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Abstract

Device drivers on commodity operating systems execute
with kernel privilege and have unfettered access to kernel
data structures. Several recent attacks demonstrate that such
poor isolation exposes kernel data to exploits against vulner-
able device drivers, for example through buffer overruns in
packet processing code. Prior architectures to isolate kernel
data from driver code either sacrifice performance, execute
too much driver code with kernel privilege, or are incompat-
ible with commodity operating systems.

In this paper, we present the design, implementation
and evaluation of a novel security architecture that bet-
ter isolates kernel data from device drivers without sac-
rificing performance or compatibility. In this architec-
ture, a device driver is partitioned into a small, trusted
kernel-mode component and an untrusted user-mode com-
ponent. The kernel-mode component contains privileged
and performance-critical code. It communicates via RPC
with the user-mode component which contains the rest of the
driver code. A RPC monitor mediates all control and data
transfers between the kernel- and user-mode components.
In particular, it verifies that all data transfers from the un-
trusted user-mode component to the kernel-mode component
preserve kernel data structure integrity. We also present a
runtime technique to automatically infer such integrity spec-
ifications. Our experiments with a Linux implementation of
this architecture show that it can prevent compromised de-
vice drivers from affecting the integrity of kernel data and do
so without impacting common-case performance.

1. Introduction
Device drivers execute with kernel privilege in most com-

modity operating systems and have unrestricted access to
kernel data structures. Because the kernel is part of the
Trusted Computing Base (TCB) of the system, vulnerabili-
ties in driver code can jeopardize the entire system.

Several studies indicate that device drivers are rife with
exploitable security holes. A recent study of user/kernel bugs
in the Linux kernel found that 9 out of 11 of these bugs
were in device drivers [23]. An audit of the Linux kernel by
Coverity also found that over 50% of bugs were in device
drivers [12]. Our own analysis of vulnerability databases
revealed several device drivers that are vulnerable to mal-
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formed input from untrusted user-space applications, allow-
ing an attacker to execute arbitrary code with kernel privi-
lege [4, 30]. Similarly, device drivers by their very nature
copy untrusted data from devices to kernel memory. Because
the kernel does not restrict the memory locations accessible
to devices, a compromised driver can write arbitrary values
to sensitive kernel data structures. For example, a compro-
mised driver could overwrite the table of interrupt handlers in
the operating system with pointers to attacker-defined code.
As demonstrated by recently published exploits against wire-
less device drivers in Windows XP [7, 8] and Mac OS X [27],
vulnerabilities in drivers are an increasingly attractive target
for attackers.

Microkernels [26, 40, 42] offer one way to isolate ker-
nel data from vulnerable device drivers. They execute de-
vice drivers as user-mode processes and can prevent ma-
licious modifications to kernel data by enforcing domain-
specific rules, e.g., as done in Nexus [40]. However, mi-
crokernels restructure the operating system, and the protec-
tion mechanisms that they offer are not applicable to com-
modity operating systems, which are structured as macro-
kernels. Moreover, enforcing security policies on device
drivers may impose significant performance overhead. For
example, Nexus reports CPU overheads of 2.5× on a CPU-
intensive media streaming workload. User-mode driver
frameworks [3, 10, 15, 24, 28, 38] allow commodity oper-
ating systems to execute device drivers in user mode. How-
ever, porting drivers to these frameworks often requires com-
plete rewrites of device drivers and the resulting performance
overheads are often significant [3, 38].

This paper extends prior work on Microdrivers [20] and
proposes a security architecture that offers commodity op-
erating systems the benefits of executing device drivers in
user mode without affecting common-case performance. In
this architecture, each device driver is composed of a trusted
kernel-level component, called a k-driver, and an untrusted
user-level component, called a u-driver. The k-driver con-
tains code that requires kernel privilege (e.g., interrupt pro-
cessing functions) and performance-critical code (e.g., func-
tions on the I/O path). The rest of the code, which contains
functions to initialize, shutdown, and configure the device,
neither requires kernel privilege nor is on the critical path and
executes as a user mode process. The combination of the u-
driver and the k-driver is called a microdriver. A prior study
with 297 Linux device drivers comprising network, sound
and SCSI drivers showed that as much as 65% of driver code
can execute in user mode without requiring kernel privilege



or affecting common-case performance [20].
A u-driver and its corresponding k-driver communicate

via an RPC-like interface. When the k-driver receives a re-
quest from the kernel to execute functionality implemented
in the u-driver, such as initializing or configuring the de-
vice, it forwards this request to the u-driver. Similarly, the
u-driver may also invoke the k-driver to perform privileged
operations or to invoke functions that are implemented in the
kernel. However, the u-driver is untrusted and all requests
that it sends to the k-driver must be monitored. For example,
a u-driver that has been compromised by exploiting a buffer
overrun vulnerability may potentially send spurious updates
to kernel data structure in its requests to the k-driver. Be-
cause the k-driver applies these updates to kernel data struc-
tures, the compromised u-driver may affect the security of
the entire operating system.

We present a RPC monitor to interpose upon all commu-
nication between the u-driver and the k-driver, and to ensure
that each message conforms to a security policy. The RPC
monitor checks both data values and function call targets in
these messages. Data values in messages may contain up-
dates to data structures that the u-driver shares with the k-
driver. The RPC monitor enforces integrity constraints on
updates to kernel data structures initiated by the u-driver. In
our implementation, these integrity constraints are specified
as data structure invariants—constraints that must always be
satisfied by the data structure. For example, one such invari-
ant may state that the list of network devices must not change
during an invocation of a u-driver function to obtain device
configuration settings. We present an approach to automati-
cally extract such data structure invariants using Daikon [18],
a state-of-the-art invariant inference tool. Similarly, the RPC
monitor also ensures that k-driver function calls that are in-
voked by the u-driver via RPC are allowed by a control trans-
fer policy that is extracted using static analysis of the driver.

This paper makes two key contributions over prior work
on Microdrivers [20]. First, it presents the design and imple-
mentation of the RPC monitor to mediate u-driver/k-driver
communication. In prior work on Microdrivers, all commu-
nication between a u-driver and a k-driver was unchecked,
thereby poorly isolating kernel data from untrusted u-drivers.
Second, it presents a technique to automatically infer data
structure integrity constraints to be enforced by the RPC
monitor. The key property of these constraints is that they ex-
press invariants over heap data structures, thereby constrict-
ing the updates that a compromised u-driver can apply to ker-
nel data structures.

The security architecture proposed in this paper offers
several benefits over prior isolation architectures.
• Reduction of kernel-mode driver code. Isolation architec-

tures such as Nooks [35], Mondrix [43] and SafeDrive [41]
execute drivers in kernel mode and do not monitor driver-
initiated updates to kernel data structures. Consequently, the
kernel can be compromised by exploiting vulnerabilities that
these architectures do not protect against, e.g., race condi-
tions and double-free bugs. In contrast, our architecture ex-
ecutes a large fraction of driver code in user space (as u-

drivers) and monitors kernel data structure updates initiated
by u-drivers.
• Compatibility with commodity operating systems. A k-

driver interfaces with the kernel in much the same way as
a traditional device driver. Kernel calls to functions imple-
mented in the u-driver are transparently forwarded by the k-
driver to the u-driver. Therefore, in contrast to prior work
on microkernels, our security architecture is compatible with
commodity operating systems.
• Good common-case performance. User-mode driver

frameworks have often sacrificed performance for se-
curity [3, 38]. In contrast, our architecture executes
performance-critical functionality in the kernel thereby im-
posing no runtime overhead for the common case.
• Flexibility. Rather than offering a rigid definition of trusted

and untrusted components, our architecture offers the flexi-
bility in choosing which portions of the driver execute with
kernel privilege. Although performance-critical functions
must preferably be executed in the k-driver, our architec-
ture does not enforce such restrictions. Thus, for instance,
the kernel can be protected from zero-day attacks by rele-
gating code with newly-discovered vulnerabilities to the u-
driver until the driver vendor issues a patch.

Despite these benfits, our security architecture is not a
panacea and cannot completely prevent a compromised u-
driver from hijacking the kernel. Nevertheless, our experi-
ments show that it can prevent a significant fraction of attacks
from propagating to and hijacking the kernel.

We have implemented our security architecture in the
Linux-2.6.18.1 kernel and have applied it to four device
drivers. Experiments show that our architecture can protect
against compromised u-drivers and do so without affecting
common-case performance.

2. Background and scope
Device drivers for commodity operating systems execute

in the same protection domain as the rest of the kernel to
achieve good performance and easy access to hardware. This
architecture does not isolate kernel data from vulnerabilities
in device drivers, which are written in C by third-party ven-
dors. Such vulnerabilities, especially in packet-processing
code and ioctl handlers, can be exploited by malicious user-
space applications. For example, recent work [7, 8] shows
that a remote attacker can hijack control of Windows ma-
chine by exploiting a buffer overflow in beacon and probe
response processing code in an 802.11 device driver. In-
deed, our study of vulnerability databases revealed several
exploitable buffer overrun and memory allocation vulnera-
bilities in driver code [4, 30].

The threats posed to kernel data by compromised device
drivers can broadly be classified into two categories.
• Threats at the kernel/driver interface. Kernel data struc-

tures are routinely updated by device drivers, and the kernel
imposes no restrictions on the memory regions accessible to
drivers or devices. This freedom can be misused by com-
promised drivers in a variety of ways. Compromised device



drivers can corrupt kernel data structures, causing the kernel
to crash. Similarly, drivers can update kernel hooks to point
to attacker-defined code, leading to arbitrary code execution
that cannot be detected by user-mode security tools.
• Threats at the driver/device interface. A compromised

driver can maliciously modify the state of the device, e.g., by
writing arbitrary values to its registers or exhausting its re-
sources. More seriously, a driver can harm kernel data struc-
ture integrity using DMA. The driver can initiate DMA trans-
fers to an arbitrary physical memory address by simply writ-
ing this address to a device register. Because the kernel
does not restrict the memory regions accessible to a device,
a DMA transfer will overwrite these memory locations.

The architecture proposed in this paper helps detect and
prevent several threats at the kernel/driver interface. By rel-
egating a large portion of the device driver to a user-space
u-driver and monitoring all data and control transfers at the
user/kernel boundary, it restricts the amount of driver code
that can directly access kernel memory. Our architecture can
therefore protect against requests originating from a compro-
mised u-driver. However, to ensure good performance, our
architecture does not mediate the kernel/k-driver interface.
Consequently, it cannot protect against malicious k-drivers
and other kernel-resident malware. The k-driver is trusted in
our architecture and can be protected using prior fault iso-
lation techniques [17, 43], although we do not do so in our
implementation.

We do not address threats at the driver/device interface in
this paper. Monitoring data transfers from the device to ker-
nel memory either requires the use of new hardware mech-
anisms for virtualized I/O (such as IOMMU [2] and VT-
D [1]) as done in iKernel [36], or reference monitoring at the
driver/device interface as done in Nexus [40]. These tech-
niques are orthogonal to, and may possibly be used in con-
junction with, the architecture proposed here.

We also assume the availability of driver source code.
This is because our driver partitioning tool (discussed in
Section 4) operates on source code. While this limitation
precludes us from partitioning and protecting against device
drivers that are only distributed in binary form, a partition-
ing tool that works at the binary level would allow even such
drivers to be adapted to our architecture.

3. Design
Our security architecture aims to protect kernel data from

vulnerable device drivers that can be compromised by mali-
cious inputs from untrusted user-space applications and from
hardware. We begin by outlining our design goals.
• Kernel data structure integrity. The architecture must

monitor kernel data structure modifications initiated by de-
vice drivers and ensure that these updates comply with a se-
curity policy. Each device driver is associated with a security
policy that specifies permissible updates to kernel data struc-
tures. These security policies specify kernel data structure
integrity constraints, and may either be specified manually
using domain-specific rules, e.g., as in Nexus [40], or ex-
tracted automatically, as in our implementation.
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Figure 1. Design of our device driver secu-
rity architecture. The solid lines show the
performance-critical path while the dashed
lines show the non-performance-critical path.

• Good common-case performance. Device drivers are on
the critical path that transfers data between user-space ap-
plications and external devices. Hence, to be practical, the
architecture must not significantly impact I/O throughput.
• Compatibility. Modern operating systems support several

thousand device drivers. The architecture must secure the
kernel without requiring significant changes to either the op-
erating system or requiring a rewrite of device drivers.

The above design goals are conflicting and are challeng-
ing to achieve simultaneously. Commodity operating sys-
tems often share several kernel data structures with device
drivers that are updated on performance critical I/O paths
making monitoring all updates impractical without restruc-
turing the operating system.

Our security architecture, shown in Figure 1, therefore
leverages prior work on the Microdrivers architecture to
achieve the above goals on a large fraction of device driver
code. The Microdrivers architecture offers mechanisms to
split device drivers along performance and priority bound-
aries without changing the kernel/driver interface. A mi-
crodriver consists of a small kernel-mode k-driver that con-
tains performance-critical and high priority functions, and a
u-driver that contains non-performance critical code, such as
device initialization and configuration.

The kernel communicates with the k-driver via the stan-
dard driver/kernel interface to transfer data to/from the de-
vice. Some of these requests, such as those to initialize and
configure the device, may invoke functionality that are im-
plemented in the u-driver. When such requests arrive, the
k-driver invokes the u-driver via the Microdrivers runtime
(shown in Figure 1 as the k-driver runtime and the u-driver
runtime). The runtime has two key responsibilities:
(1) Communication. It provides mechanisms to transfer
control and data between the u-driver and the k-driver. It
provides RPC stubs that implement upcalls (i.e., the k-driver
invoking the u-driver) and downcalls (i.e., the u-driver invok-
ing the k-driver) to enable transfer of control; it also imple-



ments marshaling/unmarshaling protocols to transfer data.
(2) Object tracking. Splitting a device driver into a k-driver
and u-driver results in data structures being copied between
address spaces. The runtime tracks and synchronizes the k-
driver’s and the u-driver’s versions of driver data structures.
Specifically, it is responsible for propagating the k-driver’s
changes to a driver data structure to a u-driver upon an upcall,
and for propagating the u-driver’s changes to the k-driver
when the upcall returns or when the u-driver makes a down-
call into the k-driver.

There are several key challenges that must be addressed
by the runtime. For example, it must ensure that the u-driver
and the k-driver can never simultaneously lock a data struc-
ture, and that when the lock is released, the copies of the data
structure in the u-driver and the k-driver are synchronized. It
must also correctly allocate and deallocate memory in user
and kernel space in response to allocation/deallocation re-
quests by the u-driver and the k-driver. We refer the inter-
ested reader to the Microdrivers paper [20], which describes
mechanisms to deal with these challenges in detail.

3.1. RPC monitor

As discussed above, the runtime ensures that driver data
structure changes made by the u-driver are propagated to
the k-driver, either when an upcall returns or when the u-
driver issues a downcall. Because the u-driver is untrusted,
all data and control transfers initiated by the u-driver must
be checked against a security policy. This is the task of the
RPC monitor, shown in Figure 1, which mediates all RPC
messages from the u-driver to the k-driver. Note that control
and data transfers from the k-driver to the u-driver need not
be mediated because the k-driver is trusted. Because our ar-
chitecture seeks to protect the integrity of kernel data (rather
than its secrecy), the RPC monitor need only monitor writes
to kernel data structures. The RPC monitor is implemented
as a kernel module that enforces security policies before con-
trol and data are transferred to the k-driver.
Monitoring data transfer. A compromised u-driver can ma-
liciously modify kernel data structures by passing corrupt
data. The RPC monitor must therefore detect and prevent
malicious data transfers.

When a u-driver returns control to its k-driver follow-
ing an upcall, or when the u-driver invokes functionality
implemented in the kernel or the k-driver via a downcall,
data structures in the k-driver are synchronized with their
u-driver counterparts using the marshaling protocol. The
RPC monitor ensures that each such update conforms to a
driver-specific security policy. Intuitively, the goal of the se-
curity policy is to ensure that kernel data structures are not
updated maliciously, i.e., each update must preserve kernel
data structure integrity. For instance, an update must not
allow a compromised u-driver access to kernel/device mem-
ory regions that a benign u-driver does not normally access.
Similarly, an update must not allow a compromised u-driver
to execute arbitrary code with kernel privilege.

Specifying such integrity constraints is challenging be-
cause of the quantity and heterogeneity of kernel data struc-

tures updated by device drivers. In addition, our security ar-
chitecture splits device drivers to ensure good performance;
consequently, several driver-specific data structures may be
copied across the user/kernel boundary. For example, Linux
represents network devices using a per-driver net device
data structure. In a network microdriver, this data structure
may be modified by the u-driver, for example, when the de-
vice is initialized or configured. It is also important to mon-
itor updates to such driver-specific data structures because
these updates propagate to the kernel. Specifying integrity
constraints for driver data structures often requires domain-
specific knowledge, therefore making manual specification
of such integrity constraints cumbersome and error-prone.

To overcome these challenges, we present an approach
that automatically infers integrity constraints by monitoring
driver execution. In our architecture, these constraints are
expressed as data structure invariants—properties that the
data structure must always satisfy. For example, an invari-
ant may state that a function pointer to the packet-send func-
tion (e.g., the hard start xmit pointer in the net device data
structure in Linux) of a network driver must not change after
being initialized. Our approach infers such invariants during
training; these are checked during enforcement.

During the training phase, we execute the u-driver on sev-
eral benign workloads, and use Daikon [18] to infer data
structure invariants automatically. Daikon does so by ob-
serving the values of data structures that cross the user/kernel
boundary and hypothesizing invariants. During the enforce-
ment phase, the RPC monitor enforces these invariants on
data structures received from a u-driver; it first copies these
data structures to a vault area in the kernel, and checks that
the invariants hold. If they do, it updates kernel data struc-
tures with values from the vault. The kernel itself never
uses data structures directly from the vault before they are
checked by the RPC monitor. By monitoring data transfers
from the u-driver to the k-driver, the RPC monitor prevents
compromised u-drivers from affecting kernel data integrity.
Monitoring control transfer. The RPC monitor checks u-
driver to k-driver control transfers to prevent the u-driver
from making unauthorized calls to kernel functions.

As the u-driver services an upcall, it may invoke the k-
driver via a downcall, either to call a k-driver function or to
execute a function implemented in the kernel. Downcalls are
implemented using ioctl system calls that are handled in
the k-driver. Because the u-driver is untrusted, these down-
calls must be verified to be legitimate, e.g., that a downcall is
not initiated by a code injection attack on a compromised u-
driver. Such unauthorized downcalls can be maliciously used
by the u-driver, e.g., to cause denial of service by invoking
the kernel function to unregister a device. To avoid such at-
tacks, we statically analyze the u-driver and extract the set of
downcalls that a u-driver can issue in response to an upcall
(static analysis is performed before the driver is loaded). The
RPC monitor enforces this statically extracted policy when it
receives a downcall from the u-driver.

Having checked both data and control integrity, the RPC
monitor transfers control to the k-driver, which can now re-



sume execution on newly-updated kernel data structures.

4. Implementation
We extended the implementation of the Microdrivers ar-

chitecture on the Linux-2.6.18.1 kernel with support to moni-
tor data and control transfers from the u-driver to the k-driver.
In this implementation, the k-driver, the kernel runtime and
the RPC monitor are implemented as a kernel module while
the u-driver and the user runtime execute as a multi-threaded
user-space process.

4.1. Background on Microdrivers

A microdriver begins operation when its kernel module is
loaded and the user-space process is started. The main thread
of the user-space process makes an ioctl call into the kernel
module and blocks. The kernel module unblocks this thread
when it needs to invoke functions in the u-driver.

The u-driver and k-driver exchange data and control us-
ing an RPC-like mechanism, shown in Figure 2. To invoke
the u-driver using an an upcall (Figure 2(a)), the k-driver
(1) registers the k-driver function that initiates the upcall with
the RPC monitor; (2) marshals data structures that will be
read/modified by the u-driver; and (3) unblocks the thread
of the u-driver’s user-space process. This transfers control
to the u-driver, which in turn (4) consults the object tracker
and unmarshals the data structures into its address space; and
(5) invokes the appropriate u-driver function on the unmar-
shaled data structure. The object tracker is a bi-directional ta-
ble responsible for maintaining the correspondence between
kernel- and user-mode pointers of data structures shared be-
tween the k-driver and the u-driver. As the u-driver runtime
unmarshals data received from the k-driver into its address
space, it uses the object tracker to identify u-driver objects
that correspond to kernel-mode pointers received from the k-
driver. If the runtime is unable to find such an object, e.g., be-
cause the k-driver or the kernel created a new object that the
u-driver is unaware of, the u-driver can allocate a new object
and enter a new mapping into the object tracker.

When an upcall returns, or when the u-driver invokes
functions in the k-driver via an ioctl system call (i.e., a
downcall), data is marshaled by the u-driver and unmarshaled
in the kernel, as shown in Figure 2(b). The main difference in
this case is that a RPC monitor interposes on these requests
before they are forwarded to the k-driver. The RPC monitor
has two key responsibilities—(i) to check control transfers;
and (ii) to check data structure integrity. The RPC moni-
tor uses a statically-extracted control flow policy to check
control transfers—this policy statically determines the set of
allowed downcalls for each upcall. For each downcall, the
RPC monitor uses the k-driver function registered with it (in
step (1) of Figure 2(a)) to ensure that the downcalls are al-
lowed. If this downcall is allowed, the RPC monitor checks
the integrity of data structures received from the u-driver. To
do so, it unmarshals the data received from the u-driver into
a vault area. This area is not accessed by the k-driver and
is only used by the RPC monitor to check data structure in-
tegrity. The RPC monitor checks that each variable that was
unmarshaled satisfies a set of invariants; if so, it uses the data

from the vault area to update kernel data structures and frees
any data structures the vault.

DriverSlicer. To allow existing device drivers on com-
modity operating systems to benefit from our architec-
ture, we extended DriverSlicer, a device driver partitioning
tool [20], to generate security enforcement code. Driver-
Slicer is implemented as a plugin to CIL [31], a source code
transformation tool, and consists of about 11,000 lines of
Ocaml code. Given a small number of annotations, Driver-
Slicer automatically partitions a device driver into a k-driver
and a u-driver. It also generates code for the k-driver and
u-driver runtimes, and the RPC monitor, including code to
check control transfers from the u-driver to the k-driver and
code to monitor data structure integrity.

DriverSlicer consists of two parts: a splitter and a code
generator. The splitter analyzes a device driver and identi-
fies functions that must execute in the kernel, i.e., those that
require kernel privilege to access the device or those that are
performance critical. To do so, it uses programmer-supplied
specifications in the form of type signatures, to identify such
functions. For example, it identifies interrupt handlers based
upon their function prototypes; in Linux interrupt handlers
always return a value of type irqreturn t. Similarly, func-
tions responsible for transmitting network packets typically
have two parameters: a pointer to an sk buff structure, and a
pointer to a net device structure. Such type signatures need
only be supplied once per family of drivers, e.g., one set of
type signatures suffices to identify performance critical and
privileged functions for most network drivers. The splitter
uses a statically-extracted call-graph of the device driver to
mark (1) all functions that match these type signatures; and
(2) all functions potentially called (transitively) by such func-
tions as those that must execute in the k-driver; the remaining
functions are relegated to the u-driver.

DriverSlicer’s code generator uses the output of the split-
ter to partition the driver into a k-driver and a u-driver, and
generates RPC code to transfer control and data. In doing
so, it may require programmer-supplied annotations to clar-
ify the semantics of pointers. For example, to generate code
to marshal an object referenced by a void * pointer, the
code generator must be supplied with an annotation that de-
termines the type of the object. Similarly, the code genera-
tor also requires annotations to determine whether a pointer
refers to one instance of an object or to an array of instances.
DriverSlicer currently uses eight kinds of annotations, details
of which appear elsewhere [20]. DriverSlicer uses these an-
notations to generate RPC code that minimizes the amount of
data copied between the u-driver and the k-driver; it does so
by using static analysis to determine variables and data struc-
ture fields that are read/modified by the u-driver and only
generating marshaling code to copy these variables and fields
using RPC.

4.2. Monitoring kernel data structure updates

This section describes an anomaly detection-based ap-
proach to infer and enforce invariants on kernel data struc-
tures. The approach has two phases: a training phase, in
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Figure 2. Data movement during upcalls and downcalls. During downcalls, data is first unmarshaled
into the vault area to enforce invariants before updating kernel data structures.

which invariants are inferred by executing the driver on be-
nign workloads, and an enforcement phase, in which the
RPC monitor enforces these invariants. The training phase
is a one-time activity that can possibly be completed dur-
ing driver development. Section 4.2.1 presents an automated
technique to infer invariants during training; Section 4.2.2
describes how these invariants are enforced.

4.2.1 Inferring data structure integrity constraints

To identify kernel data structure invariants, we adapted
Daikon [18], an invariant inference tool. Daikon consists of
two components, namely, a front end that records the values
of variables during application execution and an inference
engine that uses these values to hypothesize likely invariants.
The front end records the values of global variables and for-
mal parameters of functions at key program points, such as
function entries and exits, as the application executes a set
of test inputs. The inference engine uses these values to hy-
pothesize invariants. For example, if the value of a variable
is observed to be a constant across multiple executions of
the program, Daikon hypothesizes that the variable is likely
a constant. Daikon infers over 75 different kinds of invari-
ants, including constancy of scalar-valued variables, arrays
and pointers, bounds of scalars, and relationships between
different variables.

Daikon currently only applies to user-space applications.
However, our architecture executes the u-driver as a user-
space process, which allows Daikon to be applied to driver
code. We use Daikon’s front end to monitor the execution of
a u-driver as it runs several benign workloads for each driver,
such as device initialization, configuration and shutdown,
that exercise functionality implemented in the u-driver. The
front end records a trace of values of all the global variables
and formal parameters of functions that cross the user/kernel
boundary. Daikon’s inference engine processes this trace
and hypothesizes invariants. Figure 3 presents several ex-
amples of invariants that Daikon identified for the 8139too
network driver; the left column shows several functions that
appear in the u-driver of the 8139too microdriver, and indi-

cates whether the invariant was inferred at the entry or exit
(or both program points) of the function. Invariants inferred
at the exits of upcall functions are enforced by the RPC mon-
itor (Section 4.2.2). We discuss below several classes of in-
variants that we found useful in our experiments.
(1) Constancy of scalars and pointers. Daikon determines
whether a scalar-valued variable (i.e., a value of a base type,
such as int or char) remains constant during driver exe-
cution. If so, it also records the constant value that the
variable acquires. For example, consider the integer-valued
global variable rtl8139 intr mask of the 8139too driver,
which represents a 16-bit mask. Daikon infers that this
variable has a constant value of C07F when the function
rtl8139 init module is invoked (see Figure 3). Indeed, an
analysis of the driver shows that this variable is always ini-
tialized in the k-driver to this value.

In addition to scalar variables, Daikon also determines
whether a pointer always refers to the same object during
program execution. For example, Daikon infers that the
pointer-valued global variable rtl chip info is not modified
by the rtl8139 get ethtool stats function. Similarly, it in-
fers that the function pointer dev->hard start xmit is un-
modified by a call to rtl8139 get link (and most other func-
tions in the u-driver). Inferring and enforcing such invariants
on function pointers can prevent control hijacking attacks. In
fact, a recent study of 25 Linux rootkits revealed 22 rootk-
its that hijacked kernel control flow by modifying function
pointers to point to attacker-defined code [34]. Note that for
pointers that refer to the same object, Daikon only reports
that the pointer is a constant and does not report the actual
value of the pointer (which would vary across reboots).
(2) Relationships between variables. Daikon correlates the
values of variables and discovers relationships between them.
For example, it can discover that two variables always ac-
quire the same value at runtime. Importantly, Daikon can de-
termine whether the value of a variable remains unchanged
during a function call by observing its values at function
entry (the O value of the variable) and exit. For exam-



Function Invariant
rtl8139 init module (entry) rtl8139 intr mask == C07F, rtl8139 norx intr mask == C02E
rtl8139 init module (exit) rlt8139 intr mask == O(rtl8139 intr mask)

rtl8139 norx intr mask == O(rtl8139 norx intr mask)
rtl8139 rx config == O(rtl8139 rx config)
rtl8139 tx config == O(rtl8139 tx config)

rtl8139 get ethtool stats (exit) rtl chip info has only one value
rtl8139 get link (exit) dev->hard start xmit has only one value
rtl8139 open (entry/exit) dev->base addr ∈ {0x0531C468, 0x06520468}
rtl8139 get link (exit) L(dev->mc list) == O(L(dev->mc list))

Figure 3. Examples of invariants extracted from the 8139too driver.

ple, it determines that the value of rtl8139 intr mask is un-
changed by a call to rtl8139 init module. Enforcing such
an invariant constrains the values of rtl8139 intr mask that
can otherwise be modified by a compromised u-driver to ini-
tiate I/O to unauthorized ports.
(3) Ranges/sets of values. In several cases, a variable may
not be a constant, but acquire one of a small set of values.
As Figure 3 shows, Daikon infers such invariants as well;
for example, it infers that the dev->base addr, which repre-
sents the base address of I/O memory, can only acquire one
of two values during driver execution. This constraint must
be enforced when the k-driver’s copy of dev->base addr is
synchronized with the u-driver’s copy; for otherwise, a com-
promised u-driver could coerce the k-driver into writing to
arbitrary I/O memory addresses belonging to other devices.
(4) Linked list invariants. The Linux kernel uses linked
lists extensively to manage several critical data structures.
Prior work demonstrates that kernel linked lists can be
stealthily modified to achieve malicious goals [33]. Unfor-
tunately, Daikon’s C front end does not support inference of
invariants on linked lists.

We therefore extended Daikon to infer invariants on
linked lists. In particular, we augmented the marshaling
protocol with code that records the contents of linked lists
that cross the user/kernel boundary. Daikon then processes
this trace of values and hypothesizes invariants. Our imple-
mentation currently supports inference of invariants that in-
dicate that the length of a linked list is unmodified by a func-
tion call. Figure 3 presents one such invariant, which states
that the linked list dev->mc list is unmodified by a call to
rtl8139 get link.

A key feature of the above invariants is their ability to
monitor the integrity of both control and non-control data
in the kernel. For example, by inferring the constancy of
function pointers, Daikon can detect attacks that hijack con-
trol flow by modifying function pointers to attacker-defined
code. Similarly, Daikon can detect attacks that modify I/O
memory addresses and allow a rogue driver to write to arbi-
trary memory locations, thereby preventing this non-control
data attack. Daikon’s dynamic analysis approach enables it
to infer several kinds of invariants that would be difficult to
discover using static analysis of the driver. For example,
static analysis is ill-suited to infer invariants on lengths of
linked lists. Similarly, in pointer-intensive code (as is com-
mon in device drivers), it is hard to statically infer whether a

heap object is unmodified by a function call without access
to precise aliasing information.

One of the challenges that we faced during development
was the sheer quantity of data recorded by Daikon’s front end
during the execution of a u-driver. This in turn resulted in two
problems. First, Daikon’s inference engine took longer to in-
fer invariants, and sometimes even exhausted the memory
available on the machine. Second, Daikon inferred several
hundred invariants per function, which resulted in increased
memory consumption during enforcement. For example,
consider the 8139cp network microdriver: Daikon inferred
an average of 878 invariants at the exit of each function in the
u-driver. Worse, several of these invariants were serendipi-
tous, i.e., they were overly specific to the workloads used
during inference and were not satisfied by other workloads,
thereby resulting in false positives during enforcement.

To overcome these problems, we incorporated two key op-
timizations. First, we configured Daikon’s front end to only
record values transmitted to u-driver functions that commu-
nicate directly with the k-driver via upcalls and downcalls,
and do not record values for functions internal to the u-driver.
Second, we configured the front end so that only the values
of variables that are accessed in the u-driver are recorded.
For example, if a u-driver function only reads/modifies cer-
tain fields of an otherwise large C struct, we only record
the values of the fields that are read/modified by that func-
tion. To implement this optimization, we employed a con-
servative static analysis of the u-driver to determine the fields
read/modified by functions in the u-driver. Because Driver-
Slicer’s code generator emits marshaling and unmarshaling
code only for variables and fields of data structures that are
read/modified by the u-driver, as discussed in Section 4.1,
malicious modifications by the u-driver on other variables
and data structure fields will not be synchronized with the
k-driver; hence, they need not be monitored.

These optimizations drastically reduce the number of in-
variants that Daikon infers, which in turn reduces the mem-
ory consumption of the invariant table (described below) dur-
ing enforcement. For example, in the 8139cp network mi-
crodriver, the average number of invariants at function exits
drops over forty-fold.

We expect that inferring invariants would be a one-time
activity, accomplished either during driver development (if
the driver is developed as a microdriver), or when a legacy
driver is split with DriverSlicer; these invariants can be dis-
tributed by vendors along with drivers. Note, however, that



some invariants inferred by Daikon must be modified to be
widely applicable across multiple installations and configu-
rations. For example, the invariant for dev->base addr in
Figure 3 refers to specific I/O memory addresses, and is not
applicable across multiple installations (the other invariants
in Figure 3 are portable across multiple installations). To be
portable, this invariant would have to be modified to gener-
ically state that dev->base addr has only two values, rather
than referring to specific I/O memory addresses, e.g., as with
the invariant for dev->hard start xmit in Figure 3.

4.2.2 Enforcing data structure integrity constraints

The invariants inferred by Daikon are enforced by the RPC
monitor when the k-driver receives marshaled data from the
u-driver. The RPC monitor unmarshals this data into a vault
area in the kernel’s address space. Data structures in the vault
area are only accessed by the RPC monitor and not by the
kernel.

The RPC monitor itself is implemented as a kernel mod-
ule that manages two tables: an invariant table and a vault
table. The invariant table stores the set of invariants indexed
by the u-driver variable(s) that it is associated with, and is
initialized when the microdriver is loaded. The vault table
stores pointers to data structures in the vault area and is filled
by the RPC monitor when it populates the vault area.

The RPC monitor enforces invariants on data received
from the u-driver by first unmarshaling this data into the vault
area and inserting pointers to these resulting data structures
in the vault table. This unmarshaling code is automatically
generated by DriverSlicer’s code generator. The marshaling
code emitted by the code generator also makes a copy of the
original values of variables before an upcall to support in-
variants that refer to the O value of a variable. To enforce
invariants, the RPC monitor retrieves the invariants associ-
ated with each variable in the vault table using the invariant
table, and verifies that the invariant is satisfied. For invariants
on variables that point to the head of a linked list, the RPC
monitor traverses the list and ensures that the invariant is sat-
isfied. Any failures raise an alert and can trigger recovery
mechanisms, such as restarting the u-driver. If all invariants
are satisfied, then the marshaling procotol synchronizes ker-
nel data structures by overwriting them with their copies in
the vault area.

4.3. Monitoring control transfers

This section describes the techniques used to extract and
enforce policies on control transfers from the u-driver to the
k-driver. A u-driver may issue downcalls as it serves an
upcall from the k-driver. The RPC monitor enforces (Sec-
tion 4.3.2) a statically extracted control transfer policy (Sec-
tion 4.3.1) to ensure that the downcall is permitted. Extract-
ing and enforcing such control transfer policies is necessary
to prevent code injection attacks via a compromised u-driver;
for example, an attacker with control over a u-driver can is-
sue a downcall to a kernel function that unregisters a device,
thereby causing denial of service.

4.3.1 Extracting control transfer policies

To extract a control transfer policy, we employ static analysis
of the u-driver. We first use DriverSlicer to statically extract
a call graph of the u-driver. This call graph contains one node
for each function in the u-driver; an edge f→g indicates that
f can potentially call g (possibly indirectly, via a function
pointer). We resolve function pointers using a simple type-
based pointer analysis: each function pointer can refer to any
function whose address is taken, and whose type signature
matches that of the function pointer. DriverSlicer’s splitter
identifies potential entrypoints into the u-driver; its code gen-
erator also includes an RPC stub in the k-driver for each such
entrypoint via which upcalls are issued. For each entrypoint,
we use the call graph to identify the set of downcalls that
the entrypoint can potentially issue—this set of downcalls
associated with each entrypoint serves as the control transfer
policy.

Associating an upcall with a set of downcalls can result
in a permissive policy that can potentially admit mimicry
attacks [39]. However, we note that in order to compro-
mise kernel data structures, a compromised u-driver issuing a
downcall must also send appropriate data with the downcall.
As discussed in Section 4.2, the RPC monitor checks the va-
lidity of this data in addition to monitoring control transfer,
thereby constraining the attacker. Nevertheless, our architec-
ture admits the enforcement of more complex control trans-
fer policies, such as the sequence of downcalls that can fol-
low an upcall. Prior work has developed techniques to extract
such control transfer policies (e.g., [21]); we plan to extend
our architecture with such support in future work.

4.3.2 Enforcing control transfer policies

The RPC monitor enforces the control transfer policy ex-
tracted above. When a function in the k-driver makes an
upcall into the u-driver, the k-driver registers the entrypoint
invoked with the RPC monitor, which in turn pushes this en-
trypoint on a stack. When the u-driver issues a downcall, the
RPC monitor interposes on this request and ensures that the
downcall is allowed by the control transfer policy associated
with the entrypoint at the head of the stack. The RPC monitor
pops the stack when the upcall returns.

It is important to use a stack to track the currently-active
entrypoint because an upcall into the u-driver can possibly
result in multiple control transfers between the user and the
kernel. DriverSlicer’s splitter ensures that there is at most
one upcall along any path in the static call-graph of the
driver. However, in response to an upcall, the u-driver may
need to invoke a function that is implemented in the operating
system kernel (e.g., the register netdev function to register
a network device; note that this is a kernel function, not a
k-driver function). In turn, the kernel function may call back
into the driver and the relevant function may be implemented
in the u-driver, thus resulting in multiple control transfers.

5. Evaluation
In this section, we report on experiments conducted on

four drivers secured using our architecture. We ported the



device drivers for the RealTek RTL-8139 (8139too) and
8139C+ (8139cp) network cards, the driver for the Ensoniq
sound card (ens1371), and the driver for the Universal host
controller (USB) interface (uhci-hcd) to our security archi-
tecture. We used QEMU 0.9.1 (for the network and USB
drivers) and VMWare workstation 6 (for the sound driver)
running an unmodified Linux-2.6.18.1 kernel as the testbeds
for our experiments. Though the Linux kernel has several
thousand drivers, we restricted ourselves to four drivers for
two reasons. First, we only considered drivers available on
our test platforms. Second, DriverSlicer is not yet com-
pletely automatic (neither are other RPC libraries, such as
MSIDL [29]); porting drivers requires domain-specific un-
derstanding and is time-consuming. Nevertheless, the four
drivers above represent three major driver families, with dif-
ferent kernel/driver interfaces.

5.1. Privilege separation

We used DriverSlicer to partition the drivers that we con-
sidered into a k-driver and a u-driver. The k-driver of each
driver contains performance-critical code and code that re-
quires kernel privilege to execute. Figure 4 compares the
size of the k-driver and the u-driver. As this figure shows,
our architecture reduces the amount of hand-written driver
code running with kernel privilege and was able to remove
several non-critical functions to user space. As discussed in
Section 4.1, to split a driver into a microdriver, DriverSlicer
requires that the driver be annotated to clarify semantics of
pointers that cross the user/kernel boundary. Figure 4 also
presents the number of annotations needed, classified as an-
notations on kernel headers, which have to be provided just
once per version of the kernel, and driver-specific annota-
tions. As this Figure shows, device drivers can be ported into
our architecture with only a small number of annotations.

In addition to the k-driver, the kernel runtime and the RPC
monitor also execute with kernel privilege and contain RPC
code for control and data transfer. Though DriverSlicer cur-
rently emits several thousand lines of RPC code, we note that
this code is highly stylized and is automatically generated by
DriverSlicer. The correctness of this code can be ensured by
verifying DriverSlicer.

5.2. Ability to prevent attacks

We evaluated the ability of our architecture to prevent at-
tacks by simulating common attacks on driver code. As in-
dicated by recent vulnerability reports device drivers, buffer
overflows, especially in packet processing code and ioctl
handlers are the most exploited class of vulnerabilities. Be-
cause u-drivers contain the bulk of non-performance-critical
functionality, including parsing of control packets and ioctl
handling, we tested the ability of our security architecture at
preventing simulated buffer overflow attacks on u-drivers.

To do so, we first obtained a set of invariants for each
driver using a benign workload in a controlled training phase.
This workload exercised functions implemented in the u-
driver of each driver, such as initializing and closing the
device and configuring device parameters. Specifically, for
the network drivers, we configured several device parame-

ters using the ethtool utility, for the sound driver, we played
music files in several formats and adjusted parameters us-
ing the alsamixer utility, while for the USB driver, we in-
serted and removed several USB devices. In addition, we
also initialized and closed the devices repeatedly. We config-
ured the training workload to maximize the number of func-
tions invoked in the u-driver. Figure 5 presents the coverage
obtained by our training workload. Although we could not
achieve 100% coverage using our workload, 1 we expect that
such coverage can be achieved by vendors during driver de-
velopment using regression test suites. Figure 6 shows the
total number of invariants inferred for each driver.

In the testing phase, we used the RPC monitor to enforce
these invariants on u-driver to k-driver communication. Dur-
ing this phase, we simulated a compromised u-driver by con-
sidering three classes of attacks, as discussed below. Figure 6
presents the memory consumption of the RPC monitor.
• Control hijacking via injected downcalls. We simulated
code injection attacks on the u-driver by injecting ioctl sys-
tem calls that would result in a downcall to the k-driver.
For example, we injected a downcall to the kernel func-
tion netif wake queue in one of the u-driver functions. The
purpose of this function is to allow upper layers to call the
driver’s function to transmit packets and for flow control
when transmit resources are available. This code injection
attack may result in data loss or block the wait queue.

Because the RPC monitor verifies the set of downcalls that
each upcall is allowed to issue, using a control transfer pol-
icy, it was successfully able to detect such injection attacks.
• Control hijacking via modified function pointers. An

attacker with control over a u-driver can find function point-
ers that are communicated from the u-driver to the k-driver,
and set them to point to arbitrary code (either injected code
or to existing kernel functions), thus resulting in arbitrary
code execution within the kernel. We simulated such an
attack within a u-driver function (rtl8139 get link in the
8139too driver) by modifying the dev->hard start xmit
function pointer to point to attacker-injected code. The
dev->hard start xmit function pointer typically refers to
the function that transmits packets. When the upcall
to rtl8139 get link returns, the kernel’s copy of the
hard start xmit function pointer will be updated, thereby
resulting in attacker-defined code executing with kernel priv-
ilege each time the driver attempts to send a packet. The RPC
monitor was able to prevent this attack by enforcing the in-
variant that dev->hard start xmit is not modified by a call
to the rtl8139 get link function (see Figure 3).

Although we only executed the above attack in our ex-
periments, we verified that Daikon had inferred an invariant
for each function pointer that crossed the u-driver/k-driver
boundary in all four drivers (most of them of the form fptr
= O(fptr)). These invariants will detect unauthorized

1We either did not know how to invoke the functions that were not cov-
ered by the training workload or were unable to use the applications needed
to invoke these functions on our testbed. For instance, we were unable to call
several MIDI-related functions in the audio driver because our test applica-
tion (Realplayer 11) refused to play MIDI files on the Linux distribution we
used (Fedora 5).



Size of K-driver Size of U-driver Number of Annotations
Driver SLOC # Functions SLOC # Functions Kernel header Driver specific

8139too 545 (33.7%) 11 (21.6%) 1070 (66.2%) 40 (78.4%) 34 8
8139cp 735 (44.7%) 21 (36.8%) 908 (55.3%) 36 (63.1%) 18 16
ens1371 890 (59.7%) 28 (43.7%) 599 (40.3%) 36 (56.3%) 7 7
uhci-hcd 2060 (81.8%) 60 (87.0%) 457 (18.2%) 9 (13.0%) 27 146

Figure 4. Sizes of the k-driver and the u-driver, and the number of annotations needed by DriverSlicer.

Driver # Funcs. in u-driver # Funcs. covered
8139too 40 35
8139cp 36 33
ens1371 36 14
uhci-hcd 9 7

Figure 5. Function coverage (in the u-
driver) obtained by the training workload.

Driver # Invariants Inv. tab. Vault tab.
8139too 2607 247,661 65,180
8139cp 212 17,217 14,817
ens1371 750 70,218 3,918
uhci-hcd 163 12,888 7,455

Figure 6. Memory consumption (in bytes)
of the invariant and vault tables.

Original driver Driver in our architecture
Driver Workload Throughput CPU (%) Throughput CPU (%)

8139too TCP-send 63.39Mbps 99.76% 61.20Mbps (-3.45%) 99.86% (0%)
8139too TCP-receive 91.96Mbps 34.84% 90.35Mbps (-1.8%) 34.96% (0%)
8139cp TCP-send 64.02Mbps 99.88% 64.51Mbps (+0.7%) 99.94% (0%)
8139cp TCP-receive 90.88Mbps 31.82% 91.66Mbps (+0.8%) 29.94% (-5.9%)

uhci-hcd Copy 585.84Kbps 4.92% 578.95Kbps (-1.1%) 7.01% (+42%)

Figure 7. Performance of unmodified network and USB drivers and drivers in our security architecture.

function pointer modifications within the u-driver and pre-
vent control hijacking attacks.
• Non-control data attacks. Sensitive scalar values, such
as I/O memory addresses, interrupt masks and configura-
tion parameters, that are marshaled between the u-driver and
the k-driver can be maliciously modified by a compromised
u-driver. For example, scalars that represent I/O memory
address ranges, e.g., dev->base addr, which represents the
base address of the driver’s I/O memory region, are set by
the kernel when the driver is loaded. These values must
not normally be modified by the driver because it will allow
the driver write access to memory regions that it does not
own, e.g., to the I/O memory regions of other devices. Yet,
a compromised u-driver can maliciously modify such sensi-
tive scalar values; when these values are marshaled into the
k-driver, they will maliciously update kernel data as well.

We simulated such an attack by modifying several non-
control data values. For instance, we modified the value of
rtl8139 intr mask within the u-driver. This variable repre-
sents a 16-bit mask; copying this value unchecked into the
k-driver will allow the driver to write to an undesired I/O
port. We were able to successfully detect this attack using
invariants that expressed relationships between the value of
the scalar before an upcall and the value after the upcall,
e.g., rtl8139 intr mask = O(rtl8139 intr mask). We
also implemented an attack that modified a kernel linked list
(dev->mc list) within the u-driver, and were successfully
able to detect this attack using linked list invariants.
• False positives and negatives. It is well-known that Daikon
can possibly infer serendipitous invariants, i.e., those that
are overly specific to the training workload. To determine

whether such invariants result in false positives during en-
forcement, we ran the drivers with several benign test work-
loads that called functions in the u-driver (the training work-
load used to infer invariants was the same as the one in Sec-
tion 5.2). We did not observe any false positives during this
experiment. While it is unclear whether the same result will
hold for other drivers as well, we note that in a real de-
ployment, false positives could be eliminated by manually
inspecting and refining the invariants.

To evaluate false negatives, i.e., cases where invariants
fail to detect a compromised u-driver, we conducted fault-
injection experiments using the 8139too and 8139cp drivers.
(We could not conduct these experiments on the ens1371 and
uhci-hcd drivers because of limitations of our prototype in-
frastructure.) We used an off-the-shelf fault injector [43] to
inject 400 random faults in the u-driver of each microdriver.
We measured the number of faults that propagated to the ker-
nel (via RPC) and the number of these faults that were de-
tected by our invariants. Note that our prototype currently
lacks a recovery subsystem. Therefore, faults that propagate
to the kernel crash the system, i.e., the RPC monitor can de-
tect data corruption, but cannot prevent or recover from a
system crash. Our experimental methodology was therefore
to inspect system logs following each system crash to deter-
mine whether the RPC monitor detected the crash.

Figure 8 presents the results of this study. As this figure
shows, there were several cases in which the system did not
crash and in which the faults were contained within the u-
driver (the #NoCrash and #UD columns, respectively). The
remaining faults, which constituted the majority, propagated
to the kernel, thereby showing the need for an RPC monitor



Driver Faults NoCrash UD Clear InLog Detect
8139too 400 49 26 212 113 95 (84%)
8139cp 400 134 14 147 105 64 (61%)

Figure 8. Results from fault injection.

to inspect kernel data structure updates initiated by the u-
driver. As discussed above, we used system logs to determine
whether the RPC monitor detected a crash. In several cases
(shown in the #Clear column), we observed that the system
log had been cleared following the crash. In these cases, we
could not determine whether the RPC monitor would have
detected the crash. Nevertheless, there were several cases in
which we observed a crash for which we could inspect our
logs to determine the effectiveness of invariants (shown in
the #InLog column). The #Detect column shows the number
of #InLog crashes that were detected by the RPC monitor.
As these results indicate, the RPC monitor could detect 84%
of the injected faults in the 8139too driver and 61% of the
faults in the 8139cp driver. These results also show that the
RPC monitor can effectively thwart a significant fraction of
attacks enabled by a compromised u-driver.

5.3. Performance

We measured both the throughput and CPU utilization of
the two network drivers and the USB driver using our QEMU
testbed. While QEMU does not provide an accurate repre-
sentation of performance on real hardware, it allows us to
measure differences in performance. If the driver has lower
performance, it will be reflected either as higher CPU utiliza-
tion or low throughput. If neither changes, the performance
on real hardware should be unchanged.

We measured throughput and CPU utilization of the net-
work drivers using netperf [14]. We transmitted packets be-
tween our QEMU test environment and a client machine.
The netperf tests used TCP receive and send buffer sizes of
87KB and 16KB, respectively. To test the USB driver, we
copied a 140MB file into a USB disk. All our measurements
are averaged over 10 runs, and are presented in Figure 7. As
this Figure shows, our security architecture minimally im-
pacts common-case performance (the minor speedups that
we observed are within the margin of experimental error).
This is because the code to transmit packets is in the k-driver;
sending a packet does not involve any user/kernel transitions.
For the sound driver, we compared the CPU utilization of
both the original driver and the split driver as they played a
256-Kbps MP3; CPU utilization in both cases was zero.

However, uncommon functionality, such as device ini-
tialization, shutdown and configuration, resulted in several
user/kernel transitions and took almost thrice as long. During
the training phase of the experiments reported in Section 5.2,
we used several benign workloads that exercised such func-
tionality implemented in the u-driver of each device driver.
Figure 9 presents the number of user/kernel transitions and
the amount of data transferred in upcalls and downcalls dur-
ing this training phase.

Driver KBytes sent/received # upcalls # downcalls
8139too 813 200 160
8139cp 9.5 206 124
ens1371 15.6 395 777
uhci-hcd 25.1 36 126

Figure 9. Data movement in up and downcalls.

6. Related Work
Hardware-based isolation techniques, such as Nooks [35]
and Mondrix [41], rely on memory protection at the page
level (Nooks) or with fine-grained segments (Mondrix) to
isolate device driver failures. There are two main differences
between Nooks/Mondrix and our work. First, both Nooks
and Mondrix execute device drivers in kernel mode. Second,
they do not enforce integrity specifications on kernel data
structure updates, because doing so is likely to impose sig-
nificant performance overheads. The consequence of these
differences is that while Nooks and Mondrix can improve re-
liability with benign but vulnerable drivers, they cannot pro-
tect against compromised drivers that attempt to subvert the
kernel. For example, they cannot protect against buffer over-
flow exploits that maliciously modify kernel data structures.
Virtual machine-based techniques isolate device drivers by
running a set of device drivers within their own virtual ma-
chine e.g., [16, 19, 25]. In principle, this approach offers all
the benefits of our architecture. However, in practice, there
are two key difficulties. First, these techniques require the
use of a VMM. Although VMMs have seen wide deployment
for server-class systems, they are still not in wide use on per-
sonal desktops—platforms that support a wide variety of de-
vices and hence, drivers. Second, VM-based techniques must
provide a front-end driver within the guest VM that commu-
nicates requests between the device driver (running on a sep-
arate VM) and I/O requests from applications in the guest.
Although such front-ends can be developed easily for stan-
dard classes of drivers (e.g., network, sound, SCSI), devel-
oping front-ends for other one-of-a-kind drivers, e.g., those
that support non-standard ioctl interfaces, is cumbersome.
Thus, while the VMM-based approach has several benefits,
it is not applicable to a wide variety of devices and drivers.

SafeDrive [43] and XFI [17] are language-based mech-
anisms to isolate device drivers. SafeDrive is an adapta-
tion of CCured [32] to protect against type-safety violations
in device drivers. While SafeDrive offers low-performance
overhead and compatibility, device drivers protected with
SafeDrive still execute with kernel privilege. Moreover,
SafeDrive only protects against type-safety violations; in
contrast, our RPC monitor can protect against violations that
transcend type-safety, such as requests by the u-driver to al-
locate large amounts of memory, which may lead to memory
exhaustion. Similarly XFI ensures control-flow integrity for
device drivers. Our security architecture allows the use of
any user-space security mechanism to be applied to a large
fraction of device driver code without investing the effort
needed to adapt these mechanisms to kernel code.



Microkernels [26, 40, 42] provide new operating system
abstractions that allow device drivers to execute in user
mode. Nexus [40] is one such microkernel OS that enforces
domain-specific rules on driver/device communication using
a kernel-resident reference monitor. Supplied with appropri-
ate rules, Nexus can prevent attacks at the driver/device inter-
face that our architecture cannot prevent. The effort required
to port Linux drivers to Nexus is also comparable to the effort
required to port them to our architecture. However, Nexus
is a microkernel; consequently, its security mechanisms are
largely inapplicable to commodity operating systems, which
are structured as macrokernels. In addition, Nexus reports
high CPU utilization for CPU-intensive workloads and lower
throughputs with a network driver. In contrast, our archi-
tecture imposes minimal overheads in the common-case be-
cause performance-critical code executes in kernel mode.
User-mode driver frameworks [10, 15, 24, 28, 37] also at-
tempt to execute drivers without kernel privilege. However,
these techniques either offer poor performance [3, 38] be-
cause they transmit large amounts of data frequently across
the user/kernel boundary, or are incompatible with commod-
ity operating systems, often requiring complete rewrites of
drivers and modifications to the kernel [10, 24, 28, 37].

Program partitioning techniques have previously been for
privilege separation [6] and to create secure web applica-
tions [9]. In contrast to prior work, our architecture applies
partitioning to device driver code, which enables user-mode
drivers and the use of user-mode tools such as Daikon to in-
fer invariants. Prior work has also investigated the use of
program invariants for bug detection [22], data structure re-
pair [13], rootkit detection [5] and improving the security of
web applications [11]. Again, our contribution is to apply
these techniques to improve the security of device drivers.

7 Summary
Device drivers bloat the size of the TCB in commodity op-

erating systems because kernel data is isolated poorly from
vulnerabilities in driver code. The security architecture pro-
posed in this paper offers a practical way to better isolate ker-
nel data from device drivers without sacrificing performance
and in a manner that is compatible with commodity operating
systems.
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A Examples of annotations used by Driver-
Slicer

Figure 10 presents four kinds of annotations used by
DriverSlicer using an example from the 8139cp network
driver. These annotations are applied to structure definitions
and formal parameters of functions. DriverSlicer supports
eight kinds of annotations in total; these are described in de-
tail in prior work on Microdrivers [20].
• The IOM annotation, applied to the regs field of the
cp private structure, informs DriverSlicer that regs points
to device I/O memory. Pointers to I/O memory must be han-
dled differently than pointers to kernel/device memory by the
object tracker. DriverSlicer uses this annotation to gener-
ate appropriate marshaling code for pointers to I/O memory
pointers.
• The A annotation informs DriverSlicer that the pointer-

valued rx ring field of the cp private structure points to an
array of 64 cp desc objects. DriverSlicer uses this annota-
tion to marshal the entire array of objects instead of simply
marshaling the object instance that rx ring points to.
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• The O annotation, which is applied to the void * point-
ers, helps DriverSlicer identify the type of the object that the
priv of the net device data structure points to in the 8139cp
driver. DriverSlicer uses this annotation to generate marshal-
ing code for the cp private data structure when it marshals
the priv field of the net device structure.
• The S annotation is applied to recursive data struc-

tures such as the next field of a linked list. The annota-
tion shown in Figure 10 also contains the predicate used to
end linked list traversal (checking that the next field is non-
NULL). DriverSlicer uses this annotation to generate code to
marshal the entire linked list of elements, using next,0 as
the condition to terminate traversal.
// RPC stub in the k-driver containing code for invariant enforcement.
int rtl8139 init one (struct pci dev *dev, ...) {

void *mbuf, *dmbuf;
...
// Marshal values into mbuf.
marshal (mbuf, "pdev->hdr type", pdev->hdr type);
add vault tab ("pdev->hdr type", &pdev->hdr type, ORIGVAL);
marshal (mbuf, "pdev->devfn", pdev->devfn);
add vault tab ("pdev->devfn", &pdev->devfn, ORIGVAL);
...
// Call the u-driver with marshaled data.
dmbuf = do upcall ("rtl8139 init one", mbuf);
// Demarshaling: copy from vault.
if (checkinv rtl8139 init one(dmbuf)) {

copy from vault ("pdev->hdr type", &pdev->hdr type);
copy from vault ("pdev->devfn", &pdev->devfn);
...

}

}

// RPC monitor function that unmarshals data into the vault
// and checks invariants
int checkinv rtl8139 init one(void *unmarshbuf) {

void *ptr;
ptr = unmarsh to vault (unmarshbuf, "pdev->hdr type");
add vault tab ("pdev->hdr type", ptr, MODIFVAL);
ptr = unmarsh to vault (unmarshbuf, "pdev->devfn");
add vault tab ("pdev->devfn", ptr, MODIFVAL);
...
if (check invariants()) return 1;
else { //trigger recovery }

}

Figure 11. Code snippet from the 8139too mi-
crodriver showing marshaling protocol modi-
fied to check for data structure invariants.

B Marshaling protocol
Figure 11 shows an example of the marshaling pro-

tocol augmented to check data structure invariants. As
this Figure shows, the marshaling protocol is augmented
to record the original values of variables in the vault ta-
ble; this is required to enforce invariants of the form
var=O(var). The unmarshaling protocol (implemented in
checkinv rtl8139 init one) copies values received from
the u-driver into the vault area and verifies that invariants are
satisfied. If so, kernel data structures are updated with values
from the vault using the copy from vault function, which
copies the value of a data structure/field from the vault area
to the kernel.
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