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Abstract
We present the design, implementation, and evaluation of HeapMD,
a dynamic analysis tool that finds heap-based bugs using anomaly
detection. HeapMD is based upon the observation that, in spite of
the evolving nature of the heap, several of its properties remain
stable. HeapMD uses this observation in a novel way: periodically,
during the execution of the program, it computes a suite of met-
rics which are sensitive to the state of the heap. These metrics track
heap behavior, and the stability of the heap reflects quantitatively in
the values of these metrics. The “normal” ranges of stable metrics,
obtained by running a program on multiple inputs, are then treated
as indicators of correct behaviour, and are used in conjunction with
an anomaly detector to find heap-based bugs. Using HeapMD, we
were able to find40 heap-based bugs,31 of them previously un-
known, in5 large, commercial applications.

Categories and Subject Descriptors:D.3.4 [Programming Lan-
guages]: Processors—Debuggers; D.2.4 [Software Engineering]:
Testing and Debugging—Debugging aids

General Terms:Experimentation, Measurement, Reliability

Keywords: Anomaly detection, bugs, heap, metrics, debugging

1. Introduction
Modern software allocates and manages a vast amount of infor-
mation on the heap. Code that manipulates these data-structures
must be bug-free to avoid errors such as dangling pointers, mem-
ory leaks [3, 12, 19], and inconsistent data structures [5]. Un-
fortunately, this is not the case, and heap-based bugs are notori-
ously hard to detect and debug. The effect of corrupted heap data-
structures is often delayed, and may be apparent only after sig-
nificant damage has been done to the heap. In some cases, cor-
ruption may not be apparent: for example, a dangling pointer bug
does not crash a program unless the pointer in question is derefer-
enced, and even then may not cause a crash or cause unexpected
results [21, 22]. Consequently, testing may not reveal bugs in code
that manipulates heap-allocated data, and production systems may
ship with them.

In this paper, we discuss the design, implementation, and eval-
uation of a runtime tool, called HeapMD, to find bugs in heap-
manipulating code. HeapMD works onx86-binaries, and finds
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pNewAsset = Initialize(pAssetParams);
. . .
if (pAssetList->next 6= NULL) {

pNewAsset->next = pAssetList->next;
pAssetList->next = pNewAsset;

// AssetList is a doubly-linked list, and ’prev’
// pointers are not correctly updated here.
}

Figure 1. Code-fragment, found by HeapMD, that fails to update
prev pointers in a doubly linked list, which results in the percent-
age of vertexes withindegree = 1violating its calibrated range.

bugs usinganomaly detection. HeapMD works by computing a
suite of metrics to summarize theheap-graph, which is a directed
graph with heap-allocated objects as vertexes. An edge is drawn
from vertexu to vertexv if the object corresponding tou points to
the object corresponding tov.

As a program executes, it allocates, frees and manipulates data
structures on the heap, which as a result continuously evolves
during the lifetime of the program.The key observation used by
HeapMD is that in spite of the evolving nature of the heap, several
properties of the heap-graph remain relatively stable. We demon-
strate this observation empirically on several SPEC benchmarks
and commercial applications. In particular, we focus on degree-
based metrics of the heap-graph, such as the percentage of heap
vertexes withindegree = outdegree, percentage ofleavesandroots,
which are sensitive to the structure of the heap-graph. We show that
for a given program, several of these metrics remain stable as the
heap evolves. In fact, we push this observation further, and show
thatstable metrics exist even across different development versions
of a program.

The intuition behind our observation is that programmers im-
plicitly maintain several invariants over heap properties to manage
the complexity of the heap, which, unlike code, has no tangible,
programmer-visible representation. Many of these invariants arise
as a result of the types of data structures used by a program. The
stability of the heap-graph is reflected quantitatively in the values
of the metrics, several of which remain stable as well. These met-
rics serve as a “signature” of the heap behavior of a program, and
their range determines the set of values that arise during normal
execution of the program. Note that not all computed metrics are
stable for a given program—only a subset of the metrics will typ-
ically be stable. Note also that different metrics will be stable for
different programs, based upon their heap behavior. However, we
empirically observed that for each of our benchmarks, at least one
of the suite of metrics we used was reported as stable.

For a given program, HeapMD identifies stable metrics of the
heap-graph and computes the normal range of these metrics using
a set of training inputs. As the program executes, HeapMD peri-
odically computes a set of degree-based metrics on the heap-graph
at pre-defined program points, calledmetric-computation points. A



metric is defined to be stable if the average change and the standard
deviation of change of the metric fall within pre-defined thresholds.
For this paper, we define a metric as stable if the average change
in its value is within±1% and the standard deviation of change is
less than5, across consecutive metric-computation points.

HeapMD combines our observation on stable metrics with
anomaly detection in a novel way to find bugs. It first identifies
a set of stable metrics and their “normal” ranges using training
inputs. As the program is executed on other inputs (e.g., during
testing), HeapMD computes the values of metrics identified as sta-
ble during training. If the value of any such metric is outside its
calibrated “normal” range, it is an indication that something is
wrong. Note, however, that a corrupted heap data structure might
not always cause a stable metric to go out-of-range, and HeapMD is
thus not guaranteed to find all heap-based bugs. An analogy can be
drawn to human vital statistics, such as blood pressure. Abnormal
blood pressure indicates a problem, though not all health problems
affect blood pressure. It is important to note that during training,
HeapMD identifies metrics that are stable, and during testing, it
checks for range violation. In particular, a metric that was deemed
stable during trainingcan be unstable during testing, provided it
does not violate its calibrated range.

A key feature of HeapMD is that it doesnot require a formal
specification of correct behavior to be specified in advance; it au-
tomatically mines stable properties of the heap, and uses these as
specifications of correct behavior. This is important as program-
mers rarely specify heap-related invariants. Sometimes, they are
unaware that such invariants exist. HeapMD’s ability to detect mal-
formed, but pointer-correct data structures that violate typically
unwritten specifications of correct behavior differentiates it from
other tools, such as Purify [12] and Valgrind [19], which are in-
capable of detecting such bugs. We have used HeapMD with5
large commercial applications, and have found40 heap-based bugs
(31 of them previously-unknown), including violation of invariants,
memory leaks, and dangling pointers.

As an example, considerFigure 1, which shows a snippet of
buggy code, identified by HeapMD in one of our commercial
benchmarks. In this case, a programmer forgot to update theprev
pointers in a doubly-linked list, thus violating an implicit data-
structure invariant. This resulted in the percentage of heap vertexes
with indegree = 1violating its calibrated range. Note that this in-
variant wasnotknowna priori, yet HeapMD was able to detect the
violation of the invariant.

To summarize, our main contributions are as follows:

1. Modeling heap behavior.We present the design and implemen-
tation of HeapMD. It uses a technique that models evolving heap
behavior in a novel way.

2. Stability of heap properties.We show empirically that in spite
of the evolving nature of the heap, several properties of the heap-
graph remain stable.

3. Application to bug finding. HeapMD uses this observation in
a novel way: it uses the stable properties of the heap-graph in
conjunction with an anomaly detector to find heap-based bugs.

4. Empirical evaluation. We show the effectiveness of HeapMD
using several examples. In particular, HeapMD was able to find
40 bugs in5 large commercial applications (each comprising
several hundred thousand lines of code),31 of which were
previously unknown.

The rest of this paper is organized as follows: InSection 2,
we present a technical overview of HeapMD, including details on
how HeapMD models heap behavior, and uses these models to
detect bugs. InSection 3, we present empirical evidence on the
key observation used by HeapMD—that stable heap metrics exist.

Section 4presents our experience using HeapMD to find bugs. We
discuss related work inSection 5, and conclude inSection 6.

2. Overview of HeapMD
HeapMD employs a two-phase design like several other anomaly
detection systems [11, 17, 25, 29, 31]. The first phase, amodel
constructor, builds a model of expected heap behavior. The second
phase, ananomaly detector(also calledexecution checker), com-
pares the execution behavior of an input program against the con-
structed model, and raises an alarm if this behavior deviates from
the model.

The design space for an anomaly detection-based tool is based
upon how these phases interact. In the first design, the model con-
structor first builds a model of heap behavior offline. This model is
then used for online checking—the execution of an input program
is continuously monitored against the model, and an alarm is raised
if the execution violates the model. HeapMD supports this design;
however, because our current prototype results in a 2-3X slowdown,
it is not suited for monitoring deployed software. Instead this de-
sign is ideal for use during software testing. As we demonstrate in
Section 4, HeapMD is effective in this role, and finds several pre-
viously unknown bugs in large real-world programs.

In the second design, typically meant for post-mortem analysis,
the model is constructed offline, as before. As a program executes,
it generates an execution trace, which is then compared in an offline
fashion against the constructed model, and detects locations in
the execution trace, where the model was violated. HeapMD also
supports this design. Because offline analysis algorithms can use
the information available in the entire trace, they can potentially
reduce the “cascade-effect”, where a single mistake in the analysis
leads to a large number of false positives [15, 16].

The third design, currently not supported by HeapMD, simul-
taneously uses the model constructor and anomaly detector, in an
online fashion. In this approach, employed by DIDUCE [11], the
model is constructed as a program executes on its input, and the
anomaly detector checks that the current state of the program fits
the model.

We now discuss the design and implementation of HeapMD’s
model constructor and the anomaly detector.

2.1 Building Models of Heap Behavior

HeapMD’s model constructor computes a suite of metrics on the
heap-graph at several points during the execution of the program.
The metrics computed by HeapMD are sensitive to the properties of
the heap-graph; consequently, changes to the heap-graph manifest
as changes in the values of metrics. In our current implementation,
the metrics computed by HeapMD’s model constructor are degree-
based. Specifically, we compute the following7 metrics, although
the architecture of the model constructor allows other metrics to be
easily added in the future: Thepercentage of vertexeswith inde-
gree = 0 (namely,roots1), indegree = 1, indegree = 2, outdegree
= 0 (namely,leaves), outdegree = 1, outdegree = 2, andindegree
= outdegree. We chose these metrics because, in our experience,
vertexes of the heap-graph typically have low-indegrees and out-
degrees (only rarely exceeding2). Each of these7 metrics is com-
puted at several program points during the run of the program on
each input from a training set. The model constructor uses values
of metrics gathered over executions of the program on a training
set of inputs, and identifies the normal range of a subset of these
metrics (which are identified as stable). Other choices for metrics
include the size and number of connected and strongly connected

1 A root denotes a data structure that is either referenced only from the stack
and by global variables, or is a memory leak.



components, and value-based metrics, such as the number of dis-
tinct values stored at a heap location over the program lifetime.

Ideally, we would like to compute the metrics each time the
heap-graph changes because of addition or deletion of vertexes,
or addition, deletion or modification of edges. Doing so would
lead to an unacceptable performance penalty because the metrics
have to be recomputed potentially after every program statement
that modifies the heap. Consequently, HeapMD’s model construc-
tor computes metrics periodically at certain pre-defined program
points, calledmetric computation points. In the current implemen-
tation of HeapMD, these are function entry-points. As the program
executes, metrics are computed once for everyfrq metric com-
putation points encountered, wherefrq is a user-specified fre-
quency. For all the experiments reported in this paperfrq was set
to 1/100, 000.

We now discuss the key features of HeapMD’s approach to
model construction.
Evolving nature of the heap.As a program runs, it allocates and
deallocates memory from the heap. Consequently, the number of
objects on the heap, as well as the connectivity of these objects dif-
fers at different program points. Because (1) the metrics computed
by HeapMD are sensitive to the structure of the heap-graph, and
(2) HeapMD computes these metrics periodically at several points
during the program’s execution, theycapture the evolving nature of
the heap-graph.
Sensitivity to the inputs of the program. Different inputs to
the program induce different heap configurations. Consequently,
several heap configurations are possible at a single program point.
Because HeapMD constructs models using metric reports from
runs of the program on inputs drawn from a training set, it models
sensitivity of the program to its inputs. In particular, HeapMD’s
model constructor summarizes heap configurations that can arise at
a particular program point.
Size of the heap.Heap-intensive programs create a large number
of objects on the heap. Given that several heap configurations can
arise at a program point based upon the input to the program, an
approach that stores all the configurations at each program point
will not scale to large, heap-intensive programs.

Because HeapMD does not store the exact set of configurations
of the heap-graph that can arise at each program-point, but instead
computes metrics which are sensitive to the heap-graph’s proper-
ties, it is able to scale to large programs. This approach also ensures
that the anomaly detector is simple: it just compares the observed
value of a metric against calibrated values, which constitute the
model.
Sensitivity of the models.The model constructed by HeapMD is
an approximation of the set of heap configurations that arises at
a program point. The use of metrics only captures certain prop-
erties of the heap-graph, and hence results in a loss of informa-
tion because we cannot reconstruct the heap-graph uniquely using
the metrics observed. As a result, HeapMD’s anomaly detector can
produce both false-negatives (i.e., it can miss real bugs) and false-
positives (i.e., it can identify cases which are not really bugs).

With program analysis tools that find bugs, false-positives are
sometimes a bigger problem than false-negatives, because a large
number of false-positives overwhelms the user of the tool. The
model constructed by HeapMD consolidates several metric reports,
and identifies the normal range of “stable” metrics. While HeapMD
can miss bugs because a buggy execution can still produce metric
values within the normal range, we have empirically observed that
violation of the normal range of stable metrics correlate closely to
real bugs, thus HeapMD produces few false-positives.

Implementation

HeapMD works onx86-binaries.Figure 2shows the architecture of
HeapMD; the model constructor is shown in the upper half of the
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Figure 2. Overall Architecture of HeapMD, showing the Model
Constructor and the Execution Checker.

figure. There are three main components: a binary instrumenter, an
execution logger, and a metric summarizer; we describe each of
these in detail below.
The binary instrumenter processesinput.exe and adds instru-
mentation that exposes the addition, modification and removal of
objects in the heap to the execution logger. It instruments allocator
and deallocator functions, such asmalloc , realloc andfree ,
to record the addresses and the sizes of objects allocated on the
heap. In addition, it also instruments instructions which write to ob-
jects on the heap. Each write instruction is instrumented to record
the address of the object being written to, and the value written to
that address. The instrumenter is built using Vulcan [7], a binary
transformation tool.
The execution loggerruns the instrumented fileoutput.exe
on inputs from a training set. It maintains an image of the heap-
graph, and updates this image whenoutput.exe allocates, frees,
or writes to an object in the heap-graph. As mentioned earlier, it
computes metrics on the heap-graph at a user-specified frequency
frq , which is specified using theSettings file.

It is also possible to compute the metrics directly on the heap,
which would obviate the need to maintain an image of the heap-
graph within the execution logger. We chose the latter approach
because traversing the heap periodically to compute metrics can re-
sult in poor cache-locality translating to performance penalty. By
maintaining an image of the heap-graph that only stores connectiv-
ity information between objects on the heap, HeapMD can compute
the required metrics while still preserving cache-locality.

The heap-graph can be constructed at several levels of granu-
larity. For instance, considerFigure 3(A), which shows three nodes
of a linked-list. Each node of the linked-list contains two fields: a
data member, and a pointer to the next node. If the heap-graph is
constructed at the granularity of individual fields, as shown by the
dotted lines, it has six vertexes and two edges. On the other hand, if
it is constructed at the granularity of objects, as shown by the bold
lines, it has three vertexes and two edges.

Constructing the heap-graph at the granularity of fields requires
access to type-information, and captures fine-grained information,
such as the connectivity of individual fields. However, the down-
side of this is that the metrics computed on such a graph will
be sensitive to the layout of fields within an object. For instance,
consider the heap-graph (constructed at field-granularity) of ak-
node linked-list. With a field layout similar toFigure 3(A), only
two vertexes haveindegree = outdegree(equal to0), namely, the
vertexes corresponding to the data-field of the left-most node, and
the next-node-field of the right-most node of the linked-list. How-
ever, with a field layout similar toFigure 3(B), all but two vertexes
haveindegree = outdegree, namely the vertexes corresponding to
the next-node-fields of the left-most node and the right-most node
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Figure 3. An example showing the different levels of granularity
at which the heap-graph can be constructed. Dotted lines show the
heap-graph constructed at field-granularity, while bold lines show
the heap-graph constructed at object-granularity.

of the linked list. With this layout, all the vertexes corresponding
to the data-fields haveindegree = outdegree =0, and all but two
of the next-node-fields of the linked-list haveindegree = outdegree
= 1. On the other hand, for this example, all metrics are the same
if heap-graphs are constructed at object-granularity. In the current
implementation of HeapMD, we do not use type information (note
that in some cases, e.g., stripped binaries, type information may not
be available) and construct the heap-graph at object granularity.
The metric summarizer consolidates metric reports obtained from
individual executions ofoutput.exe on inputs from a training
set. Metrics can be classified into three categories based upon their
stability across runs of a program:

1. A metric may remain relatively constant during the execution
of the program for each input from the training set, perhaps
acquiring a different constant value in each run. The range
of such aglobally stable metriccomputed across the different
training inputs can be used as an indicator of correct behavior,
and executions which result in the metric going out of range can
be marked as potentially buggy.

2. As observed by several researchers, programs execute in phases [6,
26, 27, 28], and different phases of the program exhibit different
heap behavior. As the program phase changes, the heap-graph,
and consequently some metrics associated with the heap-graph
change to reflect the new heap behavior of the program. Alo-
cally stable metricacquires different values across phases of
the program, but remains relatively constant within a program
phase. Note that globally stable metrics are also locally stable.

3. An unstable metricis neither globally stable nor locally stable.

The key observation used by HeapMD is thatin spite of the
phase behavior of the program, several globally stable metrics
exist. In our experience, metrics change rapidly during program
startup and shutdown. We observed that during the other phases
of the program, while some metrics change to reflect the phase
behavior of the program, there are some metrics which remain
relatively stable. InSection 3, we provide empirical evidence that
globally stable metrics exist.

HeapMD uses this observation—in our current implementation,
the summarizer identifies metrics which remain globally stable
when the startup and shutdown of the program are ignored. The
number of metric computation points to ignore for startup and shut-
down are currently specified in the settings file: in our current im-
plementation, we ignore the first and last 10% of metric computa-
tion points. We have implemented a GUI that plots heap metrics
while the program executes that makes it easy to identify these val-
ues. Because a globally stable metric does not change, or changes
slowly, its average rate of change will be close to zero. The summa-
rizer compares the rate of change of each metric against a thresh-
old value, and identifies slowly changing metrics as globally sta-
ble. The summarized metric report, which serves as a model for
the anomaly detector, contains the maximum and minimum values
observed for these metrics over the runs of the program on the train-

ing input set. In the future, we plan to extend the implementation
of HeapMD to also include locally stable metrics in the model.

As we show inSection 3, certain metrics of the heap-graph
remain stable when the program is executed on several inputs.
Further, we demonstrate that thesamemetrics remain stable,even
across different development versions of the program, thus showing
that these metrics are resilient to program evolution.

2.2 Checking Execution Traces to Detect Bugs

The second phase of HeapMD, the anomaly detector, uses the
model constructed by the first phase to monitor executions of the
program, and identify anomalies, which are potentially because of
heap-related bugs. The lower half ofFigure 2shows the architec-
ture of HeapMD’s anomaly detector. The anomaly detector can
be used to find bugs either in the same version of the program
(input.exe ) that was used to calibrate metrics, or in another
version of the program (input * .exe ) The anomaly detector an-
alyzes the observed heap metrics and identifies deviations from the
model. We have also implemented a GUI that plots heap metrics
while the program executes.

The anomaly detector uses the summarized metric report, which
serves as the model, as a basis for comparing heap metrics obtained
from executions of the program on other inputs. The summarized
metric report contains ranges of globally stable metrics, which are
the minimum and maximum values these metrics attained across
all the training inputs. The anomaly detector verifies that the values
of these metrics obtained in the current execution are within the
permitted range.

As described earlier, HeapMD operates by detecting heap-graph
degree metrics that are globally stable across several inputs and
establishes a valid range for these metrics. If these metrics (i.e.,
those that are identified as globally stable during the training phase)
violate their valid range on other inputs for the same/different
program version, HeapMD reports these as bugs. HeapMD does not
look for metric stability in this phase. In particular, it is permissible
for a metric that was stable during training to become unstable
during the checking phase,provided that it does not violate its
valid range. To assist with debugging, HeapMD enables call-stack
logging when a metric that was identified as stable during training
approaches its calibrated maximum value with a positive slope, or
when it approaches its minimum value with a negative slope. This
call-stack logging into a circular buffer continues until either the
metric moves away from the minimum/maximum calibrated value,
or it crosses either extreme value, thus triggering a bug report.
This design permits reporting call-stack context information for the
program before, during, and after the metric crosses its calibrated
minimum/maximum value. As discussed inSection 4, this enables
easy identification of the root-cause of a large class of heap bugs.

3. Existence of Globally Stable Metrics
In this section, we present empirical evidence that globally stable
metrics exist. To formally define our notion of stability, we begin
with a small example,vpr , from the SPEC benchmark suite.

Figure 4(A) and (B) denote the distribution of two metrics,
namely, the percentage of vertexes withindegree = outdegreeand
outdegree =1, on the test and train input sets (Input1 and
Input2 , respectively, in the figure). The y-axis denotes the per-
centage of vertexes withindegree = outdegreeor outdegree =1,
and the x-axis denotes progress of execution. Each data point on
the graph is obtained at a metric computation point;vpr executes
longer onInput2 , thusFigure 4(B) has more metric computation
points thanFigure 4(A).

Note that both metrics change rapidly initially, corresponding to
startup behavior, but stabilize as execution proceeds. ForInput1 ,
both metrics acquire relatively stable values after3 metric computa-



(A) Metrics for vpr on Input1
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Figure 4. Metric reports for two degree-based metrics forvpr on
two inputs.

tion points, while forInput2 , they do so after25 metric computa-
tion points.Figure 5(A) and (B) denote the fluctuation of metrics as
execution proceeds. The y-axis denotes the percentage change be-
tween consecutive values of the metric. That is, if a metric changes
from y1 to y2 between metric computation pointst andt + 1, we
plot the value(y2−y1) × 100

y1
at t + 1. The x-axis denotes metric

computation points; inFigure 5(A) and (B) we ignore the first3,
and first25 metric computation points, respectively. For the experi-
ments reported in this section and the next, we ignore metrics gath-
ered during the first10% and last10% of the program’s execution,
attributing these to startup and shutdown effects, respectively.

Informally, for a globally stable metric, the metric fluctuation
plot will be relatively “flat”, and close to0. For a locally stable
metric, the fluctuation plot will also be “flat” with a value close to
0, except for occasional “spikes”, which denote sharp changes in
the value of the metric. Formally, the average change of a globally
stable metric will be close to0, and the standard deviation of the
change will also be close to0. The average change of a locally
stable metric will also be close to0, but the standard deviation
of the change will be farther away from0. An unstable metric
will either have a large non-zero value for average change, or will
have a large standard deviation. By using a threshold value for
the average change, and the standard deviation of change, we can
identify globally stable metrics.

Figure 6shows the average values and standard deviations of
the distributions inFigure 5(A) and (B). The average changes
in the percentage of vertexes withoutdegree =1 are −0.10%
and−0.02% for Input1 and Input2 , respectively, while the
standard deviations of change are1.72 and1.79 for Input1 and
Input2 , respectively. For this paper, we set thethreshold for
average change at±1% and standard deviation of change at5. As
a resultoutdegree =1 is globally stable. The percentage of vertexes
with indegree = outdegreeis not globally stable. ForInput1 the
average change is2.47%, and the standard deviation of change is

(A) Metric fluctuation for vpr on Input1
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(B) Metric Fluctuation for vpr on Input2
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Figure 5. Fluctuation of the metrics inFigure 4(A) and (B).

Indegree = Outdegree Input1 Input2
Average 2.47% −0.18%

Standard Deviation 24.80 5.27

Outdegree = 1 Input1 Input2
Average −0.10% −0.02%

Standard Deviation 1.72 1.79

Figure 6. Average and standard deviation for the distributions in
Figure 5.

24.80, both of which are above the threshold. For a globally stable
metric, we require the average change and standard deviation of
change to be within the above threshold for at least40% of the
inputs in the training set.

With the definition of a globally stable metric in hand, we now
discuss two sets of experiments we performed to show that globally
stable metrics exist in real-world programs.

In the first set of experiments, we ran13 benchmarks, including
5 large, commercial programs (stable, released versions), internal
to Microsoft, on several inputs. We ran each of8 SPEC 2000 bench-
marks on their default inputs (namely,test, train, andref inputs),
and each of the5 real-world programs on50 regression test inputs.
We also generated additional inputs for the SPEC benchmarks for
which we could do so easily. As a result, gzip, gcc, and parser were
run on a total of100 inputs. While the results for some of bench-
marks that were run with a small set of inputs are not statistically
compelling, they are in agreement with the results obtained for the
other benchmarks that were tested with a larger set of inputs.

The results of this set of experiments appears inFigure 7(A).
The third column shows the number of globally stable metrics
found for each benchmark. Note that we were able to find several
stable metrics in some cases. The average rate of change, the
standard deviation of change, and the maximum and minimum
values across all training inputs, of an example stable metric are
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vortex 5 1 Indeg=1 −0.8 3 37.8 69.5
gzip 100 2 Leaves 0 1.7 82.9 90.2

parser 100 3 In=Out 0.3 4.3 14.2 17.7
gcc 100 2 Outdeg=1 −1 5 8.7 37.1

Multimedia 50 2 In=Out 0.1 2.6 6.7 9.7
Interactive
web-app. 50 2 Indeg=1 −0.4 3.1 43.5 55.1
PC Game

(simulation) 50 2 Outdeg=1 0.1 1.4 17.9 28.8
PC Game
(action) 50 1 Indeg=1 0.2 2.3 13.2 18.5

Productivity 50 2 Leaves 0.1 1.1 27.9 41.1
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Multimedia. 10 5 2 In=Out 0.2 2.8 6.7 9.7
Interactive
web-app. 10 5 2 Indeg=1 −0.4 3.1 43.5 55.1
PC Game

(simulation) 10 5 2 Outdeg=1 0.1 1.5 17.9 28.8
PC Game
(action) 10 5 1 Indeg=1 0.4 3.7 13.2 19.7

Productivity 10 5 2 Leaves 0.1 1.2 27.9 41.1

Figure 7. Identifying globally stable metrics. The ‘Avg.’ and
‘Std.dev’ column show the average and the standard deviation of
the rate of change of the metrics. The ‘Min.’ and ‘Max.’ columns
show the minimum and maximum observed value for the example
stable metric across all training inputs (omitting startup and shut-
down). Part (A) shows globally stable metrics identified by running
a benchmark on several inputs. Part (B) shows globally stable met-
rics identified by running different versions of a benchmark against
several inputs. Note that thesamemetrics were identified as stable
even across different versions of each benchmark.

also shown. This set of experiments validates our hypothesis that
globally stable metrics exist.

In the second set of experiments, we considered5 successive
development versions of each of the5 real-world benchmarks. In
each case the first of these versions, which was used to report the
results inFigure 7(A), was a major revision for that benchmark.
For each benchmark, we ran all5 versions on thesameset of10
regression inputs. These results appear inFigure 7(B). Note that
we were again able to identify globally stable metrics. Further, the
stable metrics identified were the sameas inFigure 7(A). Moreover,
the maximum and minimum values for these metrics were also the
same, with just one exception (the maximum observed value for
percentage of vertexes withindegree = 1for PC Game/action). This
leads us to extend our hypothesis, and conclude thatglobally stable
metrics even exist across different versions of a program.

Our experiments also showed that the number of globally sta-
ble metrics was fairly resilient to our choice of threshold values,
namely,±1% for average change and5 for standard deviation
of change. Increasing these thresholds moderately does not result
in additional metrics being classified as globally-stable. On the
other hand, decreasing these thresholds results in fewer metrics be-
ing classified as globally-stable. With fewer globally-stable met-

rics, HeapMD will report fewer bugs. It also means that HeapMD
will report fewer false-positives. Thus the choice of thresholds
must trade-off improved bug-finding ability with increased false-
positives. As we show empirically inSection 4, with the current
choice of thresholds, false-positives are not a major problem for
HeapMD, thus indicating that these thresholds provide a good
tradeoff between bug-finding and false-positives.

3.1 Discussion

HeapMD computes metrics on the entire heap rather than on in-
dividual data structures. On the positive side, this likely accounts
for HeapMD’s ability to identify stable heap metrics on every test
benchmark. While data structure invariants are often temporarily
violated within a method, this does not occur frequently enough
across methods to affect global heap metrics. The downside of this
is that it diminishes HeapMD’s ability to detect bugs, because the
bugs need to affect the stability of a global heap metric. However,
as the experiments in the next section show, programs include sev-
eral “systemic” bugs, that are repeated often enough to affect global
heap metrics. An apt analogy is that HeapMD can never detect a
needle in a haystack but if the haystack accumulates a large num-
ber of such needles, HeapMD will eventually detect this. Of course,
metrics with large stable ranges (e.g., percentage of heap vertexes
with outdegree = 1for vpr ) are likely to be less useful as anomaly
detectors than metrics with a narrower range.

4. Bug-finding using HeapMD
This section reports our experience with HeapMD. First, we de-
scribe the methodology used, and then evaluate HeapMD’s abil-
ity to find bugs. Finally, we conclude with a brief discussion of
HeapMD’s current limitations.

4.1 Overview and Methodology

We classify bugs into different categories according to HeapMD’s
capability to detect them. Bugs that have no appreciable effect on
heap-graph degree metrics are calledinvisible. Bugs that affect
heap-graph degree metrics, yet remain within their calibratednor-
mal range are calledwell disguised. HeapMD cannot detect either
of these types of bugs (seeSection 4.2for a discussion of some of
these types of bugs). Bugs that cause a heap-graph degree metric to
remain stable but take an extreme value are calledpoorly disguised
bugs. HeapMD can detect these since we always log and check the
call-stack when a degree metric transitions from startup to stable
value for inputs that cause the metric to attain its extreme values.
Section 4.3briefly describes the only one such bug we found. Bugs
that cause normally unstable heap-graph degree metrics to attain
a stable value are calledpathologicalbugs. While HeapMD can
detect these by reporting unexpected metric stability, we have not
found any examples of this type of bug so far. Finally, bugs that
cause a stable heap-graph degree metric to attain a value outside its
normal range are calledheap anomalybugs. HeapMD is designed
to target these types of bugs (SeeSection 4.2andSection 4.3). Fig-
ure 8andFigure 9include a further classification ofheap anomaly
bugs based on the bugs that HeapMD has detected to date.

For HeapMD to be effective, it needs to construct an accurate
heap model. Unfortunately, we can never hope for the program ver-
sion used to calibrate HeapMD, and identify stable degree metrics
and their associatednormal range to be bug-free. To compensate
for this, we do two things. First, we use stable versions of the pro-
grams for model construction, on which static analysis tools, such
as Prefix [2], have been run, and many of the bugs reported have
been fixed. Second, we require a large input set for accurate cali-
bration. The underlying idea is that with a large input test set, there
will be several inputs where a particular bug does not manifest. All
our experiments in this section used a minimum of25 different in-
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Figure 8. Data structure manipulation bugs

puts for calibration and testing. For a metric to be considered glob-
ally stable, we require it to be stable for at least40% of training
inputs. This number (40%) was an arbitrary choice; in particular,
other values are also possible, as long as the metric is stable for a
reasonable number of training inputs (usually about3, in our ex-
perience). For the remaining training inputs, we do not require the
metric to be stable; we only require that it remain within its cali-
brated range as determined by the stable inputs. If it doesn’t, then
this training input is treated as buggy. In all cases, we were able
to identify a minimum of10 inputs (more in some cases) where
the same set of heap-graph degree metrics were consistently stable,
and these were used to construct the HeapMD heap model. These
10 inputs were used to report data for the commercial applications
in Figure 7(A). Because we did not observe anypathologicalbugs
in our experiments, this metric stability is unlikely to arise as a re-
sult of a program bug.

Figure 10shows an example of how HeapMD detects bugs. The
horizontal lines depict the maximum and minimum values of the
percentage of vertexes withindegree = 1, which was observed to
be a stable metric in the training phase with the PC Game/Action
program. As the figure shows, the percentage of vertexes vio-
lates the calibrated values, thus indicating a potential bug—in fact,
this violation corresponds to a real bug that we found in the PC
Game/Action program. This bug was because of violation of a
data-structure invariant, the kind shown inFigure 8/3(B). Newly-
inserted tree nodes (from a specific call-site that was only exercised
on the buggy input) were missing parent pointers from their chil-
dren. This caused these nodes to haveindegree = 1and increased

AnomalousNormal

Affected metrics are % leaves and % vertexes with indeg. = outdeg.
Normal Anomalous

Affected metrics are % vertexes with outdeg. = 1, outdeg. = 2,
and indeg. = outdeg.

Figure 9. Bugs that indirectly affect heap-graph degree metrics
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Figure 10. Figure showing percentage of vertexes withindegree =
1 violating the calibrated values for PC Game/Action.

the percentage of nodes in the heap with this property, eventually
producing a violation in the stable range for this metric.

4.2 Validating HeapMD

Before testing HeapMD’s ability to find new bugs, we ran ex-
periments to see whether it could detect memory leaks that had
previously been found in these programs using SWAT [3]2. Be-
cause SWAT was run on those programs for a long period (hours
to months) to detect the leaks reported in [3], it was not feasible
to run identical scenarios. Instead, we used information from the
leaks detected by SWAT to synthesize a set of inputs that would
cause the programs to exhibit some, but not all, of the same leaks.
Both SWAT and HeapMD were individually, and separately, run on
these synthesized inputs, and the results are reported inTable 1.
Note that in addition to the memory leaks that HeapMD found, it
also reported additional bugs that were not memory leak-related,
and those are reported separately inSection 4.3.

The results are encouraging. While SWAT is clearly more effec-
tive at detecting memory leaks, as it should be, being specially de-
signed for this purpose, HeapMD is able to find a subset of the leaks
reported by SWAT. All the memory leaks detected by HeapMD
fell into the category of programming typo bugs listed inFigure 8.
The code fragment inFigure 11shows a sample memory leak that
HeapMD was able to detect. The call-stack reported along with the

2 One of the programs used in that study is a third-party application that we
no longer have access to.
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Multimedia 4 0 2 0
Interactive
web-app. 9 1 4 0
PC Game

(simulation) 4 1 3 0

Table 1. Comparison of memory leaks found by SWAT and
HeapMD.
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Total 11 6 17 6 0

Table 2. Summary of bugs found by HeapMD.

leak included the function that contained this code fragment. Pro-
gramming typo-based bugs, such as the one inFigure 11, are also
reminiscent of copy-paste bugs, where a programmer copies a frag-
ment of code, but forgets to change variables appropriately, thus
resulting in bugs; recent studies have shown several copy-paste-
related errors in popular software [17].

The memory leaks that HeapMD was unable to detect fell into
two broad categories—invisibleandwell-disguisedbugs. The first
included cases where reachable data structures were leaked. SWAT
was able to identify these as it tracks staleness and not reacha-
bility. Other leak tools such as Purify would also be unable to
identify these leaks. The second included scenarios where a very
small number of data objects were leaked. This was not sufficient
to induce anomalous behavior in the heap-graph degree metrics
HeapMD monitors. On the other hand SWAT reports a couple of
false positive that were caused by cached objects that are reachable
but not accessed (stale). HeapMD reported no false positives as it
doesn’t track staleness.

In addition to the above study, we also validated HeapMD by
using it to successfully identify artificially-injected bugs in several
SPEC 2000 benchmarks.

4.3 Finding New Bugs

We used HeapMD on the inputs not used for model construction
to detect bugs in the versions of the programs used for model con-
struction and all test inputs for the4 revised versions of the pro-
grams. The bugs we found are broadly categorized inFigure 8and
Figure 9and reported on inTable 2. With the exception of the9
bugs found by HeapMD reported inTable 1, the remaining bugs
reported inTable 2were previously unknown.Figure 8illustrates
bugs we found that manipulate data structures and directly affect
heap-graph degree metrics. Programming typos typically seem to
arise due to omission of a line of code needed to implement a data
structure insertion or deletion operation. They often manifest as

if (pTableDesc[j].pPropDesc 6= NULL) {
// Typo below: ’j’ should be used in place of ’i’
pPropDescList->next = pTableDesc[i].pPropDesc;
// Leaks object pointed to by pPropDesc[j].pPropDesc
pTableDesc[j].pPropDesc = NULL;

}

Figure 11. Code-fragment of a bug found by HeapMD—this frag-
ment has a programming typo, thus resulting in a memory leak.
This bug was detected when the percentage of vertexes withinde-
gree = 1violated its calibrated range.

// Fragment of code manipulating a circular list
if (pHeadColList->next 6= NULL) {

pNewHead = pHeadColList->next;
ColListFree(pHeadColList);
pHeadColList = pNewHead

// The tail of the list now has a dangling pointer
}

Figure 12. Code-fragment found by HeapMD, that manipulates
shared state erroneously. This bug was detected when the percent-
age of vertexes withindegree = 2violated its calibrated range.

memory leaks and rarely cause immediate program crashes.Fig-
ure 11, discussed earlier, includes a code-fragment that illustrates
this type of bug. Tools that detect memory leaks, such as SWAT [3],
Purify [12], or Valgrind [19], should be able to detect these. How-
ever, HeapMD is often able to pinpoint the function where the bug
occurs, because it logs the call-stack at the point where a metric
violates its calibrated range.

Shared-state-manipulation errors often appear to arise when a
programmer is unaware a particular object that is being manipu-
lated is being shared. These tend to manifest as dangling pointer
errors, and only occasionally cause crashes. When they do cause
crashes, these tend to occur much after the bug occurred. Memory
checkers, such as Purify and Valgrind, should be able to detect these
bugs as well. Again, HeapMD is often able to pinpoint the function
responsible for the bug.Figure 12contains a code fragment for a
bug of this type that HeapMD detected.

Data structure invariant errors often occur when a program-
mer is unaware of a data structure invariant. If the newly allocated
memory is zero-initialized then these bugs typically never result in
crashes, and only occasionally produce erroneous results. HeapMD
can detect these bugs; we are not aware of any other scalable pro-
gram analysis tool that can detect this type of bug without being
given the data structure invarianta priori. In addition, HeapMD
is often able to pinpoint the function responsible.Figure 1shows
an example of a bug of this type that HeapMD identified. Another
data structure invariant bug involved a mistake in an oct-tree con-
struction routine that produced an oct-DAG instead. This was an
example of the onlypoorly disguisedbug that we observed as it
occurred during program startup and caused the percentage of ver-
texes withindegree = 1to take a stable minimum extreme value for
the rest of the program.

Finally, Figure 9shows examples of bugs that indirectly affect
heap-graph degree metrics only as a side-effect of a programming
logic error. Examples of such bugs that we found include a local-
ization bug that produced atypical graphs, which were represented
as adjacency lists. Another “performance bug” was caused by a
poorly chosen hash-function that caused significant collisions for
a few inputs. A third bug resulted in many tree vertexes having a
single child rather than two children (which was the normal case).
In these cases, HeapMD was able to detect the bugs, but was not
able to pinpoint the root-cause of the bug (with the exception of the



hash-function “performance bug”). Consequently, debugging these
types of errors remains hard.

For most bugs of the type listed inFigure 8, we were able to
implement a fix (which was simple, once the function responsible
was identified on the call-stack log). In all these cases, we verified
that the fix did indeed cause the affected metric to remain stable on
the previously buggy input.

4.4 Shortcomings

While we are encouraged by HeapMD’s ability to find bugs, our
experience with the tool drew our attention to some limitations,
which we intend to address in future work:

1. HeapMD is effective at providing debugging information for
errors that directly affect heap-graph degree metrics (Figure 8)
as the functions responsible show up on the logged call-stacks.
However, it provides poorer debugging assistance for errors that
only indirectly affect heap-graph degree metrics(Figure 9).

2. HeapMD currently works onx86-binaries. While we did have
access to symbol-table information, the current version of
HeapMD does not use type information in its analysis. Type in-
formation can be used to extract fine-grained characteristics of
the heap-graph. For instance, HeapMD could restrict attention
to data members of a particular type, and only compute metrics
over these data members. In addition, since HeapMD does not
capture invariants about a particular object or set of objects on
the heap, it cannot detect fine-grained heap-manipulation errors.
For instance, suppose that an objectu points-to an objectv on
all the inputs from the training set. While this is an invariant
which can be used for bug detection, HeapMD does not capture
this fact, and hence will not detect violation of this invariant.

3. HeapMD currently exclusively uses a small set of heap-graph
degree metrics to find bugs. We are expanding these to a broader
set of heap stability metrics, such as locally stable metrics, to
enable HeapMD to find more bugs.

However, despite these limitations, HeapMD is an effective bug
finder. As we demonstrated, HeapMD finds several previously-
unknown bugs in large, real-world programs.

4.5 Discussion

Each of the commercial applications that we studied in this pa-
per was heap-intensive, dynamically allocating several hundred
megabytes. In addition, the heaps for all of these applications are
heterogeneous in the types of data structures allocated. In no case
was the heap dominated by a single large data structure; yet we
were able to use HeapMD to detect anomalies in each of these ap-
plications that corresponded to real bugs. We believe there are two
reasons for this. First, the errors we detected were “systemic”, oc-
curring many times. Second, these applications were long-running,
allowing these errors to eventually affect the metrics sufficiently to
violate their calibrated stable range. In addition, we attribute our
lack of false positives to using global heap metrics rather than per-
data-structure metrics. We also do not report a bug if a metric that
was stable in training becomes unstable. A bug is reported only if
the metric violates its calibrated stable range (as determined during
the model construction phase). This does come at a cost—we likely
fail to detect many bugs, yet we are still successful at finding sev-
eral previously-unknown bugs in commercial applications. While
we focus on describing fairly simple malformed data structure bugs
in the paper for ease of explanation, HeapMD has detected several
bugs due to invariant violations in more complex data structures
such as B-Trees, and customized trees and graphs. The bugs re-
ported were detected across different versions of a program, as well
as across different inputs to the same version of the program.

5. Related Work
Prior research related to the design and implementation of HeapMD
falls under several categories, as discussed below.
Anomaly detection-based tools.Several tools use anomaly detec-
tion for bug-finding and detecting security violations [11, 25, 29,
31]. These tools identify properties that a correct execution of the
program must satisfy. An execution that violates these properties is
anomalous, and raises an alarm. For instance, DIDUCE [11] uses
online analysis to discover simple invariants, such as the values
of program variables, in long-running programs. An error is re-
ported when an execution of the program violates an invariant. A
more sophisticated form of dynamic invariant discovery appears in
Daikon [8], which discovers invariants such as equalities, inequali-
ties and affine relationships between program variables. It can also
discover invariants over complex heap-data structures such as ar-
rays, linked lists and queues. While these tools discover invariants
over program variables, AccMon [31] discovers program counter-
based invariants. It uses the observation that each memory location
is typically touched by a small set of instructions, and that this set
of instructions is an invariant per memory location.

The main difference between HeapMD and the tools dis-
cussed above is the kind of invariants that it discovers. In par-
ticular, HeapMD leverages the observation that several prop-
erties of the heap-graph—degree-based metrics in our current
implementation—remain within a stable range. It identifies sta-
ble metrics and their normal ranges during a training phase, and
uses these as indicators of correct heap behavior. To our knowl-
edge, HeapMD is the first to exploit the graph structure of the heap
to define invariants.
Other dynamic analysis tools.HeapMD adds instrumentation to
monitor each instruction that modifies the heap-graph. In contrast,
sampling infrastructures [1, 13] periodically switch between code
that contains instrumentation and code that does not. The CBI
project [18] uses such a sampling infrastructure to gather informa-
tion over multiple runs of a program in a statistically fair fashion. It
uses information gathered over both good and bad runs of the pro-
gram to identify sources of bugs. An interesting avenue for research
will be to investigate whether anomaly detection techniques, such
as those employed by HeapMD, can be used in conjunction with
CBI, for instance, to label runs of a program as good or bad.

SWAT [3] is a memory leak detection tool that also uses
sampling—it samples code paths at a rate inversely proportional
to their execution frequency. Thus, rarely executed code paths
are sampled at a greater frequency than frequency executed ones.
SWAT monitors heap accesses and marks objects not accessed for
a “long” time as leaked.

Valgrind [19] and Purify [12] are two popular bug detection
tools that can detect a variety of memory errors such as leaks,
dangling pointers and double frees. While Valgrind and Purify are
ideal for detecting heap errors that result in a program crash, they
are ill-suited for detecting malformed structures that arise because
of logic errors, and do not cause program crashes. HeapMD can
detect such malformed, but pointer-correct data structures because
it uses anomaly detection—seeSection 4.3for examples.
Shape Analysis.Shape analysis techniques (e.g. [9, 10, 24, 20, 30])
aim to find possible “shapes” of the heap-graph that can arise at
different program points. Most existing shape analysis algorithms
employ precise, but heavyweight analyses to answer queries about
the shape of the heap-graph, as a result of which these analyses
rarely scale to real-world programs. In spite of recent advances,
shape analysis algorithms remain expensive, and only apply to
limited classes of data structures, and properties to be checked on
them. In addition, preparing a program for shape analysis often
requires manual effort (as in [24]).



While static shape analysis algorithms are conservative, and
can provide soundness guarantees, this can often be a two-edged
sword, and may result in a large number of false positives. In
contrast, HeapMD is a runtime analysis that is not limited by
the class of data structures used, and as we have shown, scales
to large programs. While HeapMD cannot provide soundness or
completeness guarantees, we have empirically observed that metric
violations typically correspond to real bugs.
Empirical studies on heap behavior.Hirzel et al. [14] study con-
nectivity properties of the heap-graph. Their focus is on correlating
connectivity properties of heap objects with their lifetimes, and use
this information to improve the efficiency of garbage collection.
Demsky and Rinard [4] propose a runtime analysis to understand
heap behavior of object oriented programs by studying therolesof
heap objects. The role of an object is the conceptual state it is in,
based upon the history of method invocations on it, and its con-
nectivity to other objects. Their analysis tracks role changes of an
object during program execution. This information can potentially
be used for program understanding.

6. Conclusions
We have presented the design, implementation, and evaluation of
HeapMD. It uses runtime analysis to extract models of heap behav-
ior, and uses this information for bug finding via anomaly detection.
We have used HeapMD to find several previously unknown bugs in
large, real-world programs. Heap-related information extracted by
HeapMD can potentially be used for other applications as well.
Program evolution. HeapMD’s ability to identify stable charac-
teristics of the heap-graph is akin to Daikon’s ability to discover
invariants on program variables. This information can potentially
be used to aid software evolution by tracking important changes in
the heap behavior of different versions of software.
Program understanding. Understanding memory access patterns
of legacy software, especially those for which source code is un-
available, can help recover information such as control- and data-
dependence. This in turn improves the precision of program under-
standing algorithms, such as static slicing.
Optimization. It can open the door to a variety of optimization
opportunities, for instance, in the placement of data structures to
improve cache-locality [23], or improving the efficiency of garbage
collectors [14].
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