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Abstract

This project considers the problem of efficient verification of synchronous pro-
grams. The underlying idea used is based on a recent proposal : To verify
a property for a system, one method would be to decompose the system into
smaller subsystems, and verify local properties on each of them. We use the
technique of program slicing to decompose the system into smaller subsystems.
In this project, we considered two synchronous languages : Communicating
Reactive State Machines (CRSMs) and Esterel. CRSMs are a paradigm based
on Argos, another synchronous programming language. We have proposed an
algorithm that slices Argos programs and have formally proved that it produces
correct slices. This algorithm was then extended to slice CRSMs. The other
part of the project considers slicing Esterel programs. An attempt has been
made to extend the notion of the Control Flow Graph (CFG) and the Program
Dependence Graph (PDG) for Esterel.
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Chapter 1

Introduction

In this project we discuss the problem of efficient verification of synchronous
programs. Synchronous programs are used in the specification of reactive sys-
tems. A number of synchronous programming languages are used in practice, for
eg. Esterel, Argos etc. [Hal93]. We restrict our attention to Communicating Re-
active State Machines [Ram98], Argos [MR] and Esterel [Ber00a][BG92][Ber00b).

Communicating Reactive State Machines (CRSMs) are a graphical paradigm
based on Argos that are used in the specification of distributed controllers. They
consist of state machines, each of which is based on Argos, and are capable of
communicating amongst themselves asynchronously. CRSMs also allow paral-
lel composition of machines, thus allowing concurrent execution. Esterel is a

popular language that is used in the specification of embedded systems.

In the verification of a reactive system, we are typically given a logical
formula describing a property that the system has to satisfy. This property
may be a safety or a liveness property. Typically, not all parts of the system
may be required to show that it satisfies a given property. As is shown in
[Ram00], we can have a compositional verification strategy. To verify a global
property of a system, decompose the property into a number of local properties
each of which holds in a subsystem. Verification of local properties would be
simpler as subsystems would be smaller than the whole system. In this project,
we try to decompose a big system into a smaller system using the technique of
program slicing. Program slicing has been studied in the context of sequential
programs [Wei84], concurrent programs [NR0O] and programs with channels as
first class objects [TM98],[TM99]. In this project we give slicing algorithms for
Argos, CRSMs and Esterel.



1.1 Organization of this Report

The chapters that follow are organized as follows.

e Chapter 2 covers Communicating Reactive State Machines and Argos.
We give an introduction to Argos, show its features and give an informal

semantics. We also present a brief overview of CRSMs

e Chapter 3 discusses program slicing for sequential and concurrent pro-
grams. This is a prelude to Chapter 4 and Chapter 5, where we use the
concepts developed in this chapter and extend the definition of a slice to
CRSMs and Esterel respectively.

e In Chapter 4, we first consider a subproblem of slicing CRSMs, that of
slicing Argos. We present an algorithm that has been developed to slice
Argos programs. We also present a proof that the algorithm indeed pro-

duces correct slices. This algorithm is then extended to work for CRSMs.

e In Chapter 5, we present the work done in slicing of Esterel programs.
We define formally the notion of a Control Flow Graph and a Program
Dependence Graph for Esterel.

e Chapter 6 gives a summary of the work done and gives pointers for future

work.



Chapter 2

Communicating Reactive

State Machines and Argos

2.1 Introduction

In this chapter, we introduce Communicating Reactive State Machines (CRSMs)
[Ram98] and Argos [MR]. CRSMs consist of asynchronously communicating
state machines. Each machine can be thought of as an Argos program aug-
mented with channels for asynchronous communication. Argos is based on the
popular language Statecharts [Har87], [HN95]. Statecharts are widely used in
the specification of reactive systems. We do not discuss Statecharts here, and
only give a brief discussion of CRSM and Argos. We first discuss Argos, and
then give a description of CSRM, because CRSMs build upon Argos.

2.2 The Program Model

CRSMs and Argos are synchronous programming languages and are assumed
to follow the synchrony hypothesis, which states that the reaction time of the
system to the input signals from the environment is zero. We assume that we
have the system working in an environment where the environment changes at
the occurrence of a clock tick and the system reaction time is very small as

compared to the clock ticks as shown in the figure 2.1

2.3 The Language Argos

The language Argos [Hal93] is very much like Statecharts in that it allows par-

allel composition and hierarchical automata. However, Argos is simpler than
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Figure 2.1: Our System Model.

Statecharts because Argos is a language whose semantics has been completely
formalized, unlike Statecharts, whose semantics seems to be under discussion.
Argos however differs from Statecharts, in that it does not allow inter-level

transitions.

Argos programs consist of two main components : Automata and Operators.
These Automata are used to represent processes that receive signals from the
environment and emit signals to the environment. The automata can be put
in parallel and each of their states can be refined into processes, which are
activated whenever the parent automaton is entered, and killed whenever the
parent automaton is exited. A simple process is described as an automaton,
which consists of states that are named, transitions that are labeled and have
signals that govern when a transition can be taken. These signals come in three

flavors :

e Internal signals : those which have been declared local at either this

process, or in one of it’s ancestors.
e Input signals : those which cannot be emitted by the program.

e Output signals : those which cannot be used as input in any transition of

the automaton.

Every transition in an automaton consists of an input part which may consist
of signals or their negations (except output signals), and an output part which
can only consist of signals. When a process is in a particular state, and a sig-
nal that is on the input part of a transition from that state arrives, the process

takes that transition and emits the output signal associated with that transition.

The other ingredient of Argos programs is operators. The two kinds of

operators allowed in Argos are the ”parallel” operator and the hierarchical



decomposition operator. We shall consider both in detail and describe their

semantics.

2.3.1 Parallel Operator

This is very similar to the parallel composition in Statecharts where we show
two automata running parallelly by drawing them in a box and separating
them by a dotted line. The sets of states of a parallel process is the Cartesian
product of the sets of states of it’s components. Each parallel process works in
an environment that consists of the global environment and the other process.

The semantics is as follows. Figure 2.2 gives two examples :

e Whenever a component can react to a signal it reacts. The communication
mechanism by signal broadcasting. It is useful to think of the sequence
of events happening as follows. The signals of the activated transitions
are taken at once but the system enters the target states only after all
the possible components that can react to the signals in the environment

have reacted.

e When many components of a parallel composition react, the output is the

conjunction of all the component outputs

e Components communicate with each other during a reaction. Internal
signals emitted by a process can be considered as input signals for a

parallelly running process.

2.3.2 Hierarchical Decomposition

The hierarchical decomposition of an automaton considers that each of the
states of that automaton can themselves be considered as processes. Syntacti-
cally, it can be shown by refining the state of an automaton into a subprocess,
or parallely running subprocesses. The semantics rules of this operator are

described below for an automaton A.

e When A enters a state containing a subprocess, this subprocess is acti-

vated in it’s initial state.(it becomes active)

e When A leaves such a state, the subprocess is killed, and all information

about its current state is lost.(it becomes inactive)

e The signals emitted from the active subprocesses of A, if they are not

local to these processes, are visible to A.
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Figure 2.2: Parallel Composition and Equivalent Behavior.

e Any signal visible from A can be seen from an active subprocess of A, if

the subprocess does not have a local signal with the same name.

e A subprocess cannot play any part in the reaction that activates it, how-
ever, it could participate in the transition that kills it, and the interruption

will take place at the end of the reaction.

We show an example of Hierarchical decomposition and it’s equivalent behavior

in figure 2.3

2.4 Causality Problems

There are some paradoxes that may occur when we write Argos programs, we
shall discuss them in brief over here, but for our purpose, we assume that such
paradoxes can be detected by the compiler and so we do not consider these

problems in the forthcoming chapters.

There are two kinds of paradoxes, as shown in figure 2.4. Figure 2.4(a)

shows absence of behavior, If a does not occur then the transition is activated,
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Figure 2.4: Causality Problems in Argos.

and a is emitted, which in turn means that, in the first place the transition
should not have taken place at all. The other situation is described in figure
2.4(b), where either both the parallel components make a transition, or none

makes a transition. This is called implicit non-determinism.

2.5 Semantic Functions

We discuss two possible semantic functions for Argos :

e Input Output Semantics : Here the machine is assumed to be associ-
ated with a function F : P(:)*—P(0)*, where ¢ and o are the inputs and
the outputs of the machine respectively. In case of the example in figure
2.3, the function F is such that F({c}, {b}, {c}, {c, a}) = ({e}, &, ¢, {e}).

e Operational Semantics : We first define the configuration of a machine
to be the maximal set of states that it can reside in at any point of
time. When an input is fed to the machine, it may lead to a change in

configuration. For eg., suppose in figure 2.3 the root state was S and it



was fed with the input sequence ({c}, {b}, {c}, {c, a}) the following is

the configuration at the end of each input fed to the machine :
Initially : {S, A, X}.

After {c} : {S, A, Y}

After {b} : {S, B}.

After {c} : {S, A, X}.

After {c, a} : {S, A, Y}.

2.6 Communicating Reactive State Machines

As previously mentioned, this is a language that builds upon Argos. The differ-
ence here is that we have a number of machines, each of which can be thought
of as an Argos program. They are allowed to communicate with each other
asynchronously by means of channels. When Argos is augmented with chan-
nels, we get CRSMs.

CRSMs are used in the description of distributed control systems consisting
of a number of autonomous subsystems controlling disjoint physical systems,
but at the same time having system-wide control laws. They are becoming pop-
ular because of their properties of concurrency and modularity. Here a brief

overview of CRSMs is given.

A CRSM is a network Nj||Ng||...||Ny, of independent reactive programs or
nodes. Each node has its own reactive interface, separate input output signals
and its own notion of instants. Each node is described by an Argos program.
Thus each of the sub-components has all the features that we described for
Argos, viz. hierarchical decomposition, parallel composition, and signal hiding.
These features are sufficient for describing centralized controllers controlling
local environments. The additional feature that CRSMs add is that of Asyn-
chronous Composition. This feature is essential when we consider controllers
for distributed systems. We introduce special kind of states called rendezvous
states. A rendezvous state indicated a communication with another node via
a channel. The channel name is specified as a label in the state. When we
enter such a state it means that we are initiating an attempt to communicate
via that channel. The node will remain in that channel till the communication

has taken place. Once the communication is completed, exit from the state



takes place through one of the exit transitions from the state. A node of a
simple CRSM is shown in the figure 2.5. This example is drawn from the train

controller discussed in [Ram98].

B

Note : 1. Rendezvous states are shown as circles.
2. cp! means that the signal cp is going to be sent across the channel at that state
3. cp? means that the signal cp is going to be revceived from the channel at that state

Figure 2.5: Node of a CRSM.

2.7 Motivation for the discussion

The question arises, why we discussed all this. We will be discussing, in the
forthcoming chapters, slicing of CRSMs, for which we will consider slicing of Ar-
gos first. To be able to slice the program given to produce a smaller but equiva-
lent machine, we need to understand the semantics of the language clearly. This
chapter provided an overview of the features provided by Argos and CRSMs,
and also briefly discussed the semantics, albeit informally. We shall be using

these concepts in the later chapters.



Chapter 3

Program Slicing

3.1 Introduction

In this chapter, we describe program slicing for sequential and concurrent pro-
grams. Program slicing will later be described for Argos programs, which will
essentially draw from the ideas presented in this chapter, particularly the one

on slicing of concurrent programs.

3.2 Program Slicing in Sequential Programs

In sequential programs, we are often interested acquiring information as to
which lines of the program affect the value that a variable takes at a particular
line in the program. This is solved by slicing the sequential program with respect
to certain criteria which we discuss here. In this section, we are interested only

in programs that terminate.

3.2.1 Slicing Criterion and Definition of a Slice

We define a state trajectory of length k as a finite list of ordered pairs (ny,s1),

., (ng,sx), where each n; is a statement of the program P, and s is a state,
the mapping of variables to their values. Each (n,s) gives the value of the
variables before the execution of n. A slicing criterion of a program P is a tu-

ple < i,V >, where i is a statement in P and V is a subset of the variables in P.

A slice S of a program P on a slicing criterion C = < ¢,V > is any executable

program with the following 2 properties :

1. S can be obtained from P by deleting zero or more statements from P.

10



2. Whenever P halts on an input I with state trajectory 7', then S also halts
on input I with input state trajectory 7", and Projc(T) = Projop(T"),
where CP = <succ(i), V> and succ(i) is the nearest successor to i in the

original program which is also in the slice, or ¢ itself if ¢ is in the slice.

Projc(T) basically considers only those variables from the state trajectory that
are of interest to us. What the definition of the slice claims is that, if we consider
the state trajectory of the sliced program and the state trajectory of the original
program restricted to only those statements that consist of variables that we
are interested in, then these state trajectories will be the same. For a state
trajectory T = t1 to... tp, we define Projo(T) = Proj'¢(t1)...Proj ¢(t,) where,
Proj'c((n,s)) = (n, s|V) if n = i, and the empty string otherwise.

3.2.2 The Slicing Algorithm

The original slicing algorithm, proposed by Weiser in [Wei84], works on the
basis of finding program dependencies. We refer to the set of variables referred
to in a statement ie, occurring on the RHS by REF (n), and the set of variables
whose value is defined by the program statement as DEF(n). On the basis of
this, we define R¢?(n), which is the set of relevant variables at line 7, as all

variables v such that,
l.n=iandvisin V.
2. n is an immediate predecessor of a node m such that either,

(a) v is in REF(n) and there is a w in both DEF(n) and R¢%(m) or,
(b) v is not in DEF(n) and is in R¢®(m).

The statements included in the slide by R¢?(n) are denoted by Sc® and is de-
fined as all those program statements such that R¢®(n+1) N DEF(n) # ¢.
Rc%(n) maps statements to sets of variables while S¢° is a set of statements,
which is called the slice of the program. However, this is not all that there is to
it. We have so far defined an algorithm only if the control flow in the program
strictly starts at the first line, goes through all the lines of the program and
ends at the last line of the program. It is not sufficient to consider control
structures like branching, looping etc. For eg., consider the program

1. READ (X)

22IFX<1

3. THEN Z :=1

11



4. ELSE Z := 2

5. PRINT (Z)
In the above program, if we were to slice with respect to the criterion 3, Z;
then for the slice to correct, we must include statement 2 in the slice as well.
The current model does not consider this. To solve this problem, Weiser con-
siders what is called the inverse dominator of a particular statement, which is
a statement that occurs in every path from the statement of interest to the
exit point of the program. All the lines in the program from the line under
consideration to the nearest inverse dominator are included in the slice. Now,
all the statements influencing the values of the variables in the statements just
included are included in the slice. This procedure is carried on till a fixed point

is reached. We do not go into the details of this method here.

The later versions of slicing algorithms for sequential programs do not per-
form all the calculations that we have done here. They assume the existence
of data dependency and control dependency edges, construct the Program
Dependency Graph. The problem of slicing is reduced to a reachability prob-
lem here. We just trace back the path from the statement of interest to the
starting node of the problem, in the process including all the nodes of the graph
that we encounter. This is considered in detail in the chapter on Esterel slicing,

so we defer a detailed discussion to that chapter.

3.3 Slicing Concurrent Programs

In this section, we introduce the slicing of concurrent programs [NR0OO]. This
algorithm uses the concept of the program dependency graph that we introduced
in the previous section. This algorithm is the one from which a number of ideas

have been drawn for the slicing of Argos programs.

3.3.1 Slicing Criterion and Definition of a Slice

The difference here as compared to the sequential program case is that there
are multiple threads of execution, and the statements of the parallely execut-
ing threads can be combined in any arbitrary order to give a valid execution

sequence.

The slicing criterion for a concurrent program is defined by a triple <t, p,

V>, where t is a thread in the program p and V is the set of variables that we

12



are interested in. Thus given the threaded program dependency graph (TPDG),
we define the slicing criterion as just a node in the TPDG. The various kinds of
edges in the TPDG are the control edges, data dependence edges, loop carried

data dependence edges, and interference edges.

Before we define what we mean by a slice of a TPDG, we give some defini-

tions.

1. A trace in the TCFG (threaded control flow graph) G, of a concurrent
program is ordered set of nodes <nj, ng, ..., ng> that forms a valid

execution path in G.
2. The trace set of G, denoted by Tr(G) is the set of all traces in G.

3. A trace witness in G is an ordered sequence of nodes <nj, ng, ..., ng> in

G, such that it forms a subsequence of some trace in the set Tr(G).

A slice of the TPDG w.r.t a slicing criterion p consists of all nodes q on which
p transitively depends and there exists a trace witness in G for each such q.
Formally,
S(p) = {q| P = <ny, ng, ..., 0>, q = ny—91..—dk-1n, = p,
for 1 <i<k,d; € {cd, dd, id, dd;, for some loop 1 in G}},
where P is a trace witness in G.
In other words, it means that the slice consists of all those statements that

affect the value of p, and hence occur in a trace witness ending with p.

3.3.2 The Slicing Algorithm

There is an important point to be considered here before we discuss the outline
of the algorithm. Interference dependence edges are not transitive. In figure
3.1, we see that the statement 3.1 is dependent on 2.2 and 2.1 is dependent on
3.1. However, 2.1 can never be dependent on 2.2. So during the slicing process,
we must keep track of this fact.

The slicing algorithm is a work-list based algorithm. It maintains a tuple
containing one entry per thread of the program to keep track of the last node
visited in each thread. This tuple changes in each iteration of the program. This
is required because of the problem we just mentioned. Interference dependence
is not transitive, and so we must keep track of the last node visited in each
thread. We must add a node to a thread in the slice only if we find that the

node being added (which affects the value of the node mentioned in the slicing

13
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Figure 3.1: Interference Dependence in a TCFG.

criterion) is such that there is a path from that node to the node corresponding
to the entry for that thread in the tuple we are maintaining.

The slice is calculated incrementally. It starts with the node mentioned in
the slicing criterion and moves backwards along the data dependence, interfer-
ence dependence, control dependence and loop carried data dependence edges,
and in the process adds the nodes obtained to the partial slice obtained All
nodes added using data and control dependence are just added to the slice. For
those node which are obtained by considering interference edges, we look at the
tuple and add the node only if the criterion previously mentioned is satisfied.
This is done till we cannot add any more nodes to the slice at which point the
algorithm terminates. This algorithm has been proved correct. It also produces
minimal slices in that it adds no more nodes to the slice than those which affect

the statement mentioned in the slicing criterion.

3.4 Summary

The question arises now, how are we going to apply these slicing techniques to
slicing Argos programs? Argos is different in the sense that it is a graphical
paradigm. The algorithms presented in this chapter must somehow be extended
to accommodate state machines. A number of questions are to be answered :
What could be the slicing criterion? And what do we mean by a slice of an

Argos program? These questions are addressed in the next chapter.

14



Chapter 4

Slicing CRSMs

4.1 Introduction

The main aim of this project is to extend the notion of a slice to CRSMs, and
present an algorithm that produces a slice conforming to this definition. Since
CRSMs are based on Argos, we first define the slice of an Argos program, give
an algorithm to slice Argos programs, and prove that it produces correct slices.
The algorithm is then extended to CRSMs.

4.2 The Slicing Criterion for Argos Programs

Before we describe the slicing criterion, we must decide for what reasons we
would slice a program written in Argos. Since Argos programs consist of au-
tomata with output, a debugger or a verifier will be interested in the behavior
of the system. The behavior is described by the signals that are output by the
machine, when it is fed with an input sequence. Thus a signal is surely part of
the slicing criterion. Now, if we have additional information about the state of
the system after it’s response to an input sequence, it will certainly help us in
debugging. Thus we must also include the state that the system resides in, in
our slicing criterion.

Advantages of having an output signal only as slicing criterion :

1. More realistic from the viewpoint of an user of the system, who most

probably will have no information about the state of the program.

2. We may not always have precise information about which state the system
is in, for eg. we may just know that the system is in a particular state,

but may not know in which of it’s sub-states it resides in.

15



Advantages of an output signal + state as a slicing criterion :

1. Very much like the slicing criterion in sequential and concurrent programs.
We mentioned not only the variables that we are interested in but also the
line number that we are interested in. Here the parallel of the variable is
the output signal, and the analogue of the line number is the state of the

program.
2. This approach is more useful from a debugger’s point of view.

3. If the state mentioned need not be basic, then this method can be thought

of as a more general version of using just the signal as the slicing criterion.

The slicing criterion was hence chosen as < S,b >, where S is any arbitrary
state of the Argos program, and b is an output signal, whose behavior we want

to study.

4.3 Slice of an Argos Program

Consider an arbitrary input sequence I* (I* is a finite input sequence). Note
that the input sequence is composed of the inputs given to the machine from
the environment at each clock tick. Each member of the sequence can thus in
general be a set of signals. If a signal b is not in the input, then we can assume
the existence of the event b in the environment at that point of time. Consider
a machine M. M is assumed to have a state S and b is assumed to be an output
signal. A slice of the machine M with respect to a slicing criterion < S,b >is

defined as any machine M; such that :
1. M; is obtained by removing zero or more states from M.

2. Let ¢ be the set of signals that can be given as inputs to the machine M.
Let P(i) denote the power set of «. Then (P(:))* is an input sequence to
M. We denote (P(:))* by I* . Let M reside in a state S when I* is fed
to it. My should be such that when I* is run on it, it resides in S, and
the output sequence M[I* | should be such that M[I* |/b = M,[I* |/b, ie.,
restricted to the signal b, the output sequences should match. (here M[]
and M;[] are the functions for the machines M and M; respectively, as

defined in the Input-Output semantics)

More formally : My is any machine such that,
(VI* € Reside (M, I* , S)) : ((Reside (M , I* , S) A (M[I* ]/b) = (M,[I* ]/b))).
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where M; is obtained by removing zero or more states from M, and Reside(M,
I* , S) is a predicate that is TRUE whenever M resides in S after the input

sequence I* is run on it.

Note that we do not say anything about the slice if the machine does not
reside in the state S in the slicing criterion for an input sequence I* . What we
only claim is that ¢f the machine M resides in the state S after I* is executed
on it, then M; also will reside in S and the outputs sequences will match with

respect to the signal b.

4.4 An Example

We present an example of what we mean by a slice in figure 4.1. The slice that
we have given is what we would expect as a slice of the program with respect to
< S§,b >. That is because we are interested in the behavior of the system with
respect to the signal b. We have in the slice shown all possible ways in which
we can produce b, and reside in S§. The slice shown in the figure is precisely

what is generated by our algorithm.

A
xly
foos
C(cy }D An example CRSM
ad | alb
|
A

@ The dlice of the CRSM
c D with respect to <S, b>
|
!
!
!
!

Figure 4.1: A CRSM and its slice.
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4.5 The Slicing Algorithm

We now present an algorithm that given a machine and a slicing criterion pro-
duces a machine that conforms to the definition of the slice that we have just

given. Before that a few terms have to be defined.

e Trigger Edges : These edges are drawn by our algorithm. They are
drawn between two edges such that the output of one affects the input of
another. In other words, if a transition 2 is such that whether it can be
taken or not is dependent on whether another transition 1 is taken then
we draw a trigger edge from edge 1 to edge 2. An example is shown in
figure 4.2

B
A B

T
|
I
I
|
alb —— —+ — — —=>=big
I
I
|
|
I
I

[ ]

Figure 4.2: Trigger Edges.

e Source, Target of a trigger edge : The transition from which the trigger
edge is drawn is the Source, while the transition to which the trigger edge

is drawn is the Target of the trigger edge.

e Source, Target State of a trigger edge : The parent state of the two
states which lie on either side of the source of a trigger edge is called the
Source State of the trigger edge. The Target State is defined similarly. In
the example of figure 4.2, state A is the Source State, and B is the Target
State of the trigger edge.

¢ Highest-Possible-Source-State of a trigger edge is defined by con-

struction as follows :

— For the trigger edge in consideration, write down it’s source and

target states, let us call them Src and Tgt.

— Write down the hierarchy of Src in reverse order till the root state

of the machine.

— Write down the hierarchy of Tgt in reverse order till the root state

of the machine.
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— In the two lists, note the first state (ie. farthest from root state) that

is common to both lists.

— The child of this state in the hierarchy of the Src is the Highest-
Possible-Source-State of the trigger edge.

Let us consider 4.2 as an example. The source state is A and the target
state is B. the hierarchies of these states are {A, S} and {B, S}. The state
that is common to both lists and is farthest away from the root state is
S. the child of S in the hierarchy of the source state is A. Hence A is the

highest possible source state.

Why these definitions were required will become clear when the algo-
rithm is described, however we give a small motivation as to why Highest-
Possible-Source-state was required. Trigger edges can be drawn from one
transition to another, and each of these transitions could be as low down
in the hierarchy as possible. The highest possible source state can be
thought of as the highest level in the hierarchy up to which the trig-
ger edge can “rise” as the trigger of another transition, before it starts

“falling” into the hierarchy of states in which it triggers a transition.

4.5.1 The Main Slicing Procedure

The main idea used in the slicing algorithm is to retain all the transitions that
output the signal b mentioned in the slicing criterion. We will also retain those
transitions that somehow “lead” to these transitions that output b. We examine
each state to see if it “has” inside it a transition that gives and output b. If so,
we refine it straightaway. Otherwise, it is refined only if it contains a transition
that can trigger a local signal - which in turn may trigger the emission of b.

The main procedure that slices the Argos program is the Slice procedure
described in Algorithm 1. This procedure takes as input an Argos program M,
and a slicing criterion of the form < S,b >. It produces as output sufficient
information to construct another program - M; , that conforms to the definition
of slice that we have given. It calls 4 procedures namely Draw-Trigger-Edge,
Top-to-Bottom, Slice- This-Level and Trigger-Edge-Slice which are described in
the following sections.

It must be noted that the machine M given as input can be thought of as
a set of states. To completely specify the machine M, in addition to the set of
states, we also need to mention the transitions, the hierarchical order between

the states, which signals are hidden and at what level of the hierarchy they
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are hidden. The output of the algorithm : slice is given as a set of states.
It is a variable that is declared global, and hence can be accessed by all the
auxiliary procedures. Since the sliced machine is defined to be a subset of M,
the set of states slice must be interpreted as those set of states from M which
are included in the sliced machine M, . All transitions between the states
mentioned in slice that were present in M, are present in My as well. The
hierarchical order between the states must also be maintained. All signals that
were hidden in M remain hidden in M; also. Therefore, the set of states slice

is sufficient to completely specify the machine My .

Algorithm 1 The Main Slicing Procedure : Slice (M, < S,b >)
slice := ¢
Call Draw-Trigger-Edge(M)
Call Top-to-Bottom (< S,b >)
while (S # root(M)) do
S = Call Slice-This-Level (< S,b >)
end while
if (root(M) ¢ slice) then
slice := slice U { root(M) }
end if
Call Trigger-Edge-Slice(M)

Return slice

4.5.2 Auxiliary procedure Draw-Trigger-Edge

This procedure draws the trigger edges. In the following discussion, we describe
a method that computes the trigger dependencies in a precise manner. The
method draws upon the formal definition of encapsulation as suggested in [MR].
Intuitively, a transition is present in the automaton after encapsulation if it is
such that a local signal that is supposed to be present has to be emitted in the
same reaction, and a local signal that is supposed to be absent should not be
emitted in the same reaction.

The algorithm that draws trigger edges must capture the fact that a tran-
sition is triggered by another transition if and only if it is such that the second
transition is triggered by a local signal, which is emitted as a result of the first
transition. Clearly, if there is a state S such that exit from S can be triggered
by a local signal, and the local signal is generated from within S as a result

of some transition between two descendants of S, say A and B, then there has
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to be a trigger edge from the transition between A and B and the transition
triggered by the local signal, leading out of S.

In case we have two automaton working in parallel, drawing of trigger edges
is more complicated. We shall explain our method by means of the example

shown in figure 4.3.

[x]
A B
A0 BO
@ | @
Al : B1
@®@)|dc @| oo
A2 : B2
]
Product Automaton of automata A and B
Note: Transitions Shownas ===~~~ in the product automaton denoteillegal transitions.

Figure 4.3: Drawing Trigger Edges.

e Our algorithm starts off by considering the product automaton. Transi-
tions which have inputs like a.a are not considered legal and are dropped

from the product automaton.

e In the resulting product automaton, we consider the states reachable from
the starting state and only consider the transitions amongst these. In the
example shown in figure 4.3, we consider only those transitions shown in

thick lines.

e Amongst these transitions, look at those transitions which have a local
signal, in this case “c”, in both the input and output part of the transition.
Only the transitions corresponding to this transition in the original ma-
chine will have trigger edges between them. For eg, in figure 4.3, transition
L in the product automaton corresponds to transition 3 and transition 4

in the original automaton. Only those have a trigger edge between them.

It can be seen that this procedure blows up the number of states in the product
automaton. Thus, we do not use this method in our algorithm. We instead

use a less precise method where we draw trigger edges between every pair of
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edges such that the output of the one contains a local signal, say “c” and the
input of the second contains the same local signal. Our method of drawing
trigger edges will draw more edges than are required. For eg. in 4.3, we will
draw a trigger edge from transition 1 to transition 4, and from transition 3 to
transition 4. The former is not not a trigger dependency as is clear from the
product automaton. It must be emphasized that the method we adopt to draw
trigger edges will not result in wrong slices - the slice will only include more

transitions than the minimum number required.

4.5.3 Auxiliary Procedure Top-To-Bottom

This procedure takes a machine whose root state is the state mentioned in
the slicing criterion. It checks if the machine recursively has the signal b (also
mentioned in the criterion) inside it. If it does not have the signal, then we
can return the machine without refining it, because, then, behavior w.r.t b is
maintained. If however, the machine had the signal b, then we include all the
child states in the slice and call the same procedure recursively on each of the
children. The algorithm is described in Algorithm 2. It must however be noted
that Algorithm 2 refers to a computation of has(< S,b >), which is a very
costly procedure, since it recurses down the structure of the machine to search
whether a transition that outputs the signal b is present anywhere. This is
repeated for each recursive call of the procedure, thus making the call to Top-
To-Bottom a very costly one. Hence, we also give in Algorithm 3 and Algorithm
4 an efficient implementation of the same algorithm which does not compute
has(< S,b >) at each step. In this implementation, we check for the presence
of b not recursively, but by only checking if the transitions between the children
of the state under consideration output b or not. However this algorithm is
more complicated to implement, so there is a tradeoff between simplicity of the
procedure and the difficulty of implementation. The algorithm takes as input

an Argos program M whose root state is S.

Algorithm 2 Top-To-Bottom (< S,b >)
slice := slice U { S }
if (has(< S,b>) == TRUE) then
for all (child € S.child-list) do
Call Top-To-Bottom (< child, b >)
end for
end if
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Algorithm 3 Top-To-Bottom (< S,b >)

Call Top-To-Bottom-1 (< S,b >, S)

Algorithm 4 Top-To-Bottoml (< S,b >, caller-state)

if (S == caller-state) then
slice := slice U { S }

end if

if (S.child-list == ¢) then
Return FALSE {basic state}

end if

S.transitions := {t | S; — ! Sy, for some S, Sy € S.child-list}
Temp-slice := ¢
for all (child € S.child-list) do
if (Top-To-Bottom-1((< child, b >, caller-state) == TRUE)) then
Temp-slice := Temp-slice U { child }
end if
end for
for all ((child € S.child-list) | child ¢ Temp-slice) do
if (3t | (t € S.transitions) A (Out(t) == b) A (To(t) == child)) then
Temp-slice := Temp-slice U {child}
end if
end for
if (Temp-slice == ¢) then
Return FALSE
else
slice := slice U S.child-list
Return TRUE
end if
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4.5.4 Auxiliary Procedure Slice-This-Level

This is the procedure by means of which we move up the hierarchy from the
state mentioned in the slicing criterion. We perform a reachability and include
all those states from which the state in the criterion is reachable. Since the
machine may enter these states before it enters the state mentioned in the
slicing criterion, we refine these states in such a way that the behavior with
respect to the signal “b”, mentioned in < S,b >, is retained. This procedure
will not be executed if the state mentioned in the slicing criterion is the root
state of the machine. Its return value is the parent state of the state mentioned

in the slicing criterion.

Algorithm 5 Slice-This-Level (< S,b >)
S.worklist := ¢

if (S.parent == ” AND-state”) then
S.worklist = {st | st = sibling (S)}
else

while (3(ch € sibling(S)) | (ch — S) or (ch — K), for KeS.work-list) do
S.work-list := S.work-list U { ch }
end while
if (S is involved in a cycle in S.work-list) then
S.work-list := S.work-list U { S }
end if
end if
for all (ch € S.worklist) do
Call Top-To-Bottom (< ch, b >)
end for
slice := slice U { S }
Return Parent ( S)

4.5.5 Auxiliary Procedure Trigger-Edge-Slice

This procedure adds those transitions which may affect the emission of the
signal b mentioned in the slicing criterion. We look at those transitions which
directly affect the emission of b and include these in the slice. Then we look
at those transitions which could affect the emission of the signals added in the

previous step. We continue till we are unable to add any more transitions.
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Algorithm 6 Trigger-Edge-Slice(M)
List-Trigger := {t | t is a Trigger Edge}
while (3(t € List-Trigger) | Target-Transition(t) € slice A (Source-state(t)
¢ slice)) do
Call Top-To-Bottom (<Highest-Possible-Source-State(t), b>)
end while

4.6 Another Example

Consider figure 4.4. Clearly even if B and C are not refined, the behavior of
the machine with respect to the signal b remains the same. Thus when we slice
the machine A with respect to the criterion < A,b >, we expect the second

machine shown in 4.4. That is precisely the output of our algorithm.

LAl
B c D E
ﬂ B1 3 ﬂ c1 3 ﬂ D1 =
ale elb

dc | od

m Slicing Criterion : <A,b>
B c D E
| " D1 " El1
de elb
D2 s

Figure 4.4: A CRSM and its slice (with Trigger dependencies).

4.7 Proof of Correctness

In this section, we will prove the correctness of a restricted version of the slicing

algorithm that has been proposed. Recall that we defined the slice of a machine
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M with respect to < S,b >to be another machine M, such that :
(VI* €Reside(M, I* , S)) : (Reside(M; , I* , S) A (M[I* |/b) = (M,[I* ]/b)).

While proving the algorithm, we impose the restriction that the state in-
formation in the slicing criterion < S,b >be the root state of the machine M.
In other words, we are forcing the Reside predicate to be TRUE always. Thus,
ifin < S,b >, S = root(M), then the slice Mg of a machine M is any machine
that satisfies : VI* : (M[I* ]/b = M,[I* |/b). In the proof that follows, we show
that the output of our algorithm satisfies this condition.

Let the machine Mg be the output when the machine M is given as input to
our slicing algorithm. Let I* be the input sequence fed to the machine M and
the machine My . Let M’ and M’ denote the initial configurations of the ma-
chines M and M respectively, and M/ and M/ denote the final configurations
of M and M/ respectively.

Lemma 1: VI*: M/ C M/.

Proof : The proof proceeds by induction on the length of the input I* .

Base Case : 1* is of length 0, ie., M/ = M? and Mg‘ = M:. Hence we are
required to prove M C M!. We define the height of a machine as max(height
of its children) + 1, and set the value of height of the NIL machine = 0. Let A
denote the height of a machine. The base case is proved by induction on A :

Base Case : h = 0. This means that the machine is NIL. For the NIL
machine M’ = M?. Hence M’ C M".

Inductive Case : Assume that M% C M’ for all machines with height < j.
Counsider a machine of A = j. The root state of the machine can either be an
AND-state or an OR-state (as shown in the figure 4.5. Consider both cases

separately :

X . X1 : i X2.X3,..X(k-1) i Xk :
‘ ‘ ¢ 3 ............ : ¢
o o] [

\ L. T
| Ve N ' o f
. Y 3 :

Figure 4.5: Two ways of constructing a machine of height = j
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e OR : In this case, X is the root state of M. It is refined into many states
as shown in figure 4.5. At any point of time, control will reside in exactly
one of the children of X. Say the control resides in 1S. For the machine K,
with root state as 1S, we know that K? C K* by the induction hypothesis.
Our slicing algorithm refines the state X of the machine M if and only
if it “has” the signal “b” inside it (ie. there is a transition between two
descendents of X that emits b). If “b” is present somewhere inside X :

M=K U{X}and M' =K' U{X }.
If “b” is not present anywhere inside X :

M. =X CK' UX =M.
In any case, Mt C M.

e AND : As shown in the figure 4.5, let X be the root state of M. Let it
be refined into a number of states X1, X2,..., Xk. For each Xi, let Pi be
the machine with root state Xi. We know that for each Pi, Pi{ C Pi’. As
in the previous case, if X “has” the signal “b” somewhere inside it, our
slicing algorithm will refine X. In that case :

M = 27 Pif U { X }and M* = )Y PiP U { X }.
In the case when X did not have “b” inside it:

M{ = {X },and M’ = U2} P U { X }.
Hence, M} C M".

Inductive Case : Here we show that M C M/ for inputs of non-zero length.
Assume that for inputs of length (1-1) the relation is satisfied. We must show
that even after the i*? input has arrived, the same relation is satisfied. Assume
that after an input of length (1-1) is consumed, the configuration of the machine
M changes from M’ to N, and the configuration of the machine M, changes
from M to N,. Once the i input has been absorbed, the configurations of M
and M, change to Mfand M{ respectively. We use the notation = to denote a
macro-step transition, and — to denote a micro-step transition. Hence :

M! =* N = M/ and M% =* N, = M/,
We know that Mg C M! and N, C N. The i*? input causes the transition N® =
M{ and N = M/. We look at the micro-steps that form part of the transition
on the i input. Let after the i*» micro-step, the configuration be denoted by
©*. Hence the sequence of micro-steps in the machine M looks like :

E=pud s pl = p? = pP = Pt
where ;0 stands for N, and P! stands for M/. From £, we can construct a

sequence &; for Mg as follows :
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e Let the first configuration in the sequence be Nj.
e For each u*,i€{1, 2, ..., (p+1)} define p® = { x [ x e M; Ax € u* }

o Let M/ = yPt!

Define ¢ = Ny — pl — p2 — ... pul — pptl

Compress the sequence ¢ as follows :

e If the sequence contains the subsequence Ny — i and N, = u’ for some

i, then replace Ny — u’ by Nj.

e If the sequence contains the subsequence u? — pJ then replace the sub-

sequence by p.

The final sequence, after transformation is &;. Let :
£ =Ny vl w2 vk 5 vk (U = 4 for some j, and vFFT! = MY).

Clearly, the constraint M/ C M/ has been met by the sequence &;. We only
have to show that the sequence &; is a legal sequence for M . A sequence of
micro-steps, such as £, is legal if and only if the following condition is satisfied :
If there is a transition u* — p**! that is triggered by a local signal b, then there
must be a j < i such that the transition u/ — u/*! outputs the local signal b.
To show that & is a legal sequence for My , we proceed as follows :

Consider a part of the sequence & : pl — pttt (ub # pit!) that is triggered
by a local signal “c”. Clearly the transition pu® — p*t! in ¢ is also triggered
by “c”. Hence, since ¢ is a legal sequence of micro-steps for M, there exists
j < isuch that w/ — /! is a change in configuration caused by a transi-

“c”. Clearly then, there is a trigger edge from the transition

tion that outputs
corresponding to the configuration change u/ — p/*! to the transition corre-
sponding to the configuration change u* — p**! in both the machine M and
the machine M; . Therefore, the slicing algorithm would include the transi-
tion corresponding to the configuration change p/ — p/*! in the machine M; .
Hence the configurations p and p/*! in ¢ will be distinct. Hence, even in the
sequence &', if a transition is triggered by “c”, there will be a transition that
occurs earlier in the sequence and outputs “c”. The same property is followed
in the sequence & as well. Hence &; is also a legal sequence. Thus, lemma 1 is

proved.

Lemma 2 : The machine M generates the output “b” on an input I* if

and only if the machine My generates the output “b” on the same input I* .

28



Proof : The proof proceeds by induction on the length of the input
sequence I* . The base case is when the input sequence is of length 0. In this
case, both Machine M and machine My do not generate the output signal “b”.
Hence the base case is proved. Consider that the lemma, is true for all input
sequences of length (1-1). We will show that on the i*® input the machine M
will generate “b” if and only if the machine M, generates “b” on the i input.
For this purpose, assume that the configurations of the machines M and M;
after absorbing the inputs of length (I-1) are N and N respectively. Let the
final configurations after absorption of I* be Mfand M/respectively.

(<) : Suppose the machine M, generates the output “b” on the i** input.
Let this output “b” be generated as a result of a transition between two states
A and B. Clearly AeN; and BEM£. Since Ny € N and M{:g Mf(from Lemma
1), AeN and BEM/. Hence, the same transition will be taken on the machine
M, and so the output “b” is generated on the i** input.

(=) : Suppose the machine M generates the output “b” on the i’ input.
Let this output “b” be generated as a result of a transition between two states
A and B. Clearly AEN and BEM/. If AEN,, then the same transition will be
enabled in M as well. Hence the output “b” is generated in My as well. It is
not possible that A¢N; since Ny C N, and all transitions which generate “b”
as output are included in M; by the algorithm.

Hence the lemma 2 is proved. Lemima 2 is precisely the statement of correctness

that proves the correctness of My as a slice of M.

4.8 Is the slice minimal ?

There are two aspects desired of any slicing algorithm : that of correctness,
and that of producing minimal slices. We have already shown the correctness
of the algorithm for a special case, we now come to the notion of minimal slice.
A minimal slice My of a machine M would be a machine such that removal
of any state from the My will result in a machine that does not conform to
the definition of the slice. It can be seen from the example given in figure 4.4
that the algorithm given does not produce minimal slices, as in the example, we
could remove the states B and C from the final machine - and yet be left with
a machine that obeys the definition of a slice. Consider also figure 4.6. Here
we could have included in the slice (with respect to < X,b >) just the states A

and B. However, our slicing algorithm includes all the siblings of A and B.
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Figure 4.6: Non-minimal slices produced by the slicing algorithm.

4.9 Extending the algorithm - Slicing CRSMs

Now that we have an algorithm that slices Argos programs, we can attempt to
slice CRSMs using ideas similar to the ones employed in the slicing of Argos.
We need to arrive at a slicing criterion and define what we mean by the slice of
a CRSM.

4.9.1 The slicing criterion

CRSMs are usually used in the specification of distributed controllers. Each of
the distributed components communicates with the others by means of chan-
nels. The input and outputs of each component are not visible to the other
components.

The slicing criterion that we chose was very similar to the one chosen for
Argos. A CRSM is typically a set of machines < My, Mo, M3, ..., M, >. The
slicing criterion is < M;, S,b >, where i€{1, 2,..., n}, and S is a state (not a
rendezvous state) in M;. b is the signal whose behavior we want to retain in the
slice of the CRSM. It must however be noted that b is a signal that is local to
only the machine M;. So when we slice the CRSM with respect to this slicing

criterion, we will be studying only the local properties of the machine M;.

4.9.2 Definition of a slice of a CRSM

The slice of a CRSM Ni||Ns||...||Ny, with respect to a slicing criterion <
N;, S,b >, i€{1, 2,..., m} is defined to be a CRSM M;||Ma||...||M,, where
each M; is associated with a unique N; by a function f:{1, 2,..., q} = {1, 2,...,
m} such that j = (i), and

(VIFI3 ... I}, € Reside (Ng, S, If)):(Reside (M, S, I}) A (Ng[I;]/b = M, [I¥]/b))
where f(p) = k. The Reside predicate has the same semantics as it had in the
case of Argos - however there is a difference. In this case, it is not just the

machine N; running in isolation. It may have works with other machines that
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are independent and there may be points where two machines may synchronize
by channel communication. That is the reason why we did not quantify over
just the input sequence Iy, but quantified over the set of input sequences that
are run over each distributed component. In the slice, a machine M, will be

fed with the input sequence I; where f(a) = b.

4.9.3 The Slicing Algorithm for CRSMs

The idea used in slicing a CRSM with respect to a criterion < Ng,S,b > is
very similar to the idea used in Argos. We first consider the machine N;. We
then convert N to an Argos program P by considering the rendezvous states
as “normal” states and slice P with respect to the criterion < S,b > by using
the Argos slicing algorithm. This operation will include all transitions in Ny
which generate b, and also all transitions from which these can be reached.
However, since channel communication is present in CRSMs, we must take care
of channel dependencies. Exit from a rendezvous state can occur only when the
channel communication (which involves handshaking) is complete (barring the
case where we have pre-emption). Thus, if the Argos slicing algorithm includes
in the slice a rendezvous state, say A! from the machine Nj, then we must look
for the rendezvous state A7, from some other machine N; and include it in the
slice of the CRSM. In addition to this, we must also include in the slice all
those transitions in N; from which we can reach the state A?. This procedure

continues till no more rendezvous states can be added to the slice.

Algorithm 7 CRSM-slice (N1||Na||... || Nm, < Nk, S,b >)
CRSM-slice := ¢
for all (N; such that 1<j<k) do
Draw-Trigger-Edge(N)
end for
Call Draw-Rendezvous-Dependency-Edges (N1||Na|| ... ||Nm)
CRSM-slice := CRSM-slice U Call Argos-Slice(Ng, < S,b >)
while (3r | r is a rendezvous dependency edge between A and B A A €
CRSM-slice € B ¢ CRSM-slice) do
Call Rendezvous-Slice (N;, B) {Here B is a state in the machine N;}
Call CRSM-Trigger-Edge-Slice(V;)
end while
Return CRSM-slice
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4.9.4 Explanation of the procedures used

The procedure Draw-Rendezvous-Dependency-Edges draws trigger edge like de-
pendencies between a pair of channels. The difference here is that the de-
pendency is undirected, because if a channel is included, it means that its
counterpart also has to be included to complete the handshake to complete
communication. The procedure Argos-Slice(Ng, < S,b >) is a procedure that
works exactly like the slicing algorithm for Argos programs (Algorithm 1). The
difference here is : in CRSMs, channels can also appear as states (rendezvous
states). Algorithm 1 does not consider such a case. Hence we define proce-
dure Argos-Slice(Ng, < S, b >) which does not differentiate between rendezvous
states and ordinary states, and includes both in the set that is returned as the
output. Rendezvous-Slice (N;, B) works as shown in Algorithm 8. The pro-
cedure CRSM-Trigger-Edge-Slice(N;) is very similar to the Algorithm 6, but
differs in that it does not differentiate between normal states and rendezvous
states. The procedures Rendezvous-Slice and CRSM-Trigger-Edge-Slice, to-
gether algorithm 7, include in the slice all those transitions from N; from which

the rendezvous state B is reachable.

Algorithm 8 Rendezvous-Slice (N;, B)
1:=B
while (i != root(N;)) do
CRSM-slice = CRSM-slice U {all siblings of i (rendezvous and normal)}

i := parent(i)

end while

Algorithm 9 CRSM-Trigger-Edge-Slice (N;)
List-Trigger := {t | t is a Trigger Edge in machine N;}
while (3(t € List-Trigger) | Target-Transition(t) € CRSM-slice A (Source-
state(t) ¢ CRSM-slice)) do
Call CRSM-Top-To-Bottom (<Highest-Possible-Source-State(t), b>)

end while

4.10 Summary

This completes the discussion on the slicing of CRSMs and Argos. The al-
gorithm that slices CRSMs is not a minimal algorithm. It can however be

improved by using the idea suggested in [NROO], that interference dependence
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Algorithm 10 CRSM-Top-To-Bottom(< S, b >)
CRSM-slice := CRSM-slice U { S }
if (has(< S,b>) == TRUE) then
for all (child € S.child-list) do
Call CRSM-Top-To-Bottom (< child, b >)
end for
end if

is not transitive. We can draw a parallel between concurrent programs and
CRSMs by arguing that each thread of a concurrent program is like a node
in the CRSM, and that rendezvous dependency edges are like the interference
dependence edges. Then a slicing algorithm for CRSMs on the lines given in

[NROO] will give smaller slices.
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Chapter 5
Slicing Esterel

In this chapter we consider the problem of slicing Esterel [Ber00a], [BG92],
[Ber0Ob]. We extend the traditional tools used in program slicing, such as
Control Flow Graphs (CFGs) and Program Dependence Graphs (PDGs), to

slice esterel programs.

5.1 The Esterel Syntax and its intuitive semantics

In the discussion that follows we will limit ourselves to Pure Esterel, where the
information carried by a signal is limited to its presence/absence status. In
full Esterel, signals can carry values of arbitrary types as well. A Pure Esterel
program (module) has an input-output interface and an executable body as
shown :

module M;

input names;

output names;

statement

end module

An input event specifies the presence/absence of a input signal. The pro-
gram reacts by computing and output event : where it assigns a status to each
output signal. The reaction - as in other synchronous languages - is instanta-

neous and a reaction is called an instant.

5.1.1 The Language

The kernel language that we will be using is :

S ::= nothing
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emit S
pause
present S then p else q end

suspend p when S

p; q
loop p end
pllaq

trap T in p end
exit T

signal S in p end

‘:” binds tighter than ‘||’. ‘[’ and ‘]’ can be used to group statements in arbitrary
ways. Both the then and the else partsin the present clause are optional.
All other constructs in Esterel are derived from these constructs.

5.1.2 Intuitive Semantics

The status of an input signal is determined only by input events and explicit

emission of an input signal using emit is disallowed.
e nothing does nothing and terminates immediately.

e pause pauses for one reaction and terminates at the next.

emit S instantaneously broadcasts the signal S, and terminates imme-

diately. The emission is valid for that instant only.

present S then p else q end starts p immediately if S is present in

that instant, otherwise it starts q.

suspend p when S : Here “S” is a guard statement. The guard controls
the execution of the statement p in every instant except the first. If p
does terminates or exits, then so does the entire suspend statement. If p
has paused at the first instant, then as long as p remains active the guard
signal is tested for its presence. If S is present, the p is not executed and
is kept unchanged till the next instant. If S is not present, then p receives

the control for that instant.

e p; q : Here the control flows to p and the statement behaves like p as
long as p is active. After that the statement behaves like q, except in the

case when p exits a trap, when the statement q is discarded.
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e loop p end immediately starts the body p. When p terminates (if it
does), it is restarted again. The body of a loop statement is not allowed

to terminate instantaneously when it is started.

e pllg immediately starts p and q in parallel. The statement is active as
long as one of its branches is active. When any branch exits a trap, then
entire statement exits the trap. If two statements exit distinct traps at
the same instant, then the parallel statement exits the outermost of the

traps.

e trap T in p end defines a lexically scoped exit point for p. The trap
statement starts the body p and behaves as p till it terminates or it

executes an exit statement.

e exit T statement instantaneously exits the trap T. The corresponding
trap statement is terminated unless an outer trap statement is also con-

currently exited.

e signal S in p end immediately starts the body p with a fresh signal

S overriding one that may already exist.

5.2 The Inadequacy of the Traditional Approach

In traditional program slicing, we first construct the CFG of a given program,
and from there, we construct the PDG by observing various kinds of dependen-
cies such as control dependency, data dependency etc. The PDG is very well
defined for traditional programming language constructs such as if statements,
while statements etc. The problem in slicing Esterel using the traditional
method is that these concepts such as the CFG, PDG etc. are not defined for
the constructs in Esterel. In fact, the definition of control dependency that we
have proposed for Esterel is different from the traditional definition given in the
literature. We will also introduce new kinds of edges called time dependency
edges while drawing the PDG. We will however stick to the traditional back

propagation algorithm for slicing.

5.3 Slicing Criterion and Definition of a Slice

The slicing criterion we chose for an esterel program was <line number,

signal>. The line number is an optional information and can be avoided as
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well, in which case, we use the same criterion with the line number getting the
value ¢.

Suppose S is an esterel program, and I; is the input vector at the i** in-
stant, ie., it tells the absence/presence status of the inputs at the it* clock tick.
Suppose I* = U;>ololy .. .I;. We give a different definition of a slice for each of
the slicing criteria, ie. where we have a line number in the slicing criterion, and
where we do not. An esterel program S, that is a subset of S is considered to
be a slice of S if it satisfies the following definitions :

For slicing criteria of the form < ¢, b> :

VI* . ( O(S, I*)/b = O(S', I*) /b)
For slicing criteria of the form <line-number, b> :
(VI* €Possible-to-Reach(l, S, I*)) : ( O(S, I*)/b = O(S', I*)/b)
The predicate Possible-to-Reach(l, S, I*) is TRUE for all input sequences I*
which cause the control to reside at a point m in the program, and there is a

valid execution path of the program such that it is possible to reach [ from mi.

5.4 Outline of the Slicing Algorithm

e Make the CFG of the given program.

e Draw the dependency edges - these are of various kinds : control depen-
dence, time dependence, loop carried time dependence, trap-exit edges

and signal dependence.
e Draw the PDG

e Now given the slicing criterion, just trace back the path using the depen-

dency edges

In this project although we have not formally proved that this approach works,
we have tried it out for a number of examples and it seems to work. We have
however given an exact definition of CFGs and the dependency edges, and
shown how to draw the PDG.

5.5 Control Flow Graph (CFG)

A control flow graph of an esterel program shows how control flows from one
construct to another. The flow of control through each esterel construct is

shown in the figure 5.1 Note that each of these structures is a black box with a
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single entry edge and zero or more exit edges. In the figure, En edges are the
entry edges into the structure, Ex edges are the normal exits from the structure
and TrEx are the trap exits. The Trap-Exit structure however requires some
explanation. Ex1 edges correspond to the normal exits from the program body
p. TrEx2 corresponds to exit point from p corresponding to the exit T state-
ment, Ex1 corresponds to the normal exits and TrEx1 corresponds to trap
exits from p other than those corresponding to exit T. For the suspend clause
however, a different procedure is followed. Suppose the statement is suspend
p when S, we break up p into a number of pause free blocks By, Bo, Bs, ... as
shown in the figure 5.2. These blocks may be arbitrarily interconnected with
each other. The suspend p when $ structure is then replaced by the structure
shown in figure 5.2. The interconnections between the pause free blocks are
retained in the new structure as well.

We draw a dummy node called start. An edge leading out of this node is
connected to the entry point of the first node of the program. We also have a
dummy node called finish. The exit point from the last node in the program

is connected to this node. This completes the specification of the CFG.

5.6 Dependency Edges and the PDG

Now that we have described the CFG construction, we describe the construction
of the PDG. The PDG is constructed by adding various kinds of dependency
edges to the CFG. All the analysis to obtain the dependency edges will now be
based on the properties of the CFG. We describe the various kinds of depen-

dency edges and also describe how to go about drawing them.

5.6.1 Control Dependency Edges

In Esterel, we define a control structure to be one of the following nodes from
the CFG : start, present X (for some signal X), trap T, loop, co-begin,
Theta;. The end of these control structures in the CFG is denoted by the
nodes finish, end, end, end, co-end. We do not have any explicit structure
to denote the end of the Theta; nodes since when the threads end, the do so
directly into the co-end node, and hence that serves as the control structure

to denote the end of a thread. A node j is control dependent on node 4 if :
1. There is a path ¢+ —* j in the CFG.

2. 7 is a control structure.
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3. There are no more control structures or ending of control structures on

the path from 7 to j.

If a node j is control dependent on a node ¢, in the CFG, we draw a control

dependency edge from node 7 to the node j.

5.6.2 Loop-Exit edges

These edges are drawn from exit nodes to loop nodes. We have identified
the following condition for which these edges must be drawn. Consider the

structure :

trap T in
<stmt>

end

A loop-exit edge is drawn from every exit T node in <stmt> to every loop
node in <stmt>.

5.6.3 Time Dependency edges

These edges are drawn from a pause node to another node. A node j is time

dependent on a node 7 (which must be a pause node) if :
1. There is a path ¢ —* j in the CFG.
2. Node j is the post-dominator of node 3.

3. There are no more pause statements on the path from i to j.

5.6.4 Loop Carried Time Dependency Edges

These occur only if there is a loop in the program. In this case, we have a path
from a node 7 to a node j, where 7 and j are nodes within a loop, then we have
a path from the node j to the node 7 as well. Hence we expand out the loop
once, and examine the resulting structure for time dependence. The new edges

that are added are called loop carried time dependence edges.

5.6.5 Signal Dependency Edges

These edges are drawn from an emit M statement to a present M statement.
The edge on a present M tells us which emit nodes can potentially affect the

presence of M when the control of the program is at that present statement.
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Thus they are drawn only when the present and emit nodes are on different
threads of a parallel construct. A naive way to draw these edges would be
to draw an edge from an emit B statement on one thread to a present B
statement in every parallely working thread.

We can however do better with a little more analysis. Break up each thread
into a number of pause free blocks, and number them as shown in the figure
5.3. We can construct a graph with A;’s and B;’s as nodes. An edge is drawn
between two nodes A,, and B, in this graph if and only if an emit statement
in block A, can affect the execution of a present statement in block B,, or
an emit statement in block B, can affect the execution of a present statement
in block A,,- Now suppose we have an emit M statement in block A;. We
draw signal dependency edges from this emit M node to all those present M
statements in blocks B; such that B, is adjacent to block A; in the graph we
constructed. As an example, we consider the program given below. In figure
5.3 we have given a portion of the CFG and have shown the pause free blocks
and the signal dependency edges. If we had used the ad-hoc method, we would
have also drawn the signal dependency edge between the emit N in By and the

present Nin Aj.

module example:
inputoutput N, I;
output M, J, A, B;
[
loop
emit M;
present N then emit I else emit J end;
pause;
emit I;
pause;

end

loop
present I then emit A else emit B end;
pause;
emit N;
pause;
emit N;

pause;
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present I then emit B else emit A end;
pause;
end

]

end module

5.6.6 The slicing algorithm

Now to slice the program, we just trace back the path from the node of interest
to the start node along the dependency edges we just drew, and include all the
nodes we encounter into the slice. If there was a dependency edge from node ¢
to node j, and node j was included in the slice, node ¢ also gets included in the
slice. This procedure continues till no more nodes can be included in the slice.
If we used a slicing criterion of the form < line — number, signal >, then we
would start of with just one node in the slice and trace back the path to the
start node. If however, we used a slicing criterion of the form < ¢, signal >,
then we would have to include all the emit signal nodes in the slice, and

repeat the procedure for each of these nodes.

5.7 An Example

Consider the car controller program shown below. We have not shown the CFG
of this program, however the PDG is shown in figure 5.4. We slice the program
with respect to the signal control_throttle. The statements marked <— are
not included in the slice. These correspond to the shaded statements in the
PDG. Note that if we just include the statements from the PDG we do not get
a syntactically correct program. Some amount of post-processing is required to

get correct programs.

module car_controller :
input ignition_on,ignition_off,accel;
input door_opened, door_locked;

output alarm,control_throttle,door_lock;

loop
trap ABORT1 in

[
trap AWAIT1 in
loop
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pause;
present ignition_on then exit AWAIT1 end;
end
end;
emit door_lock; YA J——
loop
trap AWAIT2 in
loop
pause;

present door_locked then exit AWAIT2 end;

end
end;
trap ABORT2 in
L
loop
pause;
present accel then emit control_throttle2 end;
end
I
loop
pause;
present door_opened then exit ABORT2 end;
end;
]
end;
end;
emit alarm; /AR C—
emit door_lock; YA S
I
loop
pause;
present ignition_off then exit ABORT1 end;
end;

]
end;
end;

end module
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Chapter 6

Summary

6.1 Synopsis

This project has covered in detail the problem of slicing CRSMs, Argos and
Esterel. A slicing algorithm was given for Argos and was proved to produce
correct slices. This algorithm was extended to give a slicing algorithm for
CRSMs. For Esterel, the definitions of the CFG and the PDG, have been

formalized.

6.2 Future Work

The following work remains to be done :

e The slicing algorithm that has been proposed for Argos is not minimal.

It can be extended/modified so that minimal slices are produced.

e A formal proof of correctness of the slicing algorithm for CRSMs has to

be given.

e We have not precisely characterized what we mean by pause free blocks
in the definition of the PDG for esterel programs. A formal definition of

these pause free blocks on the lines of basic blocks is awaited.

e A proof of correctness of the slicing algorithm for Esterel programs also

remains to be given.
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