
1

The Design and Implementation
of Microdrivers

Vinod Ganapathy*, Matthew Renzelmann+,
Arini Balakrishnan^, Michael Swift+, Somesh

Jha+

*Rutgers University,
+University of Wisconsin-Madison,

^Sun Microsystems

•  Linux 2.6.23, 2007

–  esp.c, a serial port driver

static int rs_write(struct tty_struct * tty,	
 const unsigned char *buf, 	

	 	 	 int count) {	
 int c, t, ret = 0;	
 struct esp_struct *info = (struct esp_struct

	 	*)tty->driver_data;	
 unsigned long flags;	
 while (1) {	

	 c = count;	
	 t = ESP_XMIT_SIZE - info->xmit_cnt - 1;	

 	 memcpy(info->xmit_buf + info->xmit_head,  
	buf, c);	

	 info->xmit_head = (info->xmit_head + c) &  
	 	(ESP_XMIT_SIZE-1);	

 …	
 }	
 serial_out(info, UART_ESI_CMD1, 

	 ESI_SET_SRV_MASK);	
 serial_out(info, UART_ESI_CMD2, info->IER);

•  Unix Version 3, 1973

–  (dn.c, a DN-11 modem)

dnwrite(dev) {	
	struct dn *dp;	
	register struct dn *rdp;	
	int c;	
	dp = &DNADDR->dn11[dev.d_minor];	
	for(;;) {	
	 while (((rdp = dp)- 

	 >dn_stat&DONE)==0)	
	 	sleep(DNADDR, DNPRI);	
	 rdp->dn_stat =& ~DONE;	
	 if (rdp->dn_reg&(PWI|ACR)) {	
	 	u.u_error = EIO;	
	 	return;	
	 }	
	 if (rdp->dn_stat&DSS) return;	
	 rdp = dp;	
	 rdp->dn_reg = c-'0';	
	 rdp->dn_stat =| DPR;	

Drivers programming has not changed
much

Everything else has changed

•  Unix Version 3, 1973

–  16 drivers

–  36 KB of driver code

–  written by Dennis Ritchie

•  Linux 2.6.23, 2007

–  3199 driver variations

–  134 MB of driver code

–  3 million lines of code

–  Written by > 312 people

Drivers are unreliable!

•  Writing drivers is hard

– Must handle asynchronous events

– Must obey kernel programming rules

– Many drivers written by non-kernel experts

•  Debugging drivers is hard

– Non-reproducible failures

–  Fewer advanced development tools

Existing solutions are not enough

•  Driver isolation systems

– Nooks [Swift, SOSP ‘03]

–  SafeDrive [Zhou, OSDI ‘06]

•  User-level drivers

– Minix 3 [Herder, DSN ‘07]

– Windows UMDF

–  Linux User-Level Device Drivers [Leslie, JCST ‘05]

Microdriver Architecture

•  Splits drivers into:

–  A k-driver containing performance-sensitive code

–  A u-driver containing everything else

•  Simplifies driver programming by moving much of
it to user mode.

•  Improves reliability by reducing kernel code size.

•  Maintains high performance.

•  Can be written manually, or generated almost

automatically from existing drivers.

•  Is compatible with existing operating systems.

Outline

•  Introduction

•  Architecture

•  DriverSlicer

•  Evaluation

•  Conclusions

Intuition

•  For compatibility and performance, some
driver tasks should remain in the kernel.

•  Many driver tasks need not

–  Initialization/shutdown

– Configuration

–  Error handling

Kernel

Microdrivers

Applications

K-driver Device

U-driver

Runtime

Runtime Device
Driver

How much code
can potentially be
moved from the
kernel?

Microdriver Potential

0%

20%

40%

60%

80%

100%

Network

(89)

SCSI (33) Sound (175)

Up to 1.8 million
lines of code

Kernel

Runtime services

Applications

Device

U-driver

Runtime Services
•  Communication
•  Object tracking
•  Locking
•  Recovery

K-driver
Runtime

Outline

•  Introduction

•  Architecture

•  DriverSlicer

•  Evaluation

•  Conclusions

Legacy device driver
DriverSlicer

Generating a microdriver

U-driver

Legacy device driver

Splitter

Code generator

Marshaling

annotations

Kernel
 User

K-driver

Marshaling

Marshaling

Splitting a driver

Goal: separate critical code from the rest

1.  Low latency requirements

2.  High bandwidth requirements

3.  High priority requirements

Solution: leverage standard driver interfaces

1.  Identify critical root functions for a driver from

driver interface definition

2.  Expand transitively through call graph

3.  Identify all entry point functions where control

passes between the U- and K-driver

Generating marshaling code

•  Goal: generate code for entry point
functions to pass data structures between
kernel and user

•  Problems:

– Types defined incompletely in C

•  Use annotations

– Kernel structures are highly linked

Marshaling Linked Structures

•  Solution: only copy fields actually accessed

–  Identify which fields are accessed from each

entry point

– Generate unique code for each entry point

Field Analysis Example

Before:

struct net_device	
{	

	char 	 	 	name[IFNAMSIZ];	
	struct hlist_node 	name_hlist;	
	unsigned long 	 	mem_end; 	/* shared mem end 	*/	
	unsigned long 	 	mem_start; 	/* shared mem start 	*/	
	unsigned long 	 	base_addr; 	/* device I/O address 	*/	
	unsigned int 	 	irq; 	/* device IRQ number 	*/	
	unsigned char 	 	if_port; 	/* Selectable AUI, TP,..*/	
	unsigned char 	 	dma; 	/* DMA channel 	*/	
	unsigned long 	 	state;	
	struct net_device 	 	*next;	
	int 	 	(*init)(struct net_device *dev);	
	unsigned long 	 	features;	
	struct net_device 	 	*next_sched;	
	int 	 	ifindex;	
	int 	 	iflink;	
	struct net_device_stats* 	(*get_stats)(struct net_device *dev);	
	struct iw_statistics* 	(*get_wireless_stats)(struct net_device *dev);	
	const struct iw_handler_def * 	wireless_handlers;	
	struct ethtool_ops 	*ethtool_ops;	
	unsigned short 	 	flags; 	/* interface flags (a la BSD) */	
	unsigned short 	 	gflags;	

 unsigned short 	priv_flags; /* Like 'flags' but invisible to userspace. */	
	unsigned short 	 	padded; 	/* How much padding added by

alloc_netdev() */	
	unsigned 	 	mtu; 	/* interface MTU value 	*/	
	unsigned short 	 	type; 	/* interface hardware type */	
	unsigned short 	 	hard_header_len; /* hardware hdr length*/	
	struct net_device 	 	*master; 	
	unsigned char 	 	perm_addr[MAX_ADDR_LEN]; /* permanent hw address */	
	unsigned char 	 	addr_len; 	/* hardware address length*/	
	unsigned short 	 dev_id; 	 	/* for shared network cards */	
	struct dev_mc_list 	*mc_list; 	/* Multicast mac addresses*/	
	int 	 	mc_count; 	/* Number of installed mcasts*/	
	int 	 	promiscuity;	
	int 	 	allmulti;	

 void 	 	*atalk_ptr; 	/* AppleTalk link 	
*/	

	void 	 	*ip_ptr; 	/* IPv4 specific data 	*/ 	
	void 	*dn_ptr; /* DECnet specific data */	
	void 	*ip6_ptr; /* IPv6 specific data */	
	void 	 	*ec_ptr; 	/* Econet specific data	

*/	
	void 	 	*ax25_ptr; 	/* AX.25 specific data */	
	struct list_head 	poll_list ____cacheline_aligned_in_smp;	
	int 	 	(*poll) (struct net_device *dev, int *quota);	
	int 	 	quota;	
	int 	 	weight;	
	unsigned long 	 	last_rx; 	/* Time of last Rx 	*/	
	unsigned char 	 	dev_addr[MAX_ADDR_LEN]; 	 	
	spinlock_t 	 	queue_lock ____cacheline_aligned_in_smp;	

	… 38 more fields …	
}	

After:

struct net_device	
{	
 char name[IFNAMSIZ];	
 void *priv;	
 unsigned long features;	
 unsigned long trans_start;	
}

Bytes transferred during 8139cp network
driver initialization

– Without optimization:
2,931,212

– With optimization:

1,729

Experimental Results

DriverSlicer Summary

•  Splitter

–  Identifies kernel code from critical root functions

–  Identifies u/k-driver entry points

•  Marshaler

– Generates code to marshal/unmarshal

structures

–  Identifies which fields are accessed in user
mode

Outline

•  Introduction

•  Architecture

•  DriverSlicer

•  Evaluation

– Moving Code

–  Performance

•  Conclusions

Experience

•  Implemented in unmodified Linux 2.6.18.1 kernel:

–  Kernel runtime: 4,951 lines of code

–  User runtime: 1,959 lines of code

–  DriverSlicer: 9,827 lines of OCaml in CIL [Necula et al. ‘02]

•  Tested on 7 drivers:

–  Network: forcedeth, 8139cp, 8139too, pcnet32, ne2000

–  Sound: ens1371

–  USB: uhci-hcd

•  Simplified debugging of u-drivers

–  Standard tools (gdb, valgrind) apply

Driver

Code�
Size

Network
 3460

Sound
 1494

USB
 2517

Driver

Code�
Size

Driver
Annot.

Network
 3460
 12

Sound
 1494
 7

USB
 2517
 146

Annotation Difficulty

Code Motion

Driver

Code�
Size

Driver
Annot.

User�
Code %

Network
 3460
 12
 65

Sound
 1494
 7
 46

USB
 2517
 146
 19

Fraction of code changes (from BitKeeper)
similar to fraction of code.

Performance

0%

20%

40%

60%

80%

100%

120%

Network Sound USB

Relative Performance Relative Utilization

Pe
rc

en
t o

f n
at

iv
e

(Netperf) (Play-MP3) (File-copy)

Conclusion

•  Microdrivers:

– Reduce the amount of code in the kernel

–  Permit the use of user-mode tools for driver
development

– Are compatible with commodity operating
systems

– Can be generated largely automatically from
existing drivers

– Have good common-case performance

Questions?

For more information:�

swift@cs.wisc.edu�
or visit

www.cs.wisc.edu/~swift/drivers

Additional Code

Driver
 Marshaling Code Size

8139too
 14,700

forcedeth
 37,900

ens1371
 6,100

uhci_hcd
 12,000

Future Work

•  Measure improve reliability from moving code to
user

•  Identify kernel changes to enable more code
motion

•  Generate user-editable driver code

•  Convert user-level driver code to Java or Python

•  Generate kernel driver code from a domain

specific language

The Design and Implementation of Microdrivers

Recovery

•  Detect and recover from failed u-driver

–  Ideally transparent to applications

•  Detection done at interface

–  Parameter checks and timeouts

•  Recovery – compatible with prior work

–  Shadow driver mechanism [Swift et al., 2004]

–  SafeDrive recovery mechanism [Zhou et al., 2006]

9/16/08 29

irqreturn_t pcnet32_int(int,  
void *, struct pt_regs *) {	

 …	
 pcnet32_rx(dev)	
 …	
}	
int pcnet32_start_xmit(struct

sk_buff*, struct net_device*){	
 …	
 p->read_csr(ioaddr, 80);	
 netif_stop_queue(dev);	
 …	
}	

Splitting Example

Latency roots:

•  Interrupts

•  Softirqs

•  Timers

Bandwidth roots:

•  Packet send	
Priority roots:

•  set_mcast_list	

pcnet32.c

Marshaling Incomplete Types

Extend C with 7 marshaling annotations:

– Nullterm	
– Array	
– Combolock	
– Opaque	
– Sentinel	
– Storefield	
– Container	

Guide programmers in placing annotations

Annotation Example

struct pcnet32 private { 	
 const char * name; 	
 int rx_ring_size; 	
 struct pcnet32_rx_head * rx_ring; 	
 spinlock_t lock; ... 	
} 	

Problem Pointers

Problem lock

Annotation Example

struct pcnet32 private { 	
 const char * Nullterm name; 	
 int rx_ring_size; 	
 struct pcnet32_rx_head * 	
 Array(rx_ring_size) rx_ring; 	
 spinlock_t Combolock lock; ... 	
} 	

Field Access Analysis Algorithm

•  Given function F, field accesses are:

–  For each type of structure accessed in F, the

fields accessed for that type

– The field accesses for F’s callees

•  Complications

– Void * fields

–  Indirect calls

Locking

•  Problem: shared data structures require
mutual exclusion

–  Spinlocks not safe outside kernel

–  Semaphores not safe at high priority

•  Solution: ComboLocks

–  Spins when all requesters are in kernel

– Devolves to semaphores when acquired from

user level

ComboLocks

struct combolock { 
 spinlock slock; 
 semaphore sem; 
 int sem_required;  
};	

Kernel:	
cl_lock(combolock l) {	
 lock (l.slock);	
 if (l.sem_required != 0) {	
 l.sem_required++;	
 unlock (l.slock); 	
 sem_acquire(l.sem); 	
 }	
}	

•  Kernel spinlock
protects driver data
and sem_required

ComboLocks from user-level

•  Call into kernel to
acquire lock

•  Synchronize objects
on lock/release

struct combolock { 
 spinlock slock; 
 semaphore sem; 
 int sem_required; 
};	

User:	
cl_lock(combolock l) {	
 lock(l.slock);	
 l.sem_required++;	
 unlock (l.slock);	
 sem_acquire (l.sem);	
}	

