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Abstract

Machine learning models are increasingly being deployed in
practice. Machine Learning as a Service (MLaaS) providers
expose such models to queries by third-party developers
through application programming interfaces (APIs). Prior
work has developed model extraction attacks, in which an
attacker extracts an approximation of an MLaaS model by
making black-box queries to it. We design ACTIVETHIEF —
a model extraction framework for deep neural networks that
makes use of active learning techniques and unannotated pub-
lic datasets to perform model extraction. It does not expect
strong domain knowledge or access to annotated data on the
part of the attacker. We demonstrate that (1) it is possible to
use ACTIVETHIEF to extract deep classifiers trained on a va-
riety of datasets from image and text domains, while query-
ing the model with as few as 10-30% of samples from public
datasets, (2) the resulting model exhibits a higher transferabil-
ity success rate of adversarial examples than prior work, and
(3) the attack evades detection by the state-of-the-art model
extraction detection method, PRADA.

Introduction

In recent years, machine learning (ML) models are being
increasingly deployed in production software. Deep neural
networks (DNNs) are a particularly successful and popular
class of ML models. However, training DNNs is an expen-
sive activity requiring access to data, compute and human
expertise. Many companies provide paid access to models
that are trained and hosted by them on cloud, commonly re-
ferred to as Machine Learning as a Service (MLaaS) plat-
forms. Third-party developers access these models through
Application Programming Interfaces (APIs).

Even though this setup has the potential to democratize
access to machine learning, it has been shown to be vulner-
able to model extraction attacks (Tramer et al. 2016). An
attacker extracts a model by training a substitute model
on labeled data obtained by repeatedly querying the service
provider’s secret model. The attacker can then freely use the
substitute model, offer it as a competing service, or use it to
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Figure 1: Overview of model extraction

generate adversarial examples against the production soft-
ware that depends on the provider’s model.

Since the input-output format of the API is public, it is fair
to assume that the attacker knows how to present data to the
secret model and how to interpret its output. However, the
attacker cannot access the secret dataset on which the secret
model is trained (see Figure 1). In lieu of this, the attacker
must obtain some alternative dataset, which we refer to as a
thief dataset, using which the secret model can be queried.

The problem of obtaining thief datasets remains a chal-
lenge in making model extraction attacks more practical.
Prior work has considered access to limited Problem Do-
main (PD) data (Papernot et al. 2017), which is drawn from
a distribution that closely resembles the secret dataset, e.g.,
medical image data to extract models trained on medical im-
ages. However, getting such data even in small quantities
could be difficult and expensive. Alternatively, researchers
have used Synthetic Non-Problem Domain (SNPD) (Tramer
et al. 2016) and Natural Non-Problem Domain (NNPD)
data (Correia-Silva et al. 2018; Orekondy, Schiele, and Fritz
2019). SNPD is sampled from standard probability distribu-
tions (such as uniform distributions) that do not necessarily
model the problem domain distributions and hence, do not
aid the attacker much. NNPD, on the other hand, is sampled
from publicly available data of the same type of content as
the secret model’s input, e.g., image data for image models
and text data for text models. NNPD has been shown to be
more effective than SNPD in model extraction since it pro-
vides more natural samples to query the secret model.



Another challenge for the attacker is to query the secret
model as efficiently as possible with a limited query bud-
get. This limitation arises from the cost of querying the se-
cret model or rate-limited API access. Orekondy, Schiele,
and Fritz (2019) exploit the hierarchical annotations of Ima-
geNet (Russakovsky et al. 2015) data to fit within a query
budget. However, the requirement of getting high-quality
annotations limits the attacker. In this work, we show that
model extraction can be accomplished using NNPD data.
However, unlike Orekondy, Schiele, and Fritz (2019), our
approach does not use annotated! data, thereby, overcoming
a key limitation to the attacker. Instead of using the anno-
tations to sample data points for efficiently querying the se-
cret model, we use and combine pool-based active learning
strategies. We call our approach ACTIVETHIEF.

Yet another challenge is limited knowledge about the ar-
chitecture of the secret model. We show that ACTIVETHIEF
can successfully extract models even when the choices dif-
fer between the secret and substitute models, e.g., RNN vs
CNN. The success of model extraction can be measured in
terms of the agreement of the substitute model with the se-
cret model on the test data. Another measure is the trans-
ferability of adversarial examples crafted on the substitute
model to the secret model. Our experiments show that AC-
TIVETHIEF achieves substantial agreement of the extracted
substitute model with the secret model. Further, the adver-
sarial examples crafted on the substitute models have more
transferability compared to a state-of-the-art adversarial at-
tack based on model extraction (Papernot et al. 2017).

Considering the severity of model extraction attacks,
many approaches to defend against them are proposed in the
literature. They range from restricting the access to top-1 la-
bel instead of output class probabilities (Tramer et al. 2016)
or perturbing the output probabilities (Lee et al. 2018). We
show that while ACTIVETHIEF can benefit from access to
(unperturbed) class probabilities, it does very well even us-
ing only the top-1 label. Models can also be defended by
observing the distribution of the queries made to the secret
model by a third-party and detecting whether an attack is
being launched. PRADA (Juuti et al. 2019) is a recent such
technique which has been shown to detect and prevent model
extraction attacks by checking normality of the distribution
of distances between successive queries. Our experiments
show that our use of natural thief data (NNPD) helps us de-
feat PRADA.

In summary, we make the following contributions:

e We present ACTIVETHIEF, a novel model extraction
framework that exploits availability of unannotated pub-
lic data to improve the attacker’s ability to launch suc-
cessful attacks. We show that using a single thief dataset,
it is possible to extract multiple, separate deep classifiers.
This is shown for both image and text domains. We refer
to these datasets as universal thief datasets, since they
do not depend on the specifics of the secret models (or

"We use label to refer to the output of secret models, approx-
imate label for the output of substitute models, and annotations
for categorical information about samples available from curated
datasets such as ImageNet (Russakovsky et al. 2015).

datasets) and are successful across multiple secret mod-
els.

e We show that the use of active learning makes AcC-
TIVETHIEF query-efficient. By using only 10-30% of the
available data, it achieves 61.52-98.18% agreement with
the secret models across image and text classification
tasks. Note that unlike the usual active learning setup, the
oracle here is itself another model, trained on secret data.
The extracted models also enable better transferability of
adversarial examples crafted on them compared to prior
work.

o Finally, we show that since ACTIVETHIEF queries follow
natural distributions, its attack cannot be detected by a
state-of-the-art detection method, PRADA, that monitors
the distribution of distances between queries for deviation
from normal distributions.

We plan to release the source code for ACTIVETHIEF un-
der an open source license.

The ACTIVETHIEF framework
We start with a description of the ACTIVETHIEF framework
with reference to Figure 2.
1. The attacker picks a random subset of initial seed samples
Sp of the training fold of the thief dataset.
2. In the ™ iteration (: = 0,1,2,...,N), the attacker

queries the samples in S; against the secret model f and
obtains the labeled' set D; = {(x, f(x)) : € S;}.

3. The substitute model f is trained on Ui:o Dy.

4. The attacker queries the remaining samples against the
substitute model f to assign approximate labels' to them:

Di={(z, f(z)):x ¢ S1U---US;} )

Note that the substitute model predictions § = f(x) are
always obtained as full softmax probability vectors.

5. An active learning subset selection strategy is used to se-
lect the set of k£ samples S; 1 to be queried next, such that
xr € SiJrl only if (x, g) e D;.

This process is repeated for a fixed number of iterations, re-

training the substitute model f from scratch in each itera-

tion. The number of samples to label in each iteration k, the

number of iterations NV, and the number of initial seed sam-

ples | Sp| are hyperparameters.

Evaluation metric

The metric used for evaluation of the closeness between the
secret model f and the substitute model f is the agree-
ment between them, evaluated on the test split of the secret
dataset:
- 1 -
Agreement(f, f) = X Z I(f(z) = f(z))

secret test
TEX Coret

where I(-) is the indicator function. Note that we use the
secret test data only for evaluation, and it is not made avail-
able to ACTIVETHIEF during the model extraction process.
The secret model is queried with, and the substitute model
is trained on samples only from the NNPD thief dataset.
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Figure 2: The ACTIVETHIEF framework for model extraction (see corresponding section for explanation of 1-5).

Active learning subset selection strategies

In each iteration, the attacker selects a new set S; of & thief
dataset samples to label by querying the secret model f.
Each subset selection strategy takes as input the approxi-
mately labeled set D; = {(x,, ¥»)}, and returns a set S;1:
Random strategy: A subset of size k of samples x,, is se-
lected uniformly at random.
Uncertainty strategy: This method is based on uncer-
tainty sampling (Lewis and Gale 1994). The entropy H,, =
- Zj Un,j log Un,; (Where j is the label index) of predicted
probability vectors ¢, is computed. The k& samples x,, cor-
responding to the highest entropy values 7, (i.e. those that
the model is least certain about) are selected.
K-center strategy: We use the greedy K-center algorithm of
Sener and Savarese (2018). The predicted probability vec-
tors y,, are clustered as follows: The probabilities for the
initial seed samples are marked as cluster centers. In each
subsequent iteration, the strategy selects k samples x,, cor-
responding to the most distant ¢,, from all existing centers:
(25,95) =arg max _ min_ g, — flam)ll3
(ZnsGn)ED; (Tm,ym)ED;—1

The selected xj is then labeled (the resulting pair is subse-
quently treated as a center, i.e. a member of D;_1). This pro-
cess is repeated until k samples xg, x7, ... x}, are selected.
DFAL strategy: We use the DeepFool-based Active Learn-
ing (DFAL) algorithm of Ducoffe and Precioso (2018).
DeepFool (Moosavi-Dezfooli, Fawzi, and Frossard 2016) is
applied to every sample x,, to obtain a perturbed ,, that gets
misclassified by the substitute model (i.e. f(z,) # f(&,)).
The perturbation «,, = ||z, — #,]|3 is computed, and the
k samples z,, with the lowest perturbation «,, are selected.
Note that the secret model is never queried with the per-
turbed Z,,, but only their respective clean counterparts, x,.
DFAL + K-center strategy: While the K-center strategy
maximizes diversity, it does not ensure that each individ-
ual sample is informative. On the contrary, while the DFAL
strategy ensures that each individual sample is informative
(i.e. close to the decision boundary), it does nothing to elimi-
nate redundancy. Inspired by this observation, we introduced
this combined strategy. In this strategy, the DFAL strategy is
first used to pick an initial subset of p informative samples
(we choose p = the total budget). Of these, £ points are se-
lected, eliminating redundancy by the K-center strategy.

Experimental setup
Datasets

Secret datasets. For image classification, we use the fol-
lowing datasets: MNIST (LeCun et al. 1998), CIFAR-10
(Krizhevsky and Hinton 2009) and GTSRB (Stallkamp et
al. 2012). For text classification, we use MR (Pang and Lee
2005), IMDB (Maas et al. 2011), and AG News 2. Further
details are presented in the supplement 3.

Thief dataset. An attacker could obtain a thief dataset
by crawling the public internet for images and text. Here,
we use a downsampled and unannotated subset of the
training fold of the ILSVRC2012-14 dataset (Chrabaszcz,
Loshchilov, and Hutter 2017) as a proxy for public image
data. In our experiments, we also explored the use of the less
diverse CIFAR-10 dataset, but we found agreement of the
models to be consistently worse (we omit these results). Our
training and validation splits are of size 100K and 20K re-
spectively. For text, we use WikiText-2 (Merity et al. 2017).
There are 80K training and 9K validation samples.

Model architectures

Image classification. The input is followed by [ convolution
blocks. Each convolution block consists of 2 repeated units
of 2 convolution layers (3 x 3 kernel with stride 1) and 1
pooling layer (2 x 2 kernel with stride 2). Each convolution
is followed by ReLU and batchnorm layers, and pooling by
dropout. Convolution layers use 32, 64, .. .32 x 2!~ filters
respectively. The output of the final pooling layer is passed
through fully connected (FC) and softmax layers to obtain
the vector of output probabilities. We use a default of [ = 3.

Text classification. Word2vec (Mikolov et al. 2013) is first
used to obtain the word embeddings (pretrained embeddings
are used for the secret model, and are learned from scratch
in the substitute model). We consider two architectures:

1. CNN: We use the CNN of Kim (2014) for sentence clas-
sification, with 100 filters each of width 3, 4 and 5, followed
by a max-pool over time.

2. RNN: We use a single-layed GRU with 64 hidden units,
operating in acceptor configuration. The final hidden state is
passed through a FC layer (size 32, with a ReLU activation).

The outputs in either case are passed through FC and soft-
max layers to obtain the vector of output probabilities.

Zhttps://di.unipi.it/~gulli/AG_corpus_of news_articles.html
*http://iisc-seal.net/publications/aaai2020_supplement.pdf



LmNisT | ‘ ‘ ‘ ]

091 —e— Uncertainty | |

081 —m— K-center B
—— DFAL

0.7+ —x— DFAL+K-cen ||
--- Random

0.6 ‘ ‘

| | | |
6K (5%) 9K (7%) 12K (10%) 14K (12%) 17K (14%) 20K (17%)

0.4 \ ! ! ! ! L

6K (5%) 9K (7%) 12K (10%) 14K (12%) 17K (14%) 20K (17%)

T T T T T
GTSRB
0.8 ——l - -
0.6 |- |
0.4 |
L \ \ \ \ L
6K (5%) 9K (7%) 12K (10%) 14K (12%) 17K (14%) 20K (17%)
0.8 -
0.75 |
—e— Uncertainty
0.7 |- —m— K-center ||
-- Random

| | | | I I
6K (7%) 9K (10%) 12K (13%) 14K (16%) 17 (19%) 20K (22%)

IMDB T T T T [

| | | | | |
6K (7%) 9K (10%) 12K (13%) 14K (16%) 17 (19%) 20K (22%)

AG News | ‘ ‘ ‘ :

| | | | | |
6K (7%) 9K (10%) 12K (13%) 14K (16%) 17 (19%) 20K (22%)

Figure 3: The improvement in agreement (%) over 10 iterations
on the secret test set for image and text classification tasks, with
a total budget of 20K. The X-axis indicates budget consumed
(% of total dataset indicated in parenthesis). Since random is
not run iteratively, it is indicated as a line parallel to the X-axis.

MNIST 10K 15K 20K 25K 30K
B%) (12%) (17%) 21%) (25%)
Random 91.64 9519 9590 9748 97.36
Uncertainty 94.64 9743 9677 9729 97.38
K-center 95.80 9566 9647 9781 9795
DFAL 95.75 9559 96.84 97.74 97.80
DFAL+K-center 9540 97.64 97.65 97.60 98.18
Using the full thief dataset (120K): 98.54
Using uniform noise samples (100K): 20.56
CIFAR-10 10K 15K 20K 25K 30K
B%) (12%) (17%) Q21%) (25%)
Random 63.75 6893 71.38 7533 76.82
Uncertainty 63.36 6945 7299 7422  76.75
K-center 64.20 7095 7297 7471 78.26
DFAL 6249 6837 71.52 7741 77.00
DFAL+K-center 61.52  71.14 7347 7423 78.36
Using the full thief dataset (120K): 84.99
Using uniform noise samples (100K): 10.62
GTSRB 10K 15K 20K 25K 30K
@B%) (12%) (17%) (21%) (25%)
Random 67.72 7771 7949 82.14 83.84
Uncertainty 67.30 7392 80.07 83.61 8549
K-center 70.89 81.03 8359 8581 8593
DFAL 7271 7944 8343 8441 83.98
DFAL+K-center 70.79  79.55 84.29 8541 86.71
Using the full thief dataset (120K): 93.68
Using uniform noise samples (100K): 45.53
MR 10K 15K 20K 25K 30K
(11%) (17%) (22%) (28%) (33%)
Random 76.45 7824 7946 8133 8236
Uncertainty 77.19  80.39 81.24 84.15 8349
K-center 77.12 81.24 8196 8395 83.96
Using the full thief dataset (89K): 86.21
Using discrete uniform noise samples (100K): 75.79
IMDB 10K 15K 20K 25K 30K
(11%) (17%) (22%) (28%) (33%)
Random 71.67 7879 7470 80.71  79.23
Uncertainty ~ 73.48  78.12 81.78 82.10  82.17
K-center 77.67 7896 80.24 81.58  82.90
Using the full thief dataset (§89K): 86.38
Using discrete uniform noise samples (100K): 53.23
AG News 10K 15K 20K 25K 30K
(11%) (17%) (22%) (28%) (33%)
Random 7451 80.39 82.76 8397 84.20
Uncertainty 7547  82.08 83.47 8496 87.04
K-center 75.87 79.63 84.21 8497 8596
Using the full thief dataset (§89K): 90.07
Using discrete uniform noise samples (100K): 35.50

Table 2: The agreement (%) on the secret test set for im-
age and text classification tasks. Each row corresponds to
a subset selection strategy, while each column corresponds
to a different query budget (% of total dataset indicated in
parenthesis).



Training regime

We use the Adam optimizer (Kingma and Ba 2015) with
default hyperparameters. In our experiments, for all but the
random strategy, training is done iteratively. In each itera-
tion, the model is trained for at most 1,000 epochs with a
batch size of 150 (images) or 50 (text). Early stopping is
used with a patience of 100 epochs (images) or 20 epochs
(text). An Ly regularizer is applied at a rate of 0.001, and
dropout is applied at a rate of 0.1 for all datasets other than
CIFAR-10, where a dropout of 0.2 is used. At the end of each
epoch, the model is evaluated and the F'; measure on the val-
idation split is recorded. The model with the best validation
F} measure is selected as the substitute model f in that iter-
ation. We set aside 20% of the query budget for validation,
and use 10% as the initial seed samples.

Experimental results

In this section, we demonstrate two attack scenarios, differ-
entiated by the attacker’s knowledge of the secret model ar-
chitecture. Following this, we show how ACTIVETHIEF is
able to evade detection by PRADA.

Full knowledge of the secret model architecture

We first evaluate ACTIVETHIEF in a scenario where the at-
tacker has full knowledge of the secret model architecture.
We do this to study the subset selection strategies in isola-
tion, eliminating the influence of the choice of the substitute
model architecture.

For each dataset, we run ACTIVETHIEF across the fol-
lowing total query budgets: 10K, 15K, 20K, 25K and 30K.
For 20K, we show the agreement at the end of each iteration
for every strategy and each dataset in Figure 3. Clearly, the
agreement of the model improves, on an average, with each
iteration. As it is non-trivial to modify DeepFool to work for
text classification tasks, we omit the two strategies that make
use of it for evaluation in the context of the text datasets.
These experiments are run assuming that only the top-1 pre-
diction is returned by the MLaaS API (i.e. no probability
scores are returned). We tabulate the agreement obtained at
the end of the final iteration for each experiment in Table 2.
Effectiveness of active learning. The benefits of careful se-
lection of thief dataset samples can be clearly seen: there
is no dataset for which the random strategy performs better
than all of the other strategies. In particular, K-center under-
performs only once (for images) and once (for text), while
DFAL underperforms twice (for images). Uncertainty un-
derperforms 6 times (for images) and once (for text), but
this is in line with the findings of Ducoffe and Precioso
(2018). Encouraged by the performance of DFAL and K-
center strategies, we study the combination thereof.
Effectiveness of the combined strategy. The agreement of
the models is improved by the combined strategy over the
basic DFAL strategy in 10 out of 15 of the image classifi-
cation experiments, and the combined strategy emerges as
the winner in 8 experiments — a majority. This improve-
ment in agreement bears evidence to the increased potential
of the combined strategy in extracting information from the
secret model. The other competitive method is the K-center

Table 3: Agreement of the winning strategy on the secret
test set for each dataset (total budget of 10K), when using a
different number of iterations.

Substitute model agreement (%)

Dataset 10 iterations 20 iterations
MNIST 95.80 96.74
CIFAR-10 64.20 64.23
GTSRB 72.71 72.78

Table 4: Agreement of the winning strategy on the secret test
set for each dataset (total budget of 10K over 10 iterations),
with and without access to output probability scores.

Substitute model agreement (%)

Dataset Top-1 prediction  Probability scores
MNIST 95.80 98.61
CIFAR-10 64.20 77.29
GTSRB 72.71 86.90

method, which wins in 5 experiments. This is followed by
the DFAL strategy, which won in 2 experiments.

Overall, we find that the K-center and DFAL+K-center
strategies perform the best for image classification, while the
K-center strategy performs the best for test classification.
Impact of the query budget. As evident from Table 2, there
is an improvement in agreement when increasing the query
budget. The attacker should thus make as many queries as
possible. However, we observe that ACTIVETHIEF is able
to achieve an agreement comparable to that of the full thief
dataset, while using only 30% of it.

Effectiveness of universal thief datasets. We compare our
results to uniform noise (multidimensional U|0, 1]) SNPD
data, analogous to data used in the equation-solving at-
tacks of Tramer et al. (2016). For text classification, we
use discrete uniform. It can be seen that the uniform base-
line achieves a low agreement on all datasets. When queried
with uniform noise, there are many labels which the secret
model rarely predicts, and the substitute model fails to learn
to properly identify such labels (further details in the sup-
plement). This is overcome by the use of universal thief
datasets, leading to a 3.4x improvement in agreement over
uniform noise on an average.

Impact of the number of iterations. Table 3 shows that
with an increase in the number of iterations, there is an
improvement in agreement for the same budget. Thus, the
substitute model agreement can be improved by running the
ACTIVETHIEF framework for more iterations at the expense
of increased training time, but with diminishing returns.
Impact of access to output probability scores. Table 4
demonstrates that access to the output probabilities of the
secret model results in an improvement in agreement. We
believe that this is because the substitute model receives a
signal corresponding to every output neuron for each thief
dataset sample that it is trained on. Consequently, the substi-
tute model is able to learn a better approximation.



Table 5: Transferability (%) of FGSM adversarial examples.

ACTIVETHIEF
Dataset Papernot Random K-center DFAL  DFAL+K-center
MNIST 40.28 49.71 4775  59.55 53.08
CIFAR-10 82.61 85.76 8526  84.25 84.30
GTSRB 84.83 93.41 9345 93.83 93.34

Transferability of adversarial examples. Szegedy et al.
(2013) introduce the concept of adversarial examples, where
an imperceptible perturbation is introduced to input images
that cause ML models to misclassify them. They show that
these adversarial examples crafted for a particular model are
transferable, i.e. they are also likely to be misclassified by
other models. Papernot et al. (2017) present a technique for
generating adversarial examples for black-box models, by
first performing model extraction, and then using the sub-
stitute model to generate adversarial examples that transfer
on to the secret model. Here, we compare the transferability
of adversarial examples obtained using the ACTIVETHIEF
substitute model, to that of Papernot et al. Details of how we
train the substitute model of (Papernot et al. 2017) are pre-
sented in the supplement. We generate adversarial examples
using the FGSM attack (Goodfellow, Shlens, and Szegedy
2014), at a rate of ¢ = 0.25. We compute transferability
as the fraction of perturbed secret dataset samples (which
are PD data) that are misclassified by the secret model. We
present our results in Table 5. It can be seen that while using
only unannotated NNPD data for extraction, ACTIVETHIEF
is able to achieve better transferability of perturbed PD sam-
ples than Papernot et al., which requires PD data during the
extraction process.

Limited knowledge of the secret model architecture

Here, we perform extraction using the full thief dataset, to
study the impact of substitute model selection.

Case study on text classification. We first consider the text
classification scenario, with a CNN secret model architec-
ture. With no prior information about the model, an attacker
may guess the secret model architecture to be an RNN, given
the prelevance of such models in natural language process-
ing. Both this situation, as well as the converse, are illus-
trated in Table 6, where the architectures CNN and RNN are
as described in the experimental setup. As it can be seen, the
agreement achieved in each case, across all three datasets, is
relatively robust to the choice of model architecture.

It is possible for an attacker to recover information about
the model architecture using a related line of work, model
reverse-engineering (Oh et al. 2018; Duddu et al. 2018), for
instance, it may be possible to recover whether the model
being used is an RNN or CNN, or the kind of activations
used. We thus next consider a situation where the attacker
has partial information about the model architecture:

Case study on CNNs for image classification. We now
consider a situation where the attacker is privy to significant
information about the secret model architecture, and study
the impact of smaller discrepancies between the substitute
and secret model architectures. We use different configura-

Table 6: Agreement (%) for text classification tasks.

Substitute model
Dataset Secret model CNN RNN

MR CNN 86.21 85.18
RNN 84.80 89.12
IMDB CNN 86.38 85.53
RNN 87.06 90.22
AG News CNN 90.07 92.62
RNN 90.96 93.01

tions of the CNN architecture for images introduced in the
previous section, corresponding to three different values of
l, viz., 2, 3 and 4. The results of these experiments is tabu-
lated in Table 7. As is obvious from the table, the agreements
along the principal diagonal (when the secret model and sub-
stitute model architectures are identical) are in general high.
These results also corroborate the findings of (Juuti et al.
2019). We believe that the performance degradation from us-
ing a less or more complex substitute model than the secret
model results from underfitting or overfitting, respectively.
In any case, the agreement achieved is relatively robust to
the choice of [ for the substitute model.

Ability to evade a state-of-the-art detection method

Juuti et al. (2019) propose PRADA (Protecting against
DNN model stealing attacks), the most well known detec-
tion method for model extraction attacks. As PRADA is de-
fined for image classification, we restrict our investigation to
image classification tasks (MNIST, CIFAR-10 and GTSRB).
Juuti et al. observe that the distribution of distances d;:

di = min |lz; — 2l
J<i,y;=y;

between (benign) queries z; (that are predicted to be in
class y;) closely fit a Gaussian distribution. Their detection
method is based on their assumption of model extraction at-
tacks having a duplication phase, where the attacker gener-
ates synthetic combinations or perturbations of benign sam-
ples, which causes the distribution of d; to deviate from the
Gaussian. To detect whether a potentially malicious client is
attempting to extract an MLaaS model, they perform a nor-
mality test (the Shapiro-Wilk Test, refer to the supplement
for more details). We run PRADA against our attack and
that of Papernot et al. The histograms of d; are plotted for
each dataset in Figure 4. PRADA is able to stop the Paper-
not attacks, requiring 210, 380 and 710 queries for MNIST,
CIFAR-10 and GTSRB respectively. It is unable to detect
ACTIVETHIEF, even when using a budget of 30K, for the
DFAL+K-center strategy (our results are similar for other
strategies). For the Papernot attack, d; is plotted only for
samples up to the point of detection. It can be seen that the
histogram for ACTIVETHIEF remains roughly normally dis-
tributed throughout, thus avoiding detection. This is as a re-
sult of ACTIVETHIEF querying the secret model with only
natural NNPD dataset samples (and thus requiring no gener-
ation of synthetic samples during a duplication phase).



Table 7: The agreement (%) achieved for image classification tasks, using CNN architectures of differing complexity.

(a) MNIST dataset (b) CIFAR-10 dataset (c) GTSRB dataset
Substitute model Substitute model Substitute model

Secret model 1=2 1=3 1=4 Secret model 1=2 1=3 1=4 Secret model 1=2 1=3 1=4

1=2 98.73 98.15 97.63 1=2 7834 76.83 74.48 1=2 95.02 9230 86.88

1=3 9721 98.81 98.10 1=3 80.66 81.57 81.80 1=3 90.08 9142 91.28

1=4 96.75 98.05 98.36 1=4 7434  79.17 78.82 1=4 80.95 86.50 84.69
é, 50 MNIST % CIFAR-10 180 GTSRB
“g 0 | 60 | 120
9]
= 30 60
n 10 -II Il- = = I IIIII [Py = IIIIII.-I = =

4 6 8 10 5 10 15 20 5 10 15 20
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Figure 4: Distribution of distances for queries made by the attack of Papernot et al. (2017) and that of ACTIVETHIEF.

Related work

Model extraction is in closely related to knowledge distilla-
tion (Hinton, Vinyals, and Dean 2015). The key difference
is that in knowledge distillation, the adversary has full ac-
cess to the secret dataset and secret model; no separate thief
dataset is required. Apart from techniques described in pre-
vious sections, there are several other model extraction at-
tacks and defenses in the literature. We discuss them briefly.
Attacks. Shi, Sagduyu, and Grushin (2017) show that DNN's
can be used to extract the functionality of traditional ML
models such as naive Bayes and support vector machines,
but not vice versa, using the test fold of the PD secret
dataset. ACTIVETHIEF extracts DNNs using NNPD data.
Sethi and Kantardzic (2018) present a framework for attack-
ers attempting to bypass ML-based security mechanisms,
e.g., CAPTCHA that uses click time to determine if users
are benign. They use the extracted model to generate ad-
versarial examples that allow attackers to bypass detection.
Chandrasekaran et al. (2018) provide a theoretical treatment
justifying the use of active learning in model extraction, and
discuss the reduction in sample complexity for halfspace and
decision tree-based learners. In contrast, we experimentally
demonstrate active learning-based extraction with unanno-
tated public data for more complex neural network models.
Shi et al. (2018a) use active learning with PD data to ex-
tract a shallow feedforward network for text classification.
Shi et al. (2018b) design an exploratory attack that uses a
generative adversarial network trained on a small number of
PD data samples, which is then used to generate synthetic
samples with which the secret model is queried. Unlike AC-
TIVETHIEF, both of these approaches are reliant on PD data.

Defenses. Quiring, Arp, and Rieck (2018) show that when
the secret model is a decision tree, defenses against model
watermarking can also be used as defenses for model extrac-
tion attacks. Kesarwani et al. (2018) design a model extrac-
tion monitor that logs queries made to an MLaaS service.
It uses total information gain and coverage of the input fea-
ture space to detect attacks. Both these defenses, however,
assume the existence of a linear decision boundary in the se-
cret model, and do not apply to the DNNs we extract. Lee
et al. (2018) apply a perturbation to the predicted softmax
probability scores to dissuade model extraction. Such a de-
fense would still leave the secret model vulnerable to attacks
that expect only the predicted label, such as ACTIVETHIEF.

Conclusion

In this paper, we introduce ACTIVETHIEF, a novel model
extraction framework. We show that using only a single,
unannotated public dataset, it is possible to extract models
trained for classification tasks on different secret datasets.
We also show that this is possible for both image and text
domains with a limited query budget, with different architec-
tures across secret and substitute models. ACTIVETHIEF is
not detected by a state-of-the-art detection method for model
extraction attacks. Models extracted using our method also
possess good agreement with the secret models and im-
proved transferability of adversarial examples.
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