
Enforcing Authorization Policies
using Transactional Memory

Introspection
Arnar Birgisson
Úlfar Erlingsson

Reykjavik University

Mohan Dhawan
Vinod Ganapathy

Liviu Iftode
Rutgers University

Take home slide

We can utilize the mechanisms of
Software Transactional Memory

to greatly improve
security policy enforcement

Security policy enforcement

Common difficulties
with policy enforcement:

Difficulty 1
 Time of check vs. time of use

Difficulty 2
 Correctly handling failures

Difficulty 3
 Ensuring complete mediation

if (allowed(principal, resource, operation)) {
 perform operation on resource
}

Policy enforcement difficulty 1
Time of check vs. time of use

4

if (allowed(principal, resource, operation)) {
 perform operation on resource
}

Policy enforcement difficulty 1
Time of check vs. time of use

4

if (allowed(principal, resource, operation)) {

 perform operation on resource
}

Policy enforcement difficulty 1
Time of check vs. time of use

4

if (allowed(principal, resource, operation)) {

 perform operation on resource
}

Other thread may run here!

Policy enforcement difficulty 1
Time of check vs. time of use

5

if (allowed(principal, resource, operation)) {

 perform operation on resource
}

Other thread may run here!

Interleaving code may invalidate the check

Policy enforcement difficulty 1
Time of check vs. time of use

Need a synchronization mechanism.

5

if (allowed(principal, resource, operation)) {
 perform operation on resource
}

Policy enforcement difficulty 1
Time of check vs. time of use

5

if (allowed(principal, resource, operation)) {
 perform operation on resource
}

Solution for difficulty 1
Software Transactional Memory (STM)

6

if (allowed(principal, resource, operation)) {
 perform operation on resource
}

atomically {

}

Solution for difficulty 1
Software Transactional Memory (STM)

6

if (allowed(principal, resource, operation)) {
 perform operation on resource
}

atomically {

}
Uses parallel, speculative execution

Solution for difficulty 1
Software Transactional Memory (STM)

6

if (allowed(principal, resource, operation)) {
 perform operation on resource
}

atomically {

}
Uses parallel, speculative execution

Monitors all access to memory

Solution for difficulty 1
Software Transactional Memory (STM)

6

if (allowed(principal, resource, operation)) {
 perform operation on resource
}

atomically {

}
Uses parallel, speculative execution

Monitors all access to memory
Can roll back and retry on conflict

Solution for difficulty 1
Software Transactional Memory (STM)

6

if (allowed(principal, resource, operation)) {
 perform operation on resource
}

atomically {

}

STM guarantees atomicity and isolation of
atomic blocks.

Solution for difficulty 1
Software Transactional Memory (STM)

6

Transactional Memory
Introspection (TMI)

Utilizes the mechanisms of
Software Transactional Memory
— such as its bookkeeping —

 to greatly improve
security policy enforcement

Where TMI fits in with STM

CommitTX body Contention Mgr.

Log

Conflict

Rollback & Retry

OK

8

Where TMI fits in with STM

CommitTX body Contention Mgr.

Log

Conflict

Rollback & Retry

OK

8

Where TMI fits in with STM

CommitTX body Contention Mgr.

Log

Conflict

Rollback & Retry

OK
Authoriz. Mgr.

Allow

Policy

Denied

Abort & Stop

9

TMI

Where TMI fits in with STM

CommitTX body Contention Mgr.

Log

Conflict

Rollback & Retry

OK
Authoriz. Mgr.

Allow

Policy

Denied

Abort & Stop

9

if (allowed(principal, resource1, op1)) {
 perform op1 on resource1
} else {
 clean up and report error
}

Policy enforcement difficulty 2
Error handling

10

if (allowed(principal, resource1, op1)) {
 perform op1 on resource1
} else {
 clean up and report error
}

if (allowed(principal, resource2, op2)) {
 perform op2 on resource2
} else {
 clean up after op1;
 clean up after op2 and report error
}

Policy enforcement difficulty 2
Error handling

10

if (allowed(principal, resource1, op1)) {
 perform op1 on resource1
} else {
 clean up and report error
}

This quickly becomes hard to manage

if (allowed(principal, resource2, op2)) {
 perform op2 on resource2
} else {
 clean up after op1;
 clean up after op2 and report error
}

Policy enforcement difficulty 2
Error handling

10

• Error handling accounts for a large fraction
of server software, over two-thirds [IBM’87]

• Exception handling code itself is prone to
errors [Fetzer and Felber ’04]

• SecurityException is the one most often
handled incorrectly [Weimer & Necula OOPSLA’04]

Policy enforcement difficulty 2
Error handling (cont’d)

11

if (allowed(principal, resource1, op1)) {
 perform op1 on resource1
} else {
 clean up and report error
}

if (allowed(principal, resource2, op2)) {
 perform op2 on resource2
} else {
 clean up after op1;
 clean up after op2 and report error
}

Policy enforcement difficulty 3
Complete mediation

12

if (allowed(principal, resource1, op1)) {
 perform op1 on resource1
} else {
 clean up and report error
}

if (allowed(principal, resource2, op2)) {
 perform op2 on resource2
} else {
 clean up after op1;
 clean up after op2 and report error
}

Easy to forget or miss checks in complex code

Policy enforcement difficulty 3
Complete mediation

12

• A real problem in current practice

• Bugs of this kind found in the Linux kernel,
page_cache_read did not check for file
permissions [Zhang et al. USENIX Security ‘02]

• Decentralized, ad-hoc hard-coded access
checks, leads to errors when code changes.

• Also a problem in Linux [Jaeger et al. ’04]

Policy enforcement difficulty 3
Complete mediation (cont’d)

13

TMI solves these difficulties
and

simplifies application code

 Handling errors with STM abort
atomically {
 if (allowed(principal, resource1, op1)) {
 perform op1 on resource1;
 } else {
 clean up and report error
 }

 if (allowed(principal, resource2, op2)) {
 perform op2 on resource2;
 } else {
 clean up after op1;
 clean up after op2 and report error
 }
}

15

 Handling errors with STM abort
atomically {
 if (allowed(principal, resource1, op1)) {
 perform op1 on resource1;
 }
 if (allowed(principal, resource2, op2)) {
 perform op2 on resource2;
 }
}

15

 on abort {
 report error; // no cleanup necessary
}

 Handling errors with STM abort
atomically {
 if (allowed(principal, resource1, op1)) {
 perform op1 on resource1;
 }
 if (allowed(principal, resource2, op2)) {
 perform op2 on resource2;
 }
}

15

Complete mediation and decoupling
of enforcement code

atomically
 if (allowed(principal, resource1, op1)) {
 perform op1 on resource1;
 }
 if (allowed(principal, resource2, op2)) {
 perform op2 on resource2;
 }
} on abort {
 report error; // no cleanup necessary
}

 {

16

 [principal]

Complete mediation and decoupling
of enforcement code

atomically
 if (allowed(principal, resource1, op1)) {
 perform op1 on resource1;
 }
 if (allowed(principal, resource2, op2)) {
 perform op2 on resource2;
 }
} on abort {
 report error; // no cleanup necessary
}

 {

16

 [principal]

Complete mediation and decoupling
of enforcement code

atomically
 perform op1 on resource1;
 perform op2 on resource2;
} on abort {
 report error; // no cleanup necessary
}

 {

16

 [principal]

Complete mediation and decoupling
of enforcement code

atomically
 perform op1 on resource1;
 perform op2 on resource2;
} on abort {
 report error; // no cleanup necessary
}

 {

The TMI reference monitor is invoked
- on every security-relevant memory access
- before every transaction commit

16

 [principal]

Complete mediation and decoupling
of enforcement code

atomically
 perform op1 on resource1;
 perform op2 on resource2;
} on abort {
 report error; // no cleanup necessary
}

 {

The TMI reference monitor is invoked
- on every security-relevant memory access
- before every transaction commit

16

 [principal]

Complete mediation and decoupling
of enforcement code

atomically
 perform op1 on resource1;
 perform op2 on resource2;
} on abort {
 report error; // no cleanup necessary
}

 {

The TMI reference monitor is invoked
- on every security-relevant memory access
- before every transaction commit

16

 [principal]

Complete mediation and decoupling
of enforcement code

atomically
 perform op1 on resource1;
 perform op2 on resource2;
} on abort {
 report error; // no cleanup necessary
}

 {

The TMI reference monitor is invoked
- on every security-relevant memory access
- before every transaction commit

A TMI authorization manager must make a policy
decision — but can do so at any time before commit.

16

Policy evaluation in TMI

before commit of each transaction T {
 for (resource, op) in T.log {
 if (not allowed(T.principal, resource, op)
 abort T;
 }
}

• TMI authorization manager evaluates the policy

• Supplied by the programmer, decoupled from
application logic

• Invoked on all accesses to sensitive resources.
Complete mediation for free.

17

Variants of authorization managers

CommitTX body Contention Mgr.

Log

Conflict

Rollback & Retry

OK

18

Variants of authorization managers

CommitTX body Contention Mgr.

Log

Conflict

Rollback & Retry

OK

Eager

Validate access

Denied
Abort & Stop

18

Variants of authorization managers

CommitTX body Contention Mgr.

Log

Conflict

Rollback & Retry

OK

Lazy

Log metadata
Validate log

Denied

Abort & Stop

18

Variants of authorization managers

CommitTX body Contention Mgr.

Log

Conflict

Rollback & Retry

OK

Overlapped

Authorization Thread

Send metadata

Denied

Abort & StopSend
decision

18

• Extends Sun’s DSTM2 library for Java
[Herlihy, Luchango and Moir OOPSLA’06]

• Programmer specifies security metadata

• Pluggable authorization mgr. receives metadata

• Eager, lazy, overlapped or custom authoriz. mgr.

• Adds less than 500 LOC to DSTM2

Implementation
19

Evaluation
20

GradeSheet: 900 LOC, simple enforcement code,
1 atomic block

Tar: 5,000 LOC, Java Stack Inspection,
1 atomic block

FreeCS: 22,000 LOC, XACML policy enforcement,
47 atomic blocks

WeirdX: 27,000 LOC, XACML policy enforcement,
108 atomic blocks

Average execution time of a request

Evaluation

0

50

100

150

200

GradeSheet Tar FreeCS WeirdX

STM only Eager TMI
Lazy TMI Overlapped TMI

10.8⨉

21

Average execution time of a request

Evaluation

0

50

100

150

200

GradeSheet Tar FreeCS WeirdX

STM only Eager TMI
Lazy TMI Overlapped TMI

0.3%

10.8⨉

21

Average execution time of a request

Evaluation

0

50

100

150

200

GradeSheet Tar FreeCS WeirdX

STM only Eager TMI
Lazy TMI Overlapped TMI

0.3% -15.8%

10.8⨉

21

Average execution time of a request

Evaluation

0

50

100

150

200

GradeSheet Tar FreeCS WeirdX

STM only Eager TMI
Lazy TMI Overlapped TMI

0.3% -15.8%

4.3%

10.8⨉

21

Average execution time of a request

Evaluation

0

50

100

150

200

GradeSheet Tar FreeCS WeirdX

STM only Eager TMI
Lazy TMI Overlapped TMI

0.3% -15.8%

4.3% 11%

10.8⨉

21

• TMI is a new reference monitor architecture

• Decouples application logic from
policy enforcement

• Freedom from TOCTTOU bugs

• Easier handling of authorization failures

• Easier to ensure complete mediation

Summary

22

Take home slide

TMI utilizes the mechanisms of
Software Transactional Memory

to greatly improve
security policy enforcement

Take home slide

TMI utilizes the mechanisms of
Software Transactional Memory

to greatly improve
security policy enforcement

Thank you for your attention!

