
    sharpen = addWeighted(frame_f, (1 + weight), blury, (-weight), 0)
    th, choose = threshold(absdiff(frame_f, blury), thresh, 1, THRESH_BINARY)
    choose = choose.astype(bool)
    np.copyto(res, sharpen, 'same_kind', choose)
    return res
```

Performance: **35.9 ms** / frame

OPTIMIZING UNSHARP MASK

- ① Write with OpenCV library (with Python bindings)

```
@jit("float32[:,::](uint8[:,::],_int64)", cache = True, nogil = True)
def unsharp_cv(frame, lib_func):
    frame_f = np.float32(frame) / 255.0
    res = frame_f
    kernelx = np.array([1, 4, 6, 4, 1], np.float32) / 16
    kernely = np.array([[1], [4], [6], [4], [1]], np.float32) / 16
    blury = sepFilter2D(frame_f, -1, kernelx, kernely)
    sharpen = addWeighted(frame_f, (1 + weight), blury, (-weight), 0)
    th, choose = threshold(absdiff(frame_f, blury), thresh, 1, THRESH_BINARY)
    choose = choose.astype(bool)
    np.copyto(res, sharpen, 'same_kind', choose)
    return res
```

Performance: **35.9 ms / frame**

- ② Write in a dynamic language like Python and use a JIT (Numba) —
performance: **79 ms / frame**

OPTIMIZING UNSHARP MASK

- ① Write with OpenCV library (with Python bindings)

```
@jit("float32[:,::](uint8[:,::],_int64)", cache = True, nogil = True)
def unsharp_cv(frame, lib_func):
    frame_f = np.float32(frame) / 255.0
    res = frame_f
    kernelx = np.array([1, 4, 6, 4, 1], np.float32) / 16
    kernely = np.array([[1], [4], [6], [4], [1]], np.float32) / 16
    blury = sepFilter2D(frame_f, -1, kernelx, kernely)
    sharpen = addWeighted(frame_f, (1 + weight), blury, (-weight), 0)
    th, choose = threshold(absdiff(frame_f, blury), thresh, 1, THRESH_BINARY)
    choose = choose.astype(bool)
    np.copyto(res, sharpen, 'same_kind', choose)
    return res
```

Performance: **35.9 ms / frame**

- ② Write in a dynamic language like Python and use a JIT (Numba) —
performance: **79 ms / frame**
- ③ A naive C version parallelized with OpenMP: **18.02 ms / frame**

OPTIMIZING UNSHARP MASK

- ➊ Write with OpenCV library (with Python bindings)

```
@jit("float32[:,::](uint8[:,::],_int64)", cache = True, nogil = True)
def unsharp_cv(frame, lib_func):
    frame_f = np.float32(frame) / 255.0
    res = frame_f
    kernelx = np.array([1, 4, 6, 4, 1], np.float32) / 16
    kernely = np.array([[1], [4], [6], [4], [1]], np.float32) / 16
    blury = sepFilter2D(frame_f, -1, kernelx, kernely)
    sharpen = addWeighted(frame_f, (1 + weight), blury, (-weight), 0)
    th, choose = threshold(absdiff(frame_f, blury), thresh, 1, THRESH_BINARY)
    choose = choose.astype(bool)
    np.copyto(res, sharpen, 'same_kind', choose)
    return res
```

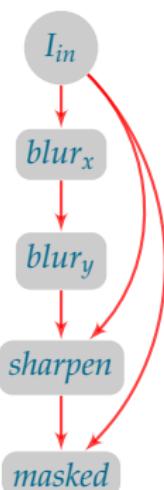
Performance: **35.9 ms** / frame

- ➋ Write in a dynamic language like Python and use a JIT (Numba) —
performance: **79 ms** / frame
- ➌ A naive C version parallelized with OpenMP: **18.02 ms** / frame
- ➍ A version with sophisticated optimizations (fusion + overlapped tiling):
8.97 ms / frame (in this course, we will study how to get to this, and
build compilers/code generators that can achieve this automatically)

- **Video demo**

UNSHARP MASK - A HIGHLY OPTIMIZED VERSION

Note: Code below is indicative and not meant for reading! Zoom into soft copy or browse source code repo listed in references.



15.5 ms / frame on 1 threads, 8.97 ms / frame on 4 threads

EXAMPLE 2: GEMVER

$$B = A + u_1 * v_1^T + u_2 * v_2^T$$

$$x = x + B^T y$$

$$x = x + z$$

$$w = w + B * x$$

```
for (i=0; i<N; i++)
  for (j=0; j<N; j++)
    B[i][j] = A[i][j] + u1[i]*v1[j] + u2[i]*v2[j];

for (i=0; i<N; i++)
  for (j=0; j<N; j++)
    x[i] = x[i] + beta* B[j][i]*y[j];

for (i=0; i<N; i++)
  x[i] = x[i] + z[i];

for (i=0; i<N; i++)
  for (j=0; j<N; j++)
    w[i] = w[i] + alpha* B[i][j]*x[j];
```

The second loop nest operates in parallel along columns of B
The fourth loop nest operates in parallel along rows of B

EXAMPLE 2. GEMVER – BLOCK DISTRIBUTION

- The first loop nest requires distributing B column-wise:

P0	P1	P2	P3
P0	P1	P2	P3
P0	P1	P2	P3
P0	P1	P2	P3

- And the second loop nest requires it row-wise:

P0	P0	P0	P0
P1	P1	P1	P1
P2	P2	P2	P2
P3	P3	P3	P3

- One needs a transpose in between (an all-to-all communication) to extract parallelism from both steps (ignore reduction parallelism)
- $O(N^2)$ communication for matrix B

EXAMPLE 2. GEMVER WITH A BLAS LIBRARY

- With a library, one would just use a block cyclic distribution:

```
dcopy(m * n, A, 1, B, 1);
dger(m, n, 1.0, u1, 1, v1, 1, B, m);
dger(m, n, 1.0, u2, 1, v2, 1, B, m);
dcopy(n, z, 1, x, 1);
dgemv('T', m, n, beta, B, m, y, 1, 1.0, x, 1);
dgemv('N', m, n, alpha, B, m, x, 1, 0.0, w, 1);
```

- Can we do better?

EXAMPLE 2. GEMVER: SUDOKU MAPPING

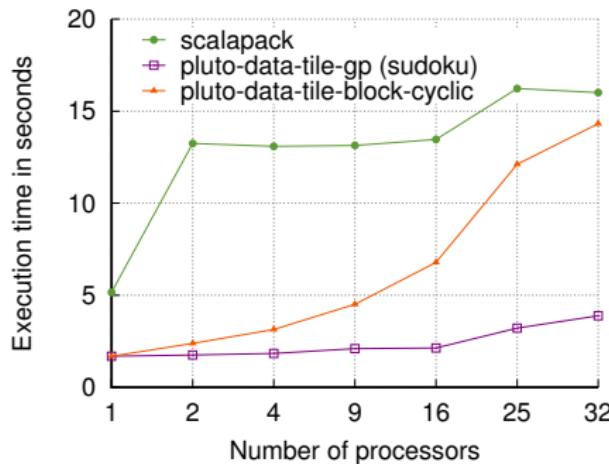
- Use a Sudoku-style mapping [NAS MG, BT, dHPF]
- Both load balance and $O(N)$ communication on x and w (no communication for B) (optimal)

P0	P1	P2	P3
P1	P2	P3	P0
P2	P3	P0	P1
P3	P0	P1	P2

- A compiler can derive such a mapping based on a model and generate much better code – mapping that is **globally** good

EXAMPLE 2. GEMVER: PERFORMANCE

- A compiler optimizer or code generator can select a globally good transformation



- On a 32-node InfiniBand cluster (32x8 cores) (weak scaling: same problem size per node)

DOMAIN-SPECIFIC LANGUAGES (DSL)

- Both examples above motivate a domain-specific language + compiler approach

DOMAIN-SPECIFIC LANGUAGES (DSL)

- Both examples above motivate a domain-specific language + compiler approach
- High-performance domain-specific language + compiler: productivity similar to ultra high-level or high-level but performance similar to manual or even better!

DOMAIN-SPECIFIC LANGUAGES (DSL)

DSLs

- Exploit domain information to improve programmability, performance, and portability

DOMAIN-SPECIFIC LANGUAGES (DSL)

DSLs

- Exploit domain information to improve programmability, performance, and portability
- Expose greater information to the compiler and programmer specifies less
- abstract away many things from programmers (parallelism, memory)

DSL compilers

- can “see” **across** routines – allow whole program optimization
- generate optimized code for multiple targets
- Programmers say **what** to execute and not **how** to execute

BIG PICTURE: ROLE OF COMPILERS

General-Purpose

- Improve existing **general-purpose** compilers (for C, C++, Python, ...)
- Programmers say a **LOT**
- LLVM/Polly, GCC/Graphite

Domain-Specific

- Build new **domain-specific languages and compilers**
- Programmers say **WHAT** they execute and not **HOW** they execute
- SPIRAL, Halide

BIG PICTURE: ROLE OF COMPILERS

General-Purpose

- Improve existing **general-purpose** compilers (for C, C++, Python, ...)
- Programmers say a **LOT**
- LLVM/Polly, GCC/Graphite
- Limited improvements, not everything is possible
- Broad impact

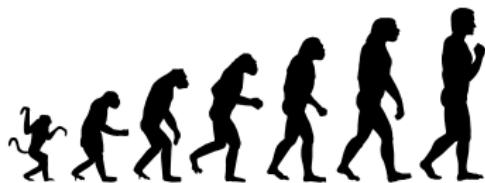
Domain-Specific

- Build new **domain-specific languages and compilers**
- Programmers say **WHAT** they execute and not **HOW** they execute
- SPIRAL, Halide
- Dramatic speedups, Automatic parallelization
- Narrower impact and adoption

BIG PICTURE: ROLE OF COMPILERS

EVOLUTIONARY approach

- Improve existing **general-purpose** compilers (for C, C++, Python, ...)
- Programmers say a **LOT**
- LLVM/Polly, GCC/Graphite



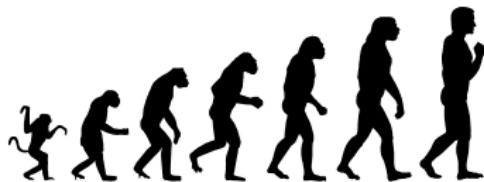
REVOLUTIONARY approach

- Build new **domain-specific languages and compilers**
- Programmers say **WHAT** they execute and not **HOW** they execute
- SPIRAL, Halide

BIG PICTURE: ROLE OF COMPILERS

EVOLUTIONARY approach

- Improve existing **general-purpose** compilers (for C, C++, Python, ...)
- Programmers say a **LOT**
- LLVM/Polly, GCC/Graphite



REVOLUTIONARY approach

- Build new **domain-specific languages and compilers**
- Programmers say **WHAT** they execute and not **HOW** they execute
- SPIRAL, Halide

- Both approaches share infrastructure
- Important to pursue both

OUTLINE

1 Introduction, Motivation, and Foundations

2 Optimizations for Parallelism, Locality and More

- Polyhedral Framework
- Affine Transformations
- Tiling
- Concurrent Start in Tiled Spaces

3 High-Performance DSL Compilation

- Image Processing Pipelines
- Solving PDEs Numerically
- Deep Neural Networks

4 Conclusions

HANDS-ON TRIAL

- Tools/Infrastructure to install and try
 - Barvinok tool: <http://barvinok.gforge.inria.fr/>
 - Pluto <http://pluto-compiler.sourceforge.net> (**pet** branch of git version)
- For assignment at the end of second lecture
 - PolyMage: <https://bitbucket.org/udayb/polymage.git> *e0358* git branch

COMPILERS: WHAT COMES TO MIND?

- GCC, LLVM
- Scanning, Parsing, Semantic analysis
- Scalar optimizations: SSA, constant propagation, dead code elimination
- **High-level optimizations**
- Backend: Register allocation, Instruction scheduling

WHAT SHOULD A COMPILER DESIGNER THINK ABOUT?

- ① Productivity: how easy it is to program?
- ② **Performance: how well does the code perform?**
- ③ Portability: how portable is your code? Will it run on a different architecture?

① Productivity

- Expressiveness: ease of writing, lines of code
- Productivity in writing a correct program, and in writing a performing parallel program
- Library support, Debugging support, Interoperability

① Productivity

- Expressiveness: ease of writing, lines of code
- Productivity in writing a correct program, and in writing a performing parallel program
- Library support, Debugging support, Interoperability

② Performance

- Locality (spatial, temporal, ...)
- Multi-core parallelism, coarse-grained parallelization
- SIMD parallelism, vectorization
- Parallelism granularity, Synchronization, Communication
- Dynamic scheduling, Load balancing
- Data allocation, Memory mapping and optimization

① Productivity

- Expressiveness: ease of writing, lines of code
- Productivity in writing a correct program, and in writing a performing parallel program
- Library support, Debugging support, Interoperability

② Performance

- Locality (spatial, temporal, ...)
- Multi-core parallelism, coarse-grained parallelization
- SIMD parallelism, vectorization
- Parallelism granularity, Synchronization, Communication
- Dynamic scheduling, Load balancing
- Data allocation, Memory mapping and optimization

③ Portability

- Given a new machine, how much time does it take to port?
- How well will it perform? How much more time to tune and optimize?

AUTOMATIC PARALLELIZATION

Automatic parallelization: programmer provides a sequential specification, and the compiler or compiler+runtime parallelizes it

AUTOMATIC PARALLELIZATION

Automatic parallelization: programmer provides a sequential specification, and the compiler or compiler+runtime parallelizes it

- **Myths**

- Automatic parallelization is about just detecting and marking loops parallel
- Has been a failure
- Scope restricted to general-purpose compilers

AUTOMATIC PARALLELIZATION

Automatic parallelization: programmer provides a sequential specification, and the compiler or compiler+runtime parallelizes it

- **Myths**

- Automatic parallelization is about just detecting and marking loops parallel
- Has been a failure
- Scope restricted to general-purpose compilers

- **What it really is**

- Execution and data restructuring to execute in parallel efficiently
- Important in DSL compilers
- Can be used for library creation/generation

OUTLINE

1 Introduction, Motivation, and Foundations

2 Optimizations for Parallelism, Locality and More

- Polyhedral Framework
- Affine Transformations
- Tiling
- Concurrent Start in Tiled Spaces

3 High-Performance DSL Compilation

- Image Processing Pipelines
- Solving PDEs Numerically
- Deep Neural Networks

4 Conclusions

POLYHEDRAL FRAMEWORK

```
for (t = 0; t < T; t++)
  for (i = 1; i < N+1; i++)
    for (j = 1; j < N+1; j++)
      A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],
      A[t%2][i][j+1], A[t%2][i][j-1]);
```

1 Domains

- Every statement has a domain or an index **set** – instances that have to be executed
- Each instance is a vector (of loop index values from outermost to innermost)
$$D_S = \{[t, i, j] \mid 0 \leq t \leq T - 1, 1 \leq i, j \leq N\}$$

2 Dependences

- A dependence is a **relation** between domain / index set instances that are in conflict (more on next slide)

3 Schedules

- are **functions** specifying the *order* in which the domain instances should be executed
- Specified statement-wise and **typically** one-to-one
- $T((i, j)) = (i + j, j)$ or $\{[i, j] \rightarrow [i + j, j] \mid \dots\}$

DOMAINS, DEPENDENCES, AND SCHEDULES

```
for (i=1; i<=N-1; i++)
  for (j=1; j<=N-1; j++)
    A[i][j] = f(A[i-1][j], A[i][j-1]);
```

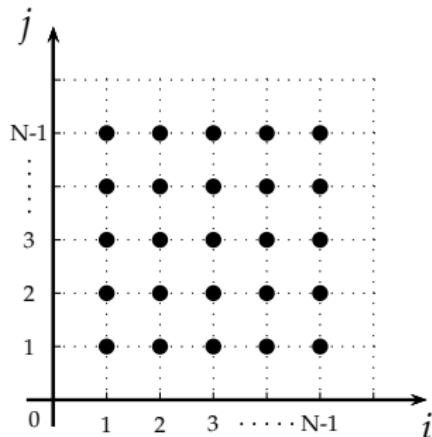


Figure: Original space (i, j)

- **Domain:** $\{[i, j] \mid 1 \leq i, j \leq N - 1\}$

DOMAINS, DEPENDENCES, AND SCHEDULES

```
for (i=1; i<=N-1; i++)
  for (j=1; j<=N-1; j++)
    A[i][j] = f(A[i-1][j], A[i][j-1]);
```

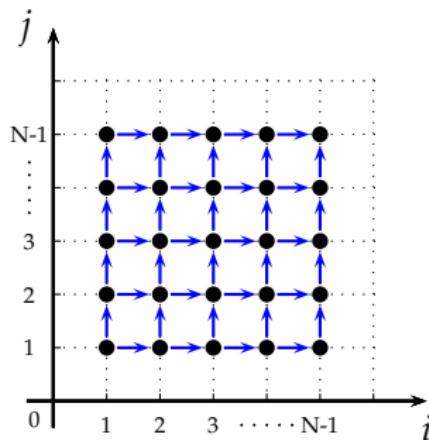


Figure: Original space (i, j)

- **Dependences:**

- ① $\{[i, j] \rightarrow [i + 1, j] \mid 1 \leq i \leq N - 2, 0 \leq j \leq N - 1\} — (1, 0)$
- ② $\{[i, j] \rightarrow [i, j + 1] \mid 1 \leq i \leq N - 1, 0 \leq j \leq N - 2\} — (0, 1)$

DOMAINS, DEPENDENCES, AND SCHEDULES

```
for (i=1; i<=N-1; i++)
  for (j=1; j<=N-1; j++)
    A[i][j] = f(A[i-1][j], A[i][j-1]);
```

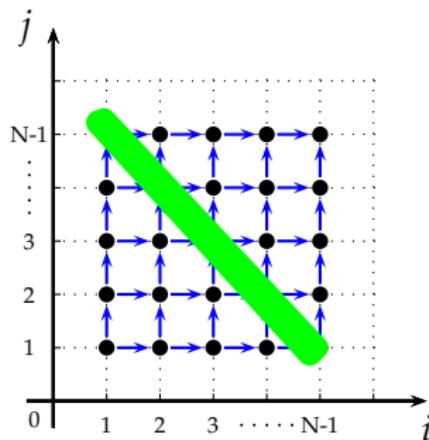


Figure: Original space (i, j)

- **Dependences:**

- ① $\{[i, j] \rightarrow [i + 1, j] \mid 1 \leq i \leq N - 2, 0 \leq j \leq N - 1\} — (1, 0)$
- ② $\{[i, j] \rightarrow [i, j + 1] \mid 1 \leq i \leq N - 1, 0 \leq j \leq N - 2\} — (0, 1)$

DOMAINS, DEPENDENCES, AND SCHEDULES

```
for (i=1; i<=N-1; i++)  
  for (j=1; j<=N-1; j++)  
    A[i][j] = f(A[i-1][j], A[i][j-1]);
```

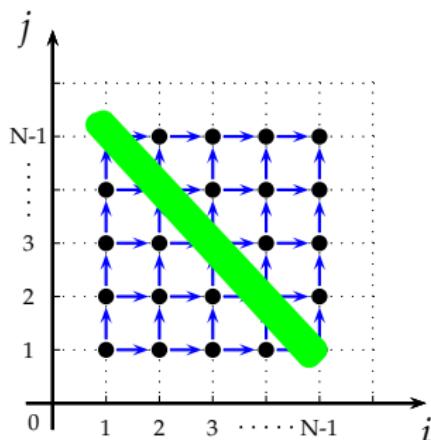


Figure: Original space (i, j)

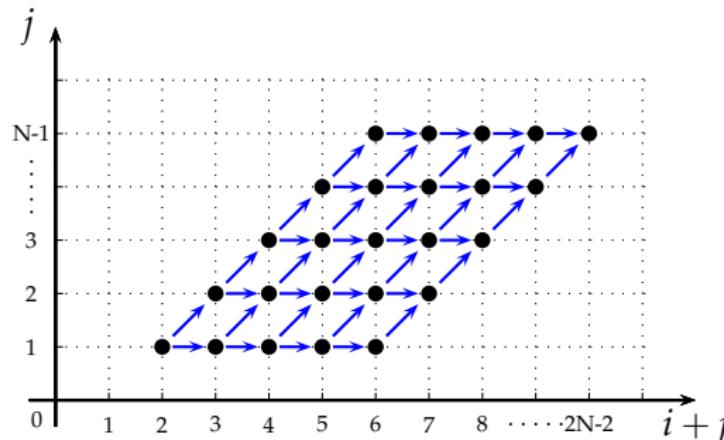


Figure: Transformed space $(i + j, j)$

- **Schedule:** $T(i, j) = (i + j, j)$
 - Dependences: $(1,0)$ and $(0,1)$ now become $(1,0)$ and $(1,1)$ resp.

DOMAINS, DEPENDENCES, AND SCHEDULES

```
for (i=1; i<=N-1; i++)  
    for (j=1; j<=N-1; j++)  
        A[i][j] = f(A[i-1][j], A[i][j-1]);
```

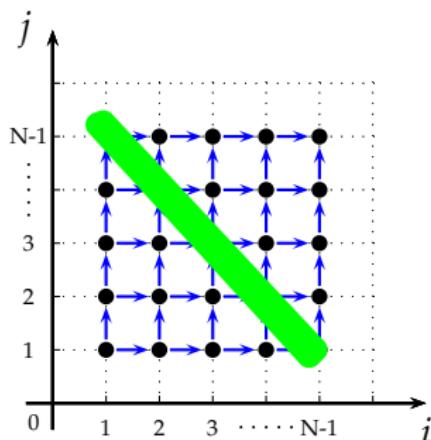


Figure: Original space (i, j)

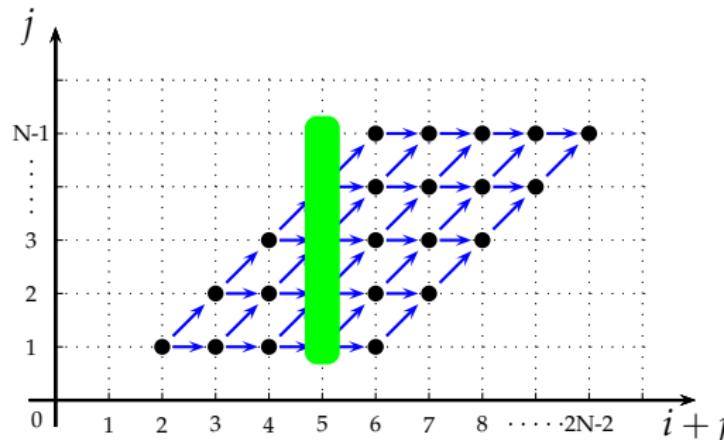


Figure: Transformed space $(i + j, j)$

- **Schedule:** $T(i, j) = (i + j, j)$
 - Dependences: $(1,0)$ and $(0,1)$ now become $(1,0)$ and $(1,1)$ resp.
 - Inner loop is now parallel

LEXICOGRAPHIC ORDERING

- Lexicographic ordering: $\succ, \succ \vec{0}$
- Schedules/Affine Transformations/Polyhedral Transformations as a way to provide multi-dimensional timestamps
- Code generation: Scanning points in the transformed space in lexicographically increasing order

POLYHEDRAL FRAMEWORK: SCHEDULES

```
for (i=1 i<N; i++)
  P(i); /* Produces B[i] using another array A */

for (i=1; i<N; i++)
  C(i); /* Consumes B[i] and B[i-1] to create D[i] */
```

- Original schedule: $T_P(i) = (0, i)$, $T_C(i) = (1, i)$

POLYHEDRAL FRAMEWORK: SCHEDULES

```
for (i=1 i<N; i++)
  P(i); /* Produces B[i] using another array A */

for (i=1; i<N; i++)
  C(i); /* Consumes B[i] and B[i-1] to create D[i] */
```

- Original schedule: $T_P(i) = (0, i)$, $T_C(i) = (1, i)$
- Fused
 - Schedule: $T_P(i) = (i, 0)$, $T_C(i) = (i, 1)$.

```
for (t1=1; t1<N; t1++) {
  P(t1);
  C(t1);
}
```

- A code generator needs **domains** and **schedules**

POLYHEDRAL FRAMEWORK: SCHEDULES

```
for (i=1 i<N; i++)
  P(i); /* Produces A[i] */

for (i=1; i<N; i++)
  C(i); /* Consumes A[i] and A[i-1] */
```

- Original schedule: $T_P(i) = (0, i)$, $T_C(i) = (1, i)$
- Fused + Tiled
 - Schedule: $T_P(i) = (i/32, i, 0)$, $T_C(i) = (i/32, i, 1)$.

```
for (t1=0;t1<=floord(N-1,32);t1++) {
  for (t3=max(1,32*t1);t3<=min(N-1,32*t1+31);t3++) {
    P(t3);
    C(t3);
  }
}
```

- A code generator needs **domains** and **schedules**

POLYHEDRAL FRAMEWORK: SCHEDULES

```
for (i=1 i<N; i++)
  P(i); /* Produces A[i] */

for (i=1; i<N; i++)
  C(i); /* Consumes A[i] and A[i-1] */
```

- Original schedule: $T_P(i) = (0, i)$, $T_C(i) = (1, i)$
- Fused + Tiled + Innermost distribute
 - Produce a chunk of A and consume it before a new chunk is produced
 - Schedule: $T_P(i) = (i/32, 0, i)$, $T_C(i) = (i/32, 1, i)$.

```
for (t1=0;t1<=floord(N-1,32);t1++) {
  for (t3=max(1,32*t1;t3<=min(N-1,32*t1+31);t3++)
    P(t3);
  for (t3=max(1,32*t1);t3<=min(N-1,32*t1+31);t3++)
    C(t3);
}
```

- A code generator needs **domains** and **schedules**

OUTLINE

1 Introduction, Motivation, and Foundations

2 Optimizations for Parallelism, Locality and More

- Polyhedral Framework
- Affine Transformations
- Tiling
- Concurrent Start in Tiled Spaces

3 High-Performance DSL Compilation

- Image Processing Pipelines
- Solving PDEs Numerically
- Deep Neural Networks

4 Conclusions

AFFINE TRANSFORMATIONS

- Examples of affine functions of i, j : $i + j, i - j, i + 1, 2i + 5$
- Not affine: $ij, i^2, i^2 + j^2, a[j]$

AFFINE TRANSFORMATIONS

- Examples of affine functions of i, j : $i + j, i - j, i + 1, 2i + 5$
- Not affine: $ij, i^2, i^2 + j^2, a[j]$

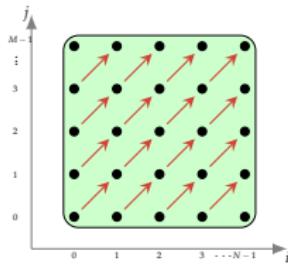


Figure: Iteration space

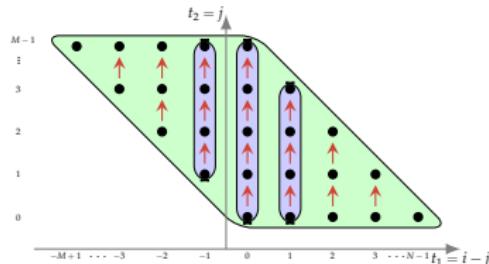


Figure: Transformed space

```
for (i = 0; i < N; i++)
    for (j = 0; j < M; j++)
        A[i+1][j+1] = f(A[i][j])           #pragma omp parallel for private(t2)
/* 0(N) synchronization if j is parallelized */           for (t1=-M+1; t1<=N-1; t1++)
                                                for (t2=max(0,-t1); t2<=min(M-1,N-1-t1); t2++)
                                                    A[t1+t2+1][t2+1] = f(A[t1+t2][t2]);
                                                /* Synchronization-free */
```

- Transformation: $(i, j) \rightarrow (i - j, j)$

AFFINE TRANSFORMATIONS

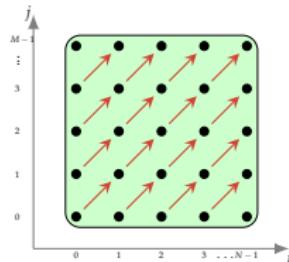


Figure: Iteration space

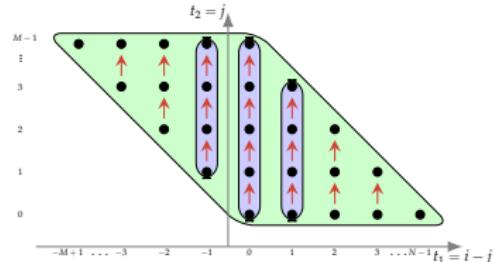


Figure: Transformed space

- Affine transformations are attractive because:
 - Preserve **collinearity** of points and **ratio of distances** between points
 - Code generation with affine transformations has thus been studied well (CLooG, ISL, OMEGA+)
 - Model a very rich class of loop re-orderings
 - Useful for several domains like dense linear algebra, stencil computations, image processing pipelines, deep learning

FINDING GOOD AFFINE TRANSFORMATIONS

(i, j)	Identity
(j, i)	Interchange
$(i + j, j)$	Skew i (by a factor of one w.r.t j)
$(i - j, -j)$	Reverse j and skew i
$(i, 2i + j)$	Skew j (by a factor of two w.r.t i)
$(2i, j)$	Scale i by a factor of two
$(i, j + 1)$	Shift j
$(i + j, i - j)$	More complex
$(i/32, j/32, i, j)$	Tile (rectangular)
...	

- One-to-one functions

FINDING GOOD AFFINE TRANSFORMATIONS

(i, j)	Identity
(j, i)	Interchange
$(i + j, j)$	Skew i (by a factor of one w.r.t j)
$(i - j, -j)$	Reverse j and skew i
$(i, 2i + j)$	Skew j (by a factor of two w.r.t i)
$(2i, j)$	Scale i by a factor of two
$(i, j + 1)$	Shift j
$(i + j, i - j)$	More complex
$(i/32, j/32, i, j)$	Tile (rectangular)
...	

- One-to-one functions

- Can be expressed using matrices:

$$T(i, j) = (i + j, j) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} i \\ j \end{pmatrix}.$$

- Validity: dependences should not be violated

DEPENDENCES

- Dependences are determined pairwise between conflicting accesses

```
for (t = 0; t < T; t++)
    for (i = 1; i < N+1; i++)
        for (j = 1; j < N+1; j++)
            A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],
            A[t%2][i][j+1], A[t%2][i][j-1]);
```

- Dependence notations
 - Distance vectors: $(1, -1, 0)$, $(1, 0, 0)$, $(1, 1, 0)$, $(1, 0, -1)$, $(1, 0, 1)$
 - Direction vectors
 - Dependence relations as integer sets with affine constraints and existential quantifiers or Presburger formulae — powerful
- Consider the dependence from the write to the third read:
$$A[(t + 1)\%2][i][j] \rightarrow A[t'\%2][i' - 1][j']$$
Dependence relation: $\{[t, i, j] \rightarrow [t', i', j'] \mid t' = t + 1, i' = i + 1, j' = j, 0 \leq t \leq T - 1, 0 \leq i \leq N - 1, 0 \leq j \leq N\}$

PRESERVING DEPENDENCES

```
for (t = 0; t < T; t++)
  for (i = 1; i < N+1; i++)
    for (j = 1; j < N+1; j++)
      A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],
                            A[t%2][i][j+1], A[t%2][i][j-1]);
```

- For affine loop nests, these dependences can be analyzed and represented precisely
- **Side note:** A DSL simplifies dependence analysis

PRESERVING DEPENDENCES

```
for (t = 0; t < T; t++)
  for (i = 1; i < N+1; i++)
    for (j = 1; j < N+1; j++)
      A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],
      A[t%2][i][j+1], A[t%2][i][j-1]);
```

- For affine loop nests, these dependences can be analyzed and represented precisely
- **Side note:** A DSL simplifies dependence analysis
- **Next step:** Transform while preserving dependences
 - Find execution reorderings that **preserve** dependences and improve performance
 - Execution reordering as a function: $T(\vec{i})$
 - For all dependence relation instances $(\vec{s} \rightarrow \vec{t})$,
 $T(\vec{t}) - T(\vec{s}) \succ \vec{0}$,
i.e., the source should precede the target even in the transformed space
- What is the structure of T ?

VALID TRANSFORMATIONS

```
for (t = 0; t < T; t++)
  for (i = 1; i < N+1; i++)
    for (j = 1; j < N+1; j++)
      A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],
      A[t%2][i][j+1], A[t%2][i][j-1]);
```

- Dependences: $(1, 0, 0), (1, 0, 1), (1, 0, -1), (1, 1, 0), (1, -1, 0)$
- Validity: $T(\vec{t}) - T(\vec{s}) \succ \vec{0}$, i.e., $T(\vec{t} - \vec{s}) \succ \vec{0}$
- Examples of invalid transformations
 - $T(t, i, j) = (i, j, t)$
 - Similarly, $(i, t, j), (j, i, t), (t + i, i, j), (t + i + j, i, j)$ are all invalid transformations
- Valid transformations
 - $(t, j, i), (t, t + i, t + j), (t, t + i, t + i + j)$
 - However, only some of the infinitely many valid ones are interesting

OUTLINE

1 Introduction, Motivation, and Foundations

2 Optimizations for Parallelism, Locality and More

- Polyhedral Framework
- Affine Transformations
- **Tiling**
- Concurrent Start in Tiled Spaces

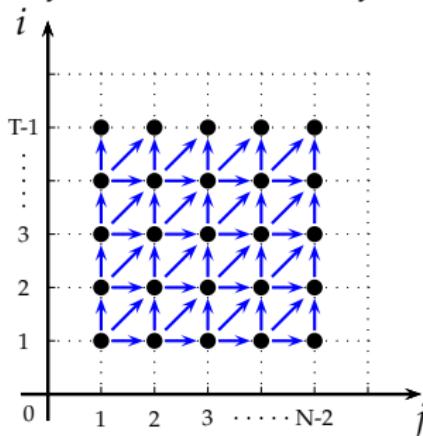
3 High-Performance DSL Compilation

- Image Processing Pipelines
- Solving PDEs Numerically
- Deep Neural Networks

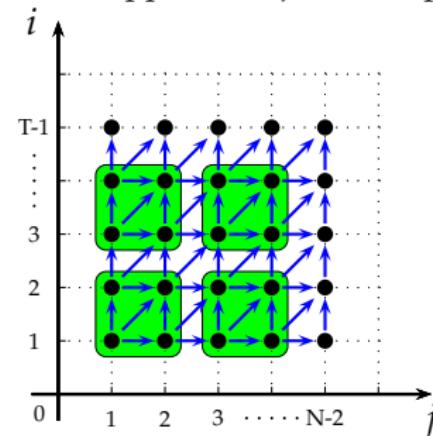
4 Conclusions

TILING (BLOCKING)

- Partition and execute iteration space in blocks
- A tile is executed atomically
- Benefits: exploits *cache locality* & improves *parallelization* in the presence of synchronization
- Allows reuse in multiple directions**
- Reduces frequency of synchronization** for parallelization:
synchronization after you execute *tiles* (as opposed to *points*) in parallel



$$(i, j) \rightarrow (i/50, j/50, i, j);$$



$$(i, j) \rightarrow (i/50 + j/50, j/50, i, j)$$

VALIDITY OF TILING (BLOCKING)

- Validity of tiling
 - There should be no cycle between the tiles

VALIDITY OF TILING (BLOCKING)

- Validity of tiling
 - There should be no cycle between the tiles
 - **Sufficient condition:** All dependence components should be non-negative along dimensions that are being tiled

VALIDITY OF TILING (BLOCKING)

- Validity of tiling

- There should be no cycle between the tiles
- **Sufficient condition:** All dependence components should be non-negative along dimensions that are being tiled
- Dependences: $(1,0)$, $(1,1)$, $(1,-1)$

```
for (i=1; i<T; i++)  
  for (j=1; j<N-1; j++)  
    A[(i+1)%2][j] = f(A[i%2][j-1],  
                         A[i%2][j], A[i%2][j+1]);
```

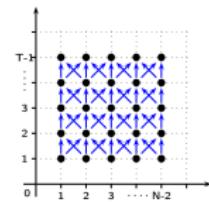


Figure: Iteration space

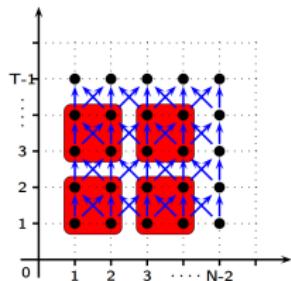


Figure: Invalid tiling

VALIDITY OF TILING (BLOCKING)

- Validity of tiling

- There should be no cycle between the tiles
- **Sufficient condition:** All dependence components should be non-negative along dimensions that are being tiled
- Dependences: $(1,0)$, $(1,1)$, $(1,-1)$

```
for (i=1; i<T; i++)  
  for (j=1; j<N-1; j++)  
    A[(i+1)%2][j] = f(A[i%2][j-1],  
                         A[i%2][j], A[i%2][j+1]);
```

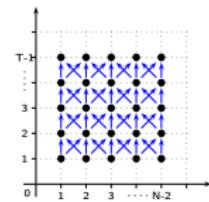


Figure: Iteration space

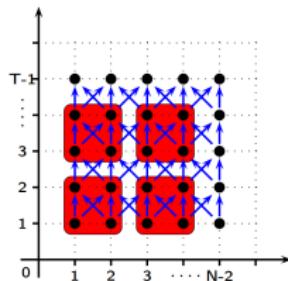


Figure: Invalid tiling

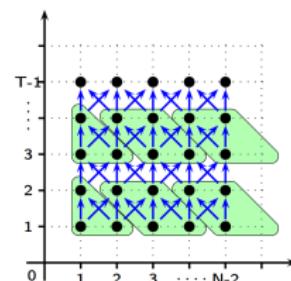


Figure: Valid tiling

TILING (BLOCKING)

- Affine transformations can enable tiling
 - First skew: $T(i, j) = (i, i + j)$

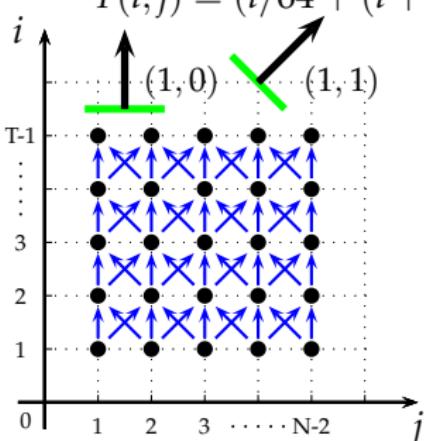


Figure: Original space (i, j)

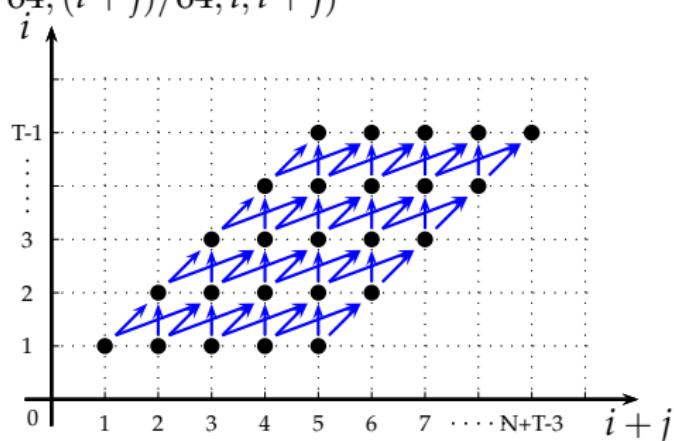


Figure: Transformed space $(i, i + j)$

TILING (BLOCKING)

- Affine transformations can enable tiling
 - First skew: $T(i, j) = (i, i + j)$
 - Then, apply (rectangular) tiling:
 $T(i, j) = (i/64, (i + j)/64, i, i + j)$
 - i and $i + j$ are also called *tiling hyperplanes*
 - Then, create a wavefront of tiles:
 $T(i, j) = (i/64 + (i + j)/64, (i + j)/64, i, i + j)$

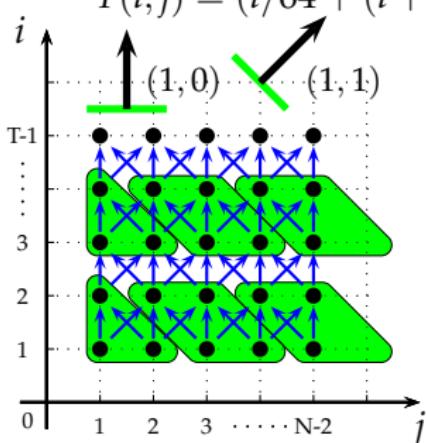


Figure: Original space (i, j)

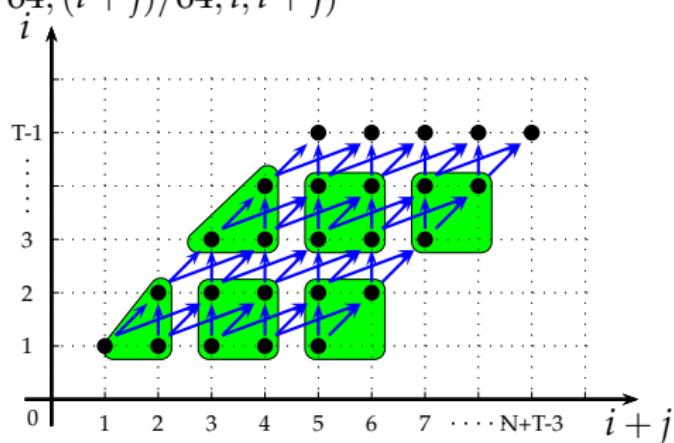


Figure: Transformed space $(i, i + j)$

ALGORITHMS TO FIND TRANSFORMATIONS

- **The Past**

- A data locality optimizing algorithm, Wolf and Lam, PLDI 1991
 - Improve locality through unimodular transformations
 - Characterize self-spatial, self-temporal, and group reuse
 - Find unimodular transformations (permutation, reversal, skewing) to transform to permutable loop nests with reuse, and subsequently tile them
- Several advances on polyhedral transformation algorithms through 1990s and 2000s – Feautrier [1991–1992], Lim and Lam – Affine Partitioning [1997–2001], Pluto [2008 – present]
- **The Present**

- Polyhedral framework provides a powerful mathematical abstraction (away from the syntax)
- A number of new techniques, open-source libraries and tools have been developed and are **actively maintained**

BACK TO 3-D EXAMPLE

```
for (t = 0; t < T; t++)
  for (i = 1; i < N+1; i++)
    for (j = 1; j < N+1; j++)
      A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],
      A[t%2][i][j+1], A[t%2][i][j-1]);
```

- What is a good transformation here to improve parallelism and locality?
- Steps

BACK TO 3-D EXAMPLE

```
for (t = 0; t < T; t++)
  for (i = 1; i < N+1; i++)
    for (j = 1; j < N+1; j++)
      A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],
      A[t%2][i][j+1], A[t%2][i][j-1]);
```

- What is a good transformation here to improve parallelism and locality?
- Steps
 - Skewing: $(t, t + i, t + j)$

BACK TO 3-D EXAMPLE

```
for (t = 0; t < T; t++)
  for (i = 1; i < N+1; i++)
    for (j = 1; j < N+1; j++)
      A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],
      A[t%2][i][j+1], A[t%2][i][j-1]);
```

- What is a good transformation here to improve parallelism and locality?
- Steps
 - Skewing: $(t, t + i, t + j)$
 - Tiling: $(t/64, (t + i)/64, (t + j)/1000, t, t + i, t + j)$

BACK TO 3-D EXAMPLE

```
for (t = 0; t < T; t++)
  for (i = 1; i < N+1; i++)
    for (j = 1; j < N+1; j++)
      A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],
      A[t%2][i][j+1], A[t%2][i][j-1]);
```

- What is a good transformation here to improve parallelism and locality?
- Steps
 - Skewing: $(t, t + i, t + j)$
 - Tiling: $(t/64, (t + i)/64, (t + j)/1000, t, t + i, t + j)$
 - Parallelize by creating tile waveform:
 $(t/64 + (t + i)/64, (t + i)/64, (t + j)/1000, t, t + i, t + j)$

POLYHEDRAL TRANSFORMATION ALGORITHMS

- Feautrier [1991–1992] scheduling
- Lim and Lam, Affine Partitioning [1997–2001]
- Pluto algorithm [Bondhugula et al. 2008]
 - **Finds a sequence of affine transformations to improve locality and parallelism**
 - Transforms to bands of tilable dimensions
 - Bounds dependence distances and minimizes them
 - Objective: **minimize dependence distances** while maximizing tilability
- PPCG [Verdoolaege et al. 2013] (mainly for GPUs) – can generate CUDA or OpenCL code

A COST FUNCTION TO SELECT AFFINE TRANSFORMATIONS

- $T_1(t, i) = (t/64 + (t + i)/64, t/64, t, t + i)$
- $T_2(t, i) = (t/64 + (t + i)/64, (t + i)/64, t, t + i)$
- $T_3(t, i) = (t/64 + (2t + i)/64, (2t + i)/64, t, 2t + i)$

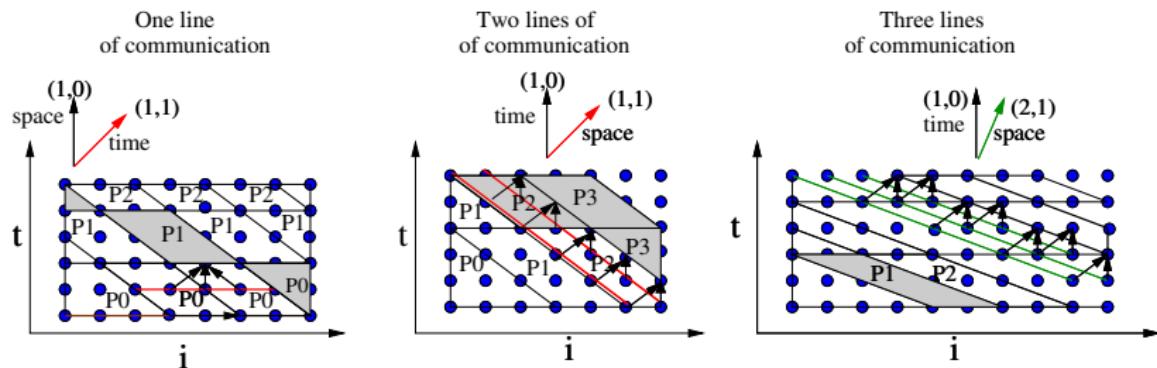


Figure: Communication volume with different valid hyperplanes for 1-d Jacobi: shaded tiles are to be executed in parallel

- Select the \vec{h} that minimizes $\vec{h} \cdot (\vec{t} - \vec{s})$, i.e., minimizes $\vec{h} \cdot \vec{d}$
- Examples: $\vec{h} = (2, 1)$, $\vec{h} \cdot (1, 1) = 3$; $\vec{h} = (1, 0)$, $\vec{h} \cdot (1, 1) = 1$.

OUTLINE

1 Introduction, Motivation, and Foundations

2 Optimizations for Parallelism, Locality and More

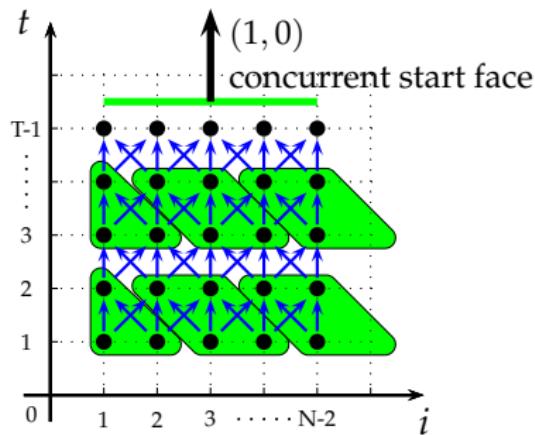
- Polyhedral Framework
- Affine Transformations
- Tiling
- Concurrent Start in Tiled Spaces

3 High-Performance DSL Compilation

- Image Processing Pipelines
- Solving PDEs Numerically
- Deep Neural Networks

4 Conclusions

PIPELINED START AND LOAD IMBALANCE



```
for (t = 0; t <= T-1; t++)  
  for (i = 1; i <= N-2; i++)  
    A[(t+1)%2][i] = 0.125 * (A[t%2][i+1]  
      - 2.0 * A[t%2][i] + A[t%2][i-1]);
```

PIPELINED START AND LOAD IMBALANCE

Classical time skewing suffers from pipelined startup

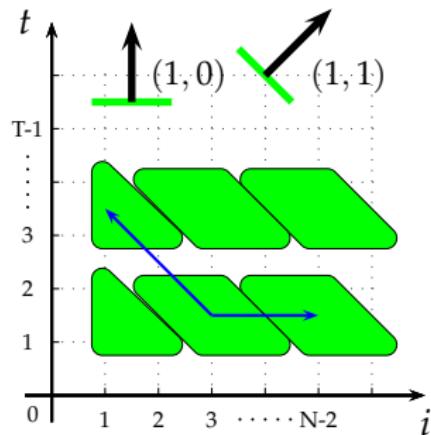


Figure: Pipelined start

PIPELINED START AND LOAD IMBALANCE

Classical time skewing suffers from pipelined startup

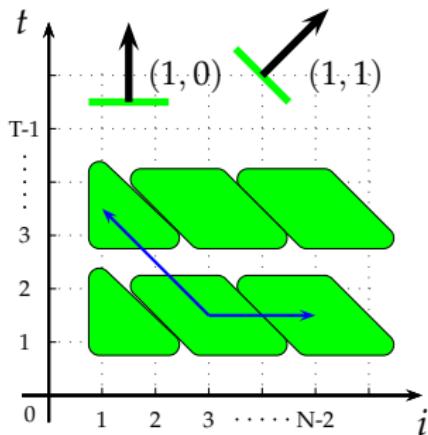


Figure: Pipelined start

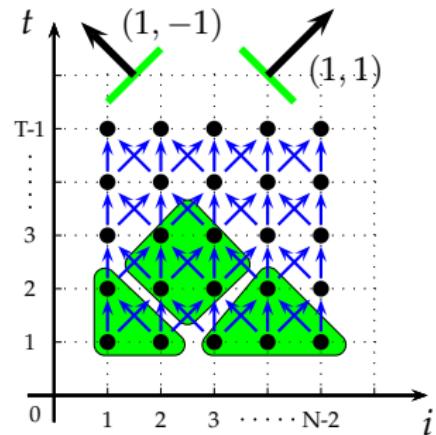


Figure: Group as diamonds

PIPELINED START AND LOAD IMBALANCE

Classical time skewing suffers from pipelined startup

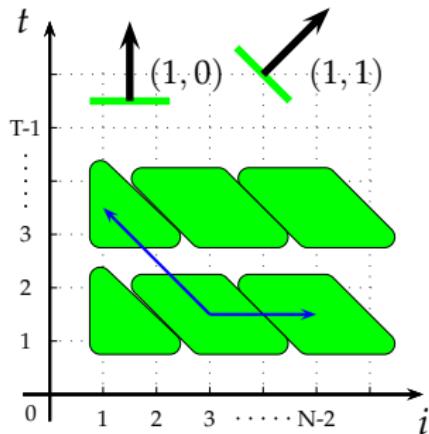


Figure: Pipelined start

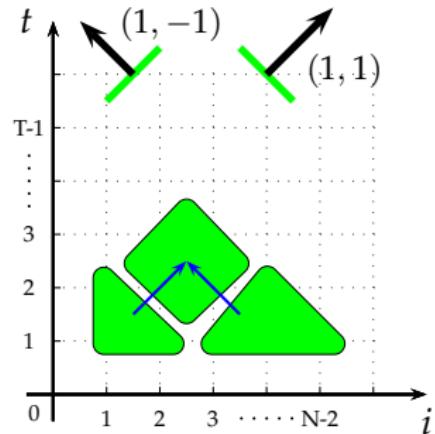


Figure: Concurrent start possible

- Diamond tiling
 - Face allowing concurrent start should be strictly within the cone of the tiling hyperplanes
 - Eg: (1,0) is in the cone of (1,1) and (1,-1)

CLASSICAL TIME SKEWING VS DIAMOND TILING

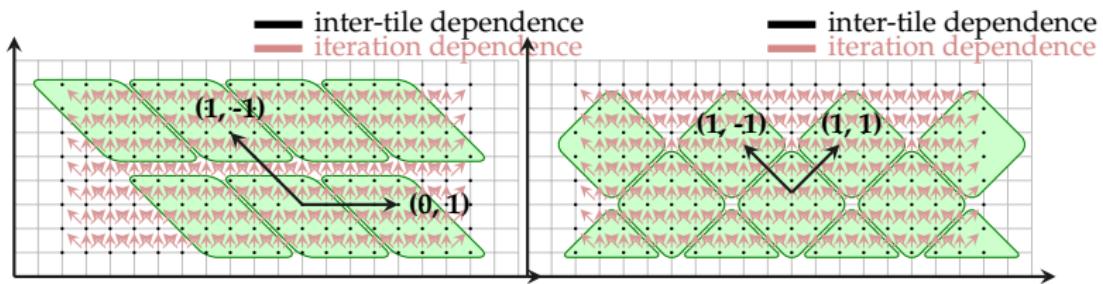


Figure: Two ways of tiling heat-1d: parallelogram & diamond

- Classical time skewing: $(t, i) \rightarrow (t, t + i)$
- Diamond tiling: $(t, i) \rightarrow (t + i, t - i)$

A SEQUENCE OF TRANSFORMATIONS FOR 2-D JACOBI RELAXATIONS

```
for (t = 0; t < T; t++)
  for (i = 1; i < N+1; i++)
    for (j = 1; j < N+1; j++)
      A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],
      A[t%2][i][j+1], A[t%2][i][j-1], A[t%2][i][j]));
```

- ① Enabling transformation for diamond tiling

$$T((t, i, j)) = (t + i, t - i, t + j).$$

A SEQUENCE OF TRANSFORMATIONS FOR 2-D JACOBI RELAXATIONS

```
for (t = 0; t < T; t++)
  for (i = 1; i < N+1; i++)
    for (j = 1; j < N+1; j++)
      A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],
      A[t%2][i][j+1], A[t%2][i][j-1], A[t%2][i][j]);
```

- ① Enabling transformation for diamond tiling

$$T((t, i, j)) = (t + i, t - i, t + j).$$

- ② Perform the actual tiling (in the transformed space)

$$T'((t, i, j)) = \left(\frac{t+i}{64}, \frac{t-i}{64}, \frac{t+j}{64}, t+i, t-i, t+j \right)$$

A SEQUENCE OF TRANSFORMATIONS FOR 2-D JACOBI RELAXATIONS

```
for (t = 0; t < T; t++)
  for (i = 1; i < N+1; i++)
    for (j = 1; j < N+1; j++)
      A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],
      A[t%2][i][j+1], A[t%2][i][j-1], A[t%2][i][j]));
```

- ① Enabling transformation for diamond tiling

$$T((t, i, j)) = (t + i, t - i, t + j).$$

- ② Perform the actual tiling (in the transformed space)

$$T'((t, i, j)) = \left(\frac{t+i}{64}, \frac{t-i}{64}, \frac{t+j}{64}, t+i, t-i, t+j \right)$$

- ③ Create a wavefront of tiles

$$T''((t, i, j)) = \left(\frac{t+i}{64} + \frac{t-i}{64}, \frac{t-i}{64}, \frac{t+j}{64}, t, t+i, t+j \right)$$

- ④ Choose tile sizes in Step 2 such that vectorization and prefetching works well (for the innermost dimension)

TRANSFORMED CODE

```
/* Start of CLooG code */
for (t1=-1; t1<=31; t1++) {
    int lbp=ceild(t1,2), ubp=floord(t1+125,2);
#pragma omp parallel for private(lbv,ubv,t3,t4,t5,t6)
    for (t2=lbp; t2<=ubp; t2++)
        for (t3=max(0,ceild(t1-1,2)); t3<=floord(t1+126,2); t3++)
            for (t4=max(max(max(0,32*t1),64*t3-4000),64*t1-64*t2+1);
                t4<=min(min(min(999,32*t1+63),64*t2+62),64*t3+62); t4++)
                for (t5=max(max(64*t2,t4+1),-64*t1+64*t2+2*t4-63);
                    t5<=min(min(64*t2+63,t4+4000),-64*t1+64*t2+2*t4); t5++)
#pragma ivdep
#pragma vector always
    for (t6=max(64*t3,t4+1); t6<=min(64*t3+63,t4+4000); t6++)
        A[( t4 + 1 ) % 2][( -t4+t5)][ ( -t4+t6 ) ] = (((0.125 * ((A[ t4 % 2 ][ ( -t4+t5 ) + 1 ][ ( -t4+t6 ) ] - ( 2.0 * A[ t4 % 2 ][ ( -t4+t5 ) ][ ( -t4+t6 ) ] ) + A[ t4 % 2 ][ ( -t4+t5 ) - 1 ][ ( -t4+t6 ) ] ) + ( 0.125 * ((A[ t4 % 2 ][ ( -t4+t5 ) ][ ( -t4+t6 ) + 1 ] - ( 2.0 * A[ t4 % 2 ][ ( -t4+t5 ) ][ ( -t4+t6 ) ] ) + A[ t4 % 2 ][ ( -t4+t5 ) ][ ( -t4+t6 ) - 1 ] ) ) ) + A[ t4 % 2 ][ ( -t4+t5 ) ][ ( -t4+t6 ) ] );}
/* End of CLooG code */
```

Performance on an 8-core Intel Xeon Haswell (all code compiled with ICC 16.0), N=4000, T=1000

- Original: 6.2 GFLOPS

TRANSFORMED CODE

```
/* Start of CLooG code */
for (t1=-1; t1<=31; t1++) {
    int lbp=ceild(t1,2), ubp=floord(t1+125,2);
#pragma omp parallel for private(lbv,ubv,t3,t4,t5,t6)
    for (t2=lbp; t2<=ubp; t2++)
        for (t3=max(0,ceild(t1-1,2)); t3<=floord(t1+126,2); t3++)
            for (t4=max(max(max(0,32*t1),64*t3-4000),64*t1-64*t2+1);
                t4<=min(min(min(999,32*t1+63),64*t2+62),64*t3+62); t4++)
                for (t5=max(max(64*t2,t4+1),-64*t1+64*t2+2*t4-63);
                    t5<=min(min(64*t2+63,t4+4000),-64*t1+64*t2+2*t4); t5++)
#pragma ivdep
#pragma vector always
    for (t6=max(64*t3,t4+1); t6<=min(64*t3+63,t4+4000); t6++)
        A[( t4 + 1 ) % 2][( -t4+t5)][ ( -t4+t6 ) ] = (((0.125 * ((A[ t4 % 2 ][ ( -t4+t5 ) + 1 ][ ( -t4+t6 ) ] - (2.0 * A[ t4 % 2 ][ ( -t4+t5 ) ][ ( -t4+t6 ) ])) + A[ t4 % 2 ][ ( -t4+t5 ) - 1 ][ ( -t4+t6 ) ])) + (0.125 * ((A[ t4 % 2 ][ ( -t4+t5 ) ][ ( -t4+t6 ) + 1 ] - (2.0 * A[ t4 % 2 ][ ( -t4+t5 ) ][ ( -t4+t6 ) ])) + A[ t4 % 2 ][ ( -t4+t5 ) ][ ( -t4+t6 ) - 1 ]))) + A[ t4 % 2 ][ ( -t4+t5 ) ][ ( -t4+t6 ) ]);
}
/* End of CLooG code */
```

Performance on an 8-core Intel Xeon Haswell (all code compiled with ICC 16.0), N=4000, T=1000

- Original: 6.2 GFLOPS
- Straightforward OMP: 21.8 GFLOPS

TRANSFORMED CODE

```
/* Start of CLooG code */
for (t1=-1; t1<=31; t1++) {
    int lbp=ceild(t1,2), ubp=floord(t1+125,2);
#pragma omp parallel for private(lbv,ubv,t3,t4,t5,t6)
    for (t2=lbp; t2<=ubp; t2++)
        for (t3=max(0,ceild(t1-1,2)); t3<=floord(t1+126,2); t3++)
            for (t4=max(max(max(0,32*t1),64*t3-4000),64*t1-64*t2+1);
                t4<=min(min(min(999,32*t1+63),64*t2+62),64*t3+62); t4++)
                for (t5=max(max(64*t2,t4+1),-64*t1+64*t2+2*t4-63);
                    t5<=min(min(64*t2+63,t4+4000),-64*t1+64*t2+2*t4); t5++)
#pragma ivdep
#pragma vector always
    for (t6=max(64*t3,t4+1); t6<=min(64*t3+63,t4+4000); t6++)
        A[( t4 + 1 ) % 2][( -t4+t5)][ ( -t4+t6 ) ] = (((0.125 * ((A[ t4 % 2 ][ ( -t4+t5 ) + 1 ][ ( -t4+t6 ) ] - ( 2.0 * A[ t4 % 2 ][ ( -t4+t5 ) ][ ( -t4+t6 ) ] ) + A[ t4 % 2 ][ ( -t4+t5 ) - 1 ][ ( -t4+t6 ) ] ) + ( 0.125 * ((A[ t4 % 2 ][ ( -t4+t5 ) ][ ( -t4+t6 ) + 1 ] - ( 2.0 * A[ t4 % 2 ][ ( -t4+t5 ) ][ ( -t4+t6 ) ] ) + A[ t4 % 2 ][ ( -t4+t5 ) ][ ( -t4+t6 ) - 1 ] ) ) ) + A[ t4 % 2 ][ ( -t4+t5 ) ][ ( -t4+t6 ) ] );
}
/* End of CLooG code */
```

Performance on an 8-core Intel Xeon Haswell (all code compiled with ICC 16.0), N=4000, T=1000

- Original: 6.2 GFLOPS
- Straightforward OMP: 21.8 GFLOPS
- Classical time skewing: 52 GFLOPS (2.39x over simple OMP)

TRANSFORMED CODE

```
/* Start of CLooG code */
for (t1=-1; t1<=31; t1++) {
    int lbp=ceild(t1,2), ubp=floor(t1+125,2);
#pragma omp parallel for private(lbv,ubv,t3,t4,t5,t6)
    for (t2=lbp; t2<=ubp; t2++) {
        for (t3=max(0,ceild(t1-1,2)); t3<=floor(t1+126,2); t3++)
            for (t4=max(max(max(0,32*t1),64*t3-4000),64*t1-64*t2+1);
                t4<=min(min(min(999,32*t1+63),64*t2+62),64*t3+62); t4++)
                for (t5=max(max(64*t2,t4+1),-64*t1+64*t2+2*t4-63);
                    t5<=min(min(64*t2+63,t4+4000),-64*t1+64*t2+2*t4); t5++)
                    #pragma ivdep
                    #pragma vector always
                    for (t6=max(64*t3,t4+1); t6<=min(64*t3+63,t4+4000); t6++)
                        A[( t4 + 1 ) % 2][ ( -t4+t5 ) ][ ( -t4+t6 ) ] = (((0.125 * ((A[ t4 % 2 ][ ( -t4+t5 ) + 1 ][ ( -t4+t6 ) ] - (2.0 * A[ t4 % 2 ][ ( -t4+t5 ) ][ ( -t4+t6 ) ])) + A[ t4 % 2 ][ ( -t4+t5 ) - 1 ][ ( -t4+t6 ) ])) + (0.125 * ((A[ t4 % 2 ][ ( -t4+t5 ) ][ ( -t4+t6 ) + 1 ] - (2.0 * A[ t4 % 2 ][ ( -t4+t5 ) ][ ( -t4+t6 ) ])) + A[ t4 % 2 ][ ( -t4+t5 ) ][ ( -t4+t6 ) - 1 ]))) + A[ t4 % 2 ][ ( -t4+t5 ) ][ ( -t4+t6 ) ]);
    }
/* End of CLooG code */
```

Performance on an 8-core Intel Xeon Haswell (all code compiled with ICC 16.0), N=4000, T=1000

- Original: 6.2 GFLOPS
- Straightforward OMP: 21.8 GFLOPS
- Classical time skewing: 52 GFLOPS (2.39x over simple OMP)
- **Diamond tiling**: 91 GFLOPS (4.17x over simple OMP)

WHERE ARE AFFINE TRANSFORMATIONS USEFUL?

- Application domains
 - Optimize Jacobi and other relaxations via time tiling
 - Optimize pre-smoothing steps at various levels of Geometric Multigrid method
 - Optimize Lattice Boltzmann Method computations
 - Image Processing Pipelines
 - Convolutional Neural Network computations
 - **Wherever you have loops and want to transform loops**
- Architectures
 - General-purpose multicores
 - GPUs, accelerators
 - FPGAs: transformations for HLS

PUTTING TRANSFORMATIONS INTO PRACTICE

- **Where are these transformations useful?**
 - In general-purpose compilers: LLVM, GCC, ...
 - In DSL compilers
- **Tools: How to use these?**
 - ISL <http://isl.gforge.inria.fr> – an Integer Set Library
 - CLooG – polyhedral code generator/library
<http://cloog.org>
 - Pluto <http://pluto-compiler.sourceforge.net> – a source-to-source automatic transformation framework that uses a number of libraries including Pet, Clan, Cndl, ISL, Cloog, Piplib
 - PPCG – Polyhedral parallel code generation for CUDA
<http://repo.or.cz/ppcg.git>
 - Polly <http://polly.llvm.org> – Polyhedral infrastructure in LLVM
- **An exercise now**

REFERENCES

- Reading material, tutorials, and slides
 - *Presburger Formulas and Polyhedral Compilation* by Sven Verdoolaege
<http://isl.gforge.inria.fr/>
 - Barvinok tutorial at <http://barvinok.gforge.inria.fr/>
 - Background and Theory on Automatic Polyhedral Transformations
<http://www.csa.iisc.ernet.in/~uday/poly-transformations-intro.pdf>
 - Polyhedral.info <http://polyhedral.info>
- Tools/Infrastructure to try
 - Barvinok tool: <http://barvinok.gforge.inria.fr/>
 - Pluto <http://pluto-compiler.sourceforge.net> – use **pet** branch of **git** version
 - PPCG – Polyhedral parallel code generation for CUDA
<http://repo.or.cz/ppcg.git>
 - Polly <http://polly.llvm.org>

ASSIGNMENT 1

- Download PolyMage's **e0358** branch
`$ git clone https://bitbucket.org/udayb/polymage.git -b e0358`
- Modify *sandbox/video_demo/harris_corner/harris_opt.cpp* to improve performance over *harris_naive.cpp*
- Test performance through the video demo (see *README.md* in *sandbox/video_demo/*)
- Use any 1080p video for testing
- Either transform manually or consider using Barvinok (iscc):
<http://barvinok.gforge.inria.fr/>
- Optimize for performance targeting 4 cores of a CL workstation
- **What to submit:** *harris_opt.cpp* and *report.pdf*, a report describing optimizations you performed, and the performance you observed (in ms) when running on **4 cores** of the CL workstation; also report execution times and scaling from 1 to 4 cores. Use the printout when you exit the video demo to report timing. Submit by email in a single compressed tar file named <your name>.tar.gz
- **Deadline:** Fri Oct 7, 4:59pm

OUTLINE

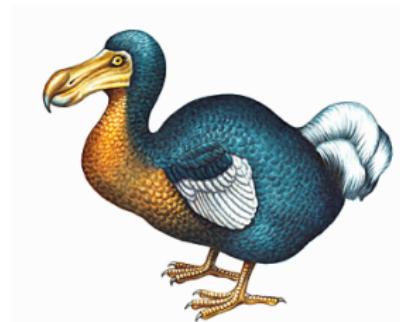
- 1 Introduction, Motivation, and Foundations
- 2 Optimizations for Parallelism, Locality and More
 - Polyhedral Framework
 - Affine Transformations
 - Tiling
 - Concurrent Start in Tiled Spaces
- 3 High-Performance DSL Compilation
 - Image Processing Pipelines
 - Solving PDEs Numerically
 - Deep Neural Networks
- 4 Conclusions

DOMAIN-SPECIFIC LANGUAGES

- Standalone DSLs: own syntax
- **Embedded DSLs: embedded in/hosted by an existing language**

DOMAIN-SPECIFIC LANGUAGES

- Standalone DSLs: own syntax
- **Embedded DSLs: embedded in/hosted by an existing language**
- **Arguments against DSLs**
 - Too specialized
 - Need to learn a new language!



A Dodo (highly specialized, but extinct)

DOMAIN-SPECIFIC LANGUAGES

- Standalone DSLs: own syntax
- **Embedded DSLs: embedded in/hosted by an existing language**
- **Arguments against DSLs**
 - Too specialized
 - Need to learn a new language!

But

- DSLs can be embedded in existing languages
- Can grow and become more general-purpose



A Dodo (generalized)

DSL COMPILATION

- Frameworks studied for general-purpose languages/compilation can be reused
- **Customized optimization strategies necessary**
- Examples of high-performance DSLs: SPIRAL, Green-Marl, Halide, PolyMage, SystemML

PROGRAMMING/COMPILER TECHNOLOGIES FOR EMERGING DOMAINS

- **Catch 22**
 - Progress requires the right programming, compiler, and hardware technologies
 - Architects of programming, compiler, and hardware technologies cannot build these unless they know what the domain experts want
- **Tough problem: solutions?**

PROGRAMMING/COMPILER TECHNOLOGIES FOR EMERGING DOMAINS

- **Catch 22**

- Progress requires the right programming, compiler, and hardware technologies
- Architects of programming, compiler, and hardware technologies cannot build these unless they know what the domain experts want

- **Tough problem: solutions?**

- Get lucky with the right hardware / primitives (Deep learning? — relies on BLAS, FFT)
- Work closely with domain scientists
- Domain scientist does both

OUTLINE

- 1 Introduction, Motivation, and Foundations
- 2 Optimizations for Parallelism, Locality and More
 - Polyhedral Framework
 - Affine Transformations
 - Tiling
 - Concurrent Start in Tiled Spaces
- 3 High-Performance DSL Compilation
 - **Image Processing Pipelines**
 - Solving PDEs Numerically
 - Deep Neural Networks
- 4 Conclusions

WHERE ARE IMAGE PROCESSING PIPELINES USED?

- Computational photography, computer vision, medical imaging, ...
- On images uploaded to social networks like Facebook, Google+
- On all camera-enabled devices, embedded systems
- Everyday workloads from data center to mobile device scales

Google+ Auto Enhance

IMAGE PROCESSING PIPELINES

Graphs of interconnected processing stages

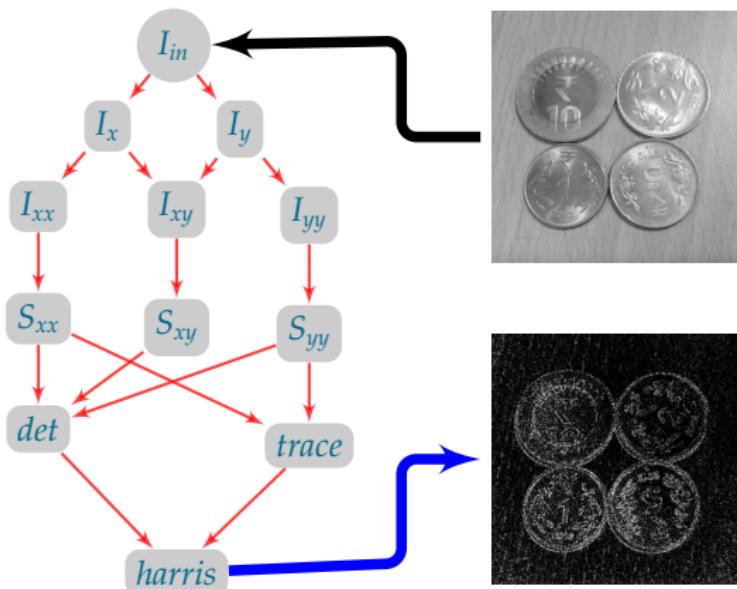
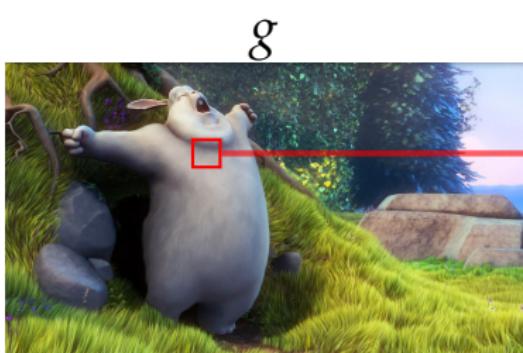
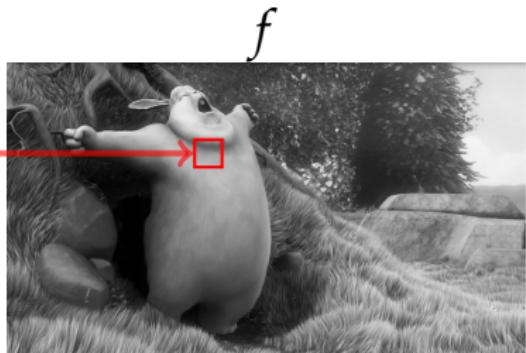


Figure: Harris corner detection

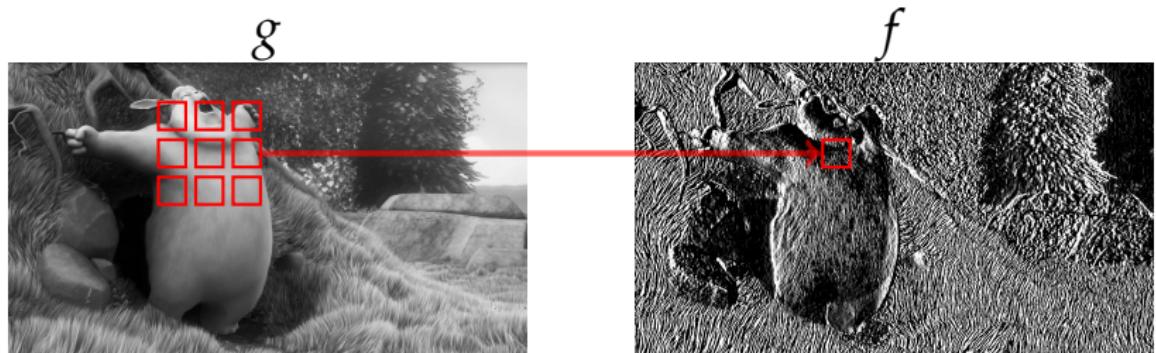
COMPUTATION PATTERNS



Point-wise

$$f(x, y) = w_r \cdot g(x, y, \bullet) + w_g \cdot g(x, y, \bullet) + w_b \cdot g(x, y, \bullet)$$

COMPUTATION PATTERNS



Stencil

$$f(x, y) = \sum_{\sigma_x=-1}^{+1} \sum_{\sigma_y=-1}^{+1} g(x + \sigma_x, y + \sigma_y) \cdot w(\sigma_x, \sigma_y)$$

COMPUTATION PATTERNS

Downsample

$$f(x, y) = \sum_{\sigma_x=-1}^{+1} \sum_{\sigma_y=-1}^{+1} g(2x + \sigma_x, 2y + \sigma_y) \cdot w(\sigma_x, \sigma_y)$$

COMPUTATION PATTERNS

Upsample

$$f(x, y) = \sum_{\sigma_x=-1}^{+1} \sum_{\sigma_y=-1}^{+1} g((x + \sigma_x)/2, (y + \sigma_y)/2) \cdot w(\sigma_x, \sigma_y, x, y)$$

EXAMPLE: PYRAMID BLENDING PIPELINE

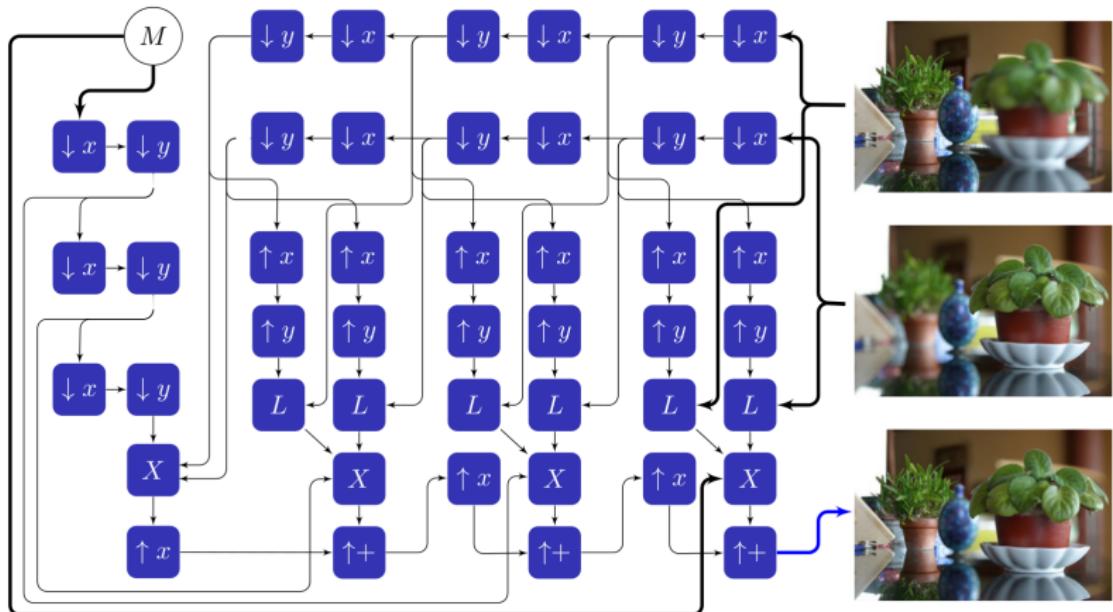
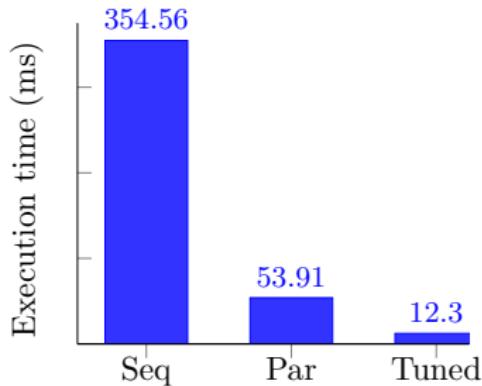


Image courtesy: Kyros Kutulakos

NAIVE VS OPTIMIZED IMPLEMENTATION



- Naive implementation in C
- Naive parallelization – $7\times$ OpenMP, Vector pragmas (icc)
- Manual optimization – $29\times$ Locality, Parallelism, Vector intrinsics

Harris corner detection
(16 cores)

- Manually optimizing pipelines is hard
- Goal: Performance levels of manual tuning without the pain

A DSL APPROACH

- **High-level language (DSL embedded in a language like Python or C++)**
 - Allow expressing common patterns intuitively
 - Enable precise compiler analysis and optimization
- **Automatic Optimizing Code Generator**
 - Use domain-specific cost models to apply complex combinations of scaling, alignment, **tiling** and **fusion** to optimize for **parallelism** and **locality**

EMBEDDED DSL — AN EXAMPLE

```
R, C = Parameter(Int), Parameter(Int)
I = Image(Float, [R+2, C+2])

x, y = Variable(), Variable()
row, col = Interval(0,R+1,1), Interval(0,C+1,1)

c = Condition(x,'>=',1) & Condition(x,'<=',R) &
    Condition(y,'>=',1) & Condition(y,'<=',C)

cb = Condition(x,'>=',2) & Condition(x,'<=',R-1) &
    Condition(y,'>=',2) & Condition(y,'<=',C-1)

Ix = Function(varDom = [(x,y),[row,col]],Float)
Ix.defn = [ Case(c, Stencil(I(x,y), 1.0/12,
    [[-1, -2, -1],
     [ 0, 0, 0],
     [ 1, 2, 1]]) )]

Ix = Function(varDom = [(x,y),[row,col]],Float)
Ix.defn = [ Case(c, Stencil(I(x,y), 1.0/12,
    [[-1, 0, 1],
     [-2, 0, 2],
     [-1, 0, 1]]) )]

Ix = Function(varDom = [(x,y),[row,col]],Float)
Ix.defn = [ Case(c, Ix(x,y) * Ix(x,y)) ]

Iyy = Function(varDom = [(x,y),[row,col]],Float)
Iyy.defn = [ Case(c, Iy(x,y) * Iy(x,y)) ]

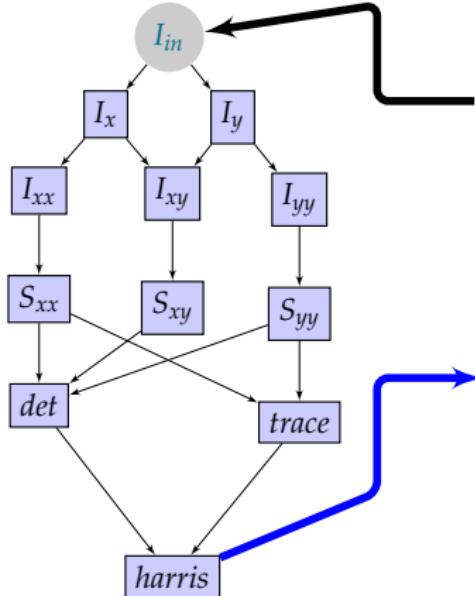
Ix = Function(varDom = [(x,y),[row,col]],Float)
Ix.defn = [ Case(c, Ix(x,y) * Iy(x,y)) ]

Sxx = Function(varDom = [(x,y),[row,col]],Float)
Syy = Function(varDom = [(x,y),[row,col]],Float)
Sxy = Function(varDom = [(x,y),[row,col]],Float)
for pair in [(Sxx, Ixx), (Syy, Iyy), (Sxy, Ixy)]:
    pair[0].defn = [ Case(cb, Stencil(pair[1], 1,
        [[1, 1, 1],
         [1, 1, 1],
         [1, 1, 1]]) )]

det = Function(varDom = [(x,y),[row,col]],Float)
d = Sxx(x,y) * Syy(x,y) - Sxy(x,y) * Sxy(x,y)
det.defn = [ Case(cb, d) ]

trace = Function(varDom = [(x,y),[row,col]],Float)
trace.defn = [ Case(cb, Sxx(x,y) + Syy(x,y)) ]

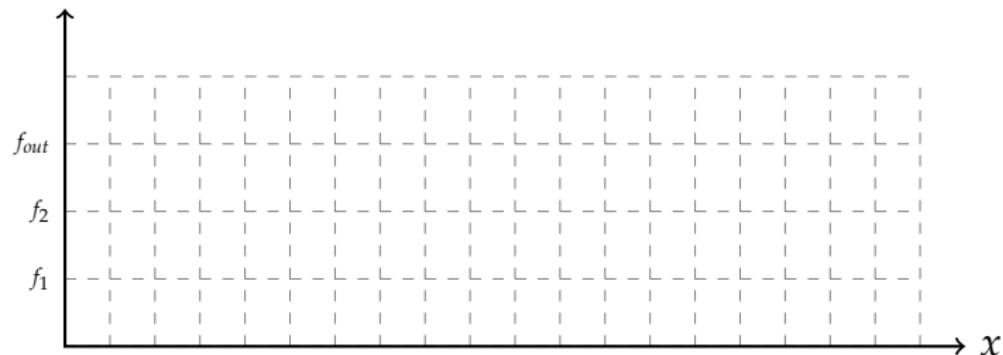
harris = Function(varDom = [(x,y),[row,col]],Float)
coarsify = det(x,y) - .04 * trace(x,y) * trace(x,y)
harris.defn = [ Case(cb, coarsify) ]
```



Embedded in Python

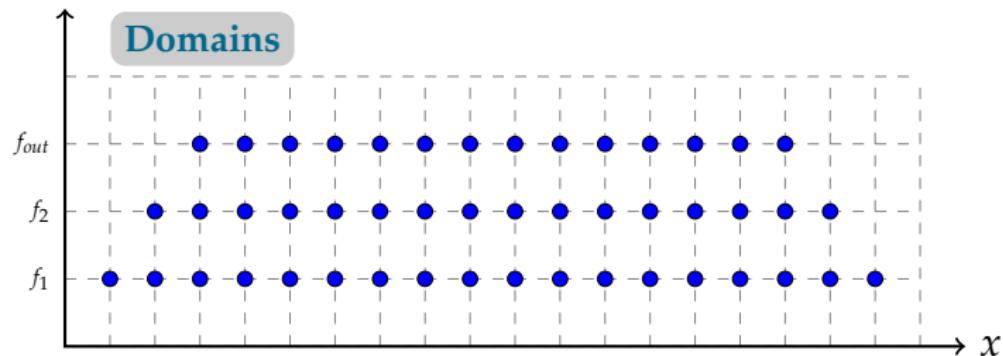
Functional, domain-level operations

POLYHEDRAL REPRESENTATION



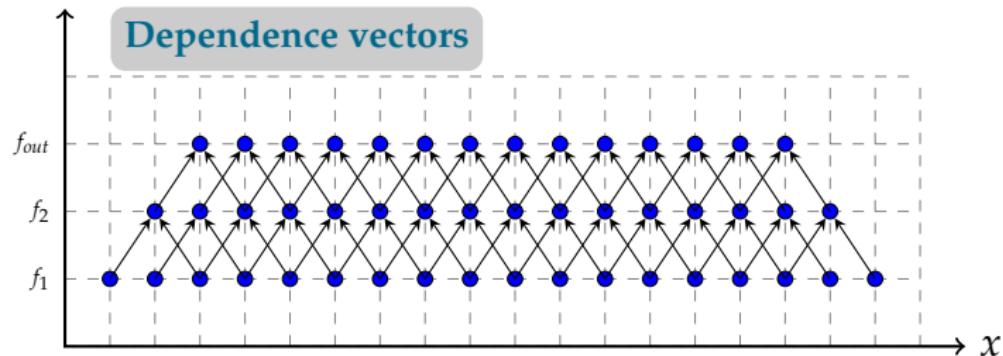
```
x = Variable()
f_in = Image(Float, [18])
f1 = Function(varDom = ([x], [Interval(0, 17, 1)]), Float)
f1.defn = [ f_in(x) + 1 ]
f2 = Function(varDom = ([x], [Interval(1, 16, 1)]), Float)
f2.defn = [ f1(x-1) + f1(x+1) ]
fout = Function(varDom = ([x], [Interval(2, 15, 1)]), Float)
fout.defn = [ f2(x-1) + f2(x+1) ]
```

POLYHEDRAL REPRESENTATION



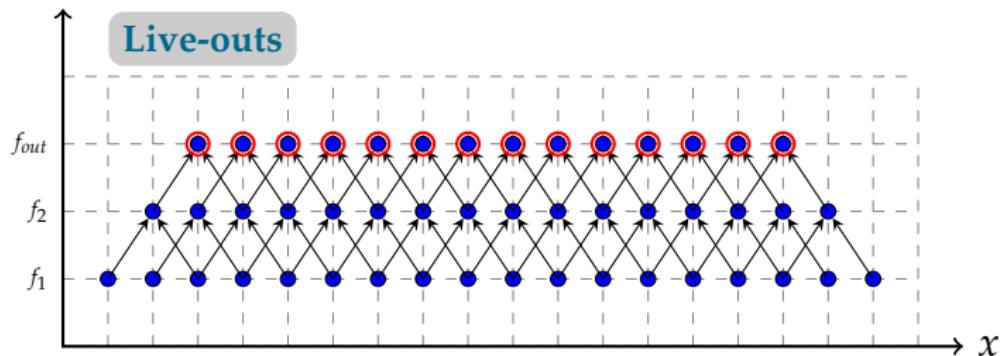
```
x = Variable()
fin = Image(Float, [18])
f1 = Function(varDom = ([x], [Interval(0, 17, 1)]), Float)
f1.defn = [ fin(x) + 1 ]
f2 = Function(varDom = ([x], [Interval(1, 16, 1)]), Float)
f2.defn = [ f1(x-1) + f1(x+1) ]
fout = Function(varDom = ([x], [Interval(2, 15, 1)]), Float)
fout.defn = [ f2(x-1) + f2(x+1) ]
```

POLYHEDRAL REPRESENTATION



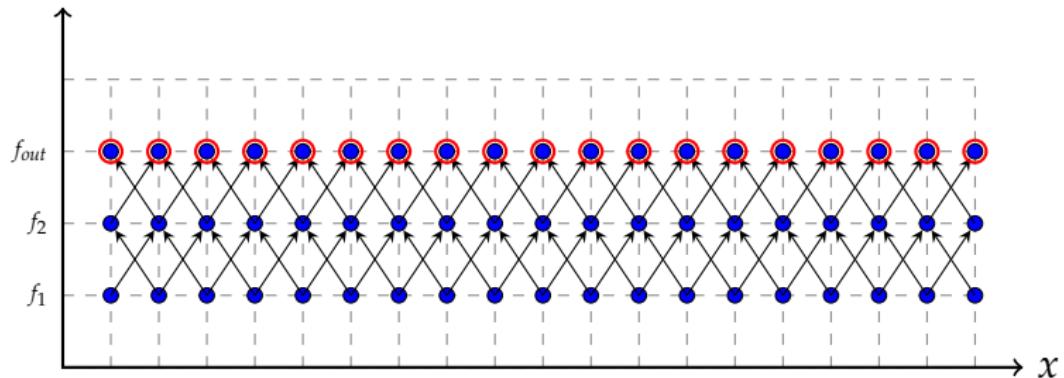
Function	Dependence Vectors
$f_{out}(x) = f_2(x - 1) \cdot f_2(x + 1)$	$(1, 1), (1, -1)$
$f_2(x) = f_1(x - 1) + f_1(x + 1)$	$(1, 1), (1, -1)$
$f_1(x) = f_{in}(x)$	

POLYHEDRAL REPRESENTATION



Function	Dependence Vectors
$f_{out}(x) = f_2(x-1) \cdot f_2(x+1)$	$(1, 1), (1, -1)$
$f_2(x) = f_1(x-1) + f_1(x+1)$	$(1, 1), (1, -1)$
$f_1(x) = f_{in}(x)$	

SCHEDULING TECHNIQUES

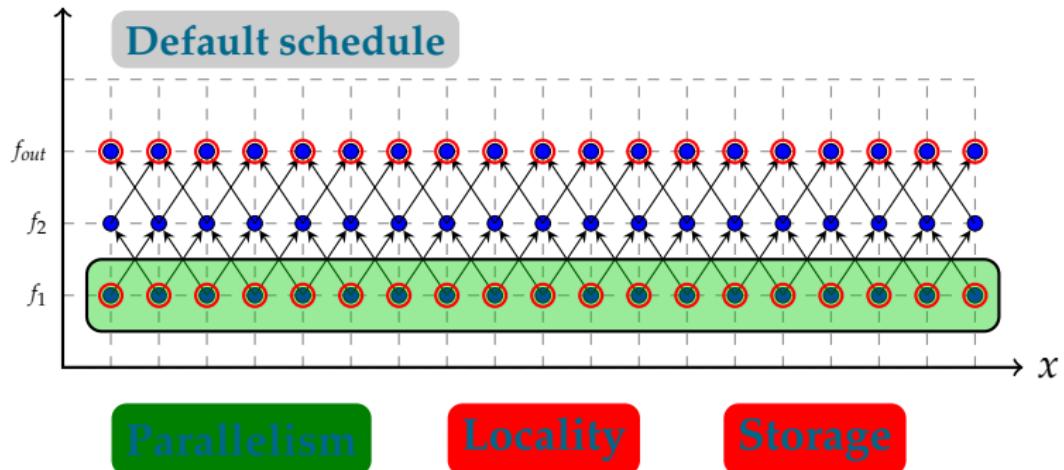


Parallelism

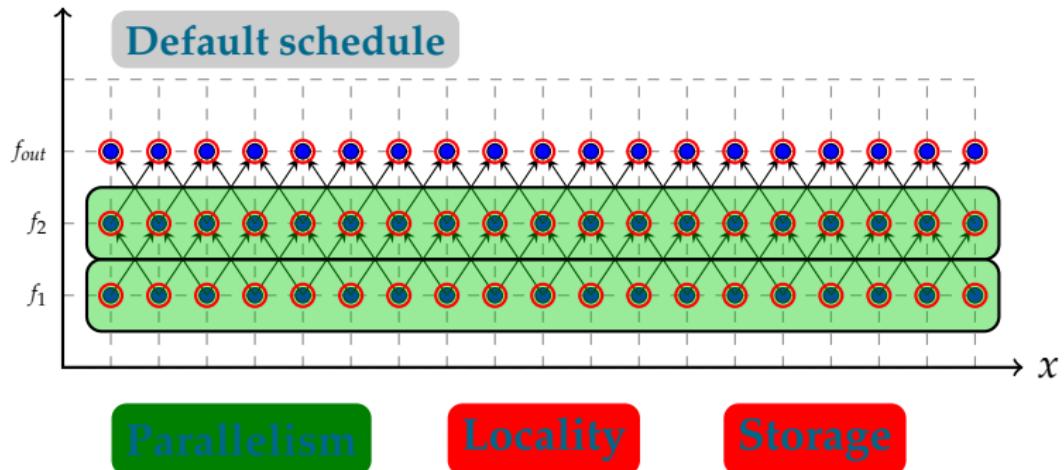
Locality

Storage

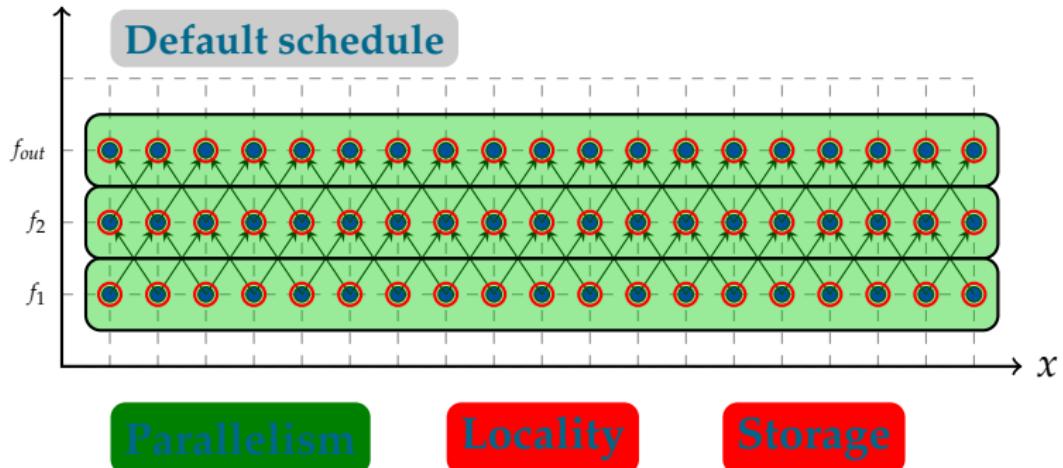
SCHEDULING TECHNIQUES



SCHEDULING TECHNIQUES

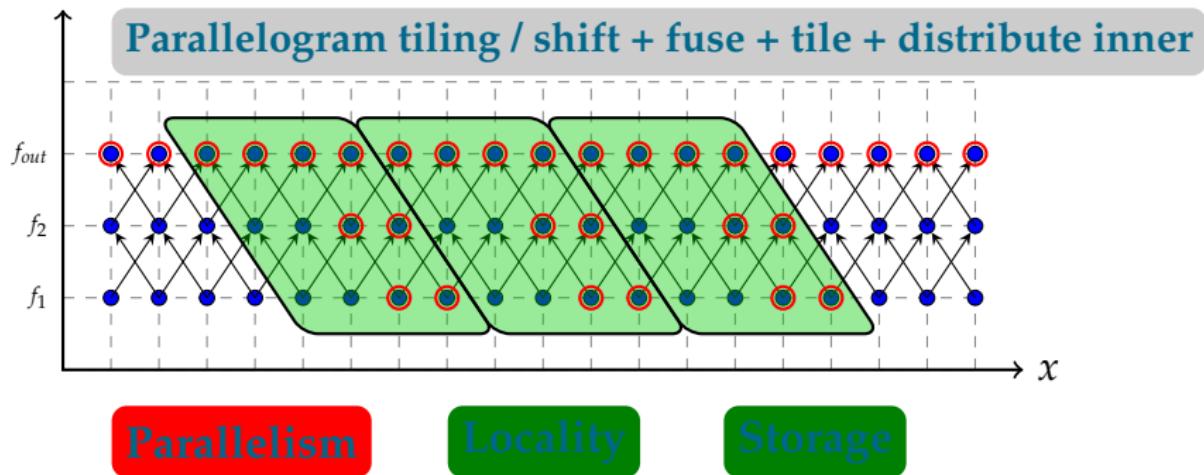


SCHEDULING TECHNIQUES



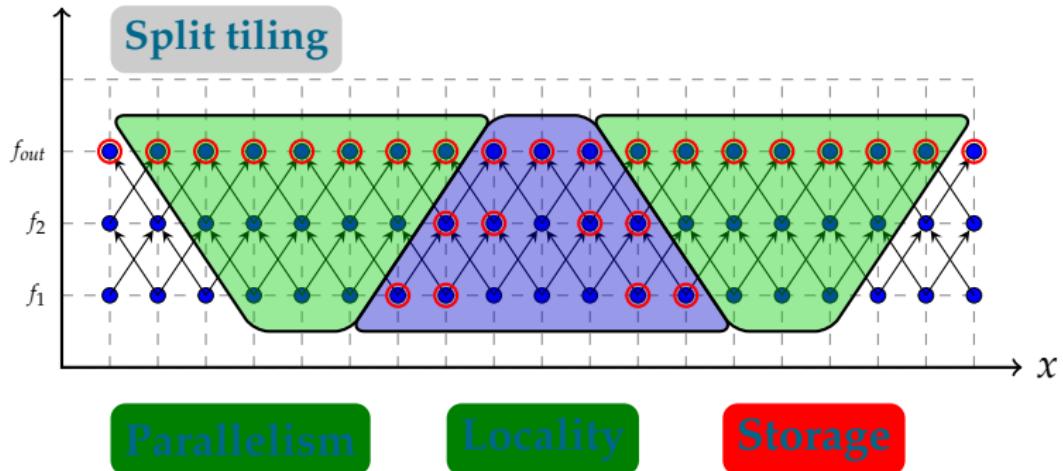
- Load balanced parallelization
- But does not exploit locality

SCHEDULING TECHNIQUES



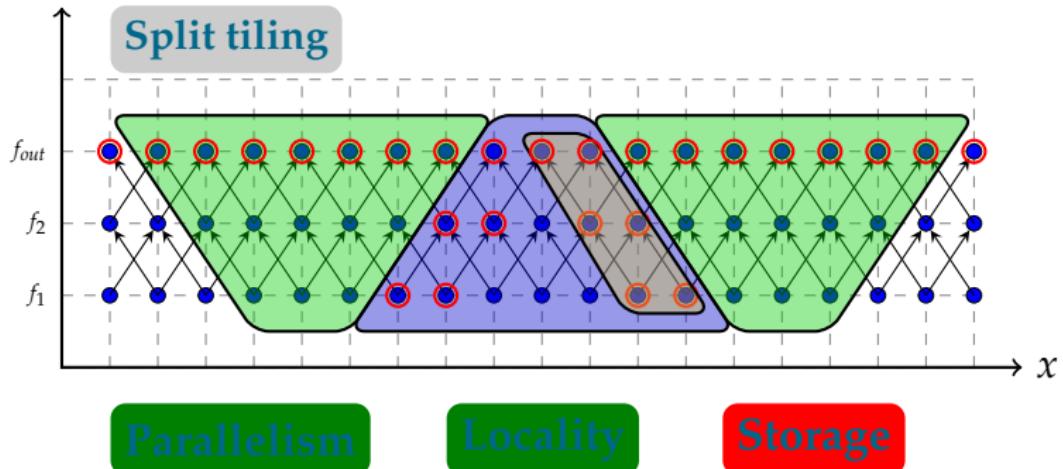
- Loss of parallelism (for a coarse-grained mapping)
- (or) High synchronization ($\frac{3N}{32}$ synchronizations!) for a fine-grained one

SCHEDULING TECHNIQUES



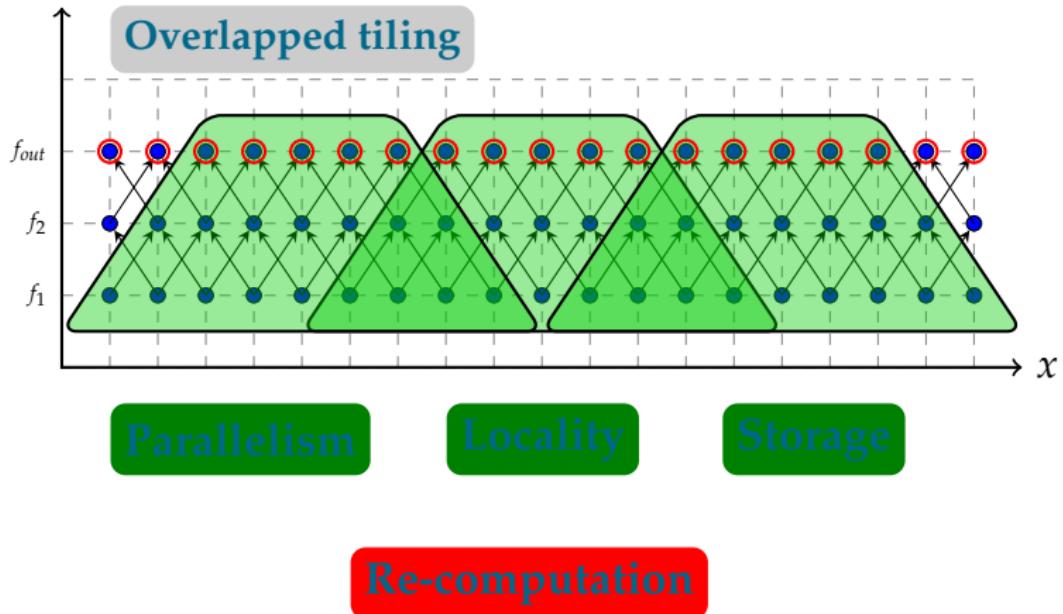
- *Split tiling for GPUs*: Grosser et al. GPGPU 2013
- Similar scheme also used in Pochoir [Tang et al. SPAA 2011]

SCHEDULING TECHNIQUES



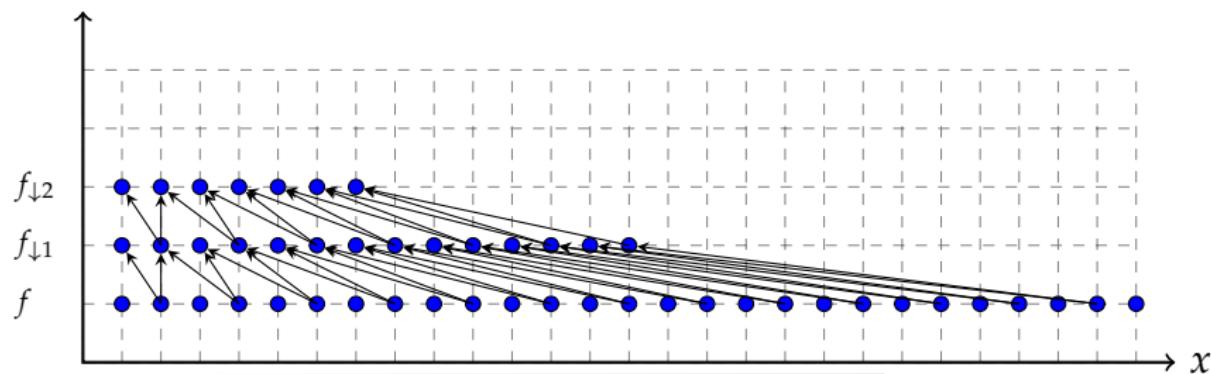
- Data is live out of left and right boundaries (in addition to top)
 - Local buffering (scratchpads for tiles) is difficult!

SCHEDULING TECHNIQUES



- Break dependence at boundaries through redundant computation

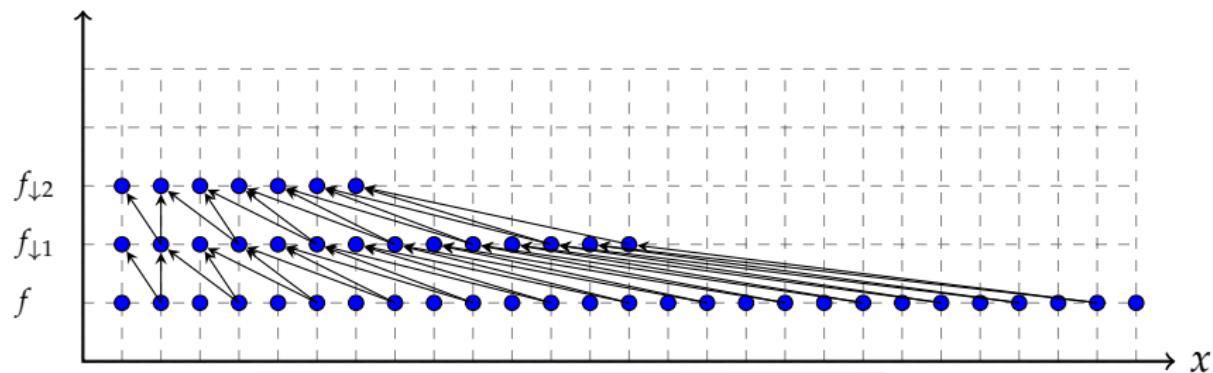
OVERLAPPED TILING FOR HETEROGENEOUS FUNCTIONS



Function	Schedule
$f_{\downarrow 2}(x) = f_{\downarrow 1}(2x - 1) \cdot f_{\downarrow 1}(2x + 1)$	$(x) \rightarrow (2, x)$
$f_{\downarrow 1}(x) = f(2x - 1) \cdot f(2x + 1) \cdot f(2x)$	$(x) \rightarrow (1, x)$
$f(x) = f_{in}(x)$	$(x) \rightarrow (0, x)$

- Some approaches to overlapped tiling only consider homogeneous time-iterated stencils

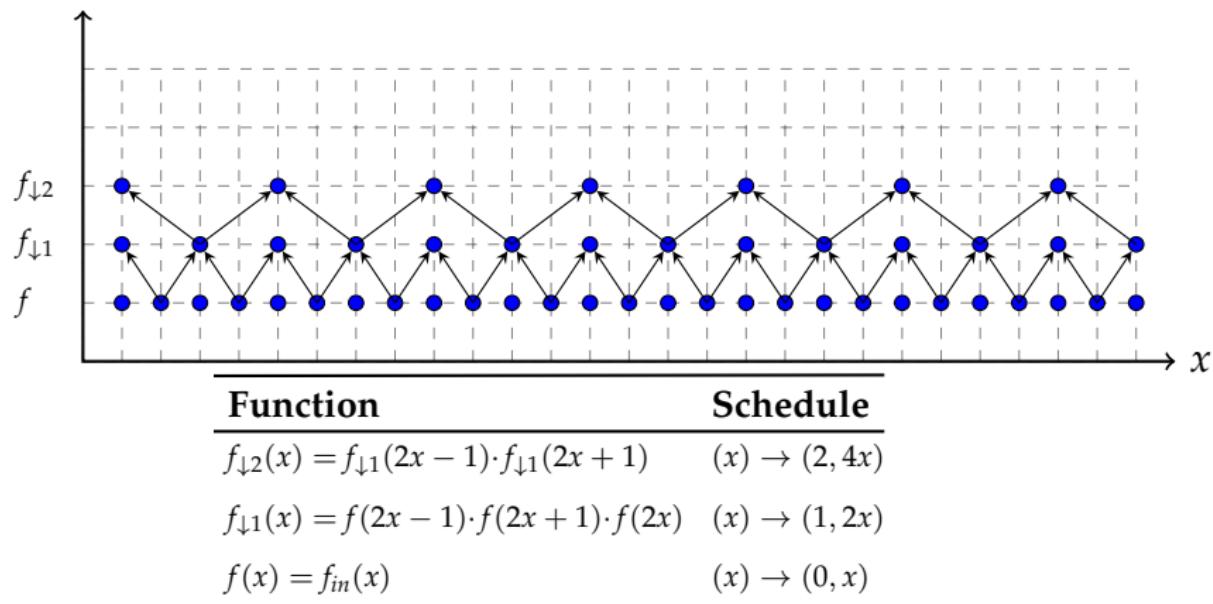
OVERLAPPED TILING FOR HETEROGENEOUS FUNCTIONS



Function	Schedule
$f_{\downarrow 2}(x) = f_{\downarrow 1}(2x - 1) \cdot f_{\downarrow 1}(2x + 1)$	$(x) \rightarrow (2, x)$
$f_{\downarrow 1}(x) = f(2x - 1) \cdot f(2x + 1) \cdot f(2x)$	$(x) \rightarrow (1, x)$
$f(x) = f_{in}(x)$	$(x) \rightarrow (0, x)$

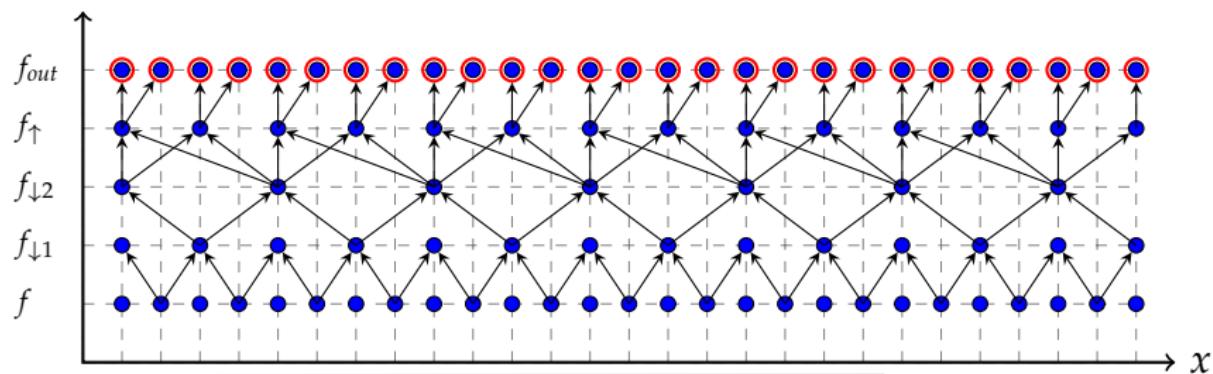
- Cannot have a fixed tile shape when dependence vectors are non-constant

OVERLAPPED TILING FOR HETEROGENEOUS FUNCTIONS



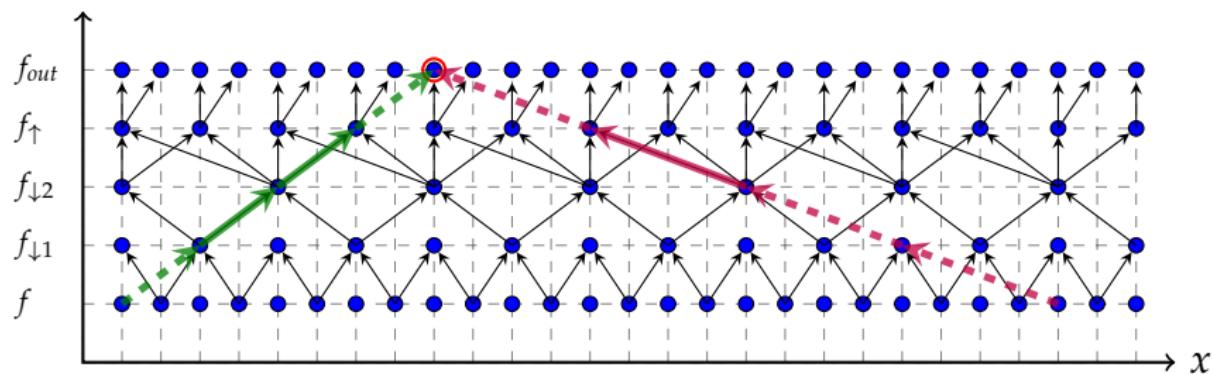
- Scaling and aligning the schedules

OVERLAPPED TILING FOR HETEROGENEOUS FUNCTIONS



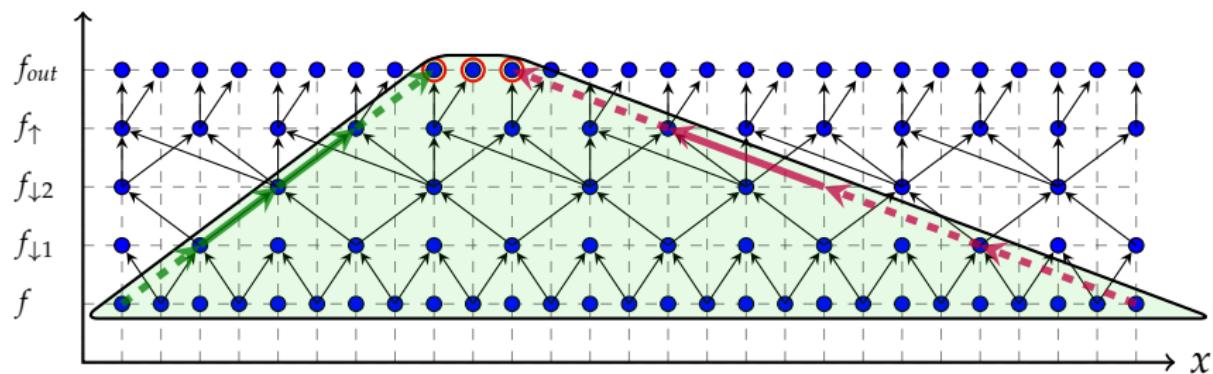
Function	Schedule
$f_{out}(x) = f_{\uparrow}(x/2)$	$(x) \rightarrow (4, x)$
$f_{\uparrow}(x) = f_{\downarrow 2}(x/2) \cdot f_{\downarrow 2}(x/2 + 1)$	$(x) \rightarrow (3, 2x)$
$f_{\downarrow 2}(x) = f_{\downarrow 1}(2x - 1) \cdot f_{\downarrow 1}(2x + 1)$	$(x) \rightarrow (2, 4x)$
$f_{\downarrow 1}(x) = f(2x - 1) \cdot f(2x + 1) \cdot f(2x)$	$(x) \rightarrow (1, 2x)$
$f(x) = f_{in}(x)$	$(x) \rightarrow (0, x)$

OVERLAPPED TILING FOR HETEROGENEOUS FUNCTIONS



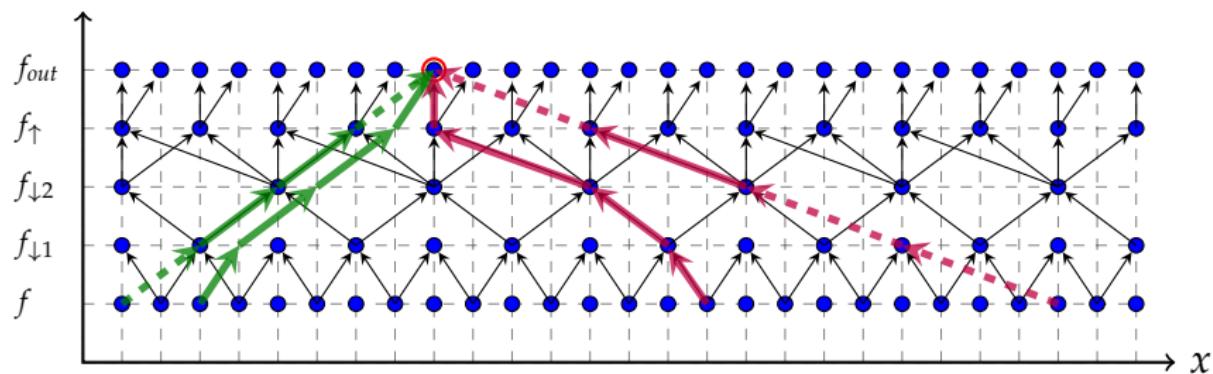
- Determining tile shape
- Conservative vs precise bounding faces

OVERLAPPED TILING FOR HETEROGENEOUS FUNCTIONS



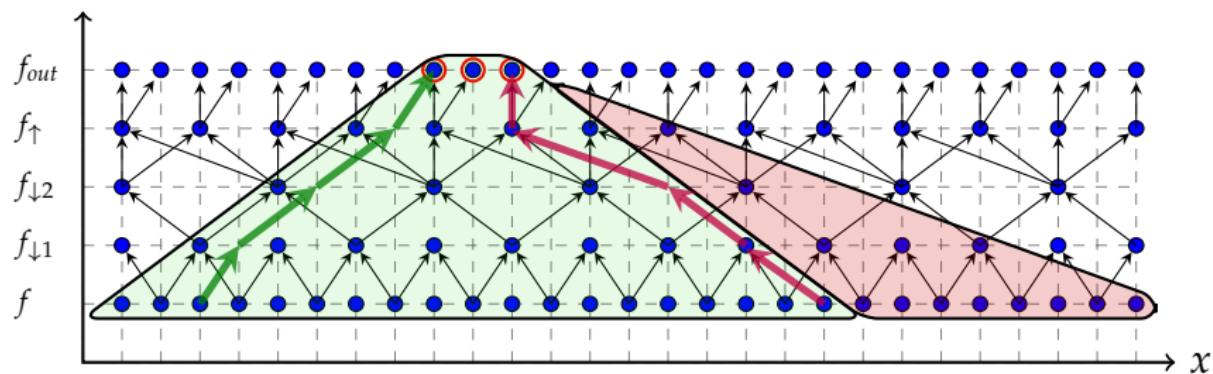
- Determining tile shape
- Conservative vs precise bounding faces

OVERLAPPED TILING FOR HETEROGENEOUS FUNCTIONS



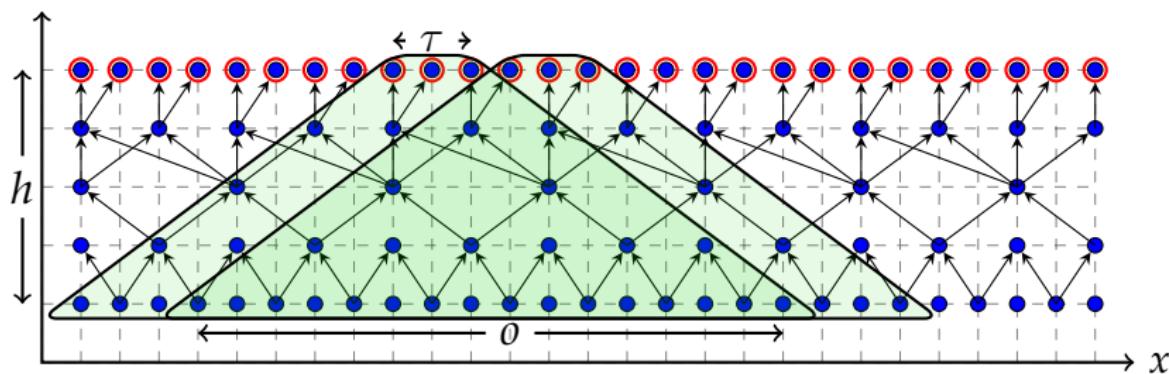
- Determining tile shape
- Conservative vs precise bounding faces

OVERLAPPED TILING FOR HETEROGENEOUS FUNCTIONS



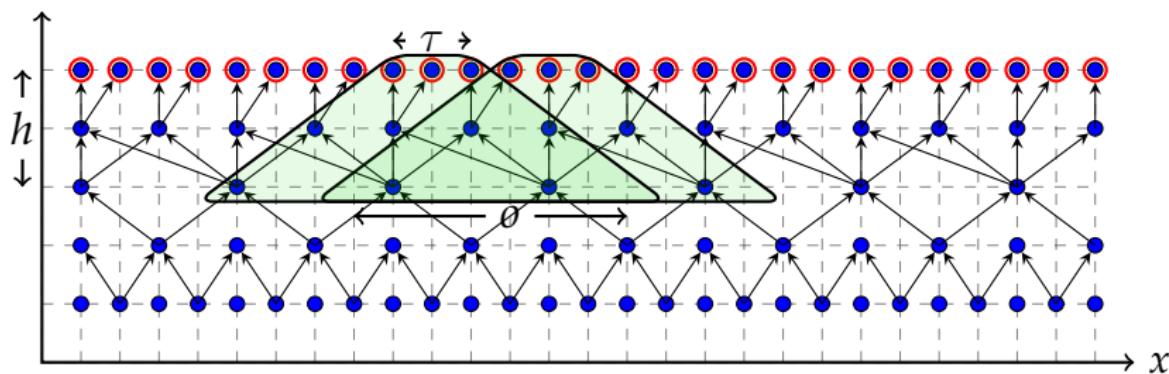
- Significant reduction in redundant computation

OVERLAPPED TILING FOR HETEROGENEOUS FUNCTIONS



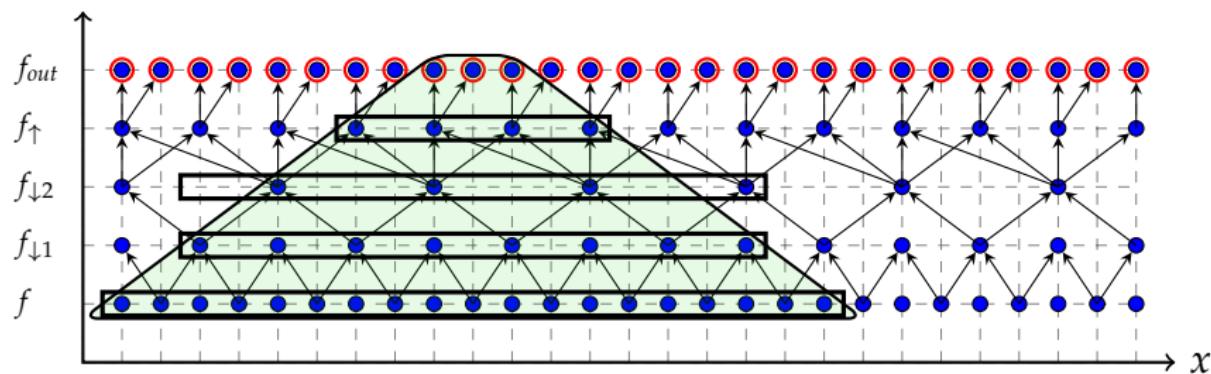
- Tile size τ , overlap O , height h
- Trade-off between fusion height and overlap
- More fusion provides more locality, but also a greater fraction of redundant computation

OVERLAPPED TILING FOR HETEROGENEOUS FUNCTIONS



- Tile size τ , overlap O , height h
- Trade-off between fusion height and overlap
- More fusion provides more locality, but also a greater fraction of redundant computation

OVERLAPPED TILING FOR HETEROGENEOUS FUNCTIONS



Scratchpads

- Reduction in intermediate storage
- Better locality and reuse
- Privatized for each thread

SOME BENCHMARKS IN THIS DOMAIN

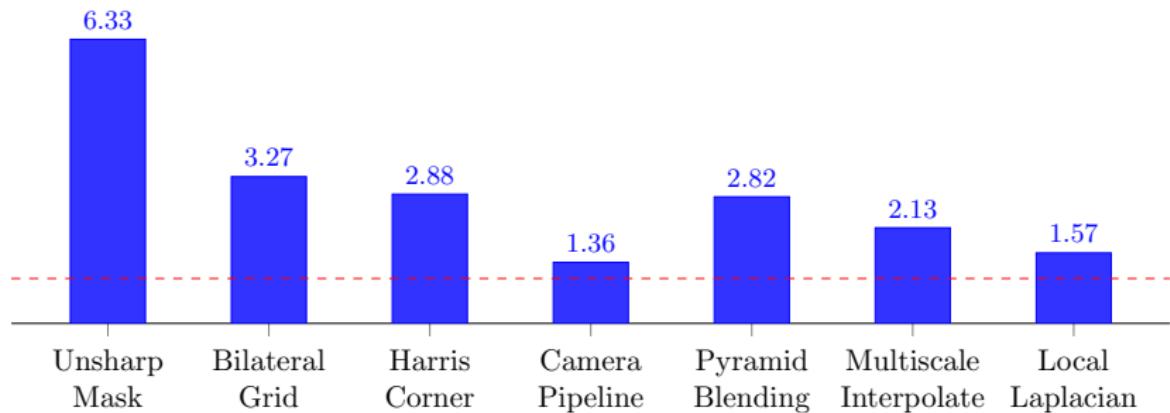
Seven benchmarks of varying structure and complexity

Benchmark	Stages	Lines	Image size
Unsharp Mask	4	16	$2048 \times 2048 \times 3$
Bilateral Grid	7	43	2560×1536
Harris Corner	11	43	6400×6400
Camera Pipeline	32	86	2528×1920
Pyramid Blending	44	71	$2048 \times 2048 \times 3$
Multiscale Interpolate	49	41	$2560 \times 1536 \times 3$
Local Laplacian	99	107	$2560 \times 1536 \times 3$

- Video demo

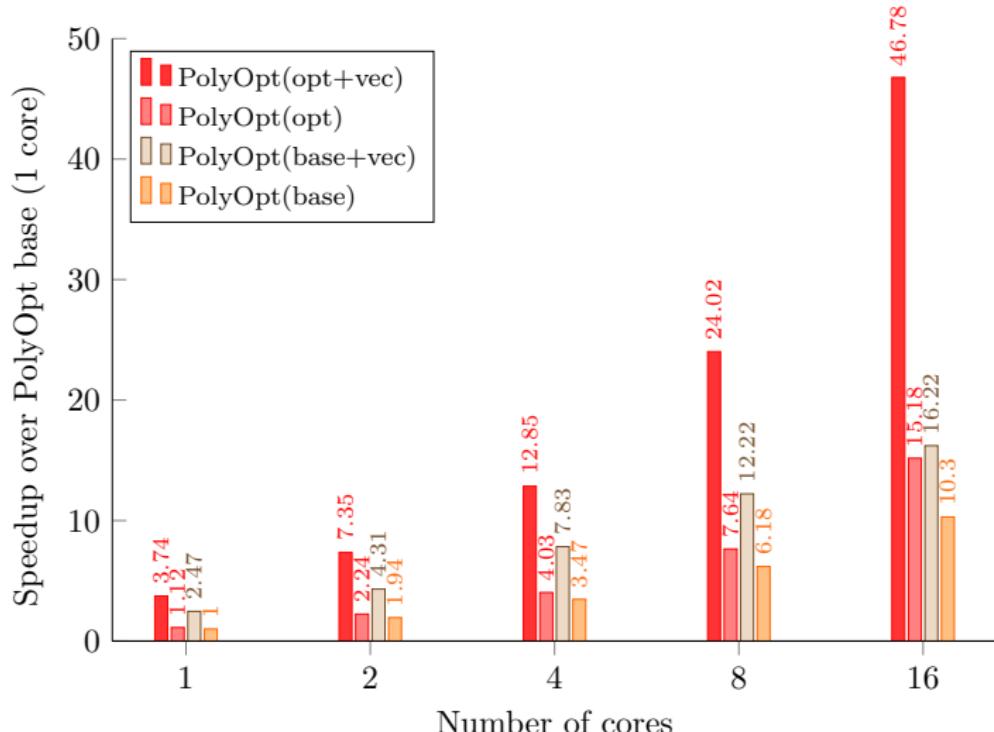
EFFECTIVENESS OF TRANSFORMATIONS

Speedup of grouped and tiled implementations over naively parallelized and vectorized ones



16 threads and vectorization enabled
On a 2-socket 16-core Intel Xeon SandyBridge
Source: [Mullapudi et al. ASPLOS 2015 PolyMage]

A DEEPER LOOK: HARRIS CORNER DETECTION



Source: PolyMage, Mullapudi et al. ASPLOS 2015

REFERENCES

- Delite: A compiler/runtime framework for embedded DSLs
<http://stanford-ppl.github.io/Delite/> (read papers)
- Halide <http://halide-lang.org> (tutorial and code)
<http://halide-lang.org/cvpr2015.html>
- PolyMage:
<http://mcl.csa.iisc.ernet.in/polymage.html> (code, slides, and paper)
Mullapudi et al. Automatic Optimization of Image Processing Pipelines, ASPLOS 2015.

OUTLINE

1 Introduction, Motivation, and Foundations

2 Optimizations for Parallelism, Locality and More

- Polyhedral Framework
- Affine Transformations
- Tiling
- Concurrent Start in Tiled Spaces

3 High-Performance DSL Compilation

- Image Processing Pipelines
- Solving PDEs Numerically
- Deep Neural Networks

4 Conclusions

SOLVING PARTIAL DIFFERENTIAL EQUATIONS NUMERICALLY

- A number of science and engineering problems involve solving a partial differential equation (PDE)
- Numerous techniques exist varying in computational complexity, convergence properties, amenability to optimization
- A discretization strategy is chosen first
 - ① **Finite difference**
 - ② Finite volume
 - ③ Finite element

EXAMPLE: POISSON'S EQUATION

Poisson's equation – the mother of all PDEs:

$$\nabla^2 u = f.$$

EXAMPLE: POISSON'S EQUATION

Poisson's equation – the mother of all PDEs:

$$\nabla^2 u = f.$$

- Approximate the second derivative (Laplacian) using finite difference. Eg: for a 2-d grid,

$$\frac{1}{h^2} \begin{bmatrix} -1 & & -1 \\ -1 & 4 & -1 \\ & -1 & \end{bmatrix} u_h = f_h.$$

EXAMPLE: POISSON'S EQUATION

Poisson's equation – the mother of all PDEs:

$$\nabla^2 u = f.$$

- Approximate the second derivative (Laplacian) using finite difference. Eg: for a 2-d grid,

$$\frac{1}{h^2} \begin{bmatrix} 1 & -1 & & \\ -1 & 4 & -1 & \\ & -1 & \ddots & \\ & & & \ddots \end{bmatrix} u_h = f_h.$$

- We are solving $y = Ax$, where A is a sparse banded matrix (x is a linearization of the unknown on the multi-dimensional grid)
- What about A^{-1} ?

GEOMETRIC MULTIGRID METHOD

- Use a hierarchical structure – a multi-scale representation of the grid
- Perform pre-smoothing at a finer level
- Restrict the error to a coarser grid
- Solve for the error at a coarser level (recursion)
- Interpolate the error to the finer level
- Run multiple iterations of the above

Tiling techniques can be used to readily optimize the pre-smoothing or post-smoothing steps

HIERARCHICAL MESH STRUCTURE

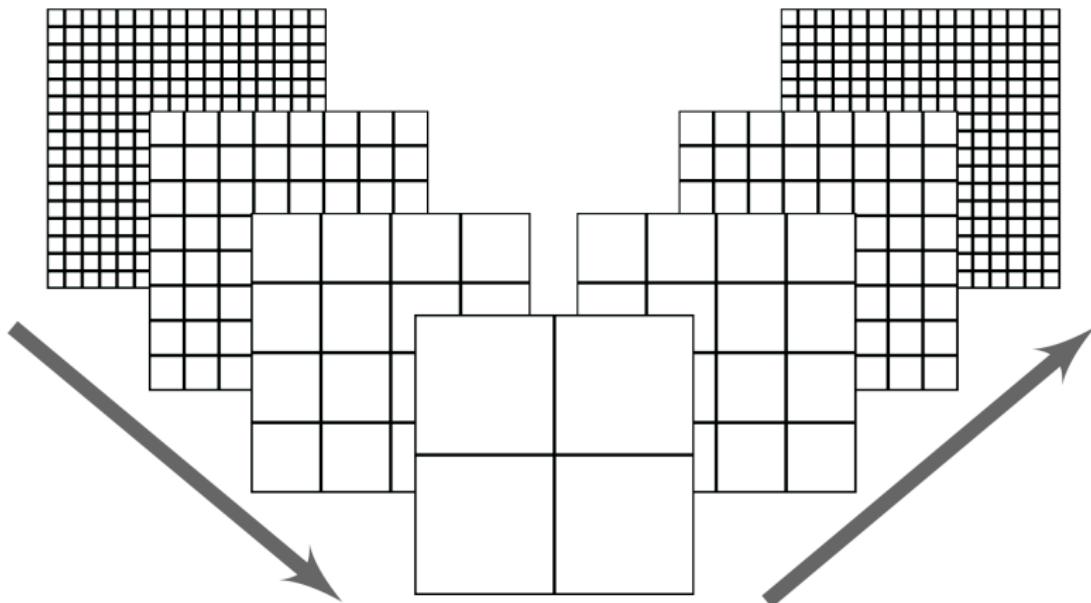


Figure: Hierarchical mesh structure for Multigrid levels

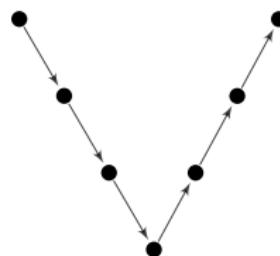
MULITIGRID V-CYCLE: ALGORITHM

Input : v^h, f^h

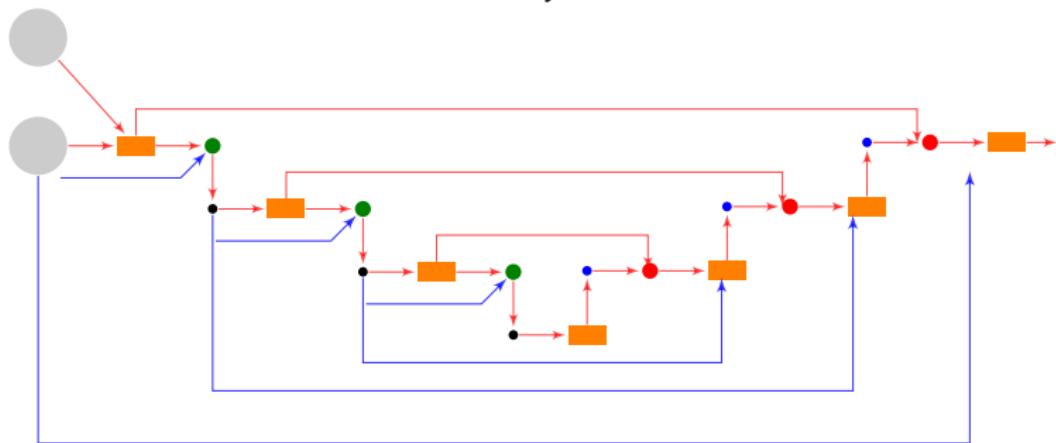
- 1 Relax v^h for n_1 iterations: $v^h \leftarrow (1 - \omega D^{-1}A^h)v^h + \omega D^{-1}f^h$
// pre-smoothing
- 2 **if** coarsest level **then**
 - 3 | Relax v^h for n_2 iterations *// coarse smoothing*
 - 4 $r^h \leftarrow f^h - A^h v^h$ *// residual*
 - 5 $r^{2h} \leftarrow I_h^{2h} r^h$ *// restriction*
 - 6 $e^{2h} \leftarrow 0$
 - 7 $e^{2h} \leftarrow V\text{-cycle}^{2h}(e^{2h}, r^{2h})$
 - 8 $e^h \leftarrow I_{2h}^h e^{2h}$ *// interpolation*
 - 9 $v^h \leftarrow v^h + e^h$ *// correction*
- 10 Relax v^h for n_3 iterations *// post smoothing*
- 11 **return** v^h

- Animation

MULITIGRID V-CYCLE

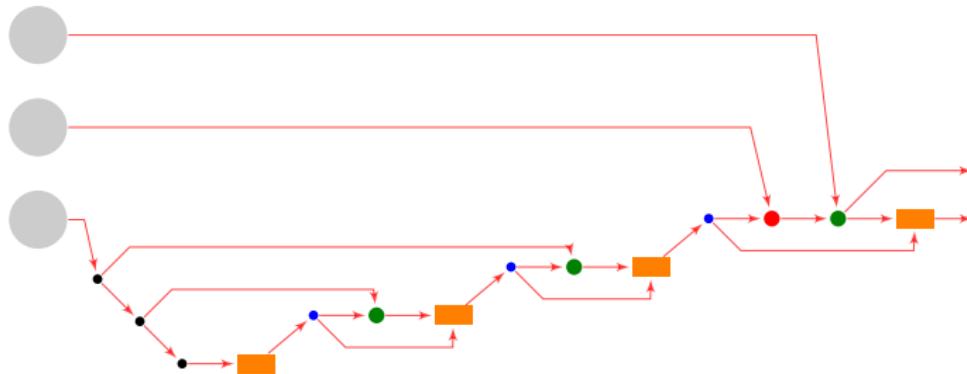


(a) V-cycle



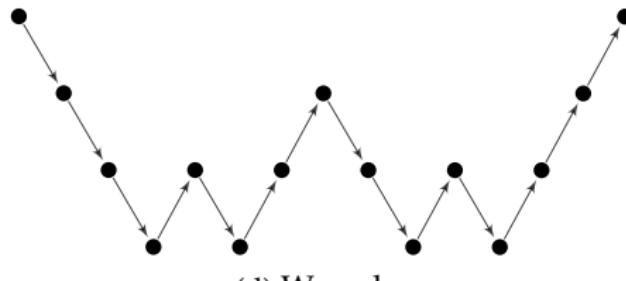
(b) V-cycle: complete DAG

NAS MG V-CYCLE

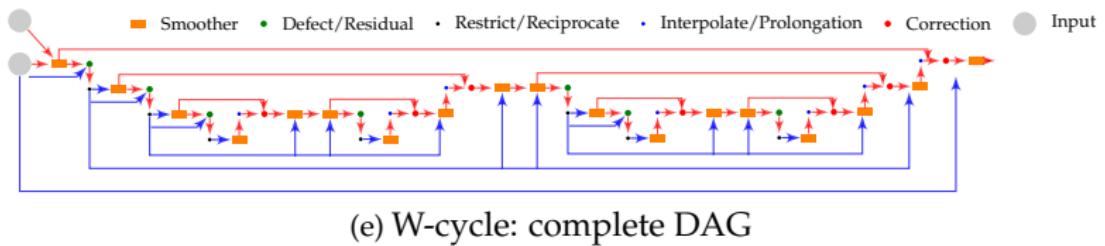


(c) NAS-PB MG V-cycle

MULTIGRID W-CYCLE



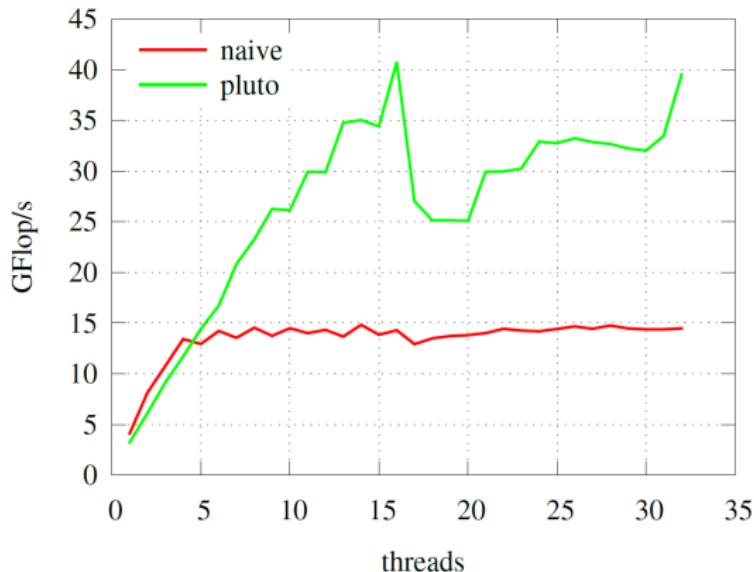
(d) W-cycle



(e) W-cycle: complete DAG

Figure: DAG representation of (a) V-cycle and (b) W-cycle

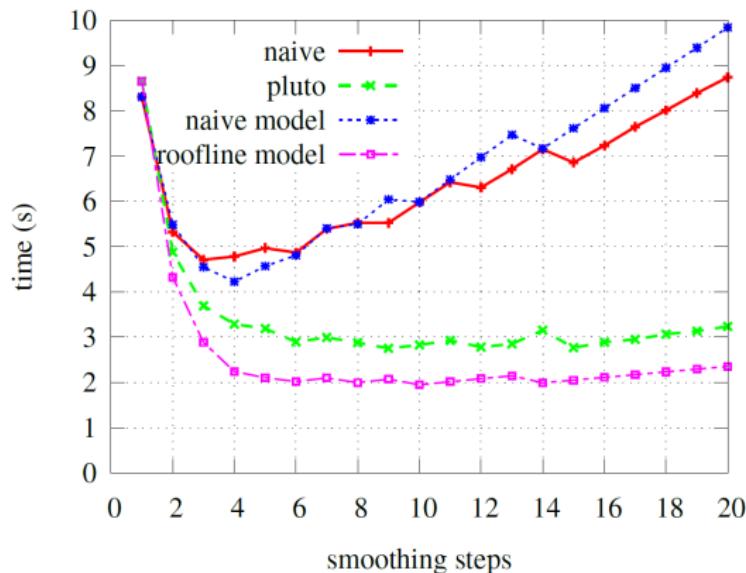
GMG: SMOOTHER SCALING



Scalability of 10 iterations of the Jacobi smoother on an 8000^2 domain on a 16-core Intel Sandy Bridge

Source: Ghysels (LBNL) and Vanroose (University of Antwerp)
SIAM J. Scientific Computing 2015

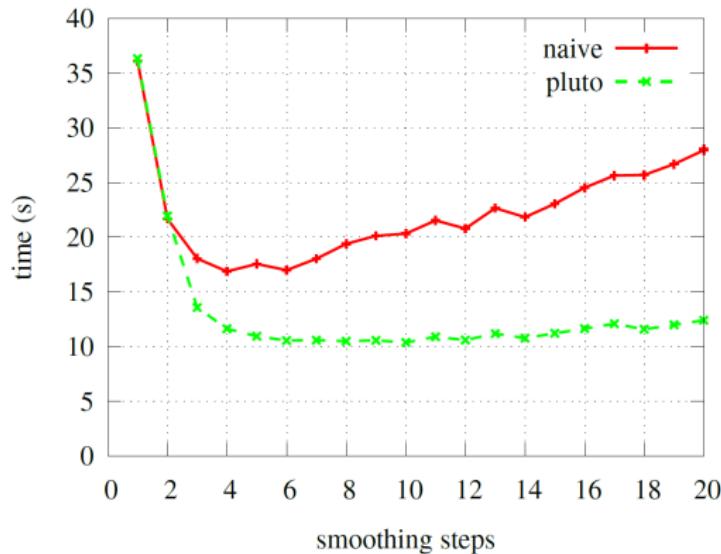
GMG: EXECUTION TIME (2-D)



Timings for a full solve on a 8191^2 domain using V -cycles with a relative stopping tolerance 10^{-12}

Source: Ghysels and Vanroose (University of Antwerp) SIAM J. Scientific Computing 2015

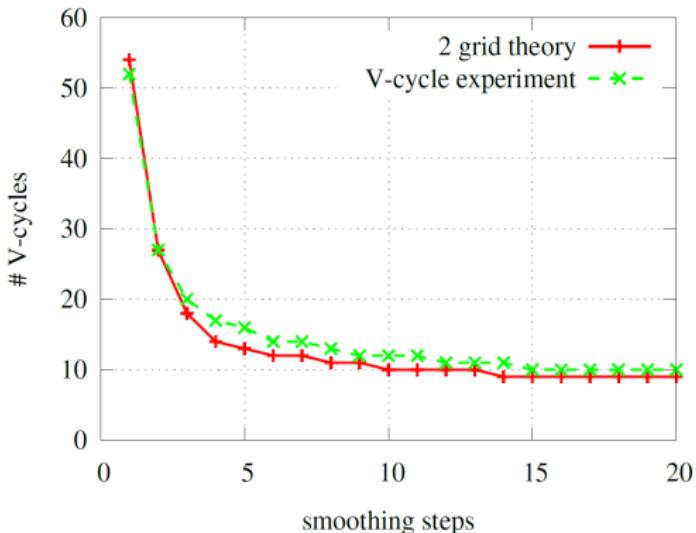
GMG: EXECUTION TIME (3-D)



Timings for a full solve on a 511^3 domain using V -cycles with a relative stopping tolerance 10^{-12} on a dual socket Sandy Bridge machine for a 3D domain

Source: Ghysels and Vanroose (University of Antwerp) SIAM J. Scientific Computing 2015

GMG: CONVERGENCE FOR SMOOTHING STEPS



The corresponding number of V-cycles required to reach a 10^{-12} relative stopping criterion for both two-grid and multigrid. **Source:** Ghysels and Vanroose (University of Antwerp) SIAM J. Scientific Computing 2015

REFERENCES

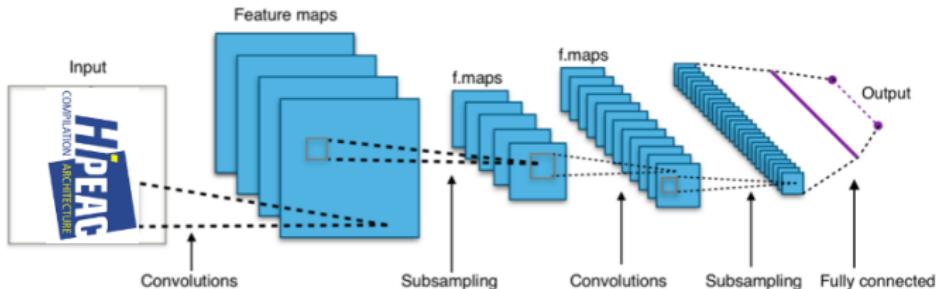
- P. Ghysels and W. Vanroose, Modeling the performance of geometric multigrid on many-core computer architectures, SIAM J. Scientific Computing (2015).
- Knabner P, Angerman L. Numerical Methods for Elliptic and Parabolic Partial Differential Equations. Texts in Applied Mathematics, Springer, 2003.
- Saad Y. Iterative Methods for Sparse Linear Systems, Second Edition. SIAM: Philadelphia, 2003.

OUTLINE

- 1 Introduction, Motivation, and Foundations
- 2 Optimizations for Parallelism, Locality and More
 - Polyhedral Framework
 - Affine Transformations
 - Tiling
 - Concurrent Start in Tiled Spaces
- 3 High-Performance DSL Compilation
 - Image Processing Pipelines
 - Solving PDEs Numerically
 - Deep Neural Networks
- 4 Conclusions

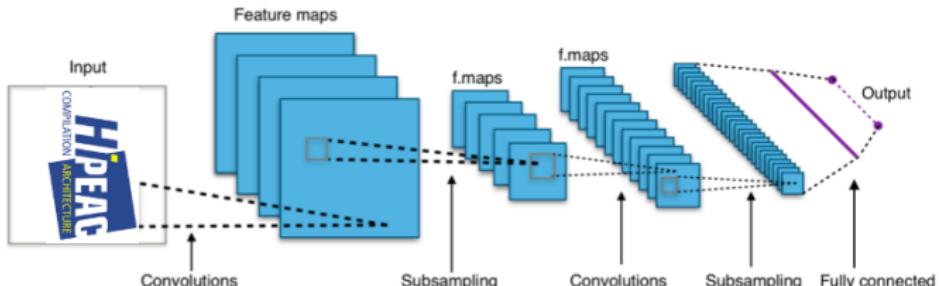
DEEP CONVOLUTIONAL NEURAL NETWORKS

- Shown to be effective in image classification, speech recognition, and at many more tasks
- A domain currently of high interest



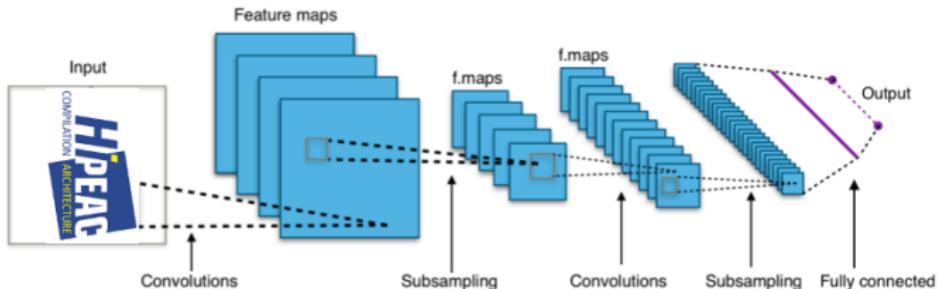
DEEP CONVOLUTIONAL NEURAL NETWORKS

- Shown to be effective in image classification, speech recognition, and at many more tasks
- A domain currently of high interest
- **Training these networks requires HPC!**
- **Inference requires high performance or real-time response**



DEEP CONVOLUTIONAL NEURAL NETWORKS

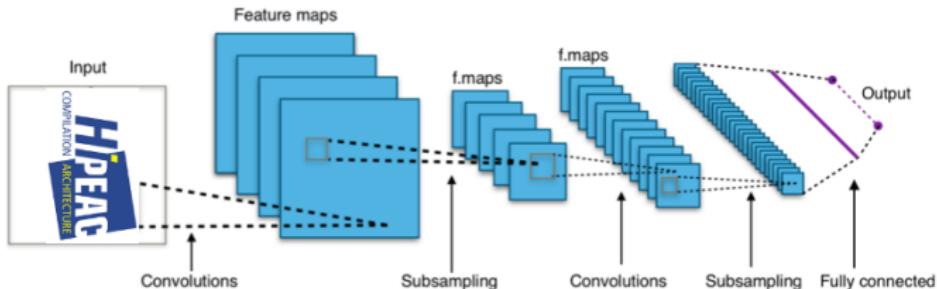
- Training these networks requires HPC!
- Inference requires high performance or real-time response



- The network is trained by sending through training data (in batches) forward and then backward, multiple times

DEEP CONVOLUTIONAL NEURAL NETWORKS

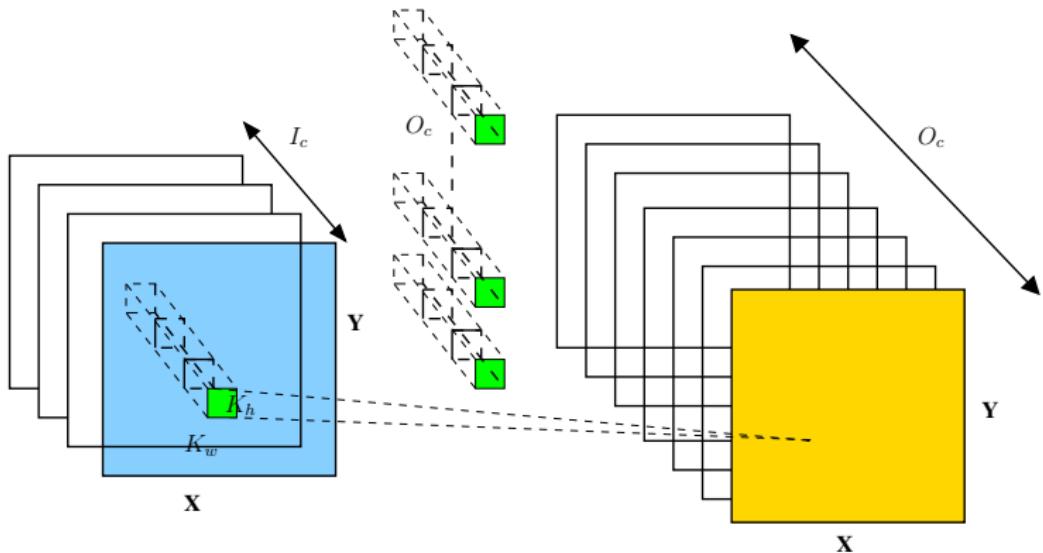
- Training these networks requires HPC!
- Inference requires high performance or real-time response



- The network is trained by sending through training data (in batches) forward and then backward, multiple times
- Extremely compute intensive!
- Think about running numerous matrix-matrix multiplications in parallel (with all of them sharing data along multiple dimensions)

CNN CONVOLUTION AS A LOOP NEST

```
for (n = 0; n < N; n++) /* Samples in a batch */
  for (o = 0; o < Oc; o++) /* Output feature channels */
    for (i = 0; i2 < Ic; i++) /* Input feature channels */
      for (y = 0; i3 < Y; i3++) /* Layer height */
        for (x = 0; i4 < X; i4++) /* Layer width */
          for (kh = 0; i5 < Kh; i5++)
            for (kw = 0; i6 < Kw; i6++)
              output[n, o, y, x] += input[n, i, y+kh, x+kw] * weights[o, i, kh, kw];
```



CNN CONVOLUTION AS A LOOP NEST

```
for (n = 0; n < N; n++) /* Samples in a batch */
  for (o = 0; o < Oc; o++) /* Output feature channels */
    for (i = 0; i2 < Ic; i++) /* Input feature channels */
      for (y = 0; i3 < Y; i3++) /* Layer height */
        for (x = 0; i4 < X; i4++) /* Layer width */
          for (kh = 0; i5 < Kh; i5++) /* Convolution kernel height */
            for (kw = 0; i6 < Kw; i6++) /* Convolution kernel width */
              output[n, o, y, x] += input[n, i, y+kh, x+kw] * weights[o, i, kh, kw];
```

① Abundant parallelism

- Batch-level parallelism (N)
- Parallelism from feature channels and layer (Y, X, Oc)
- Parallelism when using BLAS calls?

② Locality?

- $output$: reuse along i, kh, kw
- $input$: reuse along o (along kh, kw as well if no replicate)
- $weights$ (reuse along n, y, x)
- In addition, multiple convolutions performed successively

③ Data allocation, layout, and management?

OPTIMIZING CNNs

- High-dimensional iteration spaces, high-dimensional arrays
- **A playground for optimization**
- Parallelization, locality optimization, data allocation / layout optimization, computation reduction?
- Take advantage of existing vendor libraries (MKL, CuDNN)
- New CNN and other DNN architectures, very deep neural networks, upcoming parallel architectures

CNNs: STATE-OF-THE-ART

- GPUs are used: NVIDIA CuDNN provides tuned primitives for well-known/widely used layers (convolutions, max pooling)
- Caffe (C++-based), Torch (Lua), Theano (Python), TensorFlow (Python) are library-based approaches that wrap around calls to libraries (CuDNN)

CNNs: STATE-OF-THE-ART

- GPUs are used: NVIDIA CuDNN provides tuned primitives for well-known/widely used layers (convolutions, max pooling)
- Caffe (C++-based), Torch (Lua), Theano (Python), TensorFlow (Python) are library-based approaches that wrap around calls to libraries (CuDNN)
- State-of-the-art implementations sustain excellent performance on GPUs
On an NVIDIA GeForce Titan X with a peak of 6.97 TFLOPS (single-precision), VGGNet network E with fp32 data, NVIDIA CuDNN v3 obtains 44% and 90% of machine peak respectively for $N=1$ and $N=64$.
- **What will the role of DSL compilers and code generators be?**

REFERENCES

- ① *Coarse grain parallelization of deep neural networks*, Marc Gonzalez Tallada, PPoPP 2016
- ② *Latte: a language, compiler, and runtime for elegant and efficient deep neural networks*, Truong et al. PLDI 2016
- ③ *Fast Algorithms for Convolutional Neural Networks*, Andrew Lavin, Scott Gray, Nov 2015
<http://arxiv.org/abs/1509.09308>

OUTLINE

1 Introduction, Motivation, and Foundations

2 Optimizations for Parallelism, Locality and More

- Polyhedral Framework
- Affine Transformations
- Tiling
- Concurrent Start in Tiled Spaces

3 High-Performance DSL Compilation

- Image Processing Pipelines
- Solving PDEs Numerically
- Deep Neural Networks

4 Conclusions

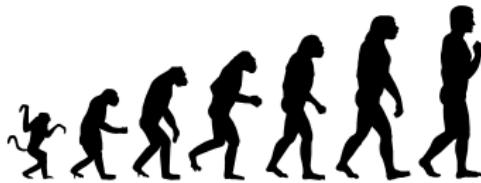
TAKEAWAYS FOR THE DOMAINS PRESENTED

- The presented domains have abundant parallelism, reuse, and optimization opportunity
- There is more parallelism than the number of processors
- One may be ultimately memory bandwidth bound (even after optimization) on a large number of cores
- A naive parallelization is often easy
- **But while parallelizing**, pay attention to:
 - Tiling for locality
 - Fusion
 - Synchronization costs
 - Local buffering (easier/feasible in DSL compilation)

BIG PICTURE: ROLE OF COMPILERS

General-purpose: EVOLUTIONARY

- Improve existing **general-purpose** compilers (for C, C++, Python, ...)
- Limited improvements but wide impact



Domain-specific: REVOLUTIONARY

- Build new **domain-specific languages and compilers**
- Dramatic speedups

- ➊ Important to pursue both
- ➋ Need to build reusable infrastructure to share among various DSLs
- ➌ Reduce multiplicity of DSL environments

CONCLUSIONS

- Tremendous opportunities in high-performance compilation — both domain-specific and general-purpose
- Several emerging domains that require high-performance compilation
 - will impact both embedded and big data crunching architectures
- These domains are a perfect fit for HiPEAC (eg: high-performance embedded vision)

Thank You!