
Published in Proceedings of the 22nd Annual Computer Security Applications Conference, Miami Beach, Florida, December 2006

NetSpy: Automatic Generation of Spyware Signatures for NIDS ∗

Hao Wang, Somesh Jha and Vinod Ganapathy

Computer Sciences Department, University of Wisconsin-Madison

{hbwang, jha, vg}@cs.wisc.edu

Abstract

We present NetSpy, a tool to automatically generate

network-level signatures for spyware. NetSpy determines

whether an untrusted program is spyware by correlating

user input with network traffic generated by the untrusted

program. If classified as spyware, NetSpy also generates a

signature characterizing the malicious substrate of the spy-

ware’s network behavior. Such a signature can be used by

network intrusion detection systems to detect spyware in-

stallations in large networks.

In our experiments, NetSpy precisely identified each of

the 7 spyware programs that we considered and generated

network-level signatures for them. Of the 9 supposedly-

benign programs that we considered, NetSpy correctly char-

acterized 6 of them as benign. The remaining 3 programs

showed network behavior that was highly suggestive of spy-

ing activity.

1. Introduction

Spyware is a class of malware that steals private infor-

mation from users without their knowledge or permission.

Popular examples of spyware include keyloggers, programs

that monitor web-browsing activity, and Trojans that down-

load and install other malware. Most spyware typically

masquerade as programs that provide useful functionality,

such as browser plug-ins and extensions, and compromise

the privacy of unsuspecting individuals who install them

on their computers. Several recent studies show that the

threat of spyware is on the rise, with one study reporting

that as many as 80% of computers in the US are spyware-

infected [9, 19]. Because spyware surreptitiously snoops

and reports victim behavior to a malicious remote server,

victims often do not notice malicious activity on their ma-

chines and do not realize that the spyware program is com-

promising their privacy. This very characteristic makes it

challenging to detect spyware.

Prior techniques for spyware detection fall under two

∗Supported by grants ONR/N00014-01-1-0708, NSF/CCR-0133629,

DOE/DE-FG02-93ER25176 and NSF/CNS-0448476.

complementary categories: host-based and network-based.

Host-based detectors work much like virus scanners, i.e.,

they scan binary executables for the presence of patterns

contained in a database of known spyware patterns. Most

commercial tools use simple techniques—such as matching

MD5 signatures of executables—which fail to detect vari-

ants of spyware. To address this shortcoming, recent work

has extended the basic matching approach to a behavior-

based approach [17]. In contrast, network-based detectors

monitor network traffic for malicious activity suggesting

spying behavior. For example, Snort [6] can match outgoing

network traffic against signatures of known spyware. These

signatures are typically developed manually (e.g., Bleeding

Edge Snort [2]).

Both these techniques suffer from two important short-

comings. First, because they use signatures of spyware

behavior, either at the binary executable or at the net-

work level, they can only detect known instances of spy-

ware and are thus ineffective at detecting novel spyware

instances. Even behavior-based techniques (e.g. Kirda et

al. [17]) suffer from the shortcoming that they can only de-

tect previously-unseen variants of known spyware behavior.

Second, formulating signatures is currently ad hoc and man-

ual with little work on automating the process. For exam-

ple, Bleeding Edge Snort uses a manual approach to con-

struct spyware signatures for Snort [6]. While there have

been recent advances [10, 11] at identifying spyware pro-

grams based on suspicious network activity, to the best of

our knowledge there is no prior work on automatic genera-

tion of network-level signatures for spyware.

This paper focuses on characterizing the network-level

behavior of spyware. We present a novel approach to au-

tomatically generate network-level signatures for spyware.

Such signatures can be used with network intrusion detec-

tion systems (NIDS), such as Snort or Bro [3], to monitor

outgoing traffic, and detect spyware installations within a

network. We have developed NetSpy, a tool that generates

network-level signatures for spyware.

Key to our approach is the observation that spyware

monitors victim activity, such as keystrokes and web sites

visited, and reports this back to a home server. Thus, out-

bound network traffic generated by a spyware program must

contain some footprint of the victim’s behavior that trig-

gered the network activity. NetSpy uses this observation to

achieve two goals: (i) determine whether an untrusted pro-

gram is potentially spyware, and (ii) if the program is spy-

ware, then generate a signature characterizing the malicious

substrate of its network behavior. The first goal is achieved

by NetSpy’s differential analysis tool while the second goal

is achieved by its signature generation tool.

Differential analysis, described in Section 3, is a two-

step process. The first step isolates network traffic gener-

ated by the untrusted program. The second step analyzes

this traffic for spying behavior, i.e., correlation between the

contents of network traffic and user-input. If such a corre-

lation exists, then NetSpy deems that the untrusted program

is spyware. This network traffic is then fed to the signa-

ture generator, described in Section 4, which generates a

network-level signature. The main goal of signature gener-

ation is to isolate the malicious substrate that remains invari-

ant irrespective of the specific user-input that triggered the

spyware program to generate this network traffic. For ex-

ample, network packets generated by a keylogger will typ-

ically contain specific keystrokes that must be filtered out

to generate a signature for the keylogger. NetSpy’s signa-

ture generator uses a variant of the longest common sub-

sequence (LCSeq) algorithm [12] to generate succinct and

precise spyware signatures for NIDS.

We evaluated NetSpy on 7 known spyware programs and

9 supposedly-benign programs. NetSpy was able to detect

all 7 spyware and generate Snort signatures for them. More

interestingly, NetSpy detected that A9 Toolbar, one of the

supposedly-benign programs tested, contains features that

may be considered undesirable by many users. A9 Tool-

bar is an Internet Explorer plug-in that saves URLs that a

user has visited on A9’s home server, under the user’s ac-

count. Therefore, this requires a user to sign in to A9’s

web site first. However, NetSpy found that regardless of

whether a user has signed into A9, A9 Toolbar always

sends URLs that the user has visited to a special server

siteinfo.a9.com.

In summary, we believe that the following features of

NetSpy advance the state-of-the-art in spyware signature

generation.

1. Ability to detect novel spyware. NetSpy observes the

network activity generated by an untrusted program in

response to simulated user-input and determines whether

the program is possibly spyware. This approach also

enables NetSpy to generate signatures for previously-

unseen spyware instances.

2. Network-level signature generation. If deemed to be

spyware, NetSpy generates a signature for the malicious

substrate of an untrusted program’s network behavior.

These signatures can be used by a NIDS that monitors

outgoing traffic from a network, thus enabling detection

of spyware installations on all machines within the net-

work.

3. Automation. NetSpy is fully automatic. When a new

program (such as a browser toolbar) is installed on a ma-

chine, NetSpy can determine immediately whether the

program is potentially spyware and automatically gener-

ate Snort signatures for the program.

2. Overview

NetSpy has two goals: (i) to automatically discover pos-

sibly malicious network activity generated by novel spy-

ware instances, and (ii) to generate NIDS signatures for

this network activity. This section presents a high-level, in-

formal overview of NetSpy, focusing on how an end-user

would use NetSpy to generate signatures for spyware. We

begin with a running example.

2.1. Browser Accelerator: an example spyware

Browser Accelerator [15] is a spyware program that dis-

guises itself as a plug-in for Internet Explorer. Plug-ins nor-

mally enhance the functionality of Internet Explorer by pro-

viding additional features. However, Browser Accelerator

also monitors user-web-browsing activity, and reports the

monitored activity back to a home server.

To illustrate the spying behavior of Browser Accelera-

tor, we first consider the network activity generated by a

“clean”, i.e., non-spyware-infected, version of Internet Ex-

plorer, and compare it with the network activity generated

by Internet Explorer with Browser Accelerator installed.

Suppose that an end-user uses Internet Explorer to visit

the URL www.google.com. On a clean version, this gen-

erates two out-bound HTTP requests (Figure 1, rows 1-

2), both destined for www.google.com. The first re-

quest retrieves the root document associated with the URL,

while the second retrieves the Google logo image contained

within the root document.

With a Browser Accelerator-infected version of Inter-

net Explorer, the same end-user-activity instead gener-

ates seven HTTP requests (Figure 1, rows 1-4). The

first two requests are identical to those observed with

the clean version. The third request, destined for a

remote server called data.browseraccelerator.com,

contains the URL www.google.com. Four addi-

tional requests are destined for another server called

client.browseraccelerator.com.

In fact, our experiments show that a Browser-

Accelerator-infected version of Internet Explorer will gen-

erate an almost identical set of extra HTTP requests (Fig-

ure 1, rows 3-4), irrespective of the URL visited. The only

variant is the URL string encoded in the request destined for

data.browseraccelerator.com, as shown in the box in

Figure 1, row 3. For example, the HTTP request, destined

Destination HTTP Requests

1 www.google.com GET /

2 cl
ea

n

www.google.com GET /intl/en/images/logo.gif

3 in
fe

ct
ed

data.browseraccelerator.com GET /data/track.aspx?...&theurl=http:// www.google.com /

4 client.browseraccelerator.com four requests destined to this host are omitted for brevity

Figure 1. Network traffic generated by Internet Explorer when visiting www.google.com in two differ-

ent settings: rows 1-2 are generated using a clean version; rows 1-4 are generated by a Browser

Accelerator-infected version. For brevity, we have only shown relevant portions of the packets.

for data.browseraccelerator.com, generated by visit-

ing www.apple.com with an infected version will contain

the URL string www.apple.com instead. The other four

requests destined for client.browseraccelerator.com

are identical across all experiments and therefore are not

discussed in detail here.

Observe that for both URLs mentioned above, a Browser

Accelerator-infected version of Internet Explorer generates

extra network activity that is not observed with a clean ver-

sion. NetSpy uses this observation to detect spyware pro-

grams and generate NIDS signatures for the network activ-

ity that they generate. We now discuss how an end-user,

such as a system administrator, would use NetSpy to auto-

matically generate NIDS signatures for spyware programs,

such as Browser Accelerator.

Network

Packets

Network

Packets

Signature

NIDS

Network

Packets

Malicious

System

(Clean)

System

(Infected)

Analysis

DifferentialInput

Generator

Signature

¬ ®

¯

­

Figure 2. NetSpy Architecture Overview.

2.2 Spyware signature generation using NetSpy

We have designed NetSpy for use in environments where

a large number of machines are supported. When a program

installed on a particular machine in the network is suspected

to be spyware, a system administrator can use NetSpy to de-

termine if it is indeed so, and generate a signature to capture

the outbound network-level behavior of the program. A key

feature of network-level signature generation is that once

a spyware program has been detected on a particular ma-

chine in the network, the network-level signature can detect

installations of that program on other machines in the net-

work. There are four high-level steps to using NetSpy, as

shown in Figure 2.1. We describe each in detail.

Step 1. Collecting reference network statistics. A

spyware-infected machine will produce different network

activity as compared to a clean machine. Thus, the first

step is to collect the network-behavior of a machine that

does not have spyware programs installed. The network be-

havior of such a clean machine serves as a reference point

against which all future network-behavior of the machine

will be compared and is called the reference network statis-

tics. This consists of out-bound network traffic generated

by the clean machine in response to a predetermined set of

inputs. This step is fully automatic. The only optional man-

ual step is for a system administrator to provide input pa-

rameters with which to run NetSpy (however, NetSpy does

provide a default set of input parameters).

NetSpy only observes out-bound network traffic because

our assumption is that spyware monitors user activity, and

reports this back to its home server. If a system is infected

with a spyware, then out-bound network traffic from the in-

fected system must differ from that of a clean system. In the

rest of this paper, the term network activity/traffic is used

synonymously with out-bound network activity/traffic.

A system administrator first collects reference net-

work statistics by choosing a set of URLs, such as

www.google.com, as the input with which to run Inter-

net Explorer. For each input URL, Internet Explorer gen-

erates one or more HTTP requests. For example, access-

ing www.google.com generates exactly two requests. The

first fetches the root document, and the second fetches the

Google logo, referenced within the root document. Figure 3

shows an example of reference network statistics collected

during an experiment where the input set consists of three

URLs. Note that for some URLs, such as www.apple.com

and slashdot.org, there are multiple requests destined for

different host addresses.

Although many web sites update their content frequently

(e.g., slashdot.org), the hosts they access rarely change.

Collecting reference network statistics can thus be an in-

frequent activity (e.g. once a week). Alternately, NetSpy

can be configured to retrieve the latest network reference

statistics daily, or in extreme cases, each time NetSpy is ex-

ecuted. We leave this as a configurable parameter for Net-

Spy users. An issue that NetSpy must deal with is the back-

ground traffic generated by known benign programs such

as email applications and automatic updates. We maintain a

whitelist to filter out the network traffic generated by benign

processes.

Note that our description of this step and the current im-

Input (Step 1.) Reference Network Statistics (Step 2 & 3) Infected Network Statistics

host HTTP Requests host HTTP Requests

www.apple.com GET /main/css/globalprint.css www.apple.com GET /main/css/globalprint.css

www.app- GET /home/2006/ticker.rss GET /home/2006/ticker.rss

le.com images.apple.com other requests omitted for brevity images.apple.com other requests omitted for brevity

data.browser- GET ...&theurl=http://www.apple.com/

accelerator.com more requests omitted for brevity

www.- www.google.com GET / www.google.com GET /

google.- GET /intl/en/images/logo.gif GET /intl/en/images/logo.gif

com data.browser- GET ...&theurl=http://www.google.com/

accelerator.com more requests omitted for brevity

slashdot.org GET / slashdot.org GET /

slash- images.slashdot- GET /topics/topicnintendo.gif images.slashdot- GET /topics/topicnintendo.gif

dot.org .org other requests omitted for brevity .org other requests omitted for brevity

data.browser- GET ...&theurl=http://slashdot.org/

accelerator.com more requests omitted for brevity

Figure 3. Network statistics collected for input set {www.google.com, www.apple.com, slashdot.org}.

plementation of NetSpy are tailored to detect spyware pro-

grams that infect Internet Explorer. NetSpy currently can-

not handle other kinds of spyware (e.g., keyloggers). We

plan to extend NetSpy to handle such spyware in the future.

Step 2. Collecting network traffic from an altered ma-

chine. NetSpy can determine whether an untrusted pro-

gram installed on a machine is potentially spyware. To

do so, a system administrator runs NetSpy on the machine

(with the untrusted program installed) using the same set of

inputs from Step 1. NetSpy automatically collects the net-

work traffic generated by the system.

Suppose that Browser Accelerator has been installed

on a machine. The system administrator invokes NetSpy

with the same set of URLs as used in Step 1, which in

turn simulates browsing activity in Internet Explorer. Be-

cause of the spying behavior of Browser Accelerator, Net-

Spy now records extra network activity for each URL vis-

ited. For example, it records extra traffic for the input URL

www.apple.com, as shown in the first shaded row in Fig-

ure 3.

A key issue is to determine when to invoke NetSpy.

Several possibilities exist. One option is to invoke Net-

Spy periodically (e.g., overnight) on all machines in the

network. Another option is to invoke NetSpy each time

a new program is installed on any machine on a network.

There are several standard techniques to determine that a

new program has been installed. For example, on Win-

dows 2000/XP systems, it is possible to track all browser

extensions and plug-ins that have been installed on a sys-

tem. Thus NetSpy can automatically be invoked when a

new extension or plug-in is installed on a system. This pa-

per assumes that techniques to determine when a new pro-

gram has been installed are readily available to a system

administrator. It focuses instead on how NetSpy determines

whether an unknown program is spyware and generates a

network-level signature for it.

Step 3. Differential analysis. The goals of this step are

twofold: (i) to identify network traffic generated by an un-

trusted program, and (ii) to determine whether the program

is spyware. Differential analysis achieves the first goal by

comparing network traffic gathered in Step 2 against the ref-

erence network statistics, gathered in Step 1. For each cap-

tured network packet, NetSpy identifies the hostname that

the packet is destined to, and the destination port number.

The second goal is achieved by correlating user-input to

network traffic. This correlation provides concrete evidence

that a program is indeed spyware, following which a system

administrator can use NetSpy’s signature generation tool to

generate a NIDS signature that characterizes the malicious

substrate of the spyware program’s network activity.

The shaded rows in Figure 3 show the malicious network

activity generated by a Browser Accelerator-infected ver-

sion of Internet Explorer, as identified by NetSpy. Note

that for every input URL entered, there are extra HTTP

requests generated by the infected version of Internet Ex-

plorer (as compared to the reference network statistics)—a

key characteristic of spyware. In addition, because input

URLs are correlated to outbound network traffic generated

by Browser Accelerator, NetSpy classifies Browser Accel-

erator as a spyware (Section 5). However, this need not

always be the case. For example, because Mirar Toolbar

encrypts the data it sends to its home server, the correla-

tion between user input and contents of network traffic is

not as clear. Section 3 describes the heuristics that NetSpy

currently employs to rank an untrusted program as potential

spyware.

Step 4. Generating spyware signatures for NIDS. The

final step is to generate a network-level signature for a

program identified as spyware (in Step 3). To do so,

NetSpy uses the spyware-generated network traffic identi-

fied by differential analysis. However, this traffic is typ-

ically dependent on user-input. For example, the HTTP

requests generated by Browser Accelerator for the URL

www.google.com contain the string www.google.com.

These requests, if used directly as the signature, would only

match traffic generated by Browser Accelerator when the

user visits www.google.com. Thus we must identify the

invariant portion of network traffic generated by a spyware

program. We do so using a modified version of the Longest

Common Subsequence (LCSeq) algorithm [12]. The mod-

ified algorithm adds a wildcard .∗ at locations in the output

of differential analysis that vary with user input. Doing so

produces a regular expression which can then be used di-

rectly as a NIDS signature.

GET ...&theurl= http://www.google.com/

HTTP GET ...&theurl= http://www.apple.com/

Requests GET ...&theurl= http://slashdot.org/

LCSeq GET ...&theurl=http://.*/

NIDS Sig. alert tcp $HOME NET any -> $EXTERNAL NET

$HTTP PORTS (msg:"Browser Accelerator";

flow:established,to server; pcre:"GET

...&theurl=http://[.*]"; nocase;

classtype:trojan-activity; ... ;)

Figure 4. Generating NIDS signatures.

We illustrate this on our running example. The first row

in Figure 4 contains the three HTTP requests generated by

Browser Accelerator for three input URLs, as identified by

NetSpy in Step 3. Note that the three requests are almost

identical to each other, except for the URL strings (shown

in the boxes). The basic LCSeq algorithm, when applied

to these requests, finds structure common to these requests.

The modified LCSeq algorithm represents portions specific

to each request using wild-card entries (shown in the sec-

ond row of Figure 4), thus creating a regular expression,

which can be used to create a signature for use with Snort

or Bro. The last row of the figure shows a Snort signature

constructed using this regular expression.

3. Differential analysis

Differential analysis examines the network traffic gener-

ated by a machine with an untrusted program installed and

achieves two goals: (i) it identifies the portion of network

traffic generated by the untrusted program, and (ii) it de-

termines whether the program is potentially spyware. The

key observation used here is that a spyware program mon-

itors victim activity and reports this back to a home server.

Thus, network traffic generated by spyware must be depen-

dent on user-input, i.e., different values for user-input pro-

duce different network activity. Differential analysis em-

ploys heuristics, described below, to assign a score between

1 and 3 to an untrusted program, where a higher score indi-

cates that the program is more likely to be spyware.

3.1. Identifying network traffic generated by an un-

trusted program

To isolate network traffic generated by an untrusted pro-

gram, differential analysis records network traffic generated

by a machine with the suspicious program installed and

compares that traffic with reference network statistics. Be-

cause programs behave differently under different inputs,

network traffic generated by a program depends on the input

that it is executed with. To identify network traffic generated

by an untrusted program, NetSpy compares the traffic gen-

erated by running a machine (with the program installed)

under an input set I against the traffic generated by a clean

system fed with the same input set.

In particular, suppose that the input set I consists of the

inputs {i1, i2 . . . in}. On our running example, these will be

URLs with which Internet Explorer is invoked. NetSpy sim-

ulates user activity by feeding each input i ∈ I to the pro-

gram, and records the network traffic generated. We denote

the captured traffic as a tuple < i,Pi >, where Pi itself is a

set of tuples, Pi = {< h1, p1 >, < h2, p2 > . . . < hm, pm >},

where each hi represents a destination host address, and

pi denotes the corresponding set of network packets (e.g.,

HTTP requests) destined for that host. Note that an input i

can trigger the machine to send data to multiple hosts and

multiple requests to each of these hosts.

This process is used both to collect reference network

statistics and network traffic generated by a machine with an

untrusted program installed. Let O(I) andO′(I) denote, re-

spectively, the reference network statistics, and the network

traffic generated by a machine with an untrusted program

when invoked with input set I:

O(I) = {< i1,Pi1 >, < i2,Pi2 > . . . < in,Pin >}

O′(I) = {< i1,P
′
i1 >, < i2,P

′
i2 > . . . < in,P

′
in >}.

The difference between the two sets, D = O′(I) − O(I),

where D(i) =< i,P′i − Pi >, i ∈ I, is the network traffic

generated by the untrusted program.

Note that we identify network traffic associated with the

program under several inputs. As discussed in detail in Sec-

tion 4, this is necessary to produce a NIDS signature if the

program is identified as spyware. A NIDS signature must

capture an invariant property of network traffic generated by

the spyware program—one that does not depend on specific

user-input. To identify this invariant, we collect network

traffic under several inputs.

3.2. Classifying an untrusted program as spyware

Having identified network traffic generated by the un-

trusted program, the next step is to determine if the pro-

gram is spyware. We assign a score to the program based

upon characteristics of the traffic that it generates. The

heuristic currently used to assign this score is shown in

Figure 5. Specifically, we assign a score of 3 (most

likely to be spyware) to a program that (i) sends data to

a server previously unseen in reference network statistics,

and (ii) generates this data based upon user-input. For

example, in the case of Browser Accelerator, we observe

that each input URL to Internet Explorer is included as

part of a HTTP request sent by Browser Accelerator to

data.browseraccelerator.com, a server that is not in-

cluded in reference network statistics.

Input: S: the spyware program to be analyzed; I: the set of

inputs {i1, i2 . . . in}; O(I) = {< i,Pi >, i ∈ I}, the

reference network statistics;

Output: D(I): the extra network traffic generated by S for

the input I; RS : the spyware score of the program

S

O′(I) = {< i,P′i >, i ∈ I} // Network traffic with S installed;1

foreach (i ∈ I) do

D(i) = < i,P′
i
− Pi >;2

RS = score of 1, 2, or 3 (See Figure 5);3

return (D(I), RS)4

Algorithm 1: Differential Analysis

A program is assigned a score of 2 if it sends data to

a server not included in the reference network statistics, but

correlation between network traffic contents and inputs can-

not be determined. Out of the 7 spyware programs that we

evaluated, NetSpy identified two that fit into this category

(see Section 6 for details).

Finally, a program is assigned a score of 1 (i.e., least

likely to be spyware) if either (i) it does not produce any

network traffic, or (ii) sends data only to servers included

in the reference network statistics. For example, most of

the benign programs that we tested NetSpy on fall into this

category. Algorithm 1 summarizes differential analysis.

4. Signature Generation

Differential analysis assigns a score RS (between 1

and 3) to an untrusted program S that it analyzes. If RS is

above a certain threshold (2 in our current implementation),

NetSpy classifies the program as spyware and generates a

NIDS signature for this program.

The key to signature generation is to identify the invari-

ant portion of network traffic generated by a spyware pro-

gram, i.e., we must filter content that is specific to user in-

put. This is because a signature that has content related to

specific user input will miss network activity generated by

the program on other user input. On our running example,

Browser Accelerator, each packet sent to the home server

data.browseraccelerator.com contains a URL that the

user has entered. The NIDS signature must be agnostic to

the URL and retain the invariant portion of network traffic.

NetSpy uses a variant of the longest common subse-

quence (LCSeq) algorithm [12] to find invariants. LCSeq

finds the longest subsequence of characters (i.e., not neces-

sarily contiguous) common to two input strings. We mod-

ified LCSeq in two ways. First, to generate signatures for

NIDS, the output must be a regular expression that repre-

sents network traffic, with portions of the traffic that vary

with user input replaced by wild-cards. We do so by intro-

ducing markers at locations in the input strings where LC-

Seq identifies differences. These markers are then used to

place the .* wild-card operator and convert the result into a

regular expression. Second, the standard LCSeq algorithm

works over two input strings. We modified it to work with

an arbitrary set of input strings. We do so by iterating over

the set of packets and refining a candidate longest common

subsequence as we do so. Algorithm 2 shows NetSpy’s sig-

nature generation algorithm.

Input: D(I): set of network packets generated by S; RS:

spyware score of S .

Output: SignatureS : NIDS signature for S

if RS < threshold then1

return EMPTY;2

lcs = LCSeq-modified(D(1), . . .,D(n));3

foreach marker introduced by LCSeq-modified do4

lcs[index] = .*;5

SignatureS = lcs;6

return SignatureS ;7

Algorithm 2: Signature Generation

5. Implementation

The NetSpy prototype is currently implemented for Win-

dows 2000/XP, and focuses on generating signatures for

spyware that target Internet Explorer. NetSpy is fully au-

tomatic. The only (optional) manual task is that of chang-

ing a configuration file that contains the input URLs used

to collect reference network statistics. It currently produces

Snort signatures as output (though it can be adapted to pro-

duce signatures in other formats as well). We envision that

these signatures can help efforts like Bleeding Edge Snort.

The prototype, implemented in C/C++, currently stands at

4700 lines of code, consisting of three principle compo-

nents: a packet capturing tool, a differential analysis tool,

and a NIDS signature generator.

The packet capturing tool records packets generated by

Internet Explorer in response to the simulated user activity

of visiting set of input URLs. The main components of this

tool are a driver, built using the IWebBrowser2 interface [4],

which allows full programmable control over Internet Ex-

plorer. For example, the driver uses Internet Explorer to

open a URL, reload a page, follow a link on a page and

close the browser window. Packets generated by Internet

Explorer are captured by NetSpy using two standard net-

work library tools, WinPcap [8] and LibNIDS [5]. Win-

Pcap is an industry-standard, host-based packet-capturing

Network Traffic Characteristics

Score Spyware? Unseen Host Packet Content Examples

3 Most likely Yes Can be correlated to input Browser Accelerator

2 Likely Yes No correlation to input Mirar Toolbar

1 Least likely No Not important MSN Messenger Toolbar, Weather Bug

Figure 5. Classification of untrusted programs based upon network traffic characteristics.

library for Windows. However, because WinPcap captures

packets at the link layer and does not handle network-level

protocols such as TCP/IP, NetSpy uses LibNIDS to provide

features such as TCP-reassembly that are essential for in-

specting packet content.

6. Evaluation

We evaluated the following aspects of NetSpy using sev-

eral untrusted programs:

1. False negatives. To measure false negatives, we ran Net-

Spy on 7 known spyware programs that target Internet

Explorer to determine (i) whether it correctly classified

each of them as spyware, and (ii) whether it produced

a succinct signature for the malicious substrate of each

spyware’s network behavior. In our experiments (dis-

cussed in detail below and summarized in Figure 6) Net-

Spy produced no false negatives. In particular, it cor-

rectly identified all 7 of the programs as spyware, and

produced succinct and precise Snort signatures for them.

It is also worth noting that just 2 out of the 7 spyware pro-

grams that we tested (namely, 180SearchAssistant and

UCmore) have signatures in Bleeding Edge Snort, thus

indicating that NetSpy can potentially help such efforts.

2. False positives. To measure false positives, we used Net-

Spy with 9 widely-used toolbars for Internet Explorer

that are believed to be benign. NetSpy identified that 6 of

these toolbars were indeed benign. As we discuss below,

the remaining three toolbars (A9 Toolbar, Google Tool-

bar, and Yahoo Toolbar) showed network activity that

was highly suggestive of spying behavior.

We also updated our Snort signature database with the

signatures produced by NetSpy and ran the spyware in a test

environment monitored by Snort. With this signature set,

Snort was able to detect out-bound network traffic generated

by the spyware programs.

6.1. Evaluating NetSpy with known spyware

We discuss a few examples of known spyware programs

that NetSpy correctly detected and produced NIDS signa-

tures for. For brevity, in each case we only show the relevant

portion of the signature.

180SearchAssistant/Zango is a well-known spyware pro-

gram that monitors browsing activity and displays pages re-

lated pages in a separate Internet Explorer window. For ex-

ample, if a user visits www.google.com and searches for

cell-phones, then 180SearchAssistant displays one or more

pop-up windows containing cell-phone-related information.

NetSpy revealed that 180SearchAssistant contacted a

site called tvf.180solutions.com and sent a POST mes-

sage containing the web sites that the user was accessing.

NetSpy’s signature generator produced the following Snort

signature for 180SearchAssistant, where the highlighted

portion contains URLs or keywords (such as mp3) that the

user invokes Internet Explorer with:

POST /showme.aspx? keyword=.* &&did=998&...

Note, in particular, that NetSpy’s signature generator ab-

stracts away the specific keyword to produce a regular ex-

pression that represents the malicious substrate of network

activity generated by 180SearchAssistant.

AvenueMedia/InternetOptimizer (DyFuCA) is a

Browser Helper Object (BHO). 1 It hijacks the error page

displayed by Internet Explorer when a user tries to access

an invalid URL, and replaces the page with advertisements

related to the URL that the user entered. For example, if the

user (mistakenly) visits the invalid URL http://ipod/,

InternetOptimizer generates a page containing links to

websites that sell iPod-related products.

NetSpy identified that InternetOptimizer contacteds the

server www.yoogee.com to obtain advertisements. The cor-

responding NIDS signature that NetSpy generated was:

GET /searchresult/?lt=14& q=.* &cls=wsi12&...

To catch such spyware, we also include invalid URLs (e.g.,

http://ipod/) in the default input set used by NetSpy. In

practice, we envision that the input set to NetSpy will be up-

dated by users when they observe unusual network activity

associated with certain URLs. NetSpy can then determine

whether the network activity was in fact generated by a spy-

ware program.

eXactSearchBar is a toolbar for Internet Explorer that, on

startup, sends a POST message (shown below) to a remote

server checkin.exactsearchbar.com.

POST /checkin2.aspx HTTP/1.0

It also automatically downloads updates from the server

files.exactserchbar.comwith messages matching the

regular expression:

GET /Download/Update/.* HTTP/1.0

Finally, when a user visits an invalid URL, eXact-

SearchBar hijacks Internet Explorer’s error page and dis-

plays advertisements related to the URL (similar to Inter-

netOptimizer). Specifically, eXactSearchBar contacts the

1Browser Helper Objects, Browser Extensions and Toolbars are plug-

ins that add to the functionality provided by Internet Explorer.

Program Analyzed Detected Behavior Type
Signature

(common to the group) Generated

180SearchAssistant/Zango Monitors URLs visited; Toolbar 4

Browser Accelerator download ads/pages related to the URLs BHO, Toolbar 4

Side Find BE, BHO 4

UCmore Toolbar 4

AvenueMedia/InternetOptimizer Hijacks Internet Explorer’s error pages BHO 4

eXactSearch Toolbar Downloads/installs updates; BHO, Toolbar 4

Hijacks Internet Explorer’s error pages

K
n
o
w

n
S

p
y
w

ar
e

P
ro

g
ra

m
s

Mirar Toolbar Monitors URLs visited; Toolbar 4
use SSL to send data and receive advertisements

A9 Toolbar (No sign on) Sends tracked URLs to siteinfo.a9.com Toolbar 4

A9 Toolbar (Sign on) Sends tracked URLs to siteinfo.a9.com and client.a9.com 4

Google Toolbar (Tracking off) No network traffic detected

Google Toolbar (Tracking on) Monitors URLs visited BHO, Toolbar
4

Yahoo Toolbar Monitors URLs visited BHO, Toolbar 4

MSN Messenger Extension BE

MSN Search Toolbar BHO, Toolbar

Sun Java Console No network traffic detected BE, BHO

Sunshine Meta Toolbar Toolbar

Weather Bug Toolbar

O
th

er
P

ro
g
ra

m
s

Yahoo Messenger Extension BHO

Figure 6. Experimental results using NetSpy on several programs.

server www.bestoftheweb.cc sending requests matching

the regular expression:

GET /errorpage/?src=404& url=.* HTTP/1.1

NetSpy’s signature generator produced Snort signatures

using each of the three regular expressions shown above.

Note that NetSpy created three signatures for eXactSearch-

Bar because it detected traffic going to three distinct hosts.

Mirar toolbar behaves like 180SearchAssistant in that it

displays advertisements related to the URL visited by a user.

However, Mirar toolbar uses SSL to encrypt data that it

sends to its home server.

While NetSpy identified the extra network activity

generated by Mirar, it could not decipher the contents

of the packets, because they were encrypted. Thus,

NetSpy produced a signature based solely upon the

host/port pair of the traffic generated by Mirar toolbar

(64-128-107-140.static.twtelecom.net:443 in our

experiments).

One option to correlate network packets with user activ-

ity in such cases is to set up an SSL proxy server between

the user’s computer and the outside network. This proxy

server can provide NetSpy with decrypted traffic for analy-

sis.

6.2. Evaluating NetSpy with other programs

We evaluated NetSpy on 9 toolbars and browser exten-

sions (Figure 6) that are widely-believed to be non-spyware

programs. The goal was to determine if NetSpy would (er-

roneously) classify any of these popular programs as spy-

ware.

NetSpy classified 6 of these programs as benign. The re-

maining three programs, A9 Toolbar, Google Toolbar, and

Yahoo Toolbar, were (surprisingly) classified as spyware.

Further investigation revealed that these three toolbars ex-

hibited network behavior that was similar to the network

behavior of the spyware programs tested. In fact, the End-

User-License-Agreements (EULAs) from these three pro-

grams state that they track user activity to improve qual-

ity of service for their users. It is worth noting that Net-

Spy made the startling discovery that A9 Toolbar, despite

claims in its EULA, contains behavior that may be consid-

ered undesirable by many users. A9 Toolbar is an Internet

Explorer plug-in that is supposed to save URLs that a user

visits on A9’s home server, under the user’s account. This

requires the user to first sign in to A9’s web site. We con-

ducted an experiment to simulate user browsing activity on

a machine with A9 Toolbar installed but did not sign into

A9’s web site. We had expected that A9 Toolbar would

not generate any extra traffic. Instead, NetSpy found that

A9 Toolbar sends URLs that the user has visited to a spe-

cial server siteinfo.a9.com. When the user does sign

in to A9’s web site, A9 toolbar additionally sends data to

client.a9.com, which we believe is the server that A9

uses to save URL history on behalf of the user.

We consider the above behavior undesirable because it

tracks user activity even when a user is not logged into the

service. Google Toolbar also has a similar feature, which

when turned on, sends URLs that the user has visited to

Google’s home server. However, unlike with the A9 Tool-

bar, NetSpy does not detect extra network activity gener-

ated by Google Toolbar when this feature is turned off. This

experiment leads us to conclude that it is sometimes diffi-

cult to classify a program as spyware. Activity that may be

classified as spying behavior by some users may in fact be

considered desirable features by others, as for example with

A9 Toolbar, provided that A9 does not reveal/sell the URL

history of each user to third parties.

6.3. Performance

We evaluated the performance of NetSpy to determine

the time taken to (i) capture network traffic from a spyware-

infected system, (ii) perform differential analysis, and

(iii) generate NIDS signatures. All timing measurements

were averaged over 10 runs.

Because NetSpy simulates user activity by running Inter-

net Explorer with several URLs, it must wait for the web-

page to load completely for each URL. Thus, the time to

visit each URL depends on the contents of the web-page

visited. For example, visiting www.google.com only gen-

erates two HTTP requests, and is quick (fewer than 2 sec-

onds, on average), while visiting www.apple.com requires

longer (10 seconds on average) because the Apple website

contains more contents, including images and movies.

6.4. Desirable enhancements to the NetSpy prototype

Based upon our experiments, we have identified several

desirable enhancements to NetSpy, that we plan to address

in future work.

• NetSpy is currently designed to analyze one program at

a time. That is, it must be invoked each time a new pro-

gram is installed. It may not be as effective when a ma-

chine is infected with multiple spyware programs. The

key difficulty here is that network traffic may be gener-

ated by any one of the multiple spyware programs in-

stalled. To enhance NetSpy, we need to associate net-

work packets captured with the program that generated

them.

• NetSpy has been implemented to detect spyware pro-

grams (specifically plug-ins and toolbars) that infect In-

ternet Explorer. It currently cannot detect spyware pro-

grams that run as standalone processes (e.g., keyloggers).

• NetSpy currently observes only HTTP-based network

traffic. Spyware programs that use other protocols (such

as SMTP and FTP) may evade detection. We plan to ex-

tend NetSpy to monitor such traffic as well.

7. Evading NetSpy

There are several fundamental limitations of the ap-

proach adopted by NetSpy that a malicious attacker can use

to evade detection.

1. A key factor that determines the effectiveness of NetSpy

is the coverage of the input set used to collect network

traffic. Spyware that generates network traffic only under

certain inputs, not covered by NetSpy’s set of inputs, will

be undetected.

There are two ways to overcome this shortcoming. The

first is to use a crawler to automatically generate input

Pattern-based Behavior-based

Host- Most commercial Kirda et al. [17]

based solutions (e.g., [1, 7])

Network- Bleeding Edge Snort [2] Web Tap [10], Siren [11]

based NetSpy/spyware NetSpy/spyware

detection (Section 4) characterization (Section 3)

Figure 7. Related work in spyware detection.

URLs for use by NetSpy. The second is to analyze the

(binary executable of the) untrusted program to recover

specific URLs that trigger special behavior in the exe-

cutable. However, we note that binary executable anal-

ysis is challenging and this solution may not always be

feasible.

2. Time-triggered spyware programs can periodically con-

tact their home server to report user activity. NetSpy, if

only invoked during program installation, will miss the

network activity generated by this program, thus misclas-

sifying the program as benign.

One way around is to make NetSpy an “always-on” tool

that constantly monitors network activity to identify spy-

ware behavior. NetSpy can also benefit from recent work

on the analysis of time-triggered malware [13].

3. NetSpy currently classifies an untrusted program as spy-

ware using the heuristic presented in Table 5. Spyware

can evade detection by bypassing this heuristic. For in-

stance, an attacker can use spyware to send data to one of

the servers observed in the reference network statistics to

evade detection. To retrieve stolen data, the attacker can

intercept the network traffic on the link between the vic-

tim’s network and the destination server.

We believe that this attack is less feasible because it re-

quires physical access to the link between the victim’s

network and the destination.

8. Related Work

Spyware-detection techniques fall into two main cate-

gories: host-based and network-based. Each of these can

be further sub-categorized into pattern-based and behavior-

based matching techniques, as shown in Figure 7.

Host-based techniques analyze untrusted binary executa-

bles to determine if they are potentially spyware. They work

much like commercial virus scanners and search binary ex-

ecutables for known patterns of spyware. Commercial anti-

spyware solutions, such as AdAware [1] and Spybot Search

& Destroy [7] use simple techniques, such as comparing the

MD5-hash of untrusted binary executables against known

values to detect spyware. These techniques while fast and

accurate—they have near-zero false positives—can only de-

tect known spyware instances and are not resilient even in

the face of simple obfuscations.

Recent work by Kirda et al. [17] addresses this short-

coming by proposing a behavior-based approach. Their

work uses static analysis to analyze untrusted binary exe-

cutables to detect spying behavior, e.g., by searching for the

appearance of certain system calls or Internet Explorer API

calls. This approach has the advantage of being able to de-

tect previously-unseen variants of spyware that exhibit the

same spyware behavior. However, it cannot detect novel

spyware programs that differ in behavior from existing spy-

ware programs.

BENDER [14] is a host-based malware detection tool de-

signed to identify a class of malware (e.g., worms) that gen-

erate network traffic that is not dependent on user activity.

Web Tap [10] is another tool that finds anomalous network

traffic generated by certain spyware programs that operate

without user input. It learns the characteristics of network

traffic in a controlled training period and uses this informa-

tion to find anomalous network traffic. One shortcoming of

Web Tap is that it cannot detect spyware that “blends” with

normal user activity, such as web surfing [11]. NetSpy is de-

signed to detect spyware that generates network traffic that

is dependent on user activity. We believe that NetSpy can

complement BENDER and Web Tap in finding previously-

unseen malware.

Siren [11] uses a behavior-based approach to detect spy-

ware at the network-level. The key idea here, much like

in NetSpy, is that network traffic generated by a spyware-

infected system differs from that of a clean system. Siren

uses a network-level detector to detect anomalous network

traffic generated by a spyware-infected system. The key dif-

ference between NetSpy and Siren is NetSpy’s ability to

generate network-level signatures. In contrast, Siren fo-

cuses solely on detection, i.e., determining if a system is

spyware-infected.

Automatic signature generation for other malware, such

as worms and viruses, is an active research area [16, 18,

20, 21]. Among these, HoneyComb [18] and PAYL [21]

use techniques similar to those used by NetSpy to gener-

ate NIDS signatures. HoneyComb uses the Longest Com-

mon Substring (LCS) algorithm to identify common pat-

terns (substrings) within network packets captured by hon-

eypots and generates NIDS signatures using the identified

patterns [18]. Note that NetSpy uses Longest Common Sub-

sequence (LCSeq) algorithm to create a regular expression

suitable for an NIDS. PAYL generates worm signatures by

observing both ingress and egress network traffic. In con-

trast, NetSpy only monitors outbound network traffic.

9. Conclusion

We presented NetSpy, an automatic spyware signature

generator. NetSpy identifies if an untrusted program is spy-

ware; if so, it generates network-level signatures that can be

used with a NIDS that monitors outgoing network traffic.

Experimental results show that NetSpy is effective and that

it generates succinct, precise spyware signatures for NIDS.

References

[1] Ad-Aware. http://www.lavasoft.de.

[2] Bleeding Edge of Snort. http://www.bleedingsnort.com/.

[3] Bro Intrusion Detection System. http://bro-ids.org.

[4] IWebBrowser2 Interface. http://msdn.microsoft.com/

workshop/browser/webbrowser/reference/ifaces/iwebbrowser2/

iwebbrowser2.asp.

[5] LibNIDS 1.17 Win32 Port. http://www.checksum.org/.

[6] Snort. http://www.snort.org.

[7] Spybot Search & Destroy. http://www.safer-networking.org/.

[8] WinPcap. http://www.winpcap.org/.

[9] AOL/NCSA online safety study. http://www.staysafeonline.

info/pdf/safety study v04.pdf, October 2004.

[10] K. Borders and A. Prakash. Web Tap: Detecting covert web

traffic. In 11th ACM Conference on Computer and Commu-

nications Security, October 2004.

[11] K. Borders, X. Zhao, and A. Prakash. Siren: Detecting eva-

sive malware (short paper). In IEEE Symposium on Security

and Privacy, May 2006.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.

Introduction to Algorithms. MIT Press, 2001.

[13] J. R. Crandall, G. Wasserman, D. Oliveira, Z. Su, S. F. Wu,

and F. T. Chong. Temporal search: Detecting hidden mal-

ware timebombs with virtual machines. In Intl. Conf. on Ar-

chitectural Support for Programming Languages and Oper-

ating Systems, October 2006.

[14] W. Cui, R. H. Katz, and W. tian Tan. Design and implemen-

tation of an extrusion-based break-in detector for personal

computers. In ACSAC, 2005.

[15] Internet Security Systems. ISS x-force database: spyware-

7search-browser-accelerator(14221). http://xforce.iss.net/

xforce/xfdb/14221.

[16] H.-A. Kim and B. Karp. Autograph: Toward automated, dis-

tributed worm signature detection. In 13th USENIX Security

Symposium, August 2004.

[17] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. A. Kem-

merer. Behavior-based spyware detection. In 15th USENIX

Security Symposium, August 2006.

[18] C. Kreibich and J. Crowcroft. Honeycomb - Creating Intru-

sion Detection Signatures Using Honeypots. In Hotnets II,

November 2003.

[19] A. Moshchuk, T. Bragin, S. D. Gribble, and H. M. Levy. A

crawler-based study of spyware on the web. In Networked

and Distributed System Security Symposium, February 2006.

[20] J. Newsome, B. Karp, and D. X. Song. Polygraph: Auto-

matically generating signatures for polymorphic worms. In

IEEE Symposium on Security and Privacy, May 2005.

[21] K. Wang, G. Cretu, and S. J. Stolfo. Anomalous payload-

based worm detection and signature generation. In RAID,

September 2005.

