# ACTIVETHIEF: Model Extraction Using Active Learning and Unannotated Public Data

Soham Pal,\*<sup>1</sup> Yash Gupta,\*<sup>1</sup> Aditya Shukla,\*<sup>1</sup> Aditya Kanade,<sup>#1,2</sup> Shirish Shevade,<sup>#1</sup> Vinod Ganapathy<sup>#1</sup>

Attackers can extract MI aaS models by training a substitute model on labeled data obtained by repeatedly querying the service provider's secret model.

**Our Approach:** Vast amounts of unlabeled public data + active learning.

### Contributions

- Our approach works on deep neural networks (DNNs).
- It can operate under a limited query budget.
- It does not require access to problem domain data.
- It does not require access to labeled non-problem domain data.
- It evades a state-of-the-art detection mechanism, PRADA (Juuti et al., 2019).

<sup>1</sup>Indian Institute of Science, Bangalore, India <sup>2</sup> Google Brain, USA

#### ACTIVETHIEF

#### Equal contribution.



Secret model

MLAAS PROVIDER Secret dataset

## $\operatorname{ACTIVETHIEF}$ overview



- Careful selection of samples helps.
- Different Active Learning strategies can complement each other well.
- Choice of strategy should depend on extraction objective.

|                     | MNIST    | CIFAR-10 | GTSRB    |
|---------------------|----------|----------|----------|
| Random              | 95.90%   | 71.38%   | 79.49%   |
| Uncertainty         | 96.77%   | 72.99%   | 80.09%   |
| DFAL                | 96.84%   | 71.52%   | 83.43%   |
| K-center            | 96.47%   | 72.97%   | 83.59%   |
| DFAL, then K-center | 97.65%   | 73.47%   | 84.29%   |
|                     | (+1.82%) | (+2.92%) | (+6.04%) |

**Acknowledgements:** We thank ACM India-IARCS Travel Grant, AAAI student scholarship and Sonata Software, Bangalore, India for supporting travel to AAAI-20.

AAAI-20