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Take home slide

We can utilize the mechanisms of 
Software Transactional Memory 

to greatly improve 
security policy enforcement



Security policy enforcement

Common difficulties 
with policy enforcement:

Difficulty 1
       Time of check vs. time of use

Difficulty 2 
       Correctly handling failures

Difficulty 3 
       Ensuring complete mediation



if (allowed(principal, resource, operation)) {
    perform operation on resource
}
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if (allowed(principal, resource, operation)) {

    perform operation on resource
}

Other thread may run here!

Interleaving code may invalidate the check

Policy enforcement difficulty 1
Time of check vs. time of use

Need a synchronization mechanism.
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if (allowed(principal, resource, operation)) {
    perform operation on resource
}

atomically {

}
Uses parallel, speculative execution

Monitors all access to memory
Can roll back and retry on conflict

Solution for difficulty 1
Software Transactional Memory (STM)
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if (allowed(principal, resource, operation)) {
    perform operation on resource
}

atomically {

}

STM guarantees atomicity and isolation of 
atomic blocks.

Solution for difficulty 1
Software Transactional Memory (STM)
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Transactional Memory 
Introspection (TMI)

Utilizes the mechanisms of 
Software Transactional Memory
— such as its bookkeeping —

 to greatly improve 
security policy enforcement



Where TMI fits in with STM

CommitTX body Contention Mgr.

Log
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Rollback & Retry

OK
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TMI

Where TMI fits in with STM

CommitTX body Contention Mgr.

Log

Conflict
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if (allowed(principal, resource1, op1)) {
    perform op1 on resource1
} else {
    clean up and report error
}

Policy enforcement difficulty 2
Error handling
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if (allowed(principal, resource1, op1)) {
    perform op1 on resource1
} else {
    clean up and report error
}

This quickly becomes hard to manage

if (allowed(principal, resource2, op2)) {
    perform op2 on resource2
} else {
    clean up after op1;
    clean up after op2 and report error
}

Policy enforcement difficulty 2
Error handling
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• Error handling accounts for a large fraction 
of server software, over two-thirds [IBM’87]

• Exception handling code itself is prone to 
errors [Fetzer and Felber ’04]

• SecurityException is the one most often 
handled incorrectly [Weimer & Necula OOPSLA’04]

Policy enforcement difficulty 2
Error handling (cont’d)
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if (allowed(principal, resource1, op1)) {
    perform op1 on resource1
} else {
    clean up and report error
}

if (allowed(principal, resource2, op2)) {
    perform op2 on resource2
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}
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if (allowed(principal, resource1, op1)) {
    perform op1 on resource1
} else {
    clean up and report error
}

if (allowed(principal, resource2, op2)) {
    perform op2 on resource2
} else {
    clean up after op1;
    clean up after op2 and report error
}

Easy to forget or miss checks in complex code

Policy enforcement difficulty 3
Complete mediation
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• A real problem in current practice

• Bugs of this kind found in the Linux kernel, 
page_cache_read did not check for file 
permissions [Zhang et al. USENIX Security ‘02]

• Decentralized, ad-hoc hard-coded access 
checks, leads to errors when code changes.

• Also a problem in Linux  [Jaeger et al. ’04]

Policy enforcement difficulty 3
Complete mediation (cont’d)
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TMI solves these difficulties
and

simplifies application code



 Handling errors with STM abort
atomically {
    if (allowed(principal, resource1, op1)) {
       perform op1 on resource1;
    }      else {
        clean up and report error
    }

    if (allowed(principal, resource2, op2)) {
       perform op2 on resource2;
    }      else {
        clean up after op1;
        clean up after op2 and report error
    }
}
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  on abort {
    report error;     // no cleanup necessary
}

 Handling errors with STM abort
atomically {
    if (allowed(principal, resource1, op1)) {
       perform op1 on resource1;
    }
    if (allowed(principal, resource2, op2)) {
       perform op2 on resource2;
    }
}
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Complete mediation and decoupling 
of enforcement code

atomically
    if (allowed(principal, resource1, op1)) {
       perform op1 on resource1;
    }
    if (allowed(principal, resource2, op2)) {
       perform op2 on resource2;
    }
}  on abort {
    report error;     // no cleanup necessary
}

           {
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           [principal]

Complete mediation and decoupling 
of enforcement code

atomically
       perform op1 on resource1;
       perform op2 on resource2;
}  on abort {
    report error;     // no cleanup necessary
}

           {
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           [principal]

Complete mediation and decoupling 
of enforcement code

atomically
       perform op1 on resource1;
       perform op2 on resource2;
}  on abort {
    report error;     // no cleanup necessary
}

           {

The TMI reference monitor is invoked
- on every security-relevant memory access
- before every transaction commit

A TMI authorization manager must make a policy 
decision — but can do so at any time before commit.
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Policy evaluation in TMI

before commit of each transaction T {
    for (resource, op) in T.log {
        if (not allowed(T.principal, resource, op)
           abort T;
    }
}

• TMI authorization manager evaluates the policy

• Supplied by the programmer, decoupled from 
application logic

• Invoked on all accesses to sensitive resources.
Complete mediation for free.
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Variants of authorization managers

CommitTX body Contention Mgr.

Log

Conflict

Rollback & Retry

OK
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Log
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Denied
Abort & Stop
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Variants of authorization managers

CommitTX body Contention Mgr.

Log

Conflict

Rollback & Retry

OK

Lazy

Log metadata
Validate log

Denied

Abort & Stop
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Variants of authorization managers

CommitTX body Contention Mgr.

Log

Conflict

Rollback & Retry

OK

Overlapped

Authorization Thread

Send metadata

Denied

Abort & StopSend
decision
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• Extends Sun’s DSTM2 library for Java  
[Herlihy, Luchango and Moir OOPSLA’06]

• Programmer specifies security metadata

• Pluggable authorization mgr. receives metadata

• Eager, lazy, overlapped or custom authoriz. mgr.

• Adds less than 500 LOC to DSTM2

Implementation
19



Evaluation
20

GradeSheet: 900 LOC, simple enforcement code, 
1 atomic block

Tar: 5,000 LOC, Java Stack Inspection, 
1 atomic block

FreeCS: 22,000 LOC, XACML policy enforcement, 
47 atomic blocks

WeirdX: 27,000 LOC, XACML policy enforcement, 
108 atomic blocks
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• TMI is a new reference monitor architecture

• Decouples application logic from
policy enforcement

• Freedom from TOCTTOU bugs

• Easier handling of authorization failures

• Easier to ensure complete mediation

Summary
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Thank you for your attention!


