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Rootkits, the growing threat ! 
  Computer systems today face a realistic and growing threat 

from rootkits.  
  600% increase from 2004-2006 (McAfee Avert Labs) 
  Over 200 rootkits in first quarter of 2008 (antirootkit.com) 

  Collection of tools used by the attacker to  conceal his 
presence on the compromised system.  

  Rootkits allow the attacker to… 
  Maintain long term control 
  Reuse the system’s resources  
  Spy on the system 
  Involve system in malicious activities 
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Rootkit hiding trends 

Virtual File 
System (VFS) 

Handlers 
/usr/lib/libc.so 

Shared Libraries 

p1 p2 p3 p4 p5 

Process Lists 

/usr/bin/ls 

/usr/bin/ps 

/usr/bin/netstat 

/usr/bin/login 

User binaries 

USER SPACE 

Backdoors, Key 
Loggers, Log erasers, 

etc 

KERNEL SPACE 

System call table 
CONTROL DATA 

NON-CONTROL DATA 

Below the operating system Cloaker Hypervisor based rootkits (Subvirt, Blue pill) 
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Current Approaches 
  Automated technique, limited in scope 

  SBCFI [Petroni et al., CCS 2007] 

  Manual specification based techniques 
  Copilot [Petroni et al., Usenix Security 2004] 
  Specification based architecture [Petroni et al., Usenix Security 2006] 

  Challenge  
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Outline 
  Introduction 

  Approach  

  Attack examples 

  Design and implementation 

  Experimental evaluation 

  Conclusions 
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Our approach 

  A comprehensive technique to detect rootkits based on 
automatic invariant inference.  

  Invariant is a property that holds over an individual object 
(e.g. variable or struct) or a collection of objects (e.g. arrays or 
linked lists). 

  Learns invariants over a training phase and enforces them 
during normal operation. 

  Works uniformly across control as well as non-control data. 
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Attacks that violate invariants 
  We demonstrate four examples in this talk 

  Two proposed by us [Baliga et al., Oakland 2007] 
  Entropy pool contamination 
  Resource Wastage 

  Two attacks proposed by others 
  Hiding Process (Used by the fu rootkit, Butler et al.) 

  Adding binary format (Proposed by Shellcode security research group) 
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Attack 1 – Entropy pool contamination 

Keyboard Mouse 
Interrupts Disk 

Activity 

Entropy Sources 

Urandom  
Entropy Pool 
(128 bytes) 

Secondary 
Entropy Pool 
(128 bytes) 

Primary 
Entropy Pool 

(512 bytes) 

/dev/random 

/dev/urandom 

Attack Overview:  
Attack constantly writes zeroes into  
all three pools and the polynomials 
used to stir the pools 

Impact:  
All applications that rely on the random 
number generator such as tcp sequence 
numbers, session ids are affected 
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Attack 1 – Invariants violated 
Data structures involved.  
struct poolinfo. This is a 
member of the entropy pool data 
structures of type  
struct entropy_store 

Invariant violated by attack. 
poolinfo.tap1 € {26, 103} 

poolinfo.tap2 € {20, 76} 

poolinfo.tap3 € {14, 51} 

poolinfo.tap4 € {7, 25} 

poolinfo.tap5 == 1 

Entropy Sources 

Urandom  
Entropy Pool 
(128 bytes) 

Secondary 
Entropy Pool 
(128 bytes) Primary 

Entropy Pool 
(512 bytes) 

/dev/random 

/dev/urandom 

Invariant type 

•  MEMBERSHIP invariant over a COLLECTION (SIMILAR OBJECTS) 
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Attack 2 – Resource wastage attack  
Attack Overview:  
Attack manipulates the zone 
watermarks to create an impression 
that most of the memory is full 

Impact:  
Resource wastage and 
performance degradation 
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Attack 2 – Invariants violated 
Invariant violated by attack. 
zone_table[1].pages_min == 255 

zone_table[1].pages_low == 510 

zone_table[1].pages_high == 765 

Data structures involved.  
zone_table[] array. Each 
element of type  
struct zone_struct 

Invariant type 

•  CONSTANCY invariants over individual OBJECTS 
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Attack 3 - Hidden process attack 

Data structures involved.  
Process run-list 
Process all-tasks list 

Invariant:  
run-list   all-tasks 

Attack Overview:  
Attack removes malicious  
process entry from all-
tasks list but retains in 
run-list 

Impact:  
Malicious process is hidden 
from accounting tools 

run_list 
next_task 

run_list 
next_task 

run_list 
next_task 

run_list 
next_task 

all-tasks list 

run-list 

Hidden process 

Invariant type 

•  SUBSET property over a  COLLECTION (LINKED LIST) 
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Attack 4 – Adding binary format attack 

Data structures involved.  
formats list 

Invariant:  
len(formats) == 2 

Attack Overview:  
Attack adds a new binary 
format containing a 
malicious handler. 

Impact:  
Malicious code invoked 
each time a new process is 
created on the system 

Invariant type 

•  LENGTH property over a  COLLECTION (LINKED LIST) 

Figure used from Shellcode security research document published at 

http://goodfellas.shellcode.com.ar/own/binfmt-en.pdf 
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Page  
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Kernel Data  
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010000
110011 

010101 
010000
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Invariants 

Monitor 

Invariant 
Templates 

Invariant  
Generator 

Training 

Enforcement 
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Prototype (Gibraltar) 

  Fetches remote memory pages from the target continuously  
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Invariants automatically inferred 

Total 718,940 invariants inferred by Gibraltar. These invariants are 
used as data structure integrity specifications during enforcement. 
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Detection Accuracy 
  Test suite 

  Fourteen publicly available 
kernel rootkits 

  Six advanced stealth attacks on 
the kernel (previously discussed) 

  Results 
  All of them detected (No false 

negatives) 

  False positive evaluation 
  Benign workload run for half an 

hour consisting of combination 
of tasks 

  0.65% false positive rate 

# Copying the Linux kernel source code 
from one folder to another. 

# Editing a text document 

# Compiling the Linux kernel 

# Downloading eight video files from the 
Internet. 

# Perform file system operations using 
the IOZone benchmark 
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Performance Evaluation 
  Training Time 

  25 mins for snapshot collection, 31 minutes for invariant inference 
(Total of 56 minutes). 

  Detection Time 
  Ranges from 15 seconds up to 132 seconds. Large variance depending 

on the number of objects found in memory. 
  Number of objects varies depending on the workload running on the 

system and system uptime. 

  PCI Overhead 
  DMA access creates contention for the memory bus. 
  0.49% (Results of the stream benchmark) 
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Conclusions and future work 
  Our approach automatically infers invariants over kernel 

control and non-control data. 

  Gibraltar could automatically detect publicly available rootkits  
and advanced stealth attacks using automatically inferred 
invariants. 

  As future work, we plan to investigate 
  Improvement of false positive rate (filtering, feedback) 
  Quality of invariants generated  
  Portability of invariants across reboots. 
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Questions ? 

Thank you ! 
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Data structure extractor 

Static data 

Root 1 

Root 2 

Root 3 

Root n 

… 

… 

… 

BFS Queue 

struct foo { 

  struct bar * b1; 

  struct list_head p; 

} 

Root b1 

struct list_head { 

   struct list_head * next; 

   struct list_head * prev; 

} 

struct foo { 

  struct bar * b1; 

  struct list_head * p.next; 

  struct list_head * p.prev; 

} 

b1 
next_task 

prev_task 

b1 
next_task 

prev_task 

b1 
next_task 

prev_task 

b1 
next_task 

prev_task 

Linked list of objects of type “struct foo” 

struct foo { 

  struct bar * b1; 

  struct list_head * CONTAINER(struct foo, p) p.next; 

  struct list_head * CONTAINER(struct foo, p) p.prev; 

} 
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Invariant generator 
  We leverage Daikon’s invariant inference engine to extract 

invariants over kernel snapshots. 

  Daikon is a tool for dynamic invariant inference over 
application programs. 

  We focus on the following five templates 
  Membership template (var € {a, b, c}).  
  Non-zero template (var != 0). 
  Bounds template (var < const), (var > const). 
  Length template (length(var) == const). 
  Subset template (list1    list2). 


