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Abstract pNewAsset = Initialize(pAssetParams);
We present the design, implementation, and evaluation of HeapMD, if (pAssetList->next # NULL) {
a dynamic analysis tool that finds heap-based bugs using anomaly PNewAsset->next = pAssetlist->next;
detection. HeapMD is based upon the observation that, in spite of ) DSseiListnext dgutf’luﬁ‘r’lvlfescisﬁ}’st and ‘prev’
the evolving nature of the heap, sgveyal of its propertigs rgmain /I pointers are not correctly updated here.
stable. HeapMD uses this observation in a novel way: periodically, }

during the execution of the program, it computes a suite of met-
rics which are sensitive to the state of the heap. These metrics trac
heap behavior, and the stability of the heap reflects quantitatively in
the values of these metrics. The “normal” ranges of stable metrics,
obtained by running a program on multiple inputs, are then treated
as indicators of correct behaviour, and are used in conjunction with

an anomaly detector to find heap-based bugs. Using HeapMD, wepgs usinganomaly detectionHeapMD works by computing a

kFigure 1. Code-fragment, found by HeapMD, that fails to update
prev pointers in a doubly linked list, which results in the percent-
age of vertexes witindegree = lviolating its calibrated range.

were able to findt0 heap-based bt_Jgs_l of them previously un- suite of metrics to summarize tieap-graphwhich is a directed
known, in5 large, commercial applications. graph with heap-allocated objects as vertexes. An edge is drawn
Categories and Subject DescriptorsD.3.4 [Programming Lan- from vertexu to vertexw if the object corresponding t@ points to
guage$: Processors-BebuggersD.2.4 [Software Engineering: the object corresponding t0

Testing and DebuggingBebugging aids As a program executes, it allocates, frees and manipulates data
General Terms: Experimentation, Measurement, Reliability structures on the heap, which as a result continuously evolves

during the lifetime of the progranThe key observation used by
HeapMD is that in spite of the evolving nature of the heap, several
. properties of the heap-graph remain relatively stablée demon-

1. Introduction strate this observation empirically on several SPEC benchmarks

Modern software allocates and manages a vast amount of infor-&nd commercial applications. In particular, we focus on degree-
mation on the heap. Code that manipulates these data-structure®ased metrics of the heap-graph, such as the percentage of heap
must be bug-free to avoid errors such as dangling pointers, mem-Vertexes witfindegree = outdegregercentage deavesandroots

ory leaks B, 12, 19], and inconsistent data structures.[Un- which are sensitive to the structure of the heap-graph. We show that
fortunately, this is not the case, and heap-based bugs are notorifor & given program, several of thgse metrics remain stable as the
ously hard to detect and debug. The effect of corrupted heap data-N€ap evolves. In fact, we push this observation further, and show
structures is often delayed, and may be apparent only after Sig_thatstable metrics exist even across different development versions
nificant damage has been done to the heap. In some cases, coff @ program _ o _
ruption may not be apparent: for example, a dangling pointer bug '_I'he intuition behind our (_)bservatlon is that programmers im-
does not crash a program unless the pointer in question is dereferPliCitly maintain several invariants over heap properties to manage
enced, and even then may not cause a crash or cause unexpectdfl® complexity of the heap, which, unlike code, has no tangible,
results P1, 27]. Consequently, testing may not reveal bugs in code Programmer-visible representation. Many of these invariants arise

that manipulates heap-allocated data, and production systems mayS & result of the types of data structures used by a program. The
ship with them. stability of the heap-graph is reflected quantitatively in the values

In this paper, we discuss the design, implementation, and eval- ©f the metrics, several of which remain stable as well. These met-
uation of a runtime tool, called HeapMD, to find bugs in heap- 'CS Serve as a “signature” of the heap behavior of a program, and
manipulating code. HeapMD works ars6-binaries, and finds  their range determines the set of values that arise during normal

execution of the program. Note that not all computed metrics are
* This work was done when the author was an intern at Microsoft Research. Stable for a given program—only a subset of the metrics will typ-

ically be stable. Note also that different metrics will be stable for

different programs, based upon their heap behavior. However, we
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metric is defined to be stable if the average change and the standardection 4presents our experience using HeapMD to find bugs. We
deviation of change of the metric fall within pre-defined thresholds. discuss related work iBection 5and conclude irBection 6
For this paper, we define a metric as stable if the average change
in its value is within+1% an_d the stz_indard deviation o_f changeis 2 Qverview of HeapMD
less tharb, across consecutive metric-computation points. o

HeapMD combines our observation on stable metrics with H€apMD employs a two-phase design like several other anomaly
anomaly detection in a novel way to find bugs. It first identifies detection systemslfl, 17, 25, 29, 31]. The first phase, anodel
a set of stable metrics and their “normal” ranges using training constructor builds a model of expected heap behavior. The second
inputs. As the program is executed on other inputs (e.g., during Phase, aranomaly detectofalso calledexecution checkgrcom-
testing), HeapMD computes the values of metrics identified as sta- Pares the execution behavior of an input program against the con-
ble during training. If the value of any such metric is outside its structed model, and raises an alarm if this behavior deviates from
calibrated “normal” range, it is an indication that something is the model. ) ]
wrong. Note, however, that a corrupted heap data structure might ~ 1he design space for an anomaly detection-based tool is based
not always cause a stable metric to go out-of-range, and HeapMD isUPOn how these phases interact. In the first design, the model con-
thus not guaranteed to find all heap-based bugs. An analogy can petructor first bU|Id_s a model_ of heap behavu_)r offline. _Thls model is
drawn to human vital statistics, such as blood pressure. Abnormal then used for online checking—the execution of an input program
blood pressure indicates a problem, though not all health problems!S continuously monitored against the model, and an alarm is raised
affect blood pressure. It is important to note that during training, If the execution violates the model. HeapMD supports this design;
HeapMD identifies metrics that are stable, and during testing, it Nowever, because our current prototype results in a 2-3X slowdown,
checks for range violation. In particular, a metric that was deemed it iS not suited for monitoring deployed software. Instead this de-
stable during trainingan be unstable during testing, provided it ~Sign is ideal for use during software testing. As we demonstrate in

does not violate its calibrated range. Section 4 HeapMD is effective in this role, and finds several pre-
A key feature of HeapMD is that it dogwt require a formal viously unknown bugs in large real-world programs. _
specification of correct behavior to be specified in advance; it au- N the second design, typically meant for post-mortem analysis,

tomatically mines stable properties of the heap, and uses these ahe model is constructed offline, as before. As a program executes,
specifications of correct behavior. This is important as program- It génerates an execution trace, which is then compared in an offline
mers rarely specify heap-related invariants. Sometimes, they arefashion against the constructed model, and detects locations in
unaware that such invariants exist. HeapMD’s ability to detect mal- the execution trace, where the model was violated. HeapMD also
formed, but pointer-correct data structures that violate typically SuPports this design. Because offline analysis algorithms can use
unwritten specifications of correct behavior differentiates it from the information available in the entire trace, they can potentially

other tools, such as Purifii§] and Valgrind [L9], which are in- reduce the “cascade-effect”, where a single mistake in the analysis
capable of detecting such bugs. We have used HeapMD with leads to a large number of false positives,[16]. _

large commercial applications, and have founcheap-based bugs The third design, currently not supported by HeapMD, simul-
(31 of them previously-unknown), including violation of invariants, taneously uses the model constructor and anomaly detector, in an
memory leaks, and dangling pointers. online fashion. In this approach, employed by DIDUCH][ the

As an example, considéfigure 1, which shows a snippet of model is constructed as a program executes on its input, and the
buggy code, identified by HeapMD in one of our commercial anomaly detector checks that the current state of the program fits
benchmarks. In this case, a programmer forgot to updatgrthe the model. ) ) , ’
pointers in a doubly-linked list, thus violating an implicit data- We now discuss the design and implementation of HeapMD’s
structure invariant. This resulted in the percentage of heap vertexesmodel constructor and the anomaly detector.
with indegree = lviolating its calibrated range. Note that this in- - .
variant wasnotknowna priori, yet HeapMD was able to detect the 2.1 Building Models of Heap Behavior
violation of the invariant. HeapMD's model constructor computes a suite of metrics on the

To summarize, our main contributions are as follows: heap-graph at several points during the execution of the program.
1. Modeling heap behaviorWe present the design and implemen- The metrics computed by HeapMD are sensitive to the properties of

tation of HeapMD. It uses a technique that models evolving heap the néap-graph; consequently, changes to the heap-graph manifest

behavior in a novel way. as changes in the values of metrics. In our current implementation,
. . . . ) the metrics computed by HeapMD’s model constructor are degree-
2. Stability of heap properties. We show empirically thatin spite  paqeq. Specifically, we compute the followiRgnetrics, although

of the evolving nature of the heap, several properties of the heap- e architecture of the model constructor allows other metrics to be

graph remain stable. easily added in the future: Theercentage of vertexasith inde-
3. Application to bug finding. HeapMD uses this observation in  gree = 0(name|y,root§), indegree = 1 indegree = 2 outdegree

a novel way: it uses the stable properties of the heap-graph in = 0 (namely,leave$, outdegree = 1outdegree = 2andindegree

conjunction with an anomaly detector to find heap-based bugs. = outdegree We chose these metrics because, in our experience,
4. Empirical evaluation. We show the effectiveness of HeapMD  vertexes of the heap-graph typically have low-indegrees and out-

using several examples. In particular, HeapMD was able to find degrees (only rarely exceedigy Each of thes& metrics is com-

40 bugs in5 large commercial applications (each comprising Puted at several program points during the run of the program on

several hundred thousand lines of codg), of which were each input from a training set. The model constructor uses values

previously unknown. of m?t_rics gathe(rje_(iI ovgfr_ exeﬁ:utions olf the proggram (k))n a tr]:airr:ing
; ; ; . ; set of inputs, and identifies the normal range of a subset of these
The rest of this paper is organized as follows:Saction 2 metrics (which are identified as stable). Other choices for metrics

we present a technical overview of HeapMD, including details on . lude the s d b ” d and | q
how HeapMD models heap behavior, and uses these models to"¢1Ude the size and number of connected and strongly connecte

detect bugs. IrSection 3 we present empirical evidence on the
key observation used by HeapMD—that stable heap metrics exist.

1 Aroot denotes a data structure that is either referenced only from the stack
and by global variables, or is a memory leak.



components, and value-based metrics, such as the number of dis- | HeapMD Model Construcor

Training Input Metric Reports Summarized

tinct values stored at a heap location over the program lifetime. Data Set for Individual Runs e el |
Ideally, we would like to compute the metrics each time the R L} |

heap-graph changes because of addition or deletion of VErtexes; ,,u exe| sinary | output. exe | Execution

or addition, deletion or modification of edges. Doing so would 7| mstrumenter Logger

lead to an unacceptable performance penalty because the metrics r

have to be recomputed potentially after every program statement N A

that modifies the heap. Consequently, HeapMD’s model construc- | setmes l ,,,,,,,

tor computes metrics periodically at certain pre-defined program L

points, calledmetric computation pointdn the current implemen- i npucs exe! | ginary Anomaly

tation of HeapMD, these are function entry-points. As the program i e B

executes, metrics are computed once for efagy metric com- i 5

putation points encountered, whefrg is a user-specified fre- Input Bug Report |

qguency. For all the experiments reported in this pdper was set : HeapMD Anomaly Detector (Execution Checker) |

to 1/100, 000.

We now discuss the key features of HeapMD’s approach to
model construction.
Evolving nature of the heap.As a program runs, it allocates and
deallocates memory from the heap. Consequently, the number offigyre. There are three main components: a binary instrumenter, an
objects on the heap, as well as the connectivity of these objects dif-execution logger, and a metric summarizer; we describe each of
fers at different program points. Because (1) the metrics computed these in detail below.
by HeapMD are sensitive to the structure of the heap-graph, and The binary instrumenter processemput.exe  and adds instru-
(2) HeapMD computes these metrics periodically at several points mentation that exposes the addition, modification and removal of
during the program’s execution, thegipture the evolving nature of  gpjects in the heap to the execution logger. It instruments allocator
the heap-graph _ _ and deallocator functions, suchmslloc , realloc  andfree ,
Sensitivity to the inputs of the program. Different inputs to o record the addresses and the sizes of objects allocated on the
the program induce different heap configurations. Consequently, heap. In addition, it also instruments instructions which write to ob-
several heap configurations are possible at a single program pointjects on the heap. Each write instruction is instrumented to record
Because HeapMD constructs models using metric reports from the address of the object being written to, and the value written to

runs of the program on inputs drawn from a training set, it models that address. The instrumenter is built using Vulc#h & binary
sensitivity of the program to its inputs. In particular, HeapMD’s  {ransformation tool.

model constructor summarizes heap configurations that can arise atrhe execution loggerruns the instrumented fileutput.exe

a particular program point. on inputs from a training set. It maintains an image of the heap-
Size of the heapHeap-intensive programs create a large number graph, and updates this image wherput.exe  allocates, frees,

of objects on the heap. Given that several heap configurations cangr writes to an object in the heap-graph. As mentioned earlier, it
arise at a program point based upon the input to the program, ancomputes metrics on the heap-graph at a user-specified frequency
approach that stores all the configurations at each program pointfrq | which is specified using th®ettings ~ file.

will not scale to large, heap-intensive programs. _ _ It is also possible to compute the metrics directly on the heap,

Because HeapMD does not store the exact set of configurationsyhich would obviate the need to maintain an image of the heap-
of the heap-graph that can arise at each program-point, but insteadyraph within the execution logger. We chose the latter approach
computes metrics which are sensitive to the heap-graph's proper-pecause traversing the heap periodically to compute metrics can re-
ties, itis able to scale to large programs. This approach also ensuresy|t in poor cache-locality translating to performance penalty. By
that the anomaly deteCtor IS SlmpleZ it Just Compal‘es the Observedmaintaining an image of the heap_graph that On|y stores connectiv-
value of a metric against calibrated Values, which constitute the ityinformation between Objects onthe heap, HeapMD can Compute
mode_l._ ] ] the required metrics while still preserving cache-locality.
Sensitivity of the models.The model constructed by HeapMD is The heap-graph can be constructed at several levels of granu-
an approximation of the set of heap configurations that arises at|arity. For instance, consid&igure 3A), which shows three nodes
a program point. The use of metrics only captures certain prop- of a linked-list. Each node of the linked-list contains two fields: a
erties of the heap-graph, and hence results in a loss of informa-gata member, and a pointer to the next node. If the heap-graph is
tion because we cannot reconstruct the heap-graph uniquely usingonstructed at the granularity of individual fields, as shown by the
the metrics observed. As a result, HeapMD’s anomaly detector candpotted lines, it has six vertexes and two edges. On the other hand, if
produce both false-negativeise, it can miss real bugs) and false- it is constructed at the granularity of objects, as shown by the bold
positives {.e., it can identify cases which are not really bugs). lines, it has three vertexes and two edges.

With program analysis tools that find bugs, false-positives are  Constructing the heap-graph at the granularity of fields requires
sometimes a bigger problem than false-negatives, because a larg@ccess to type-information, and captures fine-grained information,
number of false-positives overwhelms the user of the tool. The gych as the connectivity of individual fields. However, the down-
model constructed by HeapMD consolidates several metric reports, side of this is that the metrics computed on such a graph will
and identifies the normal range of “stable” metrics. While HeapMD pe sensitive to the layout of fields within an object. For instance,
can miss bugs because a buggy execution can still produce metricconsider the heap-graph (constructed at field-granularity) fof a
values within the normal range, we have empirically observed that node linked-list. With a field layout similar tBigure JA), only
violation of the normal range of stable metrics correlate closely to o vertexes havéndegree = outdegre¢equal to0), namely, the
real bugs thus HeapMD produces few false-positives. vertexes corresponding to the data-field of the left-most node, and
the next-node-field of the right-most node of the linked-list. How-
ever, with a field layout similar t&igure 3B), all but two vertexes
HeapMD works ore86-binaries Figure 2shows the architecture of ~ haveindegree = outdegreenamely the vertexes corresponding to
HeapMD; the model constructor is shown in the upper half of the the next-node-fields of the left-most node and the right-most node

Figure 2. Overall Architecture of HeapMD, showing the Model
Constructor and the Execution Checker.

Implementation



ing input set. In the future, we plan to extend the implementation

A) ‘ . ‘ .ﬁ{ 777777 %»o ‘ off{ 777777 F? ‘ . ‘ of HeapMD to also include locally stable metrics in the model.
As we show inSection 3 certain metrics of the heap-graph
Data Field Pointer to remain stable when the program is executed on several inputs.
RN PN Further, we demonstrate that tiememetrics remain stableven
across different development versions of the progitaos showing
(B) . [ - [ - ® . L .
. " that these metrics are resilient to program evolution.

Figure 3. An example showing the different levels of granularity 2.2 Checking Execution Traces to Detect Bugs

at which the heap-graph can be construc.ted. Dptted Iines show theThe second phase of HeapMD, the anomaly detector, uses the
heap-graph constructed at field-granularity, while bold lines show model constructed by the first phase to monitor executions of the
the heap-graph constructed at object-granularity. program, and identify anomalies, which are potentially because of
heap-related bugs. The lower half Bigure 2shows the architec-
ture of HeapMD’s anomaly detector. The anomaly detector can
be used to find bugs either in the same version of the program
(input.exe ) that was used to calibrate metrics, or in another
version of the programirfput *.exe ) The anomaly detector an-
alyzes the observed heap metrics and identifies deviations from the
model. We have also implemented a GUI that plots heap metrics
while the program executes.

The anomaly detector uses the summarized metric report, which
. - - X - serves as the model, as a basis for comparing heap metrics obtained
The metric summarizer consolidates metric reports obtained from from executions of the program on other inputs. The summarized

individual executions obutput.exe  on inputs from a raining  ayicvenort contains ranges of globally stable metrics, which are
set. Metrics can be classified |nto.three categories based upon thelrthe minimum and maximum values these metrics attained across
stability across runs of a program: all the training inputs. The anomaly detector verifies that the values
1. A metric may remain relatively constant during the execution of these metrics obtained in the current execution are within the
of the program for each input from the training set, perhaps permitted range.
acquiring a different constant value in each run. The range  As described earlier, HeapMD operates by detecting heap-graph
of such aglobally stable metricomputed across the different  degree metrics that are globally stable across several inputs and
training inputs can be used as an indicator of correct behavior, establishes a valid range for these metrics. If these metrics (i.e.,
and executions which result in the metric going out of range can those that are identified as globally stable during the training phase)
be marked as potentially buggy. violate their valid range on other inputs for the same/different
2. As observed by several researchers, programs execute in peasegfrogram version, HeapMD reports these as bugs. HeapMD does not
26, 27, 28], and different phases of the program exhibit different  l00k for metric stability in this phase. In particular, it is permissible
heap behavior. As the program phase changes, the heap-grapl‘f,or a metric that was stable during training to become unstable
and consequently some metrics associated with the heap-grapifiuring the checking phasgyovided that it does not violate its
change to reflect the new heap behavior of the prograie- A valid range To assist with debugging, HeapMD enables call-stack
cally stable metricacquires different values across phases of logging when a metric that was identified as stable during training
the program, but remains relatively constant within a program approaches its calibrated maximum value with a positive slope, or
phase. Note that globally stable metrics are also locally stable. when it approaches its minimum value with a negative slope. This

3. An unstable metrids neither globally stable nor locally stable. ~ call-stack logging into a circular buffer continues until either the
metric moves away from the minimum/maximum calibrated value,

The key observation used by HeapMD is tiratspite of the o it crosses either extreme value, thus triggering a bug report.
phase behavior of the program, several globally stable metrics Tpjs design permits reporting call-stack context information for the
exist In our experience, metrics change rapidly during program program before, during, and after the metric crosses its calibrated
startup and shutdown. We observed that during the other phasesyinimum/maximum value. As discussedSection 4 this enables

of the program, while some metrics change to reflect the phase easy dentification of the root-cause of a large class of heap bugs.
behavior of the program, there are some metrics which remain

gfggg’ﬁ%f;ﬁgem'eﬁﬁgt'&'sf we provide empirical evidence that 5 = pyistence of Globally Stable Metrics

HeapMD uses this observation—in our current implementation, In this section, we present empirical evidence that globally stable
the summarizer identifies metrics which remain globally stable metrics exist. To formally define our notion of stability, we begin
when the startup and shutdown of the program are ignored. Thewith a small exampleypr , from the SPEC benchmark suite.
number of metric computation points to ignore for startup and shut- Figure 4A) and (B) denote the distribution of two metrics,
down are currently specified in the settings file: in our current im- namely, the percentage of vertexes witegree = outdegreand
plementation, we ignore the first and last 10% of metric computa- outdegree =1, on thetest and train input sets lpputl and
tion points. We have implemented a GUI that plots heap metrics Input2 , respectively, in the figure). The y-axis denotes the per-
while the program executes that makes it easy to identify these val- centage of vertexes witindegree = outdegreer outdegree =1,
ues. Because a globally stable metric does not change, or changeand the x-axis denotes progress of execution. Each data point on
slowly, its average rate of change will be close to zero. The summa- the graph is obtained at a metric computation poipt; executes
rizer compares the rate of change of each metric against a threshionger onlnput2 , thusFigure 4B) has more metric computation
old value, and identifies slowly changing metrics as globally sta- points tharFigure 4A).
ble. The summarized metric report, which serves as a model for  Note that both metrics change rapidly initially, corresponding to
the anomaly detector, contains the maximum and minimum values startup behavior, but stabilize as execution proceeddnipotl
observed for these metrics over the runs of the program on the train-both metrics acquire relatively stable values altaretric computa-

of the linked list. With this layout, all the vertexes corresponding
to the data-fields havimdegree = outdegree 9, and all but two

of the next-node-fields of the linked-list hawvelegree = outdegree

= 1. On the other hand, for this example, all metrics are the same
if heap-graphs are constructed at object-granularity. In the current
implementation of HeapMD, we do not use type information (note
that in some cases, e.g., stripped binaries, type information may not
be available) and construct the heap-graph at object granularity.
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Figure 4. Metric reports for two degree-based metrics¥pr on
two inputs.

tion points, while fodnput2 , they do so afte25 metric computa-
tion points.Figure §A) and (B) denote the fluctuation of metrics as

execution proceeds. The y-axis denotes the percentage change be-

tween consecutive values of the metric. That is, if a metric changes
from y; to y» between metric computation pointandt + 1, we

plot the valuel#2=vL) X 1% at¢ 4 1. The x-axis denotes metric
computation points; ifFigure §A) and (B) we ignore the firss,

and first25 metric computation points, respectively. For the experi-
ments reported in this section and the next, we ignore metrics gath-
ered during the first0% and lastl0% of the program’s execution,
attributing these to startup and shutdown effects, respectively.

Informally, for a globally stable metric, the metric fluctuation
plot will be relatively “flat”, and close t®. For a locally stable
metric, the fluctuation plot will also be “flat” with a value close to
0, except for occasional “spikes”, which denote sharp changes in
the value of the metric. Formally, the average change of a globally
stable metric will be close t6, and the standard deviation of the
change will also be close t0. The average change of a locally
stable metric will also be close t®, but the standard deviation
of the change will be farther away frofi An unstable metric
will either have a large non-zero value for average change, or will
have a large standard deviation. By using a threshold value for
the average change, and the standard deviation of change, we cal
identify globally stable metrics.

Figure 6shows the average values and standard deviations of
the distributions inFigure §A) and (B). The average changes
in the percentage of vertexes withutdegree =1 are —0.10%
and —0.02% for Inputl andInput2 , respectively, while the
standard deviations of change dr&2 and1.79 for Inputl and
Input2 , respectively. For this paper, we set ttieeshold for
average change at1% and standard deviation of changefatAs
a resultoutdegree =1 is globally stable. The percentage of vertexes
with indegree = outdegreés not globally stable. Foinputl the
average change &47%, and the standard deviation of change is
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Figure 5. Fluctuation of the metrics iRigure 4A) and (B).

Indegree = Outdegree | Inputl Input2
Average 2.47% | —0.18%
Standard Deviation 24.80 5.27

Outdegree =1 Inputl Input2
Average —0.10% | —0.02%
Standard Deviation 1.72 1.79

Figure 6. Average and standard deviation for the distributions in
Figure 5

24.80, both of which are above the threshold. For a globally stable
metric, we require the average change and standard deviation of
change to be within the above threshold for at let¥# of the
inputs in the training set.

With the definition of a globally stable metric in hand, we now
discuss two sets of experiments we performed to show that globally
stable metrics exist in real-world programs.

In the first set of experiments, we raB benchmarks, including
5 large, commercial programs (stable, released versions), internal
to Microsoft, on several inputs. We ran eacB@&PEC 2000 bench-
marks on their default inputs (nametgst train, andref inputs),
and each of thé real-world programs of0 regression test inputs.
We also generated additional inputs for the SPEC benchmarks for
Which we could do so easily. As a result, gzip, gcc, and parser were
run on a total ofl 00 inputs. While the results for some of bench-
marks that were run with a small set of inputs are not statistically
compelling, they are in agreement with the results obtained for the
other benchmarks that were tested with a larger set of inputs.

The results of this set of experiments appear§igure 1A).

The third column shows the number of globally stable metrics
found for each benchmark. Note that we were able to find several
stable metrics in some cases. The average rate of change, the
standard deviation of change, and the maximum and minimum
values across all training inputs, of an example stable metric are



Part(A) rics, HeapMD will report fewer bugs. It also means that HeapMD
oz £a . 8 2 will report fewer false-positives. Thus the choice of thresholds
£ 2a % € S 3 3| 3|33 must trade-off improved bug-finding ability with increased false-
& | 8% S 2 ; S e g § g § positives. As we show empirically iBection 4 with the current
= 2 w s u ° > Z : i i X
Benchmark | ® | % £ g 12%| & 5 5 choice of thresholds, false-positives are not a major problem for
TWolf 3 6 | Outdeg® | —0.1 | 0.5 | 26.4 | 32.3 HeapMD, thus |nd|cat_|ng_ that these thres_holds provide a good
crafty 3 2 Leaves 0.1 | 0.6 | 85.3 | 97.1 tradeoff between bug-finding and false-positives.
mcf 3 4 Root 0.1 | 3.2 0 5.4
vpr 6 1T | Outdegd | —0.9 | 2.6 | 3.7 | 36.8 3.1 Discussion
vortex 5 1 Indeg=1 —0.8 3 | 37.8 | 69.5 i . .
9zip 100 3 Leaves 0117 829 [ 902 H_e_apMD computes metrics on the entire _heap _rather than on in-
parser 100 3 In=0Out 0.3 | 43 | 142 | 17.7 dividual data structures. On the positive side, this likely accounts
gcc | 100 2 | Outdegd -1 5| 871371 for HeapMD'’s ability to identify stable heap metrics on every test
'\I"nL;g'rf;‘cetﬂl'g 50 2 | In=Out 01 [26] 67| 9.7 benchmark. While data structure invariants are often temporarily
web-app. 50 2 | indegat | —0.4 | 3.1 | 435 | 551 violated within a method, this does not occur frequently enough
PC Game across methods to affect global heap metrics. The downside of this
(Spmcmelamn) 50 2 | Outdegd 01|14 | 179 | 28.8 is that it diminishes HeapMD’s ability to detect bugs, because the
ame HH :
(action) 50 1| indeg= 02 | 23 | 132 | 185 bugs need to affect _the stability of a global heap metric. However,
Productivity | 50 ) Leaves 01 1 1.1 1 279 | 411 as the experiments in the next section show, programs include sev-
Part (B) eral “systemic” bugs, that are repeated often enough to affect global
" £ % o 2 2 heap m_etrics. An apt ana}logy is that HeapMD can never detect a
9| 8|oaq S E S s Tl e3|8% needle in a haystack but if the haystack accumulates a large num-
2| 2|82 ge (55| 0| c5| 55| berofsuchneedles, HeapMD will eventually detect this. Of course,
S (> n2 M S T | =22 | =2 | metrics with large stable ranges (e.g., percentage of heap vertexes
Benchmark | # | 3 | 3 € o | < @ ° © | with outdegree = for vpr ) are likely to be less useful as anomaly
Multimedia. | 10 5 2 In=Out 0.2 | 2.8 6.7 9.7 . .
Ihteractive detectors than metrics with a narrower range.
web-app. 10 5 2 Indeg=1 —0.4 | 3.1 | 43.5 | 55.1
PC Game T .
(simulation) | 10 | 5 2 | Outdega 01 | 15| 170 | 288 | 4. Bug-finding using HeapMD
PC Game ; ; : : ;
(action) 10| 5 1 Indeg=1 o4 | 37 | 132 | 197 Thl_s section reports our experience with HeapMD. First, V\{e de_-
Productivity | 10 | 5 5T TLeaves 01 T 12 279 a1 ] Scribe the methodology used, and then evaluate HeapMD’s abil-

ity to find bugs. Finally, we conclude with a brief discussion of
HeapMD'’s current limitations.

Figure 7. Identifying globally stable metrics. The ‘Avg. and
‘Std.dev’ column show the average and the standard deviation of 4.1  Overview and Methodology
the rate of change of the metrics. The ‘Min." and ‘Max.’ columns
show the minimum and maximum observed value for the example
stable metric across all training inputs (omitting startup and shut-
down). Part (A) shows globally stable metrics identified by running
a benchmark on several inputs. Part (B) shows globally stable met-
rics identified by running different versions of a benchmark against
several inputs. Note that tteamemetrics were identified as stable
even across different versions of each benchmark.

We classify bugs into different categories according to HeapMD’s
capability to detect them. Bugs that have no appreciable effect on
heap-graph degree metrics are calladisible Bugs that affect
heap-graph degree metrics, yet remain within their calibrated
mal range are calledvell disguisedHeapMD cannot detect either
of these types of bugs (s&ction 4.Zor a discussion of some of
these types of bugs). Bugs that cause a heap-graph degree metric to
remain stable but take an extreme value are caltatly disguised
bugs. HeapMD can detect these since we always log and check the
also shown. This set of experiments validates our hypothesis thatcall-stack when a degree metric transitions from startup to stable
globally stable metrics exist value for inputs that cause the metric to attain its extreme values.
In the second set of experiments, we considerexliccessive Section 4.Jriefly describes the only one such bug we found. Bugs
development versions of each of theeal-world benchmarks. In  that cause normally unstable heap-graph degree metrics to attain
each case the first of these versions, which was used to report thed stable value are callggathologicalbugs. While HeapMD can
results inFigure TA), was a major revision for that benchmark. detect these by reporting unexpected metric stability, we have not
For each benchmark, we ran &liversions on thesameset of 10 found any examples of this type of bug so far. Finally, bugs that
regression inputs. These results appedFigure 1B). Note that cause a stable heap-graph degree metric to attain a value outside its
we were again able to identify globally stable metrics. Further, the normalrange are calleieap anomalyugs. HeapMD is designed
stable metrics identified were the saassinFigure TA). Moreover, to target these types of bugs (Seection 4.2andSection 4.3 Fig-
the maximum and minimum values for these metrics were also the ure 8andFigure include a further classification dieap anomaly
same, with just one exception (the maximum observed value for bugs based on the bugs that HeapMD has detected to date.

percentage of vertexes withdegree = Ifor PC Game/action). This For HeapMD to be effective, it needs to construct an accurate
leads us to extend our hypothesis, and concludegibaglly stable heap model. Unfortunately, we can never hope for the program ver-
metrics even exist across different versions of a program sion used to calibrate HeapMD, and identify stable degree metrics

Our experiments also showed that the number of globally sta- and their associatedormal range to be bug-free. To compensate
ble metrics was fairly resilient to our choice of threshold values, for this, we do two things. First, we use stable versions of the pro-
namely, £1% for average change ariil for standard deviation  grams for model construction, on which static analysis tools, such
of change. Increasing these thresholds moderately does not resulgs Prefix 2], have been run, and many of the bugs reported have
in additional metrics being classified as globally-stable. On the been fixed. Second, we require a large input set for accurate cali-
other hand, decreasing these thresholds results in fewer metrics bebration. The underlying idea is that with a large input test set, there
ing classified as globally-stable. With fewer globally-stable met- Wwill be several inputs where a particular bug does not manifest. Al

our experiments in this section used a minimun2®fifferent in-
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Figure 8. Data structure manipulation bugs

Figure 10. Figure showing percentage of vertexes viittiegree =

. . ) ) ) 1 violating the calibrated values for PC Game/Action.
puts for calibration and testing. For a metric to be considered glob-

ally stable, we require it to be stable for at led886 of training

inputs. This number40%) was an arbitrary choice; in particular, the percentage of nodes in the heap with this property, eventually
other values are also possible, as long as the metric is stable for gproducing a violation in the stable range for this metric.
reasonable number of training inputs (usually abdun our ex-

perience). For the remaining training inputs, we do not require the 4.2 Validating HeapMD

metric to be stable; we only require that it remain within its cali- gefore testing HeapMD's ability to find new bugs, we ran ex-
brated range as determined by the stable inputs. If it doesn't, thenyeriments to see whether it could detect memory leaks that had
thls training input is treated_as buggy. In_aII cases, we were able previously been found in these programs using SWAJE. [Be-
to identify a minimum of10 inputs (more in some cases) where ., ,qe SWAT was run on those programs for a long period (hours
the same set of heap-graph degree metrics were consistently stableto months) to detect the leaks reported 3 fit was not feasible
and these were used to construct the HeapMD heap model. Thesg,, 1 igentical scenarios. Instead, we used information from the
10 inputs were used to report data for the commercial applications g detected by SWAT to synthesize a set of inputs that would
in Figure KA.)' Because we d!d not qpsgrve qoathologlc;albugs cause the programs to exhibit some, but not all, of the same leaks.
in our experiments, this metric stability is unlikely to arise as are- g, SWAT and HeapMD were individually, and separately, run on
suItF(_)fa pl’fgsl’r?m bug. e of how HeanMD d bugs. The 1hese synthesized inputs, and the results are report@dtite 1
Igure LUSNOWS an exampie or how reap etects bugs. The \qte that in addition to the memory leaks that HeapMD found, it

horizontal lines depict the_ maximum and minimum values of the also reported additional bugs that were not memory leak-related,
percentage of vertexes withdegree = 1 which was observed to and those are reported separatel@ection 4.3

be a stable metric in the training phase with the PC Game/Action ™1 yeqits are encouraging. While SWAT is clearly more effec-
program. As the figure shows, the percentage of Vertexes Vio- e o detecting memory leaks, as it should be, being specially de-
lates the calibrated values, thus indicating a potential bug—in fact, gjgneq for this purpose, HeapMD is able to find a subset of the leaks
this violation corresponds to a real bug that we found in the PC onq404 1hy SWAT. All the memory leaks detected by HeapMD
Game/Action program. This bug was because of violation of a fell into the category of programming typo bugs listecFigure 8

data-structure invariant, the kind shownfigure 83(B). Newly- T cqde fragment iffigure 11shows a sample memory leak that
inserted tree nodes (from a specific call-site that was only exerasedHeapMD was able to detect. The call-stack reported along with the
on the buggy input) were missing parent pointers from their chil- '

dren. This caused these nodes to hiaaegree = 1and increased

20ne of the programs used in that study is a third-party application that we
no longer have access to.



SWAT HeapMD if (pTableDesc[]].pPropDesc #< NULL) {

Memory False Memory Ealse /I Typo below: ' should be used in place of ¥
o i pPropDescList->next = pTableDesc[i].pPropDesc;
Program Leaks Positives Leaks Positives /I Leaks object pointed to by pPropDesclj].pPropDesc
Multimedia 4 0 2 0 pTableDesc[j].pPropDesc = NULL;
Interactive
web-app. 9 1 4 0
(s|:i>r(riu(l3§inc:ﬁ) 4 1 3 0 Figure 11. Code-fragment of a bug found by HeapMD—this frag-

ment has a programming typo, thus resulting in a memory leak.
This bug was detected when the percentage of vertexesaei
Table 1. Comparison of memory leaks found by SWAT and gree = lviolated its calibrated range.

HeapMD.

/I Fragment of code manipulating a circular list

Buas if (pHeadColList->next # NULL) {
o 9 pNewHead = pHeadColList->next;
= S 0 ColListFree(pHeadColList);
=] 2c | _ @ pHeadColList = pNewHead
82| By | BT S &2 /I ' The tail of the list now has a dangling pointer
S” | g5 82 5| ¢3
Program | @ n® | o=|=c o
Multimedia | 2 2 3 |1 0 Figure 12. Code-fragment found by HeapMD, that manipulates
Intetr)actlve 4 0 . 0 shared state erroneously. This bug was detected when the percent-
g’g c_saa%)é age of vertexes witindegree = 2violated its calibrated range.
(simulation) | 3 3 2 1 0
PC Game memory leaks and rarely cause immediate program crasigs
tion) 2 1] 3|2 o v rely. prog SigS.
= (a(;: . o o 7 1 o ure 11, discussed earlier, includes a code-fragment that illustrates
roductivity this type of bug. Tools that detect memory leaks, such as S\BIAT [
Total 11 ]6 17]6] O Purify [12], or Valgrind [19], should be able to detect these. How-

ever, HeapMD is often able to pinpoint the function where the bug
Table 2. Summary of bugs found by HeapMD. occurs, because it logs the call-stack at the point where a metric
violates its calibrated range.

Shared-state-manipulation errors often appear to arise when a
leak included the function that contained this code fragment. Pro- programmer is unaware a particular object that is being manipu-
gramming typo-based bugs, such as the orféigire 11 are also lated is being shared. These tend to manifest as dangling pointer
reminiscent of copy-paste bugs, where a programmer copies a frag-errors, and only occasionally cause crashes. When they do cause
ment of code, but forgets to change variables appropriately, thus crashes, these tend to occur much after the bug occurred. Memory
resulting in bugs; recent studies have shown several copy-pastecheckers, such as Purify and Valgrind, should be able to detect these
related errors in popular softwarg?). bugs as well. Again, HeapMD is often able to pinpoint the function

The memory leaks that HeapMD was unable to detect fell into responsible for the bugdrigure 12contains a code fragment for a
two broad categoriesinvisible andwell-disguisedougs. The first bug of this type that HeapMD detected.
included cases where reachable data structures were leaked. SWAT Data structure invariant errors often occur when a program-
was able to identify these as it tracks staleness and not reachamer is unaware of a data structure invariant. If the newly allocated
bility. Other leak tools such as Purify would also be unable to memory is zero-initialized then these bugs typically never result in
identify these leaks. The second included scenarios where a verycrashes, and only occasionally produce erroneous results. HeapMD
small number of data objects were leaked. This was not sufficient can detect these bugs; we are not aware of any other scalable pro-
to induce anomalous behavior in the heap-graph degree metricsgram analysis tool that can detect this type of bug without being
HeapMD monitors. On the other hand SWAT reports a couple of given the data structure invariaatpriori. In addition, HeapMD
false positive that were caused by cached objects that are reachablés often able to pinpoint the function responsikfégure 1shows
but not accessed (stale). HeapMD reported no false positives as itan example of a bug of this type that HeapMD identified. Another
doesn't track staleness. data structure invariant bug involved a mistake in an oct-tree con-

In addition to the above study, we also validated HeapMD by struction routine that produced an oct-DAG instead. This was an
using it to successfully identify artificially-injected bugs in several example of the onlypoorly disguisedbug that we observed as it

SPEC 2000 benchmarks. occurred during program startup and caused the percentage of ver-
o texes withindegree = 1to take a stable minimum extreme value for
4.3 Finding New Bugs the rest of the program.

We used HeapMD on the inputs not used for model construction ~ Finally, Figure 9shows examples of bugs that indirectly affect
to detect bugs in the versions of the programs used for model con-heap-graph degree metrics only as a side-effect of a programming

struction and all test inputs for therevised versions of the pro-  logic error. Examples of such bugs that we found include a local-
grams. The bugs we found are broadly categorizefignre 8and ization bug that produced atypical graphs, which were represented
Figure 9and reported on iable 2 With the exception of th® as adjacency lists. Another “performance bug” was caused by a
bugs found by HeapMD reported ifable 1 the remaining bugs poorly_chosen ha_sh-functlon that (_:aused significant coII|5|on_s for
reported inTable 2were previously unknowrFigure 8illustrates a few inputs. A third bug resulted in many tree vertexes having a

bugs we found that manipulate data structures and directly affect single child rather than two children (which was the normal case).
heap-graph degree metrics. Programming typos typically seem toln these cases, HeapMD was able to deteqt the bugs, b.Ut was not
arise due to omission of a line of code needed to implement a dataable to pinpoint the root-cause of the bug (with the exception of the
structure insertion or deletion operation. They often manifest as



hash-function “performance bug”). Consequently, debugging these5. Related Work

types of errors remains hard. . Prior research related to the design and implementation of HeapMD
__For most bugs of the type listed Figure § we were able 0 ¢4 ,nder several categories, as discussed below.

implement a fix (which was simple, once the function responsible »;omaly detection-based toolsSeveral tools use anomaly detec-
was identified on the call-stack log). In all these cases, we verified tion for bug-finding and detecting security violatiorisl] 25, 29

that the fix did indeed cause the affected metric to remain stable 0N 311 these tools identify properties that a correct execution of the
the previously buggy input. program must satisfy. An execution that violates these properties is
anomalous, and raises an alarm. For instance, DIDUCIEUses

) - ) online analysis to discover simple invariants, such as the values
While we are encouraged by HeapMD's ability to find bugs, our of program variables, in long-running programs. An error is re-
experience with the tool drew our attention to some limitations, ported when an execution of the program violates an invariant. A

4.4 Shortcomings

which we intend to address in future work: more sophisticated form of dynamic invariant discovery appears in
1. HeapMD is effective at providing debugging information for ~Daikon [8], which discovers invariants such as equalities, inequali-
errors that directly affect heap-graph degree metfigure § ties and affine relationships between program variables. It can also

as the functions responsible show up on the logged call-stacks.discover invariants over complex heap-data structures such as ar-
However, it provides poorer debugging assistance for errors thatrays, linked lists and queues. While these tools discover invariants
only indirectly affect heap-graph degree metridg(ire 9. over program variables, AccMoB{] discovers program counter-

2. HeapMD currently works om:86-binaries. While we did have based invariants. It uses the observation that each memory location
access to symbol-table information, the current version of is typically touched by a small set of instructions, and that this set

; P ; ; f instructions is an invariant per memory location.
HeapMD does not use type information in its analysis. Type in- 0 L0 .
formation can be used to extract fine-grained characteristics of "€ main difference between HeapMD and the tools dis-

the heap-graph. For instance, HeapMD could restrict attention CuSSed above is the kind of invariants that it discovers. In par-
to data members of a particular type, and only compute metrics ticular, HeapMD leverages the observation that several prop-

over these data members. In addition, since HeapMD does notgrties of the heap-graph—degree-based metrics in our current

capture invariants about a particular object or set of objects on IMPlementation—remain within a stable range. It identifies sta-

the heap, it cannot detect fine-grained heap-manipulation errors,Pl€ metrics and their normal ranges during a training phase, and
For instance, suppose that an objegtoints-to an object on uses these as indicators of correct heap behavior. To our knowl-

all the inputs from the training set. While this is an invariant ©d9€. HeapMD is the first to exploit the graph structure of the heap

which can be used for bug detection, HeapMD does not capturetg gefirée i”"a_”a“tS-l _ s HeapMD adds | _
this fact, and hence will not detect violation of this invariant. ther dynamic analysis tools.HeapMD adds instrumentation to
monitor each instruction that modifies the heap-graph. In contrast,

3. HeapMD currently exclusively uses a small set of heap-graph gampjing infrastructurest] 13] periodically switch between code
degree metrics to find bugs. We are expanding these to a broadefya¢ contains instrumentation and code that does not. The CBI
set of heap stablllty_metrlcs, such as locally stable metrics, to project [L8] uses such a sampling infrastructure to gather informa-
enable HeapMD to find more bugs. tion over multiple runs of a program in a statistically fair fashion. It
However, despite these limitations, HeapMD is an effective bug uses information gathered over both good and bad runs of the pro-

finder. As we demonstrated, HeapMD finds several previously- gram to identify sources of bugs. An interesting avenue for research

unknown bugs in large, real-world programs. will be to investigate whether anomaly detection techniques, such
) ) as those employed by HeapMD, can be used in conjunction with
4.5 Discussion CBI, for instance, to label runs of a program as good or bad.

Each of the commercial applications that we studied in this pa-  SWAT [3] is a memory leak detection tool that also uses
per was heap-intensive, dynamically allocating several hundred sampling—it samples code paths at a rate inversely proportional
megabytes. In addition, the heaps for all of these applications areto their execution frequency. Thus, rarely executed code paths
heterogeneous in the types of data structures allocated. In no cas@re sampled at a greater frequency than frequency executed ones.
was the heap dominated by a single large data structure; yet weSWAT mgnitors heap accesses and marks objects not accessed for
were able to use HeapMD to detect anomalies in each of these ap-2 “long” time as leaked.

plications that corresponded to real bugs. We believe there are two ~ Valgrind [19] and Purify [L2] are two popular bug detection
reasons for this. First, the errors we detected were “systemic”, oc- t0ols that can detect a variety of memory errors such as leaks,
curring many times. Second, these applications were long-running, dangling pointers and double frees. While Valgrind and Purify are
allowing these errors to eventually affect the metrics sufficiently to ideal for detecting heap errors that result in a program crash, they
violate their calibrated stable range. In addition, we attribute our are ill-suited for detecting malformed structures that arise because
lack of false positives to using global heap metrics rather than per- of logic errors, and do not cause program crashes. HeapMD can
data-structure metrics. We also do not report a bug if a metric that detect such malformed, but pointer-correct data structures because
was stable in training becomes unstable. A bug is reported only if it uses anomaly detection—sBection 4.3or examples.

the metric violates its calibrated stable range (as determined duringShape AnalysisShape analysis techniques (e9.40, 24, 20, 30])

the model construction phase). This does come at a cost—we likely@im to find possible “shapes” of the heap-graph that can arise at
fail to detect many bugs, yet we are still successful at finding sev- different program points. Most existing shape analysis algorithms
eral previously-unknown bugs in commercial applications. While employ precise, but heavyweight analyses to answer queries about
we focus on describing fairly simple malformed data structure bugs the shape of the heap-graph, as a result of which these analyses
in the paper for ease of explanation, HeapMD has detected severararely scale to real-world programs. In spite of recent advances,
bugs due to invariant violations in more complex data structures shape analysis algorithms remain expensive, and only apply to
such as B-Trees, and customized trees and graphs. The bugs relimited classes of data structures, and properties to be checked on
ported were detected across different versions of a program, as wellthem. In addition, preparing a program for shape analysis often
as across different inputs to the same version of the program. requires manual effort (as i24]).



While static shape analysis algorithms are conservative, and [9] GHIYA, R., AND HENDREN, L. Is it a Tree, a DAG or a Cyclic

can provide soundness guarantees, this can often be a two-edged
sword, and may result in a large number of false positives. In

contrast, HeapMD is a runtime analysis that is not limited by

the class of data structures used, and as we have shown, scales
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