Leveraging “Choice” to Automate
Authorization Hook Placement:

Divya Muthukumaran
Pennsylvania State University
muthukum@cse.psu.edu

ABSTRACT

When servers manage resources on behalf of multiple, mutually-
distrusting clients, they must mediate access to those resources to
ensure that each client request complies with an authorization pol-
icy. This goal is typically achieved by placing authorization hooks
at appropriate locations in server code. The goal of authorization
hook placement is to completely mediate all security-sensitive op-
erations on shared resources.

To date, authorization hook placement in code bases, such as
the X server and postgresql, has largely been a manual procedure,
driven by informal analysis of server code and discussions on de-
veloper forums. Often, there is a lack of consensus about basic
concepts, such as what constitutes a security-sensitive operation.

In this paper, we propose an automated hook placement approach
that is motivated by a novel observation — that the deliberate
choices made by clients for objects from server collections and
for processing those objects must all be authorized. We have built
a tool that uses this observation to statically analyze the server
source. Using real-world examples (the X server and postgresql),
we show that the hooks placed by our method are just as effective
as hooks that were manually placed over the course of years while
greatly reducing the burden on programmers.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—access con-
trols

General Terms

Security

Keywords
Authorization hooks, Static taint analysis

1. INTRODUCTION

In this paper, we consider the problem of retrofitting legacy soft-
ware with mechanisms for authorization policy enforcement. This

*This material is based upon work supported by the National Sci-
ence Foundation under Grant No. CNS-0905343.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CCS’12, October 16-18, 2012, Raleigh, North Carolina, USA.

Copyright 2012 ACM 978-1-4503-1651-4/12/10 ...$10.00.

Trent Jaeger
Pennsylvania State University

tjaeger@cse.psu.edu

Vinod Ganapathy
Rutgers University

vinodg@cs.rutgers.edu

is an important problem for operating systems, middleware and
server applications (jointly, servers), which manage resources for
and provide services to multiple, mutually-distrusting clients. Such
servers must ensure that when a client requests to perform a security-
sensitive operation on an object, the operation is properly autho-
rized. This goal is typically achieved by placing calls (termed au-
thorization hooks) to a reference monitor [2] at suitable locations in
the code of the server. At runtime, the invocation of a hook results
in an authorization query that specifies the subject (client), object,
and operation. The placement of authorization hooks must provide
complete mediation of security-sensitive operations performed by
the server. If this property is violated, clients may be able to access
objects even if they are not authorized to do so.

In the past decade, several efforts have attempted to place autho-
rization hooks in a variety of servers. For example, discretionary
access control mechanisms [14, 23] deployed in the Linux ker-
nel were found to be insufficient to protect the security of hosts
in a networked world [21]. The Linux Security Modules (LSM)
framework [41] remedies this shortcoming by placing authoriza-
tion hooks to enforce more powerful security policies. Even user-
space servers can benefit from similar protection. For example, the
X server manages windows and other objects for multiple clients.
Accesses to such objects must be mediated, void of which several
attacks are possible [8, 18, 39]. The X server has also therefore
been retrofitted with LSM-style authorization hooks [18]. Simi-
lar efforts now abound for other server applications (e.g., Apache,
Postgres, Dbus, Gceonf) [6, 19, 22, 3], operating systems [38, 35,
10], and virtual machine monitors [27, 5]

Unfortunately, these efforts have been beset with problems. This
is because the identification of security-sensitive operations and the
placement of hooks is a manual procedure, largely driven by in-
formal discussions on mailing lists in the developer community.
There is no consensus on a formal definition of what constitutes a
security-sensitive operation, leading to complaints about the dif-
ficulty of the placement task [1, 29]. Not surprisingly, this ad
hoc process has resulted in security holes [7, 42], in some cases
many years after hooks were deployed [34]. The discussion of
which hooks to deploy can often last years, e.g., the original hook
placement for the X server was proposed in 2003 [18], deployed in
2007 [36], and subsequent revisions have added additional hooks.
What we therefore need is a principled way to identify security-
sensitive operations and their occurrence in code, so that legacy
servers can be automatically retrofitted with authorization hooks.

Prior work to address this problem has focused both on verifi-
cation of authorization hook placement to ensure complete medi-
ation [15, 34, 30] and on mining security-sensitive operations in
legacy code [12, 13]. The work on mining security-sensitive oper-
ations is the most closely related to this paper, and uses static [13]
and dynamic program analysis [12] to identify possible hook place-
ment locations. However, these mining techniques rely on domain-

specific knowledge (e.g., a specification of the data types that de-
note security-sensitive objects [13]), providing of which still re-
quires significant manual effort and a detailed understanding of the
server’s code base.

The main contribution of this paper is a novel automated method
for placing authorization hooks in server code that significantly
reduces the burden on developers. The technique produces hook
placements that provide complete mediation, while optimizing away
any redundant hook placements automatically, reducing the num-
ber of statements that must be considered by approximately 90%
or more. To develop the technique, we rely on a key observation
that we gleaned by studying server code. In a server, clients make
requests, which identifies the objects manipulated and the security-
sensitive operations performed on them. We observe that the delib-
erate choices made by clients for objects from server collections
and for processing those objects must all be authorized. These
choices determine the security-sensitive operations implemented
by the server, where all must be mediated to prevent unauthorized
client accesses.

Based upon this observation, we design a static program analy-
sis that tracks user choice to identify both security-sensitive objects
and the operations that the server performs on them. Our analysis
only requires a specification of the statements from which client
input may be obtained (e.g., socket reads), and a language-specific
definition of object containers (e.g., arrays, lists), to generate a
complete authorization hook placement. It uses context-sensitive,
flow-insensitive data flow analysis to track how client input influ-
ences the selection of objects from containers: these are marked
security-sensitive objects. The analysis also tracks how control
flow decisions in code influence how the objects are manipulated:
these manipulations are security-sensitive operations. The output
of this analysis is a set of program locations where mediation is
necessary. However, placing hooks at all these locations may be
sub-optimal, both in terms of the number of hooks placed (e.g.,
a large number of hooks complicates code maintenance and un-
derstanding) and the number of authorization queries generated at
runtime. We therefore use the control structure of the program to
further optimize the placement of authorization hooks.

We have implemented a prototype tool that applies this method
to C programs using analyses built on the CIL tool chain [24]. We
have evaluated the tool on programs that have manual mediation for
comparison, such as the X server and postgresql. We also evaluated
the tool in terms of the reduction of programmer effort it entails
and the accuracy of identification of objects and security sensitive
operations in programs.

To summarize, our main contributions are:

e An approach to identifying security-sensitive objects and op-
erations by leveraging a novel observation — that a deliber-
ate choice by the client of an object from a collection man-
aged by the server signals the need for mediation.

e The design and implementation of a static analysis tool that
leverages the above observation to automate authorization
hook placement in legacy server applications. This tool also
identifies optimization opportunities, i.e., cases where hooks
can be hoisted, thereby reducing the number of hooks in the
source code, and by eliding redundant hook placements that
would otherwise result in extra authorization queries at run-
time.

e Evaluation with four significant server applications, namely,
the X server, postgresql, PennMush, and memcached, demon-
strating that our approach can significantly reduce the man-
ual burden on developers in placing authorization hooks. In

case of two of these servers, the X server and postgresql,
there have been efforts spanning multiple years to place au-
thorization hooks. We show that our approach can automat-
ically infer hook placements for these servers are moreover
the hooks placed are comparable to the manual hooks placed.

2. PROBLEM DEFINITION

In this section, we define the authorization hook placement prob-
lem. Authorization is the process of permitting a subject (e.g., user)
to perform an operation (e.g., read or write) on an object (e.g., pro-
gram variable or channel), which is necessary to control which sub-
jects may perform security-sensitive operations. An authorization
hook is a program statement that submits a query for the request
(subject, object, operation) to an authorization mechanism, which
evaluates whether this request is permitted (e.g., by a policy). The
program statements guarded by the authorization hook may only
be executed following an authorized request. Otherwise, the autho-
rization hook will cause some remedial action to take place that is
customized to the program.

The Anderson Report [2] identifies the requirements for develop-
ing a secure reference validation mechanism, which includes both
the authorization hooks and authorization mechanism.

e The reference validation mechanism must always be invoked
(complete mediation)

e The reference validation mechanism must be tamperproof
(tamperproof).

e The reference validation mechanism must be small enough
to be subject to analysis and tests (verifiable).

The placement of authorization hooks mainly addresses com-
plete mediation, which requires that all security-sensitive opera-
tions be mediated by an authorization hook to ensure that the se-
curity policy permits all such operations. However, we find that
the placement of authorization hooks also impacts tamperproofing,
by authorizing requests that may affect the authorization process
(e.g., change the policy), and verifiability, by determining where
authorization queries are deemed necessary. Verifiability, in partic-
ular, may be aided by an automated method for authorization hook
placement, as it often takes years for developers to arrive at a con-
sensus regarding an acceptable placement.

The main challenge in producing an authorization hook place-
ment is identifying what a security-sensitive operation is. To date
there is no formal definition of this concept nor even a decent work-
ing definition, as discussed in the Introduction. As an operation
must be applied to an object, the definition for security-sensitive
operations must identify both security-sensitive objects and opera-
tions on these objects that may impact the program’s security en-
forcement. In prior approaches, these definitions are program-specific,
require significant manual input, and/or lack information necessary
to choose placements unambiguously.

First, identifying security-sensitive objects is difficult because
any program variable could be a security-sensitive. At present,
there is no principled approach to determine which are security-
sensitive, so the prior methods proposed to assist in authorization
hook placement [42, 7, 11, 12, 13, 34, 30, 26, 33] expect program-
mers to specify the data types whose variables require authoriza-
tion, which requires extensive domain knowledge. The identifi-
cation of these data structures is not a trivial task and often takes
multiple iterations to get right. For example, the X server version
1.4 did not have hooks for accessing certain classes of objects (such
as "selection" objects), which were added in version 1.5. The set of
security sensitive-objects for postgresqgl is still under discussion by
the community.

Second, identifying security-sensitive operations upon these ob-
jects is difficult because any program statement that accesses a
security-sensitive object could be security-sensitive. Traditionally,
researchers have used the structure member accesses on the security-
sensitive user-defined types as security-sensitive operations. How-
ever, there are many such operations (9133 in X server), and clearly
there are many fewer authorization hooks. In some cases, researchers
identify specific types of operations as security-sensitive, such as
interfaces to database functionality in PHP programs [30] or method
calls in object-oriented languages [9]. However, such interfaces
may not be present in the program or may only cover a subset
of the security-sensitive operations. Prior methods have identified
security-sensitive operations at the level of APIs [13], but this may
be too coarse a granularity. For example, hook changes between
version 1.4 and 1.5 of the X server mediate finer-grained operations
to reduce the privilege given to some subjects.

Finally, once the security-sensitive operations are identified, au-
thorization hooks must be placed. However, finding the “best”
placement that mediates all security-sensitive operations is more
difficult than it may appear. Complete mediation may be achieved
by many placements, and at present, there are no principles for what
constitutes an ideal authorization hook placement beyond complete
mediation. We identify two competing goals. First, we need to
place the minimal number of hooks that provide complete media-
tion. The minimal number of hooks also aids in verifiability while
keeping the code clean which is a point of discussion in the SE-
PostgreSQL work [28]. The second goal is to enforce the desired
authorization policy. However, the minimal placement may not al-
ways be capable of enforcing the desired authorization policy. Sup-
pose authorization hooks are placed at the point where a security-
sensitive object is retrieved. This would necessitate the authoriza-
tion of a subject for all possible operations performed along all code
paths in the program that follow this retrieval, even if each code
path performs an entirely different operation from the others. This
in turn violates the principle of least privilege since the placement
of the hook would require each subject to have all possible per-
missions for an object irrespective of the requested operation. We
therefore need to place hooks at a granularity that distinguishes the
distinct operations that may follow object retrieval.

As aresult, we state that the authorization hook placement prob-
lem is to find a non-redundant set of authorization hooks necessary
to mediate all the security-sensitive operations. This definition
means that solutions depend heavily on this imprecise notion of
security-sensitive operation. Ganapathy ez al. explored techniques
to group statement-level operations into sets that represent security-
sensitive operations using dynamic analysis and concept analysis
from manually highlighted interfaces [12, 13]. This definition also
means that solutions will generally be finer-grained than manual
placements, since manual placements aggregate hooks based on
known or anticipated patterns in permission assignments. It is not
possible for an automated placement method based on source code
alone to account for authorization policy necessary to minimize
hook placements. In this paper, we propose a novel method for
identifying security-sensitive objects and operations that more closely
approximates the programmers’ intuition about hook placement.
Moreover, in lieu of such an automated hook placement being finer-
grained than manual placements, we find that it is possible to ex-
tract the relationship between the two placements to show program-
mers the security/policy implications of any given manual hook
placement in terms of the finer-grained hooks that were optimized
away.

Program

| Request
Interface 4«>G
|- i

Container

v = Lookup(0)_J,
v Q
& v W
: read v 1 write v
i opt1 i op1z { op13 |

) B O R
) trol vt i
s O e ()
Figure 1: The authorization hook placement problem

3. APPROACH OVERVIEW

Figure 1 shows the insights used to motivate our solution ap-
proach. Authorization is needed when only a subset of subjects
should be allowed to access particular program objects or perform
particular accesses on those objects. Figure 1 shows that objects ol
and o2 are accessible to a subject User A, but o3 and o4 are not.
Further, the subject may not be allowed to perform all operations on
her accessible objects. For example, User A may only be allowed
to perform a read operation on object ol, while she can both read
and write object 02. The choice of authorization hook placement
must ensure that the program can only perform an operation after it
is mediated for that operation, while ensuring that a subject is au-
thorized only for the operation she has requested to perform. Thus,
the statements F' and H should only be mediated for read opera-
tions, whereas the statements K and L should only be mediated for
write operations.The statements I and J do not require mediation
as they perform no security-sensitive operations.

The program’s behaviors on behalf of subjects are determined by
the subject’s user requests. We find that by tracking user requests
we can identify the set of objects that require mediation because
such inputs guide the selection of objects for processing. Also,
by tracking user requests, we can identify operations the program
performs because such inputs choose the program statements that
manipulate objects. We detail the method to track user request input
in Section 4.1.

Programs that manage objects on behalf of multiple users typi-
cally store them in containers. When a subject makes a request, the
program may use the request input to choose the objects to retrieve
from some containers, potentially resulting in access to a data used
by another subject. As the retrieved values are assigned to program
variables, these variables represent the program’s security-sensitive
objects. In Figure 1, variable v in statement C'is security-sensitive
because the user request input ¢ is used to retrieve an object from
the container. By tracking the dataflow from user requests to the
selection of objects in containers, we can identify the variables that
hold these objects in the program. We detail the method to identify
security-sensitive objects in Section 4.2.

user-choice
operation

| Specification |

Stage 2
— Identify Stage 4
security-sensitive objects Identify

authorization hook
placements

Stage 1
Source | Identify

code tainted
variables

User
request

Identify
optimized hook
Stage 3 placements
Identify

user-choice operations

————

Hook Placement Tool

Figure 2: Shows the sequence of stages in automated au-
thorization hook placement. The light shaded boxes shows
the required programmer specification for every program, the
dark shaded box shows language-specific specification, and the
dashed box shows optional specification.

The program executes statements chosen by its control state-
ments. If a user request affects the values of the variables used
in a control statement’s predicate, then the subject can choose the
program statements that may access security-sensitive objects. We
call the sets of program statements that may be chosen by sub-
jects user-choice operations. As shown in Figure 1, statement £
is a control statement. It is shown that three user-choice operations
result if E’s predicate is dependent on the user request. In addi-
tion, the choice of an object from a container is also a user-choice
operation. Only the user-choice operations that contain accesses
to variables that hold security-sensitive objects represent security-
sensitive operations, which are just operations read v and write
v. These are the operations that require mediation via authorization
hooks. We detail the method to identify user-choice operations in
Section 4.3.

Using a naive placement of an authorization hook per security-
sensitive operation may lead to sub-optimal hook placement. For
instance, if all three user-choice operations at E perform the same
security-sensitive operation, then we could place a single hook at &/
to the same effect as placing a separate hook at each branch. Also,
if the same security-sensitive operation is performed twice as part
of a single request, we only need to authorize it only once. Our so-
lution to the authorization hook placement problem optimizes hook
placement by removing redundant mediation in two ways. First,
we remove hooks from sibling operations (i.e., user-choice opera-
tions that result from the same control statement) if they mediate
the same operations, which we call hoisting common operations.
Second, we remove any mediation that is already performed by ex-
isting hooks that dominate the operation, which we call removing
redundant mediation. We detail these optimizations in Section 4.4.

4. DESIGN

Figure 2 shows the design steps in our approach. The primary
input is the source code of the program along with a manual speci-
fication identifying the program variables where user request enters
the program. We require other inputs specific to each stage of the
approach which are discussed in the subsequent sections.

In Stage 1, we identify the set of program variables tainted by
the user request inputs, called tainted variables, using an inter-

procedural static taint analysis [4]. The results of this analysis
are used in the subsequent stages to identify objects and operations
chosen by the user.

In Stage 2, we identify the set of program variables that represent
security-sensitive objects. We use the tainted variables identified in
Stage 1 to find variables whose assigned values are retrieved from
container data structures using tainted variables.

In Stage 3, we identify the set of user-choice operations. We use
the tainted variables from Stage 1 to identify control statements
whose predicates include tainted variables. A user-choice opera-
tion is created for each conditional branch that is dependent on the
control statement. Each user-choice operation is represented by a
subgraph of the program’s control dependence graph [32] for that
conditional branch.

In Stage 4, we combine the security-sensitive objects identified
in Stage 2 and the user-choice operations identified in Stage 3 to
identify security-sensitive operations. A user-choice operation is
security-sensitive if its statements access variables that represent
security-sensitive objects. The actual accesses that take place in
a security-sensitive operation determine the authorization require-
ments that must be approved using the authorization hook. We then
propose two techniques to remove unnecessary and redundant au-
thorization hook placements.

4.1 Stage 1: Tracking User Requests

The goal of this stage is to identify the set of all variables in the
program that are dependent on the user request variables; we call
this the set of tainted variables. To identify which program vari-
ables are dependent on the user request input, we first need to iden-
tify the user request variables in the program. We obtain the user
request variables from the programmer as a manual specification of
the variables that signify where user requests are read by the pro-
gram. For example, in X server the READREQUESTFROMCLIENT
function performs a socket read to obtain the request from the client
and initializes a variable representing the request. We provide a
specification that this variable represents the user request. We dis-
cuss the identification of user requests in Section 5.

We compute the set of tainted variables as follows. Let P be the
program we wish to analyze, S(P) be the set of all statements of P,
and V' (P) be the set of all variables in P. We want to identify the
set Vo (P) of all tainted variables in the program. Let V;(P) C
V' (P) be the set of variables that represent the manual specification
of the user request variables. Let D(v,v’) be a relation which is
true if variable v is data-flow dependent on variable v’

DEFINITION 1. The set of tainted variables V-t (P) is the tran-
sitive closure of the relation D from the user request variables

Vi(P).

Taint analysis is used extensively in program analysis, frequently
to detect security vulnerabilities. It can identify the set of program
variables that are data-dependent on any input variables. Static taint
analyses can approximate this information although factors such as
aliasing and polymorphic types lead to imprecision. Nevertheless,
they have been successfully used in various projects to identify se-
curity vulnerabilities [20, 16, 37].

Chang et al. [4] have used static interprocedural context sensitive
taint tracking to compute the set of program values data-dependent
on network input. We adopt the same approach, but the tainted-
ness that we track at each variable indicates whether it is data-
dependent on user request. This technique uses procedure sum-
marization to avoid the exponential blow-up that can occur during
context-sensitive analyses. A procedure summary is a succinct rep-
resentation of some procedure behavior of interest as a function
parameterized by the input variables of the procedure. Through the

procedure summary we want to capture if the procedure enables
the taint to be propagated at its output variables given informa-
tion about whether its input variables are tainted. Therefore, we
the summary of a procedure is the taintedness of the output vari-
ables of the procedure (those that escape the procedure scope such
as returns, pointers, globals, etc.) represented as a function of the
taintedness of its input variables.

The taint-propagation involves two passes through the call graph.
The bottom up summarization phase visits each node of the call-
graph in the reverse topological sort order and creates procedure
summaries. Recursive procedures are treated context-insensitively.
The top-down propagation phase visits the call graph in topological
order, computing the actual taint at each variable, using procedure
summaries to resolve procedure calls. The result of this analysis
is the set of tainted variables V(P) which can be queried during
the next two stages to check if the variables are dependent on user
request input.

This stage yielded 2795 variables in Vr(P) for X server which
is 38% of all variables in the portion of the X server program that
we analyzed. Section 6 shows the size of V- (P) for the different
programs analyzed.

4.2 Stage 2: Finding Sensitive Objects

The goal of this stage is to identify the set of program vari-
ables that reference security-sensitive objects (i.e., the set of objects
that need authorization). As we described in Section 3, security-
sensitive objects are stored in containers. A container is an instance
of a container data type or variable that holds multiple instances of
the same type. Examples of containers include arrays, lists, queues,
stacks, hash tables, etc. We claim that whenever the program stores
a collection of objects in a container and the user has the ability
to choose specific object(s) from this container, the chosen object
becomes security-sensitive. Without additional manual input, it is
impossible to determine whether all objects in a container are uni-
formly accessible to all users. We therefore make the conservative
assumption that whenever user request input determines the choice
of an object from a container, this object needs authorization by
default. The variables to which such objects are assigned after re-
trieval thus represent the security-sensitive objects in the program.

The user can request an object from the container by specifying
an identifier for the object. For example, X server has a global array
(called clientTable) to store the set of resources (windows,
cursors, fonts, etc.) belonging to all subjects. The user requests
supply an identifier which is used to index into this array to retrieve
the corresponding object.

We find containers may be arranged hierarchically, such that an
object retrieved from a container may also have a field with another
container. For example, in the following Listing 1 for the function
DIXLOOKUPPROPERTY, the Window object win (which was pre-
viously retrieved from the global container C1ientTable) has a
field win->opt—->userProps which is a list that stores prop-
erties associated with that window. The property prop retrieved
from this container is needs to be authorized since user request pro-
vides the input parameter pName that specifies the property to be
looked up.

In the identification of objects retrieved from containers, we fo-
cus on instances of programmer-defined data structures. Program-
mers typically define custom data structures to manage resources
that are uniquely tied to the functionality of the application. For
example, the X server has data structures for windows, devices,
screens, fonts, cursors, etc. Past efforts [12, 13, 34] have also fo-
cused on custom data structures.

Listing 1 Procedure to look up a specific property of a specific
window in X server.

1 /#*%#+ property.c #x+/

2 int dixLookupProperty (PropertyPtr =p,

3 Window % win, Atom pName,Client * c)
4 |

5 PropertyPtr prop;

6 for (prop=win->opt->userProps;

7 prop; prop = prop->next)

8 {

9

if (prop->name == pName)
10 break;
11 }
12 *P = prop;

13 }

Since containers are language-specific abstractions, we require a
language-specific way of identifying the retrieval of objects from
containers. We use the term lookup function to refer to any routine
that retrieves objects from containers. Our approach depends on a
language-dependent specification of lookup functions as shown in
Figure 2. Since our analysis deals with C programs and the C lan-
guage does not have standard lookup functions, we provide specifi-
cations in the form of code patterns. For example, in the above code
snippet, the DIXLOOKUPPROPERTY function uses a standard code-
level idiom in the C language, next pointer, to iterate through the
list, comparing each item in the list with the identifier to deter-
mine if it satisfies the criteria. This code pattern is an example of
a lookup function specification that the programmer needs to spec-
ify. Many object-oriented programming languages provide con-
tainer classes which export well-defined methods to create a new
container, insert, delete and provide access to objects in the con-
tainer. In such cases, it is straightforward to identify lookup func-
tions. We discuss the lookup function identification in more detail
in Section 5.

Given such lookup functions, we can now formally define the set
of all security-sensitive variables Vg(P) in the program.

DEFINITION 2. A variable v € Vs(P) if any following are
true: a) If it is assigned a value from a container via a lookup func-
tion using a variable v' € Vp(P). b) If D(v',v) is true for some
v’ € Vg(P). c) Ifit is a global variable and in the set Vor (P).

First, any variable retrieved from a container using a tainted vari-
able is security-sensitive. Second, any variable data-dependent on
security-sensitive variables is also security-sensitive. Finally, any
globals that can potentially be modified based on user request are
also security-sensitive. This prevents trivial data flows between
subjects using globals that may be modified based on user requests.
If a global variable contains secret data that must be authorized be-
fore being read by a subject, these variables must be identified man-
ually, as shown in Figure 2. We have found these variables to be
rare in the programs that we have examined.

4.3 Stage 3: Finding User-Choice Operations

In this stage, our goal is to identify the set of operations that the
user can choose to execute by modifying their user request input;
we call these the user-choice operations. Control statements such
as 1f, switch and function pointers are choice points in the pro-
gram, where different program statements may be executed based
on the value of the predicate evaluated in these control statements
or the choice of function pointer values. If a tainted variable is used
in a control statement’s predicate or as a function pointer, then the
subject can choose among different program functionality based
on the values in the user request. Thus, the user request input pro-
vides the subject with a means to choose among sets of program

statements to execute. These sets of program statements are the
user-choice operations.

Listing 2 The code snippet showing the procedure to change a spe-
cific property of a window of X server.

// ‘‘stuff’’ stores a formatted version

// of the client request
int ChangeWindowProperty (ClientPtr =c,
WindowPtr % w, int mode)

WindowPtr * winj;

1

2

3

4
s
6

7 PropertyPtr * pProp;
8

9

err = LookupWin (¢win, stuff->window, c);
rc = LookupProperty (&pProp, win,

10 stuff->property, c);

11 if (rc == BadMatch)

12 {/* Op 1x/

13 pProp—->name = property;

14 pProp->format = format;

15 pProp->data = data;

16 pProp->size = len;

17 }

18 else

19 { /+ Op 2 */

20 if (mode == REPLACE)

21 { / Op 2.1 %/

2 pProp->data = dataj;

23 pProp->size = len;

24 pProp—->format = format;

25 }

26 else if (mode == APPEND)

27 {/*x Op 2.2 %/

28 pProp->data = dataj;

29 pProp->size += len;

30 }

Consider the code snippet in Listing 2 from X server which shows
the function CHANGEWINDOWPROPERTY. Here the user request
inputs are stuff, rc and mode and statements predicated on
these variables lead to user choice. First, stuff determines the
choice of window and property being extracted. The lookup of
an object from a container itself becomes the start of an opera-
tion that includes all statements in the program that can be exe-
cuted following the lookup of the object. Next, the three control
statements that are predicated on rc and mode also cause user-
choice operations. The first, if (rc == BadMatch) leads to
two branches, Op 1 and Op 2 that represent two conceptually dif-
ferent operations, namely, adding a new property and changing an
existing one. Furthermore, the latter operation has additional con-
trol statements 1f (mode == REPLACE) and if (mode ==
APPEND) through which the subject has the option of choosing
between replacing an existing property (Op 2.1) and appending
toit (Op 2.2).

We use a standard program representation called the Control De-
pendence Graph [32] (CDG) to characterize operations. A CDG
of a program CDG(P) = (S(P),E) consists of a set of pro-
gram statements S(P) and the edges represent the control depen-
dence relationship between two statements. The control depen-
dence property is defined in terms of control dominance relation-
ships between nodes in the Control Flow Graph (CFG) of the pro-

gram. A statement Y is control-dependent on X if Y post-dominates

a successor of X in the CFG but does not post dominate all succes-
sors of X. We make a minor adjustment to the traditional CDG rep-
resentation by adding a dummy node for each choice (e.g., branch
or possible function pointer value) of a control statement to group

(dixChangeWindowProperty)

%

T F

(mode=REPLACE)

write(pProp->fornm

pProp->format =
format

i| pProp->dat
data

4 len

control D Dummy node

statement

Operation

Op Structure member
access to mediate

+-> Connection from outside :
this procedure

Figure 3: Shows the CDG with the user-choice operations for
the DIXCHANGEWINDOWPROPERTY function

the program statements associated with each possible choice. We
now define operations in terms of the CDG of the program.

DEFINITION 3. An operation is a subgraph of the C' DG rooted
at dummy node. If a dummy node’s control statement is predicated
on a variable in Vi (P), then the operation rooted at the dummy
node is a user-choice operation.

Figure 3 shows the CDG constructed for the procedure
DIXCHANGEWINDOWPROPERTY from listing 2. It also shows the
four user-choice operations Op 1.1,0p 2,0p2.landOp 2.2
identified for the procedure DIXCHANGEWINDOWPROPERTY in
listing 2. The statements in the diamond-shaped figures are the
control statements, whose children are dummy nodes representing
the start nodes for operations.

For the X server code the tool returned a total of 4760 user-
choice operations. The results for the other programs are shown
in Section 6.

4.4 Stage 4: Placing Authorization Hooks

Our final stage is the placement of authorization hooks. In or-
der to do this, we first need to determine which of the user-choice
operations computed in Stage 3 are actually security-sensitive op-
erations. We then need to find placements of authorization hooks to
mediate these operations. Our placement mechanism ensures com-
plete mediation of all security-sensitive operations while ensuring
that a user will never be authorized of any operations other than the
ones requested.

We now have the set of user-choice operations any of which can
be requested by the user and the set of security-sensitive objects
can of which can also be requested by the user. We now define
security-sensitive operations as follows:

DEFINITION 4. A operation is security-sensitive if it is a user-
choice operation and it allows the user to access a variable in
Vs(P).

A security-sensitive operation must be mediated by at least one
authorization hook. In order to place only necessary authorization
hooks, we need to determine the authorization requirements of each

security-sensitive operation. Such authorization requirements of an
operation consist of the set of security-sensitive accesses performed
by the operation’s statements. Past efforts [13, 12, 34] have used
structure member accesses of variables to represent the permissions
required in programs. However, as accesses to variables directly
may need to be protected, we generalize the definition slightly. In
this work, each security-sensitive access consists of a variable that
holds a security-sensitive object and the accesses made upon that
variable (i.e., read or write).

We now have all the information we need to generate a place-
ment of authorization hooks. A naive placement would simply as-
sociate an authorization hook with each security-sensitive opera-
tion. However, a naive placement would also be suboptimal. There
are two problems. First, an authorization hook may be redundant
if a dominating operation already authorizes all of the security-
sensitive accesses performed in this operation. Second, an autho-
rization hook may be hoisted if all the security-sensitive operations
for the same control statement perform the same security-sensitive
accesses. We must be careful to ensure that each authorization
hook only authorizes security-sensitive accesses performed by the
associated security-sensitive operation, which limits the amount of
hoisting of authorization hook placement possible. Under this con-
straint, we discuss the two optimizations below. Each optimization
relies heavily on the CDG of the program.

Hoisting common operations. If all security-sensitive opera-
tions associated with the same control statement perform the same
security-sensitive accesses, then it implies that irrespective of the
choice the user makes, the security implication is the same. So we
can hoist the authorization hook to operations that dominate those
operations. This will enable us to place a single hook instead of a
hook at each branch. Figure 3 shows how the structure member ac-
cesses write (pProp—>data) and write (pProp—->size)
have been hoisted above control statement rc==BadMatch pre-
sumably at the operation that contains a call to the function
DIXCHANGEWINDOWPROPERTY. In practice though, we restrict
the hoisting of the structure member accesses to the entry point of
the procedure if the procedure has more than one caller.

Algorithm 1 shows how we perform this optimization. For a
node s;, let AS[s;] represent the set of all security-sensitive ac-
cesses occurring in all operations dominated by s;. For a control
statement predicated on the user request, AS[s;] is the intersection
of security-sensitive accesses occurring in all its successors. For
all other statements, it is the union of accesses on their successors.
‘We perform this optimization by processing the CDG bottom-up in
reverse topological sort order, computing AS[s;] at each node s;.

Algorithm 1 Bottom Up Operation Accumulation
top’ = TopoSortRev(Gy(P))
while top’ # 0 do
s; = top’.pop()
if isControl(s;, Vr(P)) then
AS[Si] = ﬂj AS[SjH(Si, Sj) € CDG(P)
else
AS[ss] = U; AS[s;] U ace(s;)|(ss,s5) € CDG(P)
end if
end while

Avoiding redundant mediation. Our second optimization is
aimed at avoiding redundant authorizations. We take advantage
of the fact that it is sufficient to perform a specific authorization
check only once along any control flow path. For a particular path
s1 — s2 =" sk in the C DG, the set of authorizations at sy, is
the union of all authorizations on that path. However, there may be
multiple distinct paths that reach s, in the program. For example,

a function may be called by two callers, one which has authoriza-
tion hooks and one which does not. Let AP[s;] store the set of all
security-sensitive accesses authorized along all paths leading to s;
in the CDG. Let AT'[s;] be the set of security-sensitive accesses to
be authorized at a node s;. Algorithm 2 shows how we compute
ATs;]. For this step, we process the CDG in the topological sort
order.

In Figure 3 we can see that the security-sensitive accesses
write (pProp->data) and write (pProp->size) that
have already been authorized first control before the first control
statement and therefore do not have to be mediated again at any
operation that this statement dominates.

Algorithm 2 Control Flow Dominance
top = TopoSort(Ga(P))
while top # () do

s; = top.pop()
AP[si] = AS[si] UU; AP[s;], (s5,5:) € CDG(P)

AT(s;] = AS[si] — U, APs;], (s}, 1) € CDG(P)
end while

The set of hook placement locations is now defined as
A(P) = {s;|AT[s;] # 0}

For X server we found that the there were 1382 placement locations
before optimization and 532 after optimization. The total number
of hook placement locations for the other test programs is shown in
Section 6.

4.5 Proving Complete Mediation

Proving complete mediation. We present an oracle-based argu-
ment that our technique ensures complete mediation of all security-
sensitive operations. That is, we can reason about the correctness of
the output of our approach assuming the correctness of certain ora-
cles upon which it depends. Complete mediation stipulates that ev-
ery security-sensitive operation must be control flow dominated by
an authorization hook. This involves showing that (a) the identifi-
cation security-sensitive operations is complete, i.e., we have iden-
tified all security-sensitive operations in the program, and b) the
completeness of hook placement to authorize the security-sensitive
operations.

First, let us consider the identification of security-sensitive oper-
ations. This task depends on the identification of security-sensitive
objects and user-choice operations. The completeness of these
steps depends on the output of static taint analysis and manual spec-
ification of user-request variables. Proving that static taint analysis
is complete depends on knowing which variables can alias each
other. Since alias analysis is intractable in a language like C, we
cannot show that static taint tracking it is complete. Additionally,
the identification of security-sensitive objects is also dependent on
the complete specification of all container lookup functions. There-
fore, the completeness of identification of security-sensitive oper-
ations is contingent on the completeness of two oracles: (1) static
taint analysis, which although intractable, can be made conserva-
tive, and (2) the specification of user-request inputs and lookup
functions, which requires domain-specific expert input.

Second, we need to show the completeness of hook placement.
Our approach starts by placing a hook at every security-sensitive
operation identified. Note that this placement provides complete
mediation of the operations that were identified in the first step.
We now have to show that subsequent optimization phases do not
violate complete mediation. The first hoisting stage shown in Al-
gorithm 1 propagates the hooks pertaining to operations that are

common to all branches of a control statement in a bottom-up fash-
ion in the CDG. This stage does not remove any hooks. The second
redundancy removal stage in Algorithm 3 propagates information
about hooks placed in a top-down fashion in the CDG. When each
node n of the CDG is processed, the set of propagated hooks that
reach n represent the hooks that control dominate n. Therefore,
if a hook placed at node n is in the set of propagated hooks then
that hook can be safely removed without violating the complete-
ness guarantee. Therefore, the two hook optimization stages of
hook maintain completeness.

5. IMPLEMENTATION

We have implemented our tool using the CIL framework [25]
and all our code is written in OCaml. Our implementation consists
of the following modules, all written in OCaml:

e A call graph constructor: It consists of 237 lines of code and
uses a simple function pointer analysis. Any function whose
signature matches that of a function pointer and whose ad-
dress is taken is considered a potential callee. This analysis
is conservative in the absence of typecasts.

o Static Taint tracker: It consists of 438 line of code. We cur-
rently do not use an alias analysis. We found that the alias
analyses provided with the CIL distribution did not terminate
within reasonable time period for some of our larger code
bases such as the X server and postgres. Not having pre-
cise alias analysis may currently lead to false negatives in the
results of static taint tracking. However, we found that our
tool gives fairly accurate results even in the absence of alias
analysis, presumably since alias analysis does not greatly af-
fect user-request propagation. We hope to improve the preci-
sion of our tool using alias analysis as part of the future work.
We also make conservative assumptions about library func-
tions which are not defined inside the code we analyze. We
assume that when we encounter such function calls, all actual
call parameters affect the result. We also need to consider the
case where sensitive-objects are passed as parameters to such
function calls.

e Automatic hook placement: It consists of a control depen-

dence graph generator and the code to identify security-sensitive

operations and the bottom up and top down algorithms for
placing authorization hooks, written in 1196 lines of code.

Control Dependence Graph Construction We first build the
intra-procedural control dependence graph for each procedure in
the program using the built-in control flow graph and the visiting
engine in CIL to compute postdominators. We then connect each
procedure call site to the entry of the procedure. Note we do not do
a context-sensitive inlined version of the control dependence graph
since an operation is considered security-sensitive in all possible
contexts. There can be multiple incoming edges to each procedure
entry. But during the bottom up operation accumulation step of
the hook placement, we do not propagate operations beyond the
function entry point if it has multiple callers and in the fop down
control flow dominance step we do not propagate operations to an
entry node unless it is performed at all the callers.

Specifications of Lookup Functions Identifying lookup func-
tions for most object-oriented languages would be a straightforward

language-level specification of standard container abstractions. Since

the C language does not provide such standard abstractions, we
provided specification at the level of common code patterns in C.
We specify patterns for retrieval of objects from static and dynamic
containers using indexing and pointer arithmetic and retrieval from

recursive data structures by identifying instances where the next
pointer is used inside loops to iterate through the container. In
larger programs such as postgres, programmers typically im-
plement their own containers. Therefore for postgres we created a
program-level specification of lookup functions.

6. EVALUATION

We tested the tool on two types of user-space server programs:
(1) two programs with manually-placed authorization hooks, namely,
X server and postgres, and (2) two programs without hooks, viz.
memcached and pennmush. We evaluated our approach using two
metrics: reduction in programmer effort and accuracy relative to
manual placements.

The key results of the analysis are: (1) programmer effort was
reduced by 80-90% for the tasks of identifying security-sensitive
variables (objects) and data structures and operations requiring me-
diation when compared to manual placement and (2) the method
placed fine-grained authorization hooks for X server and postgres
which are comparable to the manual hooks placed.

6.1 Reduction in Programmer Effort

We show how this tool aids the programmer by showing the re-
duction in the problem space that the different stages provide in
Figure 4. We show how the tool helps in highlighting variables,
data structures, statements, and operations that are of significance
in placing authorization hooks using the following metrics.

1. Lines of code: The total number of line of code LOC' the
programmer would have to examine to analyze the program.

2. Variables: Total number of variables in the program (All),
the number of tainted variables(Zainted), identified in Stage
1, the number of security-sensitive variables (Sensitive) iden-
tified in Stage 2.

3. Data structures: The total number of data structures defined
in the program (All), the number of data structures that cor-
respond to security-sensitive objects identified (Sensitive).

4. Control Statements: The total number of control statements
in the program (All), the number of control statements pred-
icated on user-choice (User-choice).

5. Operations: The number of operations incident on all user-
choice control statements (User-choice), the number of security-
sensitive operations (Sensitive) and the number of operations
where hooks are placed after optimization (Hook).

Table 4 shows the reduction in problem space for the programs
that we evaluated. We can see that we reduce the effort the pro-
grammer needs to put in from examining thousands of lines of code
to a few hundred authorization hooks.

We can see that less than 50% of all variables are tainted by user-
request, and less than 10% are security-sensitive, which correspond
to less than 20% of all data structures in the program. The number
of security-sensitive operations is less than 30% of all user-choice
operations and the number of operations where hook placement is
suggested is typically around 11% of user-choice operations. Since
our hook placement is conservative and fine-grained the program-
mer would only need to examine the final hook placement oper-
ations to determine which ones to incorporate into the program.
We therefore significantly reduce the amount of programmer effort
needed to place authorization hooks.

Below, we examine the reduction in program effort for two pro-
grams that have no authorization hook placement.

Source Variables Data Structures | Control Statements Operations Performance
Program LOC All Tainted Sensitive All T Sensitive | All User-choice | User-choice | Sensitive Hook Time(m)
X server 286358 | 7795 | 2975 (38%) | 823 (10%) | 404 | 61 (15%) | 4297 | 3170 (73%) | 4760 1382 (29%) | 532 (11%) | 10.1T
postgres 49042 | 12350 | 5100 (41%) | 402 3%) | 278 | 30 (10%) | 5821 3289 (56%) | 5063 1378 27%) | 579 (11%) | 53.7
memcached | 8947 | 2350 | 490 20%) | 82 (3%) 41 T(17%) | 982 647 (65%) | 996 203 (20%) | 56 (5%) 0.48
pennmush 778738 | 24372 | 4168 (17%) | 1573 (6%) | 311 | 38 (12%) | 20202 | 4135 (20%) | 6435 1382 21%) | 714 (11%) | 170.6

Figure 4: Table showing the reduction in programmer effort that the automated approach provides.

Memcached. This is a distributed memory object caching sys-
tem for speeding up dynamic web applications. It is an in-memory
key-value store of arbitrary chunks of data (strings, objects) from
results of database calls, API calls, or page rendering. Our au-
tomated tool identifies seven security-sensitive data structures out
of 41, each of which appeared to be critical to the correctness of
the program. Two data structures covered the key-value pairs and
statistics collected over their use. Another data structure was as-
sociated with a comment stating that modifying any variable of
this type can result in undefined behavior. Also, security-sensitive
global variables were identified that store program settings. By me-
diating access to variables of these data structures only, only 5% of
the user-choice operations need to be examined by programmers.

PennMush. PennMush is a server of textual virtual reality used
for social and role-playing activities which maintains maintains a
world database containing players, objects, rooms, exits, and pro-
grams. Clients can connect to the server and take on characters in
the virtual world and interact with other players. Our tool found 38
security-sensitive data structures of the 311 data structures in the
program. We were able to confirm that at least 9 data structures
are security-sensitive. Among them are data structure represent-
ing the object stored in the database and its attributes, communi-
cation channels and locks in addition to the cache, mail messages
exchanged between players, and the player’s descriptor data struc-
tures. These 714 hooks reduce the programmer effort by nearly
90% relative to the user-choice operations in the program.

6.2 Accuracy Relative to Manual Placement

For programs with hooks manually-placed, we verify the accu-
racy of our approach by comparing manual and automated hook
placements.

X Server. We analyzed the dix module of the X server, and
our tool automatically chose 532 placements in X server, which
largely correspond to the 201 already placed manually, albeit at a
finer granularity. While finer granularity placements provide flexi-
bility in controlling objects and operations, programmers typically
employ domain-knowledge that arises from writing policy specifi-
cation to further optimize hooks. We discuss how our tool can help
with such optimizations in Section 6.3.

Out of the 201 existing hooks, there were 7 cases where our tool
could not map manually-placed hooks to automated hooks. We
identify three causes. First, in three cases, there were no structure
member accesses performed on the object mediated by the manual
hooks. We found that sometimes manual hooks mediate objects
that are not used. For example, in the function DIXLOOKUPCLIENT
there is lookup of a resource stored in pRes which is never used
again but is mediated by a manual hook. We will investigate whether
these are bugs in the manual placement, but such anomalous place-
ments can be identified by our tool. One case was due to a read
of a global variable (screen saver) which according to our model
will have to be specified as an input. Finally, three more cases
was due to the fact that a client can request an operation on all
elements of a container at the same time without naming a spe-
cific one. We propose the following simple extension to deal with

Frequency

5
. IIIIIIl-llll------l--l-l-l-l-

12 3 4 5 6 8 9 1011 12 13 14 15 16 18 19 22 23 26 29 32 39 49 51 53 55 56 57 73 95
No. of Dominated Automated Hooks
Figure 5: The figure shows the frequency of the number of au-
tomated hooks mapped to manual hooks in the X server.

this. If a container holds any security-sensitive objects (i.e., any
container in which a lookup is used to retrieve objects), then all ob-
jects in the container are security-sensitive. Thus, a variable upon
which a security-sensitive container object is data-dependent is also
security-sensitive.

PostgreSQL. We analyzed the tcop module of Postgres that
performs command dispatching from user requests. Our labeling
of lookup operations is described in the Section 5. Postgres has
325 authorization hooks, including those provided by the SEPost-
greSQL [19] project and with existing role-based access control
hooks. Our tool identified 33 data structures corresponding to the
security-sensitive operations, of which 22 were data types corre-
sponding to catalog, tuples and relations. Our automated hook
placement resulted in 579 hooks being placed for similar reasons
to those discussed above for the X server. We found our hooks
covered every one of the manually-placed hooks.

6.3 Helping the Programmer Place Hooks

Given our results, we find that the automated approach produces
a finer-grained placement of hooks than the manual placement. To
help the programmer understand the difference, we use the no-
tion of dominance to compare manually-placed hooks to automated
hooks. Automated hooks may be dominated by manual hooks in
two ways.

Operation dominance: First, we consider the case where the au-
tomated approach identifies operations at a lower granularity. In
this case, both the manual hook and automated hook are authoriz-
ing the same object retrieved from the same container. However,
the coarser manual hooks require that the client have more permis-
sions than are actually required to perform some of the operations
in the code. Consider Figure 3. A manual hook placed at the en-
try node would require that the client have permissions for all the
structure member accesses (name, format, data, and size) to the
same object pProp, whereas only a subset are necessary in some
branches (e.g., data and size for Op2.2). Thus, a hook at entry
operation-dominates a hook at Op2 . 2.

Object Dominance: Second, we consider the case where we
identify objects at a lower granularity. In this case, one object may
have a field that is itself a container from which other security-

sensitive objects are retrieved. A hook on the parent object domi-
nates the object retrieved from the container. For example, in List-
ing 2 any hook to authorize access to pWin object-dominates a
hook to authorize access to pProp.

The additional stipulation in both cases is that the manual hook
must also control flow dominate the automated hook. Based on
these two notions of dominance, we can compute for each manual
hook, the set of automated hooks it dominates. Figure 5 shows the
statistics of this dominance relationship for the manual and auto-
mated hook placement in the X server. The graph shows the fre-
quency distribution of the number of automated hooks mapped to
manual hooks. We can see that for over 50% of the cases the map-
ping is between 1-3 automated hooks for each manual hook. We
see that 30% more lie between 4-15 hooks. Beyond that, the num-
bers taper off except for a few interesting cases that result in larger
mappings.

Our tool can, for each manual hook classify the mapped auto-
mated hook into three categories: those that are object-dominated,
those that are operation-dominated, and, those that are dominated
by multiple manual hooks. We give a sampling of some of the
cases.

First, we look at the cases with 56 manual hooks. Of the 56

hooks, 43 hooks stem from two functions COPYGC and CHANGEGC

both of which assign one of over 20 fields of the same object using
a switch-case branching construct that is controlled by a mask pro-
vided by user-request. So our tool places 20 hooks as opposed to
the one corresponding manual hook in both the functions. We see
that for the programmer to reason about these 43 hooks, she only
needs to reason about the two user-request controlled switch state-
ments. The remaining hooks correspond to an additional seven con-
trol statements. Therefore, the programmer only has to deal with
nine control statements to reason about this difference of 55 hooks.
Similarly, a case with 29 hooks actually boils down to reasoning
about six control flow statements.

We found several cases with object-dominance predominantly in
the use of child windows of a particular window which were not
explicitly authorized by manual hooks. In the case with 95 hooks,
we found that it boiled down to 51 control flow statements and 5
objects.

We also saw cases where our tool placed a more optimized hook
than the current manual hooks. For example, our tool placed a hook
at the function FREERESOURCE which frees an resources from the
resource table. In contrast, the manual hooks were placed at each
of the callers instead.

Finally, we found that the performance of our tool is reasonable
as shown in Figure 4. Majority of the time was spent in performing
the topological and reverse topological sort of the control depen-
dence graph. In comparison, manual effort to place such hooks
which has been shown to take several years in the case of X Server
and postgres.

7. RELATED WORK

We discuss related work in two categories.

1. Automatic Hook Placement: This typically involves using
manual specification of some combination of subjects, ob-
jects operations and even hook code in order to place au-
thorization hooks. In comparison, the only program-specific
input specification we need is the few variables that represent
the entry point of user requests in the program.

2. Automatic Hook Verification: This problem assumes that a
certain number of hooks have already been placed correctly.

This information are used to derive security-sensitive opera-
tions and the approach verifies if all instances of these oper-
ations are mediated.

7.1 Automated Hook Placement

Ganapathy et al. [11] presented a technique for automating hook
placement assuming that the module implementing the hooks was
already available. Their tool also required manually written code-
level specifications of security sensitive operations. Using this in-
formation, they identified the set of operations that each hook pro-
tects and also the set of operations the program performs. Placing
hooks is then a matter of matching operations in the code with the
hooks that mediate those operations. Following this, they presented
a hybrid static/dynamic analysis tool [12] that used program traces
of security sensitive operations to derive the code level specifica-
tions automatically. For this technique to be effective, the user
must know precisely which operations are security-sensitive and
gather traces for them. In our tool, we automatically infer the set
of security-sensitive operations as well as their code level spec-
ification using static analysis. The work most closely related to
our approach is the one by Ganapathy et al [13] that used Con-
cept Analysis [40] to group structure member accesses in program
APIs in order to identify sets of structure member accesses that
were frequently performed together in the program. In contrast to
this work, we use a more intuitive technique for grouping struc-
ture member accesses into operations which falls out of the user’s
ability to make choices of objects and operations in the program.
‘We envision that our hooks will therefore be at a granularity that is
closer to a manual effort. The concept analysis approach also re-
quires the user of the tool to specify APIs that are entry points into
the program and the security-sensitive data structures. We iden-
tify the latter automatically. Our approach follows aspect-oriented
programming paradigm [17]. In particular, each operation denotes
a region of code before which a reference monitor hook must be
placed, thereby identifying the join points.

7.2 Automated Hook Verification

There have been several tools to verify hook placement and de-
tect missing hooks that employ both static and dynamic analyses.
Zhang et al. [42] used simple manually specified security rules to
verify the complete mediation property of reference monitors while
Edwards et al. [7] used dynamic analysis to detect inconsistencies
in the data structure accesses. Tan et al. [34] start with the as-
sumption that production level code is already fairly mature and
most of the hooks are already in place. They verify consistency of
hook placement by using existing hooks to characterize security-
sensitive operations in terms of structure member accesses, then
check for unmediated operations. Srivastava et al. [31] use the
notion that modern API’s have multiple independent implementa-
tions. They use a flow and context sensitive analysis that takes as
input multiple implementations of an API, and the definitions of
security checks and security-sensitive events to see if the two im-
plementations enforce the same security policy. In contrast to this,
we attempt a first stab at solving the authorization hook problem on
legacy programs and in the process define program level notions of
security sensitive objects and operations which can also serve as
a specification for automatically verifying that the existing autho-
rization hooks in programs are comprehensive.

More recently there has been some work [30, 33] on automat-
ing authorization hook placement and verification for web appli-
cations that leverage programming paradigms of the web domain
as specifications. In RoleCast [30] the authors verify the consis-
tency of access hooks placed in web applications. They assume the
presence of existing hooks, and the set of security-sensitive objects

and operations are the backend database and database update op-
erations which are the same for all web applications they consider.
They take advantage of the programming paradigm where web ap-
plications are built around pre-defined roles (such as admin, regular
user) and different roles have different mediation requirements. So
they use a combination of static analysis and heuristics to identify
the portions of the application that implement the functionality re-
lating to different roles. Sun et al. [33] mediate web applications at
a much coarser granularity of web pages while also using a speci-
fication of roles, and infer the difference between sitemaps of priv-
ileged and unprivileged roles as the definition of security-sensitive
operations. In contrast, our approach proposes concepts that are
applicable uniformly in all domains.

8. CONCLUSION

Many efforts over the past decade have attempted to retrofit legacy
servers with authorization hooks. Unfortunately, these efforts have
largely been informal, community-driven exercises, often spanning
multiple years. Moreover, vulnerabilities have been discovered in
retrofitted servers, often years after the hooks were placed.

In this paper, we developed an approach that leverages the in-
sight that deliberate user choice of objects from collections man-
aged by the server should drive authorization decisions. We built
a static analysis tool that implements this approach, and demon-
strated its effectiveness on four real-world servers. Our approach
can infer security-sensitive objects and operations in programs and
place optimized hook placements. In addition, we also show how
automated placement compare to manually placed hooks.

9. REFERENCES

[1] Implement keyboard and event security in X using XACE.
https://dev.laptop.org/ticket /260, 2006.

[2] ANDERSON, J. P. Computer security technology planning
study, volume II. Tech. Rep. ESD-TR-73-51, Deputy for
Command and Management Systems, HQ Electronics
Systems Division (AFSC), L. G. Hanscom Field, Bedford,
MA, October 1972.

[3] CARTER, J. Using GConf as an Example of How to Create
an Userspace Object Manager. 2007 SELinux Symposium
(2007).

[4] CHANG, R., JIANG, G., IvaNCIC, F.,
SANKARANARAYANAN, S., AND SHMATIKOV, V. Inputs of
coma: Static detection of denial-of-service vulnerabilities. In
Proceedings of the 2009 22nd IEEE Computer Security
Foundations Symposium (Washington, DC, USA, 2009),
IEEE Computer Society, pp. 186—-199.

[5S] COKER, G. Xen security modules (xsm). Xen Summit
(2006), 1-33.

[6] D.WALSH. Selinux/apache. http:
//fedoraproject.org/wiki/SELinux/apache.

[7] EDWARDS, A., JAEGER, T., AND ZHANG, X. Runtime
verification of authorization hook placement for the Linux
security modules framework. In Proceedings of the 9th ACM
Conference on Computer and Communications Security
(2002), pp. 225-234.

[8] EPSTEIN, J., AND PICCIOTTO, J. Trusting X: Issues in
building trusted X window systems -or- what’s not trusted
about X? In Proceedings of the 14th Annual National
Computer Security Conference (October 1991).

[9] ERLINGSSON, U., AND SCHNEIDER, F. B. Irm enforcement
of Java stack inspection. In IEEE Symposium on Security and
Privacy (2000), pp. 246-255.

[10] FADEN, G. Multilevel filesystems in solaris trusted
extensions. In Proceedings of the 12th ACM symposium on
Access control models and technologies (New York, NY,
USA, 2007), SACMAT ’07, ACM, pp. 121-126.

[11] GANAPATHY, V., JAEGER, T., AND JHA, S. Automatic
placement of authorization hooks in the Linux Security
Modules framework. In Proceedings of the 12th ACM
Conference on Computer and Communications Security
(Nov. 2005), pp. 330-339.

[12] GANAPATHY, V., JAEGER, T., AND JHA, S. Retrofitting
legacy code for authorization policy enforcement. In
Proceedings of the 2006 IEEE Symposium on Security and
Privacy (May 2006), pp. 214-229.

[13] GANAPATHY, V., KING, D., JAEGER, T., AND JHA, S.
Mining security-sensitive operations in legacy code using
concept analysis. In Proceedings of the 29th International
Conference on Software Engineering (ICSE) (May 2007).

[14] GRAHAM, G. S., AND DENNING, P. J. Protection —
principles and practice. In Proceedings of the AFIPS Spring
Joint Computer Conference (May 1972), vol. 40, AFIPS
Press, pp. 417-429.

[15] JAEGER, T., EDWARDS, A., AND ZHANG, X. Consistency
analysis of authorization hook placement in the Linux
security modules framework. ACM Transactions on
Information and System Security (TISSEC) 7, 2 (May 2004),
175-205.

[16] JovANoOVIC, N., KRUEGEL, C., AND KIRDA, E. Pixy: A
static analysis tool for detecting web application
vulnerabilities (short paper). In IN 2006 IEEE SYMPOSIUM
ON SECURITY AND PRIVACY (2006), pp. 258-263.

[17] KICZALES, G., AND HILSDALE, E. Aspect-oriented
programming. In Proceedings of the 8th European software
engineering conference held jointly with 9th ACM SIGSOFT
international symposium on Foundations of software
engineering (New York, NY, USA, 2001), ESEC/FSE-9,
ACM, pp. 313-.

[18] KILPATRICK, D., SALAMON, W., AND VANCE, C.
Securing the X Window system with SELinux. Tech. Rep.
03-006, NAI Labs, March 2003.

[19] KoOHEI, K. Security enhanced postgresql.
SEPostgreSQLIntroduction.

[20] LivsHITS, V. B., AND LAM, M. S. Finding security
vulnerabilities in java applications with static analysis. In
Proceedings of the 14th conference on USENIX Security
Symposium - Volume 14 (Berkeley, CA, USA, 2005),
USENIX Association, pp. 18-18.

[21] Loscocco, P. A., SMALLEY, S. D., MUCKELBAUER,

P. A., AND S. J. TURNER, R. C. T., AND FARRELL, J. F.
The Inevitability of Failure: The flawed assumption of
security in modern computing environments. In Proceedings
of the 21st National Information Systems Security Conferenc
e (October 1998), pp. 303-314.

[22] LoVE, R. Get on the D-BUS.
http://www.linuxjournal.com/article/7744,
Jan. 2005.

[23] MCLEAN, J. The specification and modeling of computer
security. IEEE Computer 23, 1 (1990), 9-16.

[24] NECULA, G. C., MCPEAK, S., RAHUL, S. P., AND
WEIMER, W. Cil: Intermediate language and tools for
analysis and transformation of ¢ programs. In Compiler
Construction, 11th International Conference, CC 2002
(2002), Springer, pp. 213-228.

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

NECULA, G. C., MCPEAK, S., RAHUL, S. P., AND
WEIMER, W. Cil: Intermediate language and tools for
analysis and transformation of ¢ programs. In Proceedings of
the 11th International Conference on Compiler Construction
(London, UK, 2002), CC ’02, Springer-Verlag, pp. 213-228.
PoLiTZ, J. G., ELIOPOULOS, S. A., GUHA, A., AND
KRISHNAMURTHI, S. Adsafety: type-based verification of
javascript sandboxing. In Proceedings of the 20th USENIX
conference on Security (Berkeley, CA, USA, 2011), SEC’11,
USENIX Association, pp. 12-12.

SAILER, R., JAEGER, T., VALDEZ, E., CACERES, R.,
NALD PEREZ, R., BERGER, S., GRIFFIN, J. L., AND VAN
DOORN, L. Building a MAC-based security architecture for
the xen open-source hyperviso r. In Proceedings of the 2005
Annual Computer Security Applications Conference (Dec.
2005), pp. 276-285.

Re: Adding support for SE-Linux security.
http://archives.postgresqgl.org/
pgsql-hackers/2009-12/msg00735.php, 2009.
SE-PostgreSQL? http:
//archives.postgresgl.org/message—id/
20090718160600.GE5172Q@fetter.org, 2009.

SON, S., MCKINLEY, K. S., AND SHMATIKOV, V.
Rolecast: finding missing security checks when you do not
know what checks are. In Proceedings of the 2011 ACM
international conference on Object oriented programming
systems languages and applications (New York, NY, USA,
2011), OOPSLA 11, ACM, pp. 1069-1084.

SRIVASTAVA, V., BOND, M. D., MCKINLEY, K. S., AND
SHMATIKOV, V. A security policy oracle: detecting security
holes using multiple api implementations. In Proceedings of
the 32nd ACM SIGPLAN conference on Programming
language design and implementation (New York, NY, USA,
2011), PLDI *11, ACM, pp. 343-354.

STAFFORD, J. A. A Formal, Language-Independent, and
Compositional Approach to Interprocedural Control
Dependence Analysis. PhD thesis, University of Colorado,
2000.

SuN, F., Xu, L., AND Su, Z. Static detection of access
control vulnerabilities in web applications. In Proceedings of

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

the 20th USENIX conference on Security (Berkeley, CA,
USA, 2011), SEC’11, USENIX Association, pp. 11-11.
TAN, L., ZHANG, X., MA, X., XIONG, W., AND ZHOU, Y.
Autoises: automatically inferring security specifications and
detecting violations. In Proceedings of the 17th conference
on Security symposium (Berkeley, CA, USA, 2008),
USENIX Association, pp. 379-394.

VANCE, C., MILLER, T., AND DEKELBAUM, R.
Security-enhanced darwin: Porting selinux to mac os x.
Proceedings of the Third Annual Security Enhanced Linux
(2007).

WALSH, E. Integrating x.org with security-enhanced linux.
In Proceedings of the 2007 Security-Enhanced Linux
Workshop (Mar. 2007).

WASSERMANN, G., AND SU, Z. Sound and precise analysis
of web applications for injection vulnerabilities. In
Proceedings of the 2007 ACM SIGPLAN conference on
Programming language design and implementation (New
York, NY, USA, 2007), PLDI 07, ACM, pp. 32-41.
WATSON, R. N. M. Trustedbsd: Adding trusted operating
system features to freebsd. In Proceedings of the FREENIX

Track: 2001 USENIX Annual Technical Conference
(Berkeley, CA, USA, 2001), USENIX Association,

pp. 15-28.

WIGGINS, D. Analysis of the X protocol for security
concerns, draft II, X Consortium Inc., May 1996. Available
at: http://www.x.org/X11R6.8.1/docs/
Xserver/analysis.pdf.

WILLE, R. Restructuring lattice theory: An approach based
on hierarchies of concepts. In Proceedings of the 7th
International Conference on Formal Concept Analysis
(Berlin, Heidelberg, 2009), ICFCA °09, Springer-Verlag,

pp- 314-339.

WRIGHT, C., COWAN, C., SMALLEY, S., MORRIS, J., AND
KROAH-HARTMAN, G. Linux security modules: General
security support for the Linux kernel. In Proceedings of the
11th USENIX Security Symposium (August 2002), pp. 17-31.
ZHANG, X., EDWARDS, A., AND JAEGER, T. Using
CQUAL for static analysis of authorization hook placement.
In Proceedings of the 11th USENIX Security Symposium
(August 2002), pp. 33-48.

