
Automatic Inference and Enforcement
of Kernel Data Structure Invariants

Arati Baliga, Vinod Ganapathy and Liviu Iftode
Department of Computer Science

Rutgers University

10 December 2008 Annual Computer Security and Applications Conference, 2008 2 of 22

Rootkits, the growing threat !
  Computer systems today face a realistic and growing threat

from rootkits.
  600% increase from 2004-2006 (McAfee Avert Labs)
  Over 200 rootkits in first quarter of 2008 (antirootkit.com)

  Collection of tools used by the attacker to conceal his
presence on the compromised system.

  Rootkits allow the attacker to…
  Maintain long term control
  Reuse the system’s resources
  Spy on the system
  Involve system in malicious activities

10 December 2008 Annual Computer Security and Applications Conference, 2008 3 of 22

Rootkit hiding trends

Virtual File
System (VFS)

Handlers
/usr/lib/libc.so

Shared Libraries

p1 p2 p3 p4 p5

Process Lists

/usr/bin/ls

/usr/bin/ps

/usr/bin/netstat

/usr/bin/login

User binaries

USER SPACE

Backdoors, Key
Loggers, Log erasers,

etc

KERNEL SPACE

System call table
CONTROL DATA

NON-CONTROL DATA

Below the operating system Cloaker Hypervisor based rootkits (Subvirt, Blue pill)

10 December 2008 Annual Computer Security and Applications Conference, 2008 4 of 22

Current Approaches
  Automated technique, limited in scope

  SBCFI [Petroni et al., CCS 2007]

  Manual specification based techniques
  Copilot [Petroni et al., Usenix Security 2004]
  Specification based architecture [Petroni et al., Usenix Security 2006]

  Challenge

10 December 2008 Annual Computer Security and Applications Conference, 2008 5 of 22

Outline
  Introduction

  Approach

  Attack examples

  Design and implementation

  Experimental evaluation

  Conclusions

10 December 2008 Annual Computer Security and Applications Conference, 2008 6 of 22

Our approach

  A comprehensive technique to detect rootkits based on
automatic invariant inference.

  Invariant is a property that holds over an individual object
(e.g. variable or struct) or a collection of objects (e.g. arrays or
linked lists).

  Learns invariants over a training phase and enforces them
during normal operation.

  Works uniformly across control as well as non-control data.

10 December 2008 Annual Computer Security and Applications Conference, 2008 7 of 22

Attacks that violate invariants
  We demonstrate four examples in this talk

  Two proposed by us [Baliga et al., Oakland 2007]
  Entropy pool contamination
  Resource Wastage

  Two attacks proposed by others
  Hiding Process (Used by the fu rootkit, Butler et al.)

  Adding binary format (Proposed by Shellcode security research group)

10 December 2008 Annual Computer Security and Applications Conference, 2008 8 of 22

Attack 1 – Entropy pool contamination

Keyboard Mouse
Interrupts Disk

Activity

Entropy Sources

Urandom
Entropy Pool
(128 bytes)

Secondary
Entropy Pool
(128 bytes)

Primary
Entropy Pool

(512 bytes)

/dev/random

/dev/urandom

Attack Overview:
Attack constantly writes zeroes into
all three pools and the polynomials
used to stir the pools

Impact:
All applications that rely on the random
number generator such as tcp sequence
numbers, session ids are affected

10 December 2008 Annual Computer Security and Applications Conference, 2008 9 of 22

Attack 1 – Invariants violated
Data structures involved.
struct poolinfo. This is a
member of the entropy pool data
structures of type
struct entropy_store

Invariant violated by attack.
poolinfo.tap1 € {26, 103}

poolinfo.tap2 € {20, 76}

poolinfo.tap3 € {14, 51}

poolinfo.tap4 € {7, 25}

poolinfo.tap5 == 1

Entropy Sources

Urandom
Entropy Pool
(128 bytes)

Secondary
Entropy Pool
(128 bytes) Primary

Entropy Pool
(512 bytes)

/dev/random

/dev/urandom

Invariant type

•  MEMBERSHIP invariant over a COLLECTION (SIMILAR OBJECTS)

10 December 2008 Annual Computer Security and Applications Conference, 2008 10 of 22

Attack 2 – Resource wastage attack
Attack Overview:
Attack manipulates the zone
watermarks to create an impression
that most of the memory is full

Impact:
Resource wastage and
performance degradation

10 December 2008 Annual Computer Security and Applications Conference, 2008 11 of 22

Attack 2 – Invariants violated
Invariant violated by attack.
zone_table[1].pages_min == 255

zone_table[1].pages_low == 510

zone_table[1].pages_high == 765

Data structures involved.
zone_table[] array. Each
element of type
struct zone_struct

Invariant type

•  CONSTANCY invariants over individual OBJECTS

10 December 2008 Annual Computer Security and Applications Conference, 2008 12 of 22

Attack 3 - Hidden process attack

Data structures involved.
Process run-list
Process all-tasks list

Invariant:
run-list all-tasks

Attack Overview:
Attack removes malicious
process entry from all-
tasks list but retains in
run-list

Impact:
Malicious process is hidden
from accounting tools

run_list
next_task

run_list
next_task

run_list
next_task

run_list
next_task

all-tasks list

run-list

Hidden process

Invariant type

•  SUBSET property over a COLLECTION (LINKED LIST)

10 December 2008 Annual Computer Security and Applications Conference, 2008 13 of 22

Attack 4 – Adding binary format attack

Data structures involved.
formats list

Invariant:
len(formats) == 2

Attack Overview:
Attack adds a new binary
format containing a
malicious handler.

Impact:
Malicious code invoked
each time a new process is
created on the system

Invariant type

•  LENGTH property over a COLLECTION (LINKED LIST)

Figure used from Shellcode security research document published at

http://goodfellas.shellcode.com.ar/own/binfmt-en.pdf

Gibraltar architecture

10 December 2008 Annual Computer Security and Applications Conference, 2008 14 of 22

Page
Fetcher

Data
Structure
Extractor

Root
Symbols

Kernel Data
Definitions

Physical
Memory Address

010101
010000
110011

010101
010000
110011

Invariants

Monitor

Invariant
Templates

Invariant
Generator

Training

Enforcement

10 December 2008 Annual Computer Security and Applications Conference, 2008 15 of 22

Prototype (Gibraltar)

  Fetches remote memory pages from the target continuously

10 December 2008 Annual Computer Security and Applications Conference, 2008 16 of 22

Invariants automatically inferred

Total 718,940 invariants inferred by Gibraltar. These invariants are
used as data structure integrity specifications during enforcement.

10 December 2008 Annual Computer Security and Applications Conference, 2008 17 of 22

Detection Accuracy
  Test suite

  Fourteen publicly available
kernel rootkits

  Six advanced stealth attacks on
the kernel (previously discussed)

  Results
  All of them detected (No false

negatives)

  False positive evaluation
  Benign workload run for half an

hour consisting of combination
of tasks

  0.65% false positive rate

Copying the Linux kernel source code
from one folder to another.

Editing a text document

Compiling the Linux kernel

Downloading eight video files from the
Internet.

Perform file system operations using
the IOZone benchmark

10 December 2008 Annual Computer Security and Applications Conference, 2008 18 of 22

Performance Evaluation
  Training Time

  25 mins for snapshot collection, 31 minutes for invariant inference
(Total of 56 minutes).

  Detection Time
  Ranges from 15 seconds up to 132 seconds. Large variance depending

on the number of objects found in memory.
  Number of objects varies depending on the workload running on the

system and system uptime.

  PCI Overhead
  DMA access creates contention for the memory bus.
  0.49% (Results of the stream benchmark)

10 December 2008 Annual Computer Security and Applications Conference, 2008 19 of 22

Conclusions and future work
  Our approach automatically infers invariants over kernel

control and non-control data.

  Gibraltar could automatically detect publicly available rootkits
and advanced stealth attacks using automatically inferred
invariants.

  As future work, we plan to investigate
  Improvement of false positive rate (filtering, feedback)
  Quality of invariants generated
  Portability of invariants across reboots.

10 December 2008 Annual Computer Security and Applications Conference, 2008 20 of 22

Questions ?

Thank you !

10 December 2008 Annual Computer Security and Applications Conference, 2008 21 of 22

Data structure extractor

Static data

Root 1

Root 2

Root 3

Root n

…

…

…

BFS Queue

struct foo {

 struct bar * b1;

 struct list_head p;

}

Root b1

struct list_head {

 struct list_head * next;

 struct list_head * prev;

}

struct foo {

 struct bar * b1;

 struct list_head * p.next;

 struct list_head * p.prev;

}

b1
next_task

prev_task

b1
next_task

prev_task

b1
next_task

prev_task

b1
next_task

prev_task

Linked list of objects of type “struct foo”

struct foo {

 struct bar * b1;

 struct list_head * CONTAINER(struct foo, p) p.next;

 struct list_head * CONTAINER(struct foo, p) p.prev;

}

10 December 2008 Annual Computer Security and Applications Conference, 2008 22 of 22

Invariant generator
  We leverage Daikon’s invariant inference engine to extract

invariants over kernel snapshots.

  Daikon is a tool for dynamic invariant inference over
application programs.

  We focus on the following five templates
  Membership template (var € {a, b, c}).
  Non-zero template (var != 0).
  Bounds template (var < const), (var > const).
  Length template (length(var) == const).
  Subset template (list1 list2).

