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RESEARCH IN PROGRAMMING AND COMPILER

TECHNOLOGIES

Current:
C, C++, Java, Python, MATLAB, R, ...

What will the new and disruptive programming
technologies of the 21st century be?
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RESEARCH IN PROGRAMMING AND COMPILER

TECHNOLOGIES

...1 What do programmers want?

...2 How are architectures evolving?
Multiple cores and many cores on a chip
GPUs, accelerators, and heterogeneous parallel
architectures
Wider vector processing units
Deep memory hierarchies
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HIGH-PERFORMANCE COMPILATION: WHAT DO YOU

WANT TO PROGRAM?

Scientific and engineering simulations
Eg: Solving partial differential equations numerically

Embedded vision (Eg: Autonomous/self-driving cars)
Smartphones — HPC in data centers and cloud drives a
number of smartphone technologies
Scientific and Engineering simulations
Data Analytics
Deep Learning
Artificial Intelligence
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QUESTIONS TO THINK ABOUT

What will the new programming technologies for the
emerging domains be?

Current: C, C++, Fortran with OpenMP, MPI, CUDA,
OpenCL, ...
Future: New languages, compilers, libraries, and DSLs
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QUESTIONS TO THINK ABOUT

What will the new programming technologies for Deep
Learning be?

Caffe, Theano, Torch, TensorFlow, ... are library-based
approaches
Just scratches the surface
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THE NEED FOR HIGH PERFORMANCE

More/Larger Data
Instagram — 60 million photos / day
YouTube — 100 hours of video uploaded every minute

Need for a fast/real-time response in some domains
More complex algorithms
Science/Engineering simulations/modeling: Time to
solution
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PROGRAMMING MODERN HARDWARE EFFECTIVELY

Compute speed: 4 multiply-adds per cycle
Synchronization (2 cores 0.25 µs, 8 cores 1.25 µs, 2x8 cores
1.54 µs); memory bandwidth (20 GB/s)

High-Performance Programming and Compilation
Exploiting locality (caches, registers)
Reduce synchronization and communication as much as
possible
Exploit single core hardware well (vectorization)
Multi-core parallelism

Good scaling without good single thread performance is a
great waste of resources (power, equipment cost)
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A CLASSIFICATION OF VARIOUS APPROACHES

...1 Manual low-level (C, C++) with parallel programming
models (OpenMP, CUDA, MPI) with the best optimizing
compilers

...2 Library-based: C, C++, Python with libraries/packages:
MKL, ScaLAPACK, CuBLAS, CuDNN

...3 Ultra-high level languages/packages (R, MATLAB, ...)

DSLs: Obtain productivity of the last class and the
performance of the first
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EXAMPLE 1: UNSHARP MASK – AN IMAGE

PROCESSING PIPELINE

...(C) Bernie Saunders, CC BY-NC-ND 3.0



UNSHARP MASK: COMPUTATION

..

for (i = 0; i <= 2; i++)
for (j = 2; j <= (R + 1); j++)

for (k = 0; (k <= (C + 3)); k++)
blurx[i][j-2][k] = img[i][j-2][k]*0.0625f + img[i][j-1][k]*0.25f
+ img[i][j][k]*0.375f + img[i][j+1][k]*0.25f + img[i][j+2][k]*0.0625f;

for (i = 0; (i <= 2); i++)
for (j = 2; (j <= (R + 1)); j++)

for (k = 2; (k <= (C + 1)); k++)
blury[i][j][k-2] = blurx[i][j-2][k-2]*0.0625f + blurx[i][j-2][k-1]*0.25f

+ blurx[i][j-2][k]*0.375f + blurx[i][j-2][k+1]*0.25f + blurx[i][j-2][k+2]*0.0625f;

for (i = 0; (i <= 2); i++)
for (j = 2; (j <= (R + 1)); j++)

for (k = 2; (k <= (C + 1)); k++)
sharpen[i][j][k-2] = img[i][j][k]*(1 + weight) + blury[i][j-2][k-2]*(-weight);

for (i = 0; i <= 2; i++)
for (j = 2; j <= R + 1; j++)

for (k = 2; k <= C + 1; k++) {
_ct0 = img[i][j][k];
_ct1 = sharpen[i][j-2][k-2];
_ct2 = (std::abs((img[i][j][k] - blury[i][j-2][k-2])) < threshold)? _ct0: _ct1;
mask[i][j-2][k-2] = _ct2;

}

..Iin.

blurx

.

blury

.

sharpen

.

masked

A sequential version in C: 18.6 ms / frame
(using GCC with opts, quad-core Nehalem, 720p video)
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UNSHARP MASK - A NAIVE OPENMP VERSION

..

for (i = 0; i <= 2; i++)
#pragma omp parallel for

for (j = 2; j <= (R + 1); j++)
#pragma ivdep

for (k = 0; k <= C + 3; k++)
blurx[i][j-2][k] = img[i][j-2][k]*0.0625f + img[i][j-1][k]*0.25f
+ img[i][j][k]*0.375f + img[i][j+1][k]*0.25f + img[i][j+2][k]*0.0625f;

for (i = 0; i <= 2; i++)
#pragma omp parallel for

for (j = 2; j <= R + 1; j++)
#pragma ivdep

for (k = 2; k <= C + 1; k++)
blury[i][j][k-2] = blurx[i][j-2][k-2]*0.0625f + blurx[i][j-2][k-1]*0.25f

+ blurx[i][j-2][k]*0.375f + blurx[i][j-2][k+1]*0.25f + blurx[i][j-2][k+2]*0.0625f;

for (i = 0; i <= 2; i++)
#pragma omp parallel for

for (j = 2; j <= R + 1; j++)
#pragma ivdep

for (k = 2; k <= C + 1; k++)
sharpen[i][j][k-2] = img[i][j][k]*(1 + weight) + blury[i][j-2][k-2]*(-weight);

for (i = 0; i <= 2; i++)
#pragma omp parallel for private(_ct0,_ct1,_ct2)

for (j = 2; j <= R + 1; j++)
#pragma ivdep

for (k = 2; k <= C + 1; k++) {
_ct0 = img[i][j][k];
_ct1 = sharpen[i][j-2][k-2];
_ct2 = (std::abs((img[i][j][k] - blury[i][j-2][k-2])) < threshold)? _ct0: _ct1;
mask[i][j-2][k-2] = _ct2;

}

..Iin.

blurx

.

blury

.

sharpen

.

masked

20.2 ms / frame on 1 thread, 18.02 ms / frame on 4 threads
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UNSHARP MASK - A BETTER OPENMP VERSION

..

#pragma omp parallel for
for (j = 2; j <= (R + 1); j++)

for (i = 0; i <= 2; i++)
#pragma ivdep

for (k = 0; (k <= (C + 3)); k++)
blurx[i][j-2][k] = img[i][j-2][k]*0.0625f + img[i][j-1][k]*0.25f
+ img[i][j][k]*0.375f + img[i][j+1][k]*0.25f + img[i][j+2][k]*0.0625f;

#pragma omp parallel for
for (j = 2; (j <= (R + 1)); j++)

for (i = 0; i <= 2; i++)
#pragma ivdep

for (k = 2; (k <= (C + 1)); k++)
blury[i][j][k-2] = blurx[i][j-2][k-2]*0.0625f + blurx[i][j-2][k-1]*0.25f

+ blurx[i][j-2][k]*0.375f + blurx[i][j-2][k+1]*0.25f + blurx[i][j-2][k+2]*0.0625f;

#pragma omp parallel for
for (j = 2; (j <= (R + 1)); j++)

for (i = 0; i <= 2; i++)
#pragma ivdep

for (k = 2; (k <= (C + 1)); k++)
sharpen[i][j][k-2] = img[i][j][k]*(1 + weight) + blury[i][j-2][k-2]*(-weight);

#pragma omp parallel for private(_ct0,_ct1,_ct2)
for (j = 2; j <= R + 1; j++)

for (i = 0; i <= 2; i++)
#pragma ivdep

for (k = 2; k <= C + 1; k++) {
_ct0 = img[i][j][k];
_ct1 = sharpen[i][j-2][k-2];
_ct2 = (std::abs((img[i][j][k] - blury[i][j-2][k-2])) < threshold)? _ct0: _ct1;
mask[i][j-2][k-2] = _ct2;

}

..Iin.

blurx

.

blury

.

sharpen

.

masked

18.6 ms / frame on 1 thread, 15.03 ms / frame on 4 threads
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OPTIMIZING UNSHARP MASK

...1 Write with OpenCV library (with Python bindings)

@jit("float32[::](uint8[::], int64)", cache = True, nogil = True)
def unsharp_cv(frame, lib_func):
frame_f = np.float32(frame) / 255.0
res = frame_f
kernelx = np.array([1, 4, 6, 4, 1], np.float32) / 16
kernely = np.array([[1], [4], [6], [4], [1]], np.float32) / 16
blury = sepFilter2D(frame_f, -1, kernelx, kernely)
sharpen = addWeighted(frame_f, (1 + weight), blury, (-weight), 0)
th, choose = threshold(absdiff(frame_f, blury), thresh, 1, THRESH_BINARY)
choose = choose.astype(bool)
np.copyto(res, sharpen, ’same_kind’, choose)
return res

Performance: 35.9 ms / frame

...2 Write in a dynamic language like Python and use a JIT (Numba) —
performance: 79 ms / frame

...3 A naive C version parallelized with OpenMP: 18.02 ms / frame

...4 A version with sophisticated optimizations (fusion + overlapped tiling):
8.97 ms / frame (in this course, we will study how to get to this, and
build compilers/code generators that can achieve this automatically)

Video demo
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UNSHARP MASK - A HIGHLY OPTIMIZED VERSION

Note: Code below is indicative and not meant for reading! Zoom into
soft copy or browse source code repo listed in references.

..

#pragma omp parallel for schedule(static)
for (int _T_i1 = 0; (_T_i1 <= ((R + 1) / 32)); _T_i1 = (_T_i1 + 1))
{

int _ct0 = (((R + 1) < ((32 * _T_i1) + 31))? (R + 1): ((32 * _T_i1) + 31));

int _ct1 = ((2 > (32 * _T_i1))? 2: (32 * _T_i1));

int _ct4 = (((R + 1) < ((32 * _T_i1) + 31))? (R + 1): ((32 * _T_i1) + 31));

int _ct5 = ((2 > (32 * _T_i1))? 2: (32 * _T_i1));

int _ct8 = (((R + 1) < ((32 * _T_i1) + 31))? (R + 1): ((32 * _T_i1) + 31));

int _ct9 = ((2 > (32 * _T_i1))? 2: (32 * _T_i1));

int _ct12 = (((R + 1) < ((32 * _T_i1) + 31))? (R + 1): ((32 * _T_i1) + 31));

int _ct13 = ((2 > (32 * _T_i1))? 2: (32 * _T_i1));

for (int _T_i2 = -1; (_T_i2 <= ((C + 3) / 256)); _T_i2 = (_T_i2 + 1))
{

int _ct2 = (((C + 3) < ((256 * _T_i2) + 261))? (C + 3): ((256 * _T_i2) + 261));

int _ct3 = ((0 > (256 * _T_i2))? 0: (256 * _T_i2));

int _ct6 = (((C + 1) < ((256 * _T_i2) + 260))? (C + 1): ((256 * _T_i2) + 260));

int _ct7 = ((2 > ((256 * _T_i2) + 1))? 2: ((256 * _T_i2) + 1));

int _ct10 = (((C + 1) < ((256 * _T_i2) + 259))? (C + 1): ((256 * _T_i2) + 259));

int _ct11 = ((2 > ((256 * _T_i2) + 2))? 2: ((256 * _T_i2) + 2));

int _ct14 = (((C + 1) < ((256 * _T_i2) + 258))? (C + 1): ((256 * _T_i2) + 258));

int _ct15 = ((2 > ((256 * _T_i2) + 3))? 2: ((256 * _T_i2) + 3));

for (int _i0 = 0; (_i0 <= 2); _i0 = (_i0 + 1))
{

for (int _i1 = _ct1; (_i1 <= _ct0); _i1 = (_i1 + 1))
{
#pragma ivdep

for (int _i2 = _ct3; (_i2 <= _ct2); _i2 = (_i2 + 1))
{
blurx[_i0][((-32 * _T_i1) + _i1)][((-256 * _T_i2) + _i2)] = (((((img[(((_i0 * ((R + 4) * (C + 4))) + ((-2 + _i1) * (C + 4))) + _i2)] * 0.0625f) + (img[(((_i0 * ((R + 4) * (C + 4))) + ((-1 + _i1) * (C + 4))) + _i2)] * 0.25f)) + (img[(((_i0 * ((R + 4) * (C + 4)))

+ (_i1 * (C + 4))) + _i2)] * 0.375f)) + (img[(((_i0 * ((R + 4) * (C + 4))) + ((1 + _i1) * (C + 4))) + _i2)] * 0.25f)) + (img[(((_i0 * ((R + 4) * (C + 4))) + ((2 + _i1) * (C + 4))) + _i2)] * 0.0625f));
}

}
}

for (int _i0 = 0; (_i0 <= 2); _i0 = (_i0 + 1))
{

for (int _i1 = _ct5; (_i1 <= _ct4); _i1 = (_i1 + 1))
{
#pragma ivdep

for (int _i2 = _ct7; (_i2 <= _ct6); _i2 = (_i2 + 1))
{
blury[_i0][((-32 * _T_i1) + _i1)][((-256 * _T_i2) + _i2)] = (((((blurx[_i0][((-32 * _T_i1) + _i1)][(-2 + ((-256 * _T_i2) + _i2))] * 0.0625f) + (blurx[_i0][((-32 * _T_i1) + _i1)][(-1 + ((-256 * _T_i2) + _i2))] * 0.25f))

+ (blurx[_i0][((-32 * _T_i1) + _i1)][((-256 * _T_i2) + _i2)] * 0.375f)) + (blurx[_i0][((-32 * _T_i1) + _i1)][(1 + ((-256 * _T_i2) + _i2))] * 0.25f)) + (blurx[_i0][((-32 * _T_i1) + _i1)][(2 + ((-256 * _T_i2) + _i2))] * 0.0625f));
}

}
}

for (int _i0 = 0; (_i0 <= 2); _i0 = (_i0 + 1))
{

for (int _i1 = _ct9; (_i1 <= _ct8); _i1 = (_i1 + 1))
{
#pragma ivdep

for (int _i2 = _ct11; (_i2 <= _ct10); _i2 = (_i2 + 1))
{
sharpen[_i0][((-32 * _T_i1) + _i1)][((-256 * _T_i2) + _i2)] = ((img[(((_i0 * ((R + 4) * (C + 4))) + (_i1 * (C + 4))) + _i2)] * (1 + weight)) + (blury[_i0][((-32 * _T_i1) + _i1)][((-256 * _T_i2) + _i2)] * -(weight)));

}
}

}

for (int _i0 = 0; (_i0 <= 2); _i0 = (_i0 + 1))
{

for (int _i1 = _ct13; (_i1 <= _ct12); _i1 = (_i1 + 1))
{
#pragma ivdep

for (int _i2 = _ct15; (_i2 <= _ct14); _i2 = (_i2 + 1))
{

float _ct16 = img[(((_i0 * ((R + 4) * (C + 4))) + (_i1 * (C + 4))) + _i2)];

float _ct17 = sharpen[_i0][((-32 * _T_i1) + _i1)][((-256 * _T_i2) + _i2)];

float _ct18 = ((std::abs((img[(((_i0 * ((R + 4) * (C + 4))) + (_i1 * (C + 4))) + _i2)] - blury[_i0][((-32 * _T_i1) + _i1)][((-256 * _T_i2) + _i2)])) < threshold)? _ct16: _ct17);
mask_flip[((((_i1-2) * (3 * C)) + ((_i2 - 2) * 3)) + (_i0))] = _ct18;

}
}

}
}

}

..Iin.

blurx

.

blury

.

sharpen

.

masked

15.5 ms / frame on 1 threads, 8.97 ms / frame on 4 threads
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EXAMPLE 2: GEMVER

B = A + u1 ∗ vT
1 + u2 ∗ vT

2

x = x + BTy
x = x + z
w = w + B ∗ x

for (i=0; i<N; i++)
for (j=0; j<N; j++)
B[i][j] = A[i][j] + u1[i]*v1[j] + u2[i]*v2[j];

for (i=0; i<N; i++)
for (j=0; j<N; j++)
x[i] = x[i] + beta* B[j][i]*y[j];

for (i=0; i<N; i++)
x[i] = x[i] + z[i];

for (i=0; i<N; i++)
for (j=0; j<N; j++)
w[i] = w[i] + alpha* B[i][j]*x[j];

The second loop nest operates in parallel along columns of B
The fourth loop nest operates in parallel along rows of B
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EXAMPLE 2. GEMVER – BLOCK DISTRIBUTION

The first loop nest requires distributing B column-wise:
P0 P1 P2 P3
P0 P1 P2 P3
P0 P1 P2 P3
P0 P1 P2 P3

And the second loop nest requires it row-wise:

P0 P0 P0 P0
P1 P1 P1 P1
P2 P2 P2 P2
P3 P3 P3 P3

One needs a transpose in between (an all-to-all
communication) to extract parallelism from both steps
(ignore reduction parallelism)
O(N2) communication for matrix B
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EXAMPLE 2. GEMVER WITH A BLAS LIBRARY

With a library, one would just use a block cyclic
distribution:

dcopy(m * n, A, 1, B, 1);
dger(m, n, 1.0, u1, 1, v1 , 1, B, m);
dger(m, n, 1.0, u2, 1, v2 , 1, B, m);
dcopy(n,z,1,x,1);
dgemv(’T’, m, n, beta, B, m, y, 1, 1.0, x, 1);
dgemv(’N’, m, n, alpha, B, m, x, 1, 0.0, w, 1);

Can we do better?
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EXAMPLE 2. GEMVER: SUDOKU MAPPING

Use a Sudoku-style mapping [NAS MG, BT, dHPF]
Both load balance and O(N) communication on x and w
(no communication for B) (optimal)

P0 P1 P2 P3
P1 P2 P3 P0
P2 P3 P0 P1
P3 P0 P1 P2

A compiler can derive such a mapping based on a model
and generate much better code – mapping that is globally
good
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EXAMPLE 2. GEMVER: PERFORMANCE

A compiler optimizer or code generator can select a
globally good transformation
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Number of processors

scalapack
pluto-data-tile-gp (sudoku)
pluto-data-tile-block-cyclic

On a 32-node InfiniBand cluster (32x8 cores) (weak scaling:
same problem size per node)
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DOMAIN-SPECIFIC LANGUAGES (DSL)

Both examples above motivate a domain-specific
language + compiler approach

High-performance domain-specific language + compiler:
productivity similar to ultra high-level or high-level but
performance similar to manual or even better!
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DOMAIN-SPECIFIC LANGUAGES (DSL)

DSLs
Exploit domain information to improve programmability,
performance, and portability

Expose greater information to the compiler and
programmer specifies less
abstract away many things from programmers
(parallelism, memory)

DSL compilers
can “see” across routines – allow whole program
optimization
generate optimized code for multiple targets
Programmers say what to execute and not how to execute
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BIG PICTURE: ROLE OF COMPILERS

General-Purpose
Improve existing
general-purpose compilers
(for C, C++, Python, ...)
Programmers say a LOT
LLVM/Polly,
GCC/Graphite

Domain-Specific
Build new domain-specific
languages and compilers
Programmers say WHAT
they execute and not
HOW they execute
SPIRAL, Halide

Both approaches share infrastructure
Important to pursue both
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General-Purpose
Improve existing
general-purpose compilers
(for C, C++, Python, ...)
Programmers say a LOT
LLVM/Polly,
GCC/Graphite
Limited improvements,
not everything is possible
Broad impact

Domain-Specific
Build new domain-specific
languages and compilers
Programmers say WHAT
they execute and not
HOW they execute
SPIRAL, Halide
Dramatic speedups,
Automatic parallelization
Narrower impact and
adoption

Both approaches share infrastructure
Important to pursue both
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HANDS-ON TRIAL

Tools/Infrastructure to install and try
Barvinok tool: http://barvinok.gforge.inria.fr/
Pluto http://pluto-compiler.sourceforge.net ( pet
branch of git version)

For assignment at the end of second lecture
PolyMage: https://bitbucket.org/udayb/polymage.git
e0358 git branch
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COMPILERS: WHAT COMES TO MIND?

GCC, LLVM

Scanning, Parsing, Semantic analysis
Scalar optimizations: SSA, constant propagation, dead
code elimination
High-level optimizations
Backend: Register allocation, Instruction scheduling
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WHAT SHOULD A COMPILER DESIGNER THINK

ABOUT?

...1 Productivity: how easy it is to program?

...2 Performance: how well does the code perform?

...3 Portability: how portable is your code? Will it run on a
different architecture?
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HIGH-PERFORMANCE LANGUAGE/COMPILER DESIGN

...1 Productivity
Expressiveness: ease of writing, lines of code
Productivity in writing a correct program, and in writing a
performing parallel program
Library support, Debugging support, Interoperability

...2 Performance
Locality (spatial, temporal, ...)
Multi-core parallelism, coarse-grained parallelization
SIMD parallelism, vectorization
Parallelism granularity, Synchronization, Communication
Dynamic scheduling, Load balancing
Data allocation, Memory mapping and optimization

...3 Portability
Given a new machine, how much time does it take to port?
How well will it perform? How much more time to tune
and optimize?
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AUTOMATIC PARALLELIZATION

Automatic parallelization: programmer provides a sequential
specification, and the compiler or compiler+runtime
parallelizes it

Myths
Automatic parallelization is about just detecting and
marking loops parallel
Has been a failure
Scope restricted to general-purpose compilers

What it really is
Execution and data restructuring to execute in parallel
efficiently
Important in DSL compilers
Can be used for library creation/generation

29/104



AUTOMATIC PARALLELIZATION

Automatic parallelization: programmer provides a sequential
specification, and the compiler or compiler+runtime
parallelizes it

Myths
Automatic parallelization is about just detecting and
marking loops parallel
Has been a failure
Scope restricted to general-purpose compilers

What it really is
Execution and data restructuring to execute in parallel
efficiently
Important in DSL compilers
Can be used for library creation/generation

29/104



AUTOMATIC PARALLELIZATION

Automatic parallelization: programmer provides a sequential
specification, and the compiler or compiler+runtime
parallelizes it

Myths
Automatic parallelization is about just detecting and
marking loops parallel
Has been a failure
Scope restricted to general-purpose compilers

What it really is
Execution and data restructuring to execute in parallel
efficiently
Important in DSL compilers
Can be used for library creation/generation

29/104



OUTLINE

...1 Introduction, Motivation, and Foundations

...2 Optimizations for Parallelism, Locality and More
Polyhedral Framework
Affine Transformations
Tiling
Concurrent Start in Tiled Spaces

...3 High-Performance DSL Compilation
Image Processing Pipelines
Solving PDEs Numerically
Deep Neural Networks

...4 Conclusions

30/104



POLYHEDRAL FRAMEWORK

for (t = 0; t < T; t++)
for (i = 1; i < N+1; i++)

for (j = 1; j < N+1; j++)
A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],

A[t%2][i][j+1], A[t%2][i][j-1]);

...1 Domains
Every statement has a domain or an index set – instances
that have to be executed
Each instance is a vector (of loop index values from
outermost to innermost)
DS = {[t, i, j] | 0 ≤ t ≤ T − 1, 1 ≤ i, j ≤ N}

...2 Dependences
A dependence is a relation between domain / index set
instances that are in conflict (more on next slide)

...3 Schedules
are functions specifying the order in which the domain
instances should be executed
Specified statement-wise and typically one-to-one
T((i, j)) = (i + j, j) or {[i, j]→ [i + j, j] | . . .}
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DOMAINS, DEPENDENCES, AND SCHEDULES

for (i=1; i<=N-1; i++)
for (j=1; j<=N-1; j++)

A[i][j] = f(A[i-1][j], A[i][j-1]);
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N-1

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

3

Figure: Original space (i, j)

Domain: {[i, j] | 1 ≤ i, j ≤ N − 1}
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Dependences:
...1 {[i, j]→ [i + 1, j] | 1 ≤ i ≤ N − 2, 0 ≤ j ≤ N − 1}— (1,0)
...2 {[i, j]→ [i, j + 1] | 1 ≤ i ≤ N − 1, 0 ≤ j ≤ N − 2}— (0,1)
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Figure: Transformed space (i + j, j)

Schedule: T(i, j) = (i + j, j)
Dependences: (1,0) and (0,1) now become (1,0) and (1,1) resp.

Inner loop is now parallel
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Schedule: T(i, j) = (i + j, j)
Dependences: (1,0) and (0,1) now become (1,0) and (1,1) resp.
Inner loop is now parallel
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LEXICOGRAPHIC ORDERING

Lexicographic ordering: ≻, ≻ 0⃗
Schedules/Affine Transformations/Polyhedral
Transformations as a way to provide multi-dimensional
timestamps
Code generation: Scanning points in the transformed
space in lexicographically increasing order
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POLYHEDRAL FRAMEWORK: SCHEDULES

for (i=1 i<N; i++)
P(i); /* Produces B[i] using another array A */

for (i=1; i<N; i++)
C(i); /* Consumes B[i] and B[i-1] to create D[i] */

Original schedule: TP(i) = (0, i), TC(i) = (1, i)

Fused
Schedule: TP(i) = (i, 0), TC(i) = (i, 1).
for (t1=1; t1<N; t1++) {

P(t1);
C(t1);

}

A code generator needs domains and schedules

34/104



POLYHEDRAL FRAMEWORK: SCHEDULES

for (i=1 i<N; i++)
P(i); /* Produces B[i] using another array A */

for (i=1; i<N; i++)
C(i); /* Consumes B[i] and B[i-1] to create D[i] */

Original schedule: TP(i) = (0, i), TC(i) = (1, i)
Fused

Schedule: TP(i) = (i, 0), TC(i) = (i, 1).
for (t1=1; t1<N; t1++) {

P(t1);
C(t1);

}

A code generator needs domains and schedules

34/104



POLYHEDRAL FRAMEWORK: SCHEDULES

for (i=1 i<N; i++)
P(i); /* Produces A[i] */

for (i=1; i<N; i++)
C(i); /* Consumes A[i] and A[i-1] */

Original schedule: TP(i) = (0, i), TC(i) = (1, i)
Fused + Tiled

Schedule: TP(i) = (i/32, i, 0) , TC(i) = (i/32, i, 1).
for (t1=0;t1<=floord(N-1,32);t1++) {

for (t3=max(1,32*t1);t3<=min(N-1,32*t1+31);t3++) {
P(t3);
C(t3);

}
}

A code generator needs domains and schedules
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POLYHEDRAL FRAMEWORK: SCHEDULES

for (i=1 i<N; i++)
P(i); /* Produces A[i] */

for (i=1; i<N; i++)
C(i); /* Consumes A[i] and A[i-1] */

Original schedule: TP(i) = (0, i), TC(i) = (1, i)
Fused + Tiled + Innermost distribute

Produce a chunk of A and consume it before a new chunk is
produced
Schedule: TP(i) = (i/32, 0, i) , TC(i) = (i/32, 1, i).
for (t1=0;t1<=floord(N-1,32);t1++) {

for (t3=max(1,32*t1;t3<=min(N-1,32*t1+31);t3++)
P(t3);

for (t3=max(1,32*t1);t3<=min(N-1,32*t1+31);t3++)
C(t3);

}

A code generator needs domains and schedules
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AFFINE TRANSFORMATIONS

Examples of affine functions of i, j: i + j, i− j, i + 1, 2i + 5
Not affine: ij, i2, i2 + j2, a[j]
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Figure: Iteration space

for (i = 0; i < N; i++)
for (j = 0; j < M; j++)

A[i+1][j+1] = f(A[i][j])

/* O(N) synchronization if j is parallelized */
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t1 = i− j
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Figure: Transformed space

#pragma omp parallel for private(t2)
for (t1=-M+1; t1<=N-1; t1++)

for (t2=max(0,-t1); t2<=min(M-1,N-1-t1); t2++)
A[t1+t2+1][t2+1] = f(A[t1+t2][t2]);

/* Synchronization-free */

Transformation: (i, j)→ (i− j, j)
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#pragma omp parallel for private(t2)
for (t1=-M+1; t1<=N-1; t1++)

for (t2=max(0,-t1); t2<=min(M-1,N-1-t1); t2++)
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AFFINE TRANSFORMATIONS
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Figure: Transformed space

Affine transformations are attractive because:
Preserve collinearity of points and ratio of distances
between points
Code generation with affine transformations has thus been
studied well (CLooG, ISL, OMEGA+)
Model a very rich class of loop re-orderings
Useful for several domains like dense linear algebra, stencil
computations, image processing pipelines, deep learning
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FINDING GOOD AFFINE TRANSFORMATIONS

(i, j) Identity
(j, i) Interchange

(i + j, j) Skew i (by a factor of one w.r.t j)
(i− j,−j) Reverse j and skew i
(i, 2i + j) Skew j (by a factor of two w.r.t i)
(2i, j) Scale i by a factor of two

(i, j + 1) Shift j
(i + j, i− j) More complex

(i/32, j/32, i, j) Tile (rectangular)
. . .

One-to-one functions

Can be expressed using matrices:

T(i, j) = (i + j, j) =
[

1 1
0 1

](
i
j

)
.

Validity: dependences should not be violated
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DEPENDENCES

Dependences are determined pairwise between conflicting
accesses
for (t = 0; t < T; t++)

for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],

A[t%2][i][j+1], A[t%2][i][j-1]);

Dependence notations
Distance vectors: (1,-1,0), (1,0,0), (1,1,0), (1,0,-1), (1,0,1)
Direction vectors
Dependence relations as integer sets with affine constraints
and existential quantifiers or Presburger formulae —
powerful

Consider the dependence from the write to the third read:
A[(t + 1)%2][i][j]→ A[t′%2][i′ − 1][j′]
Dependence relation: {[t, i, j]→ [t′, i′, j′] | t′ = t + 1, i′ =
i + 1, j′ = j, 0 ≤ t ≤ T − 1, 0 ≤ i ≤ N − 1, 0 ≤ j ≤ N}
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PRESERVING DEPENDENCES

for (t = 0; t < T; t++)
for (i = 1; i < N+1; i++)

for (j = 1; j < N+1; j++)
A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],

A[t%2][i][j+1], A[t%2][i][j-1]);

For affine loop nests, these dependences can be analyzed
and represented precisely
Side note: A DSL simplifies dependence analysis

Next step: Transform while preserving dependences
Find execution reorderings that preserve dependences and
improve performance
Execution reordering as a function: T(⃗i)
For all dependence relation instances (⃗s→ t⃗),
T(⃗t)− T(⃗s) ≻ 0⃗,
i.e., the source should precede the target even in the
transformed space

What is the structure of T?
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VALID TRANSFORMATIONS

for (t = 0; t < T; t++)
for (i = 1; i < N+1; i++)

for (j = 1; j < N+1; j++)
A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],

A[t%2][i][j+1], A[t%2][i][j-1]);

Dependences: (1, 0, 0), (1, 0, 1), (1, 0,−1), (1, 1, 0), (1,-1,0)

Validity: T(⃗t)− T(⃗s) ≻ 0⃗, i.e., T(⃗t− s⃗) ≻ 0⃗
Examples of invalid transformations

T(t, i, j) = (i, j, t)
Similarly, (i, t, j), (j, i, t), (t + i, i, j), (t + i + j, i, j) are all
invalid transformations

Valid transformations
(t, j, i), (t, t + i, t + j), (t, t + i, t + i + j)
However, only some of the infinitely many valid ones are
interesting
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TILING (BLOCKING)

Partition and execute iteration space in blocks
A tile is executed atomically
Benefits: exploits cache locality & improves parallelization in the presence
of synchronization
Allows reuse in multiple directions
Reduces frequency of synchronization for parallelization:
synchronization after you execute tiles (as opposed to points) in parallel
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(i, j)→ (i/50, j/50, i, j); (i, j)→ (i/50 + j/50, j/50, i, j)
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VALIDITY OF TILING (BLOCKING)

Validity of tiling
There should be no cycle between the
tiles

Sufficient condition: All dependence
components should be non-negative
along dimensions that are being tiled
Dependences: (1,0), (1,1), (1,-1)

for (i=1; i<T; i++)
for (j=1; j<N-1; j++)
A[(i+1)%2][j] = f(A[i%2][j-1],

A[i%2][j], A[i%2][j+1]);

Figure: Iteration space

Figure: Invalid tiling Figure: Valid tiling
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TILING (BLOCKING)

Affine transformations can enable tiling
First skew: T(i, j) = (i, i + j)

Then, apply (rectangular) tiling:
T(i, j) = (i/64, (i + j)/64, i, i + j)

i and i + j are also called tiling hyperplanes

Then, create a wavefront of tiles:
T(i, j) = (i/64 + (i + j)/64, (i + j)/64, i, i + j)
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Figure: Original space (i, j)
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Figure: Transformed space (i, i + j)
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ALGORITHMS TO FIND TRANSFORMATIONS

The Past
A data locality optimizing algorithm, Wolf and Lam, PLDI
1991
Improve locality through unimodular transformations

Characterize self-spatial, self-temporal, and group reuse
Find unimodular transformations (permutation, reversal,
skewing) to transform to permutable loop nests with reuse,
and subsequently tile them

Several advances on polyhedral transformation algorithms
through 1990s and 2000s – Feautrier [1991–1992], Lim and
Lam – Affine Partitioning [1997–2001], Pluto [2008 –
present]
The Present

Polyhedral framework provides a powerful mathematical
abstraction (away from the syntax)
A number of new techniques, open-source libraries and
tools have been developed and are actively maintained
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BACK TO 3-D EXAMPLE

for (t = 0; t < T; t++)
for (i = 1; i < N+1; i++)

for (j = 1; j < N+1; j++)
A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],

A[t%2][i][j+1], A[t%2][i][j-1]);

What is a good transformation here to improve parallelism
and locality?
Steps

Skewing: (t, t + i, t + j)
Tiling: (t/64, (t + i)/64, (t + j)/1000, t, t + i, t + j)
Parallelize by creating tile wavefront:
(t/64 + (t + i)/64, (t + i)/64, (t + j)/1000, t, t + i, t + j)
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POLYHEDRAL TRANSFORMATION ALGORITHMS

Feautrier [1991–1992] scheduling
Lim and Lam, Affine Partitioning [1997–2001]
Pluto algorithm [Bondhugula et al. 2008]

Finds a sequence of affine transformations to improve
locality and parallelism
Transforms to bands of tilable dimensions
Bounds dependence distances and minimizes them
Objective: minimize dependence distances while
maximizing tilability

PPCG [Verdoolaege et al. 2013] (mainly for GPUs) – can
generate CUDA or OpenCL code
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A COST FUNCTION TO SELECT AFFINE

TRANSFORMATIONS

T1(t, i) = (t/64 + (t + i)/64, t/64, t, t + i)
T2(t, i) = (t/64 + (t + i)/64, (t + i)/64, t, t + i)
T3(t, i) = (t/64 + (2t + i)/64, (2t + i)/64, t, 2t + i)

i

t
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i i

t
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Figure: Communication volume with different valid hyperplanes for 1-d Jacobi:
shaded tiles are to be executed in parallel

Select the h⃗ that minimizes h⃗.(⃗t− s⃗), i.e., minimizes h⃗.⃗d
Examples: h⃗ = (2, 1), h⃗.(1, 1) = 3; h⃗ = (1, 0), h⃗.(1, 1) = 1.
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OUTLINE

...1 Introduction, Motivation, and Foundations

...2 Optimizations for Parallelism, Locality and More
Polyhedral Framework
Affine Transformations
Tiling
Concurrent Start in Tiled Spaces

...3 High-Performance DSL Compilation
Image Processing Pipelines
Solving PDEs Numerically
Deep Neural Networks

...4 Conclusions
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PIPELINED START AND LOAD IMBALANCE

Classical time skewing suffers from pipelined startup

i

t

N-2

T-1

(1, 0)
concurrent start face

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1
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3

for (t = 0; t <= T-1; t++)
for (i = 1; i <= N-2; i++)
A[(t+1)%2][i] = 0.125 * (A[t%2][i+1]

- 2.0 * A[t%2][i] + A[t%2][i-1]);

Diamond tiling
Face allowing concurrent start should be strictly within the cone
of the tiling hyperplanes
Eg: (1,0) is in the cone of (1,1) and (1,-1)
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Diamond tiling
Face allowing concurrent start should be strictly within the cone
of the tiling hyperplanes
Eg: (1,0) is in the cone of (1,1) and (1,-1)
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Figure: Concurrent start possible

Diamond tiling
Face allowing concurrent start should be strictly within the cone
of the tiling hyperplanes
Eg: (1,0) is in the cone of (1,1) and (1,-1)
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CLASSICAL TIME SKEWING VS DIAMOND TILING

..

iteration dependence

.

inter-tile dependence

.

(0, 1)

.

(1, -1)

..

iteration dependence

.

inter-tile dependence

.

(1, 1)

.

(1, -1)

Figure: Two ways of tiling heat-1d: parallelogram & diamond

Classical time skewing: (t, i)→ (t, t + i)
Diamond tiling: (t, i)→ (t + i, t− i)
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A SEQUENCE OF TRANSFORMATIONS FOR 2-D JACOBI

RELAXATIONS

for (t = 0; t < T; t++)
for (i = 1; i < N+1; i++)

for (j = 1; j < N+1; j++)
A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],

A[t%2][i][j+1], A[t%2][i][j-1], A[t%2][i][j]);

...1 Enabling transformation for diamond tiling

T((t, i, j)) = (t + i, t − i, t + j).

...2 Perform the actual tiling (in the transformed space)

T′((t, i, j)) =
(

t + i
64

,
t − i
64

,
t + j
64

, t + i, t − i, t + j
)

...3 Create a wavefront of tiles

T′′((t, i, j)) =

(
t + i
64

+
t − i
64

,
t − i
64

,
t + j
64

, t, t + i, t + j
)

...4 Choose tile sizes in Step 2 such that vectorization and prefetching
works well (for the innermost dimension)
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TRANSFORMED CODE

/* Start of CLooG code */
for (t1=-1; t1<=31; t1++) {

int lbp=ceild(t1,2), ubp=floord(t1+125,2);
#pragma omp parallel for private(lbv,ubv,t3,t4,t5,t6)
for (t2=lbp; t2<=ubp; t2++)

for (t3=max(0,ceild(t1-1,2)); t3<=floord(t1+126,2); t3++)
for (t4=max(max(max(0,32*t1),64*t3-4000),64*t1-64*t2+1);

t4<=min(min(min(999,32*t1+63),64*t2+62),64*t3+62); t4++)
for (t5=max(max(64*t2,t4+1),-64*t1+64*t2+2*t4-63);

t5<=min(min(64*t2+63,t4+4000),-64*t1+64*t2+2*t4); t5++)
#pragma ivdep
#pragma vector always

for (t6=max(64*t3,t4+1); t6<=min(64*t3+63,t4+4000); t6++)
A[( t4 + 1) % 2][ (-t4+t5)][ (-t4+t6)] = (((0.125 * ((A[ t4 % 2][ (-t4+t5) + 1][ (-t4+t6)]

- (2.0 * A[ t4 % 2][ (-t4+t5)][ (-t4+t6)])) + A[ t4 % 2][ (-t4+t5) - 1][ (-t4+t6)]))
+ (0.125 * ((A[ t4 % 2][ (-t4+t5)][ (-t4+t6) + 1] - (2.0 * A[ t4 % 2][ (-t4+t5)][ (-t4+t6)]))

+ A[ t4 % 2][ (-t4+t5)][ (-t4+t6) - 1]))) + A[ t4 % 2][ (-t4+t5)][ (-t4+t6)]);
}
/* End of CLooG code */

Performance on an 8-core Intel Xeon Haswell (all code compiled with ICC
16.0), N=4000, T=1000

Original: 6.2 GFLOPS

Straightforward OMP: 21.8 GFLOPS

Classical time skewing: 52 GFLOPS (2.39x over simple OMP)

Diamond tiling: 91 GFLOPS (4.17x over simple OMP)
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WHERE ARE AFFINE TRANSFORMATIONS USEFUL?

Application domains
Optimize Jacobi and other relaxations via time tiling
Optimize pre-smoothing steps at various levels of
Geometric Multigrid method
Optimize Lattice Boltzmann Method computations
Image Processing Pipelines
Convolutional Neural Network computations
Wherever you have loops and want to transform loops

Architectures
General-purpose multicores
GPUs, accelerators
FPGAs: transformations for HLS
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PUTTING TRANSFORMATIONS INTO PRACTICE

Where are these transformations useful?
In general-purpose compilers: LLVM, GCC, ...
In DSL compilers

Tools: How to use these?
ISL http://isl.gforge.inria.fr – an Integer Set Library
CLooG – polyhedral code generator/library
http://cloog.org
Pluto http://pluto-compiler.sourceforge.net – a
source-to-source automatic transformation framework that
uses a number of libraries including Pet, Clan, Candl, ISL,
Cloog, Piplib
PPCG – Polyhedral parallel code generation for CUDA
http://repo.or.cz/ppcg.git
Polly http://polly.llvm.org – Polyhedral infrastructure
in LLVM

An exercise now
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REFERENCES

Reading material, tutorials, and slides
Presburger Formulas and Polyhedral Compilation by Sven
Verdoolaege
http://isl.gforge.inria.fr/
Barvinok tutorial at http://barvinok.gforge.inria.fr/
Background and Theory on Automatic Polyhedral
Transformations
http://www.csa.iisc.ernet.in/~uday/

poly-transformations-intro.pdf

Polyhedral.info http://polyhedral.info

Tools/Infrastructure to try
Barvinok tool: http://barvinok.gforge.inria.fr/
Pluto http://pluto-compiler.sourceforge.net – use
pet branch of git version
PPCG – Polyhedral parallel code generation for CUDA
http://repo.or.cz/ppcg.git
Polly http://polly.llvm.org

59/104

http://isl.gforge.inria.fr/
http://www.csa.iisc.ernet.in/~uday/poly-transformations-intro.pdf
http://www.csa.iisc.ernet.in/~uday/poly-transformations-intro.pdf
http://polyhedral.info
http://barvinok.gforge.inria.fr/
http://pluto-compiler.sourceforge.net
http://repo.or.cz/ppcg.git
http://polly.llvm.org


ASSIGNMENT 1

Download PolyMage’s e0358 branch
$ git clone https://bitbucket.org/udayb/polymage.git -b e0358

Modify sandbox/video_demo/harris_corner/harris_opt.cpp to improve
performance over harris_naive.cpp

Test performance through the video demo (see README.md in
sandbox/video_demo/

Use any 1080p video for testing

Either transform manually or consider using Barvinok (iscc):
http://barvinok.gforge.inria.fr/

Optimize for performance targeting 4 cores of a CL workstation

What to submit: harris_opt.cpp and report.pdf, a report describing
optimizations you performed, and the performance you observed (in
ms) when running on 4 cores of the CL workstation; also report
execution times and scaling from 1 to 4 cores. Use the printout when
you exit the video demo to report timing. Submit by email in a single
compressed tar file named <your name>.tar.gz

Deadline: Fri Oct 7, 4:59pm
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OUTLINE

...1 Introduction, Motivation, and Foundations
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Polyhedral Framework
Affine Transformations
Tiling
Concurrent Start in Tiled Spaces

...3 High-Performance DSL Compilation
Image Processing Pipelines
Solving PDEs Numerically
Deep Neural Networks

...4 Conclusions

61/104



DOMAIN-SPECIFIC LANGUAGES

Standalone DSLs: own syntax
Embedded DSLs: embedded in/hosted by an existing
language

Arguments against DSLs
Too specialized
Need to learn a new language!

But
DSLs can be embedded in
existing languages
Can grow and become more
general-purpose
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Arguments against DSLs
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Need to learn a new language!

But
DSLs can be embedded in
existing languages
Can grow and become more
general-purpose

A Dodo (highly spe-
cialized, but extinct)
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DOMAIN-SPECIFIC LANGUAGES

Standalone DSLs: own syntax
Embedded DSLs: embedded in/hosted by an existing
language

Arguments against DSLs
Too specialized
Need to learn a new language!

But
DSLs can be embedded in
existing languages
Can grow and become more
general-purpose A Dodo (generalized)
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DSL COMPILATION

Frameworks studied for general-purpose
languages/compilation can be reused
Customized optimization strategies necessary
Examples of high-performance DSLs: SPIRAL,
Green-Marl, Halide, PolyMage, SystemML
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PROGRAMMING/COMPILER TECHNOLOGIES FOR

EMERGING DOMAINS

Catch 22
Progress requires the right programming, compiler, and
hardware technologies
Architects of programming, compiler, and hardware
technologies cannot build these unless they know what the
domain experts want

Tough problem: solutions?

Get lucky with the right hardware / primitives (Deep
learning? — relies on BLAS, FFT)
Work closely with domain scientists
Domain scientist does both
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WHERE ARE IMAGE PROCESSING PIPELINES USED?

Computational photography, computer vision, medical
imaging, ...
On images uploaded to social networks like Facebook,
Google+
On all camera-enabled devices, embedded systems
Everyday workloads from data center to mobile device
scales

Google+ Auto Enhance

...
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IMAGE PROCESSING PIPELINES

Graphs of interconnected processing stages

....

Iin

.Ix .Iy .

Ixx

.

Ixy

.

Iyy

.

Sxx

.

Syy

.

Sxy

.

det

.

trace

.

harris

Figure: Harris corner detection
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COMPUTATION PATTERNS

....

g

.

f

..

Point-wise
f (x, y) = wr · g(x, y, •) + wg · g(x, y, •) + wb · g(x, y, •)
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COMPUTATION PATTERNS

....

g

.

f

..........

Stencil

f (x, y) =
+1∑

σx=−1

+1∑
σy=−1

g(x + σx, y + σy) · w(σx, σy)
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COMPUTATION PATTERNS

....

g

.

f

..........

Downsample

f (x, y) =
+1∑

σx=−1

+1∑
σy=−1

g(2x + σx, 2y + σy) · w(σx, σy)
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COMPUTATION PATTERNS

....

g

.

f

..........

Upsample

f (x, y) =
+1∑

σx=−1

+1∑
σy=−1

g((x + σx)/2, (y + σy)/2) · w(σx, σy, x, y)
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EXAMPLE: PYRAMID BLENDING PIPELINE

69/104



NAIVE VS OPTIMIZED IMPLEMENTATION

Seq Par Tuned

354.56

53.91
12.3E

x
ec
u
ti
on

ti
m
e
(m

s)

Harris corner detection
(16 cores)

Naive implementation in C
Naive parallelization – 7×
OpenMP, Vector pragmas (icc)
Manual optimization – 29×
Locality, Parallelism, Vector
intrinsics

Manually optimizing pipelines is hard
Goal: Performance levels of manual tuning
without the pain
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A DSL APPROACH

High-level language (DSL embedded in a language
like Python or C++)

– Allow expressing common patterns intuitively
– Enable precise compiler analysis and

optimization

Automatic Optimizing Code Generator
– Use domain-specific cost models to apply

complex combinations of scaling, alignment,
tiling and fusion to optimize for parallelism and
locality
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EMBEDDED DSL — AN EXAMPLE

..

R, C = Parameter(Int), Parameter(Int)
I = Image(Float, [R+2, C+2])

x, y = Variable(), Variable()
row, col = Interval(0,R+1,1), Interval(0,C+1,1)

c = Condition(x,’>=’,1) & Condition(x,’<=’,R) &
Condition(y,’>=’,1) & Condition(y,’<=’,C)

cb = Condition(x,’>=’,2) & Condition(x,’<=’,R-1) &
Condition(y,’>=’,2) & Condition(y,’<=’,C-1)

Iy = Function(varDom = ([x,y],[row,col]),Float)
Iy.defn = [ Case(c, Stencil(I(x,y), 1.0/12,

[[-1, -2, -1],
[ 0, 0, 0],
[ 1, 2, 1]]) ]

Ix = Function(varDom = ([x,y],[row,col]),Float)
Ix.defn = [ Case(c, Stencil(I(x,y), 1.0/12,

[[-1, 0, 1],
[-2, 0, 2],
[-1, 0, 1]]) ]

Ixx = Function(varDom = ([x,y],[row,col]),Float)
Ixx.defn = [ Case(c, Ix(x,y) * Ix(x,y)) ]

Iyy = Function(varDom = ([x,y],[row,col]),Float)
Iyy.defn = [ Case(c, Iy(x,y) * Iy(x,y)) ]

Ixy = Function(varDom = ([x,y],[row,col]),Float)
Ixy.defn = [ Case(c, Ix(x,y) * Iy(x,y)) ]

Sxx = Function(varDom = ([x,y],[row,col]),Float)
Syy = Function(varDom = ([x,y],[row,col]),Float)
Sxy = Function(varDom = ([x,y],[row,col]),Float)
for pair in [(Sxx, Ixx), (Syy, Iyy), (Sxy, Ixy)]:

pair[0].defn = [ Case(cb, Stencil(pair[1], 1,
[[1, 1, 1],
[1, 1, 1],
[1, 1, 1]]) ]

det = Function(varDom = ([x,y],[row,col]),Float)
d = Sxx(x,y) * Syy(x,y) - Sxy(x,y) * Sxy(x,y)
det.defn = [ Case(cb, d) ]

trace = Function(varDom = ([x,y],[row,col]),Float)
trace.defn = [ Case(cb, Sxx(x,y) + Syy(x,y)) ]

harris = Function(varDom = ([x,y],[row,col]),Float)
coarsity = det(x,y) - .04 * trace(x,y) * trace(x,y)
harris.defn = [ Case(cb, coarsity) ]

....

Iin

.
Ix

.
Iy

.

Ixx

.

Ixy

.

Iyy

.

Sxx

.

Syy

.

Sxy

.

det

.

trace

.

harris

.

Embedded in Python

.

Functional, domain-level operations
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POLYHEDRAL REPRESENTATION

...

x

.f1 .
f2

.

fout

.

x = Variable()
fin = Image(Float, [18])
f1 = Function(varDom = ([x], [Interval(0, 17, 1)]), Float)
f1.defn = [ fin(x) + 1 ]
f2 = Function(varDom = ([x], [Interval(1, 16, 1)]), Float)
f2.defn = [ f1(x-1) + f1(x+1) ]
fout = Function(varDom = ([x], [Interval(2, 15, 1)]), Float)
fout.defn = [ f2(x-1) + f2(x+1) ]
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POLYHEDRAL REPRESENTATION

...

x

.................................................f1 .
f2

.

fout

.

Domains

.

x = Variable()
fin = Image(Float, [18])
f1 = Function(varDom = ([x], [Interval(0, 17, 1)]), Float)
f1.defn = [ fin(x) + 1 ]
f2 = Function(varDom = ([x], [Interval(1, 16, 1)]), Float)
f2.defn = [ f1(x-1) + f1(x+1) ]
fout = Function(varDom = ([x], [Interval(2, 15, 1)]), Float)
fout.defn = [ f2(x-1) + f2(x+1) ]
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POLYHEDRAL REPRESENTATION

...

x

.................................................f1 .
f2

.

fout

.

Dependence vectors

.

..Function ..Dependence Vectors

.. fout(x) = f2(x − 1)· f2(x + 1) .. (1, 1), (1,−1)

.. f2(x) = f1(x − 1) + f1(x + 1) .. (1, 1), (1,−1)

.. f1(x) = fin(x) ..
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POLYHEDRAL REPRESENTATION

...

x

.................................................f1 .
f2

.

fout

.

Live-outs

...............

..Function ..Dependence Vectors

.. fout(x) = f2(x − 1)· f2(x + 1) .. (1, 1), (1,−1)

.. f2(x) = f1(x − 1) + f1(x + 1) .. (1, 1), (1,−1)

.. f1(x) = fin(x) ..
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SCHEDULING TECHNIQUES

...

x

..........................................................f1 .

f2

.

fout

.

Parallelism

.

Locality

.

Storage

...................
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SCHEDULING TECHNIQUES

...

x

..........................................................f1 .

f2

.

fout

.

Default schedule

.

Parallelism

.

Locality

.

Storage

......................................
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SCHEDULING TECHNIQUES

...

x

..........................................................f1 .

f2

.

fout

.

Default schedule

.

Parallelism

.

Locality

.

Storage

.........................................................
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SCHEDULING TECHNIQUES

...

x

..........................................................f1 .

f2

.

fout

.

Default schedule

.

Parallelism

.

Locality

.

Storage

.........................................................

Load balanced parallelization
But does not exploit locality
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SCHEDULING TECHNIQUES

...

x

..........................................................f1 .

f2

.

fout

.............

Parallelogram tiling / shift + fuse + tile + distribute inner

.

Parallelism

.

Locality

.

Storage

...................

Loss of parallelism (for a coarse-grained mapping)
(or) High synchronization ( 3N

32 synchronizations!) for a
fine-grained one
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SCHEDULING TECHNIQUES

...

x

..........................................................f1 .

f2

.

fout

.........

Split tiling

.

Parallelism

.

Locality

.

Storage

...................

Split tiling for GPUs: Grosser et al. GPGPU 2013
Similar scheme also used in Pochoir [Tang et al. SPAA
2011]
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SCHEDULING TECHNIQUES

...

x

..........................................................f1 .

f2

.

fout

.........

Split tiling

.

Parallelism

.

Locality

.

Storage

...................

Data is live out of left and right boundaries (in addition to
top)

Local buffering (scratchpads for tiles) is difficult!
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SCHEDULING TECHNIQUES

...

x

..........................................................f1 .

f2

.

fout

.

Overlapped tiling

.

Parallelism

.

Locality

.

Storage

.

Re-computation

...................

Break dependence at boundaries through redundant
computation
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OVERLAPPED TILING FOR HETEROGENEOUS

FUNCTIONS

...

x

................................................

...............................................................

h

.
o

.

τ

.

h

.

o

.

τ

.f .
f↓1

.

f↓2

.

f↑

.

fout

.f .
f↓1

.

f↓2

.

..Function ..Schedule

.. fout(x) = f↑(x/2) .. (x) → (4, x)

.. f↑(x) = f↓2(x/2)· f↓2(x/2 + 1) .. (x) → (3, 2x)

.. f↓2(x) = f↓1(2x − 1)· f↓1(2x + 1) .. (x) → (2, 4x)

.. f↓1(x) = f (2x − 1)· f (2x + 1)· f (2x) .. (x) → (1, 2x)

.. f (x) = fin(x) .. (x) → (0, x)

.

..Function ..Schedule

.. f↓2(x) = f↓1(2x − 1)· f↓1(2x + 1) .. (x) → (2, x)

.. f↓1(x) = f (2x − 1)· f (2x + 1)· f (2x) .. (x) → (1, x)

.. f (x) = fin(x) .. (x) → (0, x)

.

Some approaches to overlapped tiling only consider
homogeneous time-iterated stencils

.

Scratchpads
Reduction in intermediate storage
Better locality and reuse
Privatized for each thread

75/104



OVERLAPPED TILING FOR HETEROGENEOUS

FUNCTIONS

...

x

................................................

...............................................................

h

.
o

.

τ

.

h

.

o

.

τ

.f .
f↓1

.

f↓2

.

f↑

.

fout

.f .
f↓1

.

f↓2

.

..Function ..Schedule
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.. f↓2(x) = f↓1(2x − 1)· f↓1(2x + 1) .. (x) → (2, 4x)

.. f↓1(x) = f (2x − 1)· f (2x + 1)· f (2x) .. (x) → (1, 2x)

.. f (x) = fin(x) .. (x) → (0, x)

.

..Function ..Schedule

.. f↓2(x) = f↓1(2x − 1)· f↓1(2x + 1) .. (x) → (2, x)

.. f↓1(x) = f (2x − 1)· f (2x + 1)· f (2x) .. (x) → (1, x)

.. f (x) = fin(x) .. (x) → (0, x)

.

Cannot have a fixed tile shape when dependence
vectors are non-constant

.

Scratchpads
Reduction in intermediate storage
Better locality and reuse
Privatized for each thread
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OVERLAPPED TILING FOR HETEROGENEOUS

FUNCTIONS

...

x

................................................

...............................................................

h

.
o

.

τ

.

h
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τ
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.. f↓1(x) = f (2x − 1)· f (2x + 1)· f (2x) .. (x) → (1, 2x)

.. f (x) = fin(x) .. (x) → (0, x)

.

Scaling and aligning the schedules

.

Scratchpads
Reduction in intermediate storage
Better locality and reuse
Privatized for each thread
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OVERLAPPED TILING FOR HETEROGENEOUS

FUNCTIONS
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OVERLAPPED TILING FOR HETEROGENEOUS

FUNCTIONS
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.

Determining tile shape
Conservative vs precise bounding faces

.

Scratchpads
Reduction in intermediate storage
Better locality and reuse
Privatized for each thread
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.. f (x) = fin(x) .. (x) → (0, x)

.

..Function ..Schedule
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.. f (x) = fin(x) .. (x) → (0, x)

.

Determining tile shape
Conservative vs precise bounding faces

.

Scratchpads
Reduction in intermediate storage
Better locality and reuse
Privatized for each thread
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.
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Tile size τ , overlap O, height h
Trade-off between fusion height and overlap
More fusion provides more locality, but also a greater
fraction of redundant computation
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Better locality and reuse
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SOME BENCHMARKS IN THIS DOMAIN

Seven benchmarks of varying structure and
complexity

Benchmark Stages Lines Image size

Unsharp Mask 4 16 2048×2048×3
Bilateral Grid 7 43 2560×1536
Harris Corner 11 43 6400×6400
Camera Pipeline 32 86 2528×1920
Pyramid Blending 44 71 2048×2048×3
Multiscale Interpolate 49 41 2560×1536×3
Local Laplacian 99 107 2560×1536×3

Video demo
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EFFECTIVENESS OF TRANSFORMATIONS

Speedup of grouped and tiled implementations over naively
parallelized and vectorized ones

Unsharp

Mask

Bilateral

Grid

Harris

Corner

Camera

Pipeline

Pyramid

Blending

Multiscale

Interpolate

Local

Laplacian

6.33

3.27
2.88

1.36

2.82

2.13

1.57

16 threads and vectorization enabled
On a 2-socket 16-core Intel Xeon SandyBridge

Source: [Mullapudi et al. ASPLOS 2015 PolyMage]
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A DEEPER LOOK: HARRIS CORNER DETECTION
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SOLVING PARTIAL DIFFERENTIAL EQUATIONS

NUMERICALLY

A number of science and engineering problems involve
solving a partial differential equation (PDE)
Numerous techniques exist varying in computational
complexity, convergence properties, amenability to
optimization
A discretization strategy is chosen first

...1 Finite difference

...2 Finite volume

...3 Finite element
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EXAMPLE: POISSON’S EQUATION

Poisson’s equation – the mother of all PDEs:

∇2u = f .

Approximate the second derivative (Laplacian) using finite
difference. Eg: for a 2-d grid,

1
h2

 −1
−1 4 −1

−1

uh = fh.

We are solving y = Ax, where A is a sparse banded matrix
(x is a linearization of the unknown on the
multi-dimensional grid)
What about A−1?

82/104



EXAMPLE: POISSON’S EQUATION

Poisson’s equation – the mother of all PDEs:

∇2u = f .

Approximate the second derivative (Laplacian) using finite
difference. Eg: for a 2-d grid,

1
h2

 −1
−1 4 −1

−1

uh = fh.

We are solving y = Ax, where A is a sparse banded matrix
(x is a linearization of the unknown on the
multi-dimensional grid)
What about A−1?

82/104



EXAMPLE: POISSON’S EQUATION

Poisson’s equation – the mother of all PDEs:

∇2u = f .

Approximate the second derivative (Laplacian) using finite
difference. Eg: for a 2-d grid,

1
h2

 −1
−1 4 −1

−1

uh = fh.

We are solving y = Ax, where A is a sparse banded matrix
(x is a linearization of the unknown on the
multi-dimensional grid)
What about A−1?

82/104



GEOMETRIC MULTIGRID METHOD

Use a hierarchical structure – a multi-scale representation
of the grid
Perform pre-smoothing at a finer level
Restrict the error to a coarser grid
Solve for the error at a coarser level (recursion)
Interpolate the error to the finer level

Run multiple iterations of the above

Tiling techniques can be used to readily optimize the
pre-smoothing or post-smoothing steps
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HIERARCHICAL MESH STRUCTURE

Figure: Hierarchical mesh structure for Multigrid levels
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MULITIGRID V-CYCLE: ALGORITHM

Input : vh, f h

1 Relax vh for n1 iterations: νh ← (1− ωD−1Ah)vh + ωD−1f h

// pre-smoothing

2 if coarsest level then
3 Relax vh for n2 iterations // coarse smoothing

4 rh ← f h − Ahvh // residual

5 r2h ← I2h
h rh // restriction

6 e2h ← 0
7 e2h ← V-cycle2h(e2h, r2h)

8 eh ← Ih
2he2h // interpolation

9 vh ← vh + eh // correction

10 Relax vh for n3 iterations // post smoothing

11 return vh

Animation
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MULITIGRID V-CYCLE

........

(a) V-cycle
......................

(b) V-cycle: complete DAG
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NAS MG V-CYCLE

..................

(c) NAS-PB MG V-cycle
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MULTIGRID W-CYCLE

................

(d) W-cycle

................................................... Smoother.. Defect/Residual.. Restrict/Reciprocate.. Interpolate/Prolongation.. Correction.. Input

(e) W-cycle: complete DAG

Figure: DAG representation of (a) V-cycle and (b) W-cycle
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GMG: SMOOTHER SCALING

Scalability of 10 iterations of the Jacobi smoother on an 80002

domain on a 16-core Intel Sandy Bridge
Source: Ghysels (LBNL) and Vanroose (University of Antwerp)
SIAM J. Scientific Computing 2015
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GMG: EXECUTION TIME (2-D)

Timings for a full solve on a 81912 domain using V -cycles with
a relative stopping tolerance 10−12

Source: Ghysels and Vanroose (University of Antwerp) SIAM J.
Scientific Computing 2015
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GMG: EXECUTION TIME (3-D)

Timings for a full solve on a 5113 domain using V -cycles with a relative
stopping tolerance 10−12 on a dual socket Sandy Bridge machine for a 3D
domain
Source: Ghysels and Vanroose (University of Antwerp) SIAM J. Scientific
Computing 2015
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GMG: CONVERGENCE FOR SMOOTHING STEPS

The corresponding number of V-cycles required to reach a 10−12 relative
stopping criterion for both two-grid and multigrid. Source: Ghysels and
Vanroose (University of Antwerp) SIAM J. Scientific Computing 2015
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DEEP CONVOLUTIONAL NEURAL NETWORKS

Shown to be effective in image classification, speech
recognition, and at many more tasks
A domain currently of high interest

Training these networks requires HPC!
Inference requires high performance or real-time
response
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DEEP CONVOLUTIONAL NEURAL NETWORKS

Training these networks requires HPC!
Inference requires high performance or real-time
response

The network is trained by sending through training data
(in batches) forward and then backward, multiple times

Extremely compute intensive!
Think about running numerous matrix-matrix
multiplications in parallel (with all of them sharing data
along multiple dimensions)
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CNN CONVOLUTION AS A LOOP NEST

for (n = 0; n < N; n++) /* Samples in a batch */
for (o = 0; o < Oc; o++) /* Output feature channels */

for (i = 0; i2 < Ic; i++) /* Input feature channels */
for (y = 0; i3 < Y; i3++) /* Layer height */

for (x = 0; i4 < X; i4++) /* Layer width */
for (kh = 0; i5 < Kh; i5++) /* Convolution kernel height */

for (kw = 0; i6 < Kw; i6++) /* Convolution kernel width */
output[n, o, y, x] += input[n, i, y+kh, x+kw] * weights[o, i, kh, kw];

X

Y

X

Y

Kw

Ic

Kh

Oc Oc
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CNN CONVOLUTION AS A LOOP NEST

for (n = 0; n < N; n++) /* Samples in a batch */
for (o = 0; o < Oc; o++) /* Output feature channels */

for (i = 0; i2 < Ic; i++) /* Input feature channels */
for (y = 0; i3 < Y; i3++) /* Layer height */

for (x = 0; i4 < X; i4++) /* Layer width */
for (kh = 0; i5 < Kh; i5++) /* Convolution kernel height */

for (kw = 0; i6 < Kw; i6++) /* Convolution kernel width */
output[n, o, y, x] += input[n, i, y+kh, x+kw] * weights[o, i, kh, kw];

...1 Abundant parallelism
Batch-level parallelism (N)
Parallelism from feature channels and layer (Y, X, Oc)
Parallelism when using BLAS calls?

...2 Locality?
output: reuse along i, kh, kw
input: reuse along o (along kh, kw as well if no replicate)
weights (reuse along n, y, x)
In addition, multiple convolutions performed successively

...3 Data allocation, layout, and management?
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OPTIMIZING CNNS

High-dimensional iteration spaces, high-dimensional
arrays
A playground for optimization
Parallelization, locality optimization, data allocation /
layout optimization, computation reduction?
Take advantage of existing vendor libraries (MKL,
CuDNN)
New CNN and other DNN architectures, very deep neural
networks, upcoming parallel architectures
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CNNS: STATE-OF-THE-ART

GPUs are used: NVIDIA CuDNN provides tuned
primitives for well-known/widely used layers
(convolutions, max pooling)
Caffe (C++-based), Torch (Lua), Theano (Python),
TensorFlow (Python) are library-based approaches that
wrap around calls to libraries (CuDNN)

State-of-the-art implementations sustain excellent
performance on GPUs
On an NVIDIA GeForce Titan X with a peak of 6.97
TFLOPS (single-precision), VGGNet network E with fp32
data, NVIDIA CuDNN v3 obtains 44% and 90% of
machine peak respectively for N=1 and N=64.
What will the role of DSL compilers and code generators
be?

98/104



CNNS: STATE-OF-THE-ART

GPUs are used: NVIDIA CuDNN provides tuned
primitives for well-known/widely used layers
(convolutions, max pooling)
Caffe (C++-based), Torch (Lua), Theano (Python),
TensorFlow (Python) are library-based approaches that
wrap around calls to libraries (CuDNN)
State-of-the-art implementations sustain excellent
performance on GPUs
On an NVIDIA GeForce Titan X with a peak of 6.97
TFLOPS (single-precision), VGGNet network E with fp32
data, NVIDIA CuDNN v3 obtains 44% and 90% of
machine peak respectively for N=1 and N=64.
What will the role of DSL compilers and code generators
be?

98/104



REFERENCES

...1 Coarse grain parallelization of deep neural networks, Marc
Gonzalez Tallada, PPoPP 2016

...2 Latte: a language, compiler, and runtime for elegant and efficient
deep neural networks, Truong et al. PLDI 2016

...3 Fast Algorithms for Convolutional Neural Networks, Andrew
Lavin, Scott Gray, Nov 2015
http://arxiv.org/abs/1509.09308

99/104

http://arxiv.org/abs/1509.09308


OUTLINE

...1 Introduction, Motivation, and Foundations

...2 Optimizations for Parallelism, Locality and More
Polyhedral Framework
Affine Transformations
Tiling
Concurrent Start in Tiled Spaces

...3 High-Performance DSL Compilation
Image Processing Pipelines
Solving PDEs Numerically
Deep Neural Networks

...4 Conclusions

100/104



TAKEAWAYS FOR THE DOMAINS PRESENTED

The presented domains have abundant parallelism, reuse,
and optimization opportunity
There is more parallelism than the number of processors
One may be ultimately memory bandwidth bound (even
after optimization) on a large number of cores
A naive parallelization is often easy
But while parallelizing, pay attention to:

Tiling for locality
Fusion
Synchronization costs
Local buffering (easier/feasible in DSL compilation)
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BIG PICTURE: ROLE OF COMPILERS

General-purpose:
EVOLUTIONARY

Improve existing
general-purpose compilers
(for C, C++, Python, ...)
Limited improvements but
wide impact

Domain-specific:
REVOLUTIONARY

Build new domain-specific
languages and compilers
Dramatic speedups

...1 ..Important to pursue both

...2 Need to build reusable infrastructure to
share among various DSLs

...3 Reduce multiplicity of DSL environments ..

. 102/104



CONCLUSIONS

Tremendous opportunities in high-performance
compilation — both domain-specific and
general-purpose

Several emerging domains that require
high-performance compilation

— will impact both embedded and big data crunching
architectures

These domains are a perfect fit for HiPEAC (eg:
high-performance embedded vision)
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Thank You!
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