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ABSTRACT

We present Privaros, a framework to enforce privacy policies on

drones. Privaros is designed for commercial delivery drones, such

as the ones that will likely be used by Amazon Prime Air. Such

drones visit various host airspaces, each of which may have differ-

ent privacy requirements. Privaros uses mandatory access control

to enforce the policies of these hosts on guest delivery drones. Pri-

varos is tailored for ROS, a middleware popular in many drone

platforms. This paper presents the design and implementation of

Privaros’s policy-enforcement mechanisms, describes how policies

are specified, and shows that policy specification can be integrated

with India’s Digital Sky portal. Our evaluation shows that a drone

running Privaros can robustly enforce various privacy policies

specified by hosts, and that its core mechanisms only marginally

increase communication latency and power consumption.
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1 INTRODUCTION

Over the past few years, there has been a rapid increase in the avail-

ability and ownership of end-user drones. Drones are now available

for a few hundred dollars andwidely used by hobbyists. Commercial

operators such as Amazon are also planning to use fleets of drones

for delivery. The US Federal Aviation Administration forecast re-

port (2019-2039) [1] predicts over 1.39 million hobbyist and 853,000

commercial drones by 2023. Drones are also being put to effective

use in the Covid19 pandemic. Law-enforcement agencies in various

countries are using drones to make public-service announcements,

and patrol locked-down areas for unauthorized social gatherings.
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Despite the novel applications enabled by drones, the lack of tight

regulations surrounding their use has led to a plethora of security

and privacy problems. Incidents involving drones range from poten-

tial drone/aircraft collisions and near-misses [95], drone-sightings

causing airport closures [22], to smuggling [21] and assassination

attempts [45]. While rogue drones cause such security and safety-

related problems, benign drones, e.g., those that may be used for

package delivery, also raise serious privacy concerns. Drones are

equipped with a variety of sensors (cameras, GPS, Lidar, etc.) for
navigation. The sensors on board the drone can be used to capture

pictures or video, map a sensitive location or a building. Prior stud-

ies have shown that people are indeed wary of their privacy being

compromised by drones [16, 89, 94]. Addressing the entire gamut

of security and privacy problems posed by drones requires new reg-

ulations (e.g., to ensure that drones have an identity registered with

the aviation authority), technology, and law enforcement (e.g., to
detect [11, 14, 15, 33, 61, 73, 81] and capture rogue drones).

We present Privaros, a framework that allows host airspaces
(e.g., a corporate or university campus, a city neighbourhood, or

an apartment complex) to ensure that guest drones entering them
are compliant with privacy-policies determined by the hosts. For

example, a host can specify a policy that requires any guest drone

that enters its airspace to refrain from wirelessly transmitting or

locally storing (e.g., in an on-board SD card) any images or video

that it captures when within the host’s airspace. Privaros enhances

the drone software stack with mechanisms that allow guest drones

to enforce host-specified privacy policies and prove to the host that

they are in compliance (via hardware-based attestations).

We have designed Privaros specifically with a focus on delivery

drones. These drones are managed by fleet operators that have rep-

utations and delivery contracts to protect and, by corollary, have no

incentives to operate rogue drones. Thus, we can assume that such

drones have an identity (e.g., a public key) that is registered with

the aviation authority, are equipped with the Privaros-enhanced

software stack, and have associated trusted hardware that makes

remote attestation possible. Making these assumptions allows us

to focus on the key challenges in building the policy-compliance

mechanisms for drones without rightaway having to consider other

critical issues, e.g., on how to issue identity to drones and on how to

deal with rogue drones. While central to an end-to-end treatment

of privacy with drones, these issues involve developing regulations

and evolving new law-enforcement methods that are outside the

scope of this paper. Our work focuses on delivery drones because

their usage model implies that the above assumptions hold. Our

work also gels well with the policies being developed by various

countries [6, 9, 40, 54, 62], notably India’s Digital Sky [37–39], which

provides guidelines for drone operators in India.

Privaros models the problem of enforcing host-specified privacy

policies as one of regulating how applications on the drone consume

or communicate data received from sensors on the drone. Privaros
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enforces these restrictions using mandatory access control. For

the example policy discussed earlier, Privaros can ensure that the

video feed from the camera is available to image-processing/vision

applications and to the navigation software, but cannot be sent to

local storage or to the wireless network interface.

Privaros is built on top of the Robot Operating System [67, 71, 72]

(ROS version 2
1
), a popular middleware used by a number of drones

(e.g., variousmodels sold by DJI, 3DR, Parrot, Gaitech, Erle, BitCraze,

Skybotix) and other robotics systems. A key reason for our choice to

base Privaros atop ROS was its rich support for applications written

in a variety of languages, including Python and C++. ROS provides

the abstractions to transparently execute a variety of applications on

any drone hardware platform that runs ROS, and also interacts with

the navigation control software. A vibrant application ecosystem

has evolved around ROS and the market for platforms that use ROS

is expected to grow to $402.7 million by 2026 [68]. Privaros can

therefore directly benefit drone operators that tap into the ROS

application ecosystem.

ROS is built as a publish/subscribe system, in which ROS ap-

plications publish or subscribe to certain topics. ROS simply acts

as a matchmaker that pairs publishers and subscribers, following

which the pair of applications communicate directly with each

other over network sockets. As such, ROS does not incorporate any

security mechanisms to regulate application communication. Thus,

a malicious ROS application can easily snoop on or corrupt the

communication between a pair of benign applications. Recognizing

the need to prevent such attacks, the ROS community has devel-

oped Secure ROS (SROS) [90, 91], a set of extensions that attempt

to prevent such attacks.

In this paper, we show that the mechanisms of SROS alone do

not suffice to robustly enforce security policies. In particular, while

ROS applications typically communicate via the publish/subscribe

mechanism, they can also communicate directly via other operating

system (OS) abstractions, such as raw sockets, shared memory,

pipes, and the file system. For example, a pair of applications can

bypass the ROS-based publish/subscribe matchmaking mechanism,

and directly establish socket connections for communication. While

ROS has visibility into the publish/subscribe system and can reason

about applications that initiate communication using this system, it

cannot reason about low-level communication via OS abstractions.

Privaros enhances the ROS software stack by adding the ability

to enforce mandatory access control policies between ROS applica-

tions. It tightly integrates policy enforcement at the ROS layer with

OS kernel-level modifications to enforce mandatory access-control

policies. At the OS level, the mechanisms of Privaros allow it to

robustly enforce restrictions on applications that communicate di-

rectly via OS abstractions or bypass ROS. At the ROS level, Privaros

incorporates modifications that allow the OS mechanisms to be

cognizant of ROS abstractions (e.g., topic names) used by applica-

tions, and suitably redirect communication via trusted applications,

where required. Section 3 elaborates on the mechanisms in Privaros.

We have tailored Privaros’s policy interface for delivery drone

operations in India. To show that drones using Privaros can readily

be adopted once regulations are in place, we integrate Privaros’s

1
Unless otherwise noted, uses of the term “ROS” in this paper reference ROS ver-

sion 2 [72], which deviates significantly in design from ROS version 1 [71].

policy specification interface with the front-end offered by India’s

Digital Sky portal [37]. This interface allows drone operators to

specify the regions to which they intend to fly and obtain the

permission to fly from India’s Directorate General of Civil Aviation

(DGCA). While the current intent of Digital Sky’s interface is to

prohibit drones from flying over so-called “red-zones” (e.g.,military

establishments or other sensitive areas), we show that the same

interface can be used to upload the privacy policies of all the host

airspaces that the drone will visit during its delivery run (Section 4).

As a result, we hope that Privaros can be readily adopted without

invasive changes to a regulatory platform that is already in place.

For our experiments, we ran the Privaros-enhanced software

stack on an NVidia Jetson TX2 board [80]. We chose this platform

because its firmware can easily be reflashed with Privaros (unlike

off-the-shelf drones, which are often closed platforms), and also

because it offers a programmable trusted-execution environment

(TEE) based on the ARM TrustZone [5]. Commercially-available

drones do not yet have the kind of hardware support to enable

remote attestations by hosts. However, we note that such trusted

hardware support has already been proposed as part of the reg-

ulations in Digital Sky [39]. Indian drone vendors will thus have

to provide trusted hardware in the near future to sell and operate

drones in India. Our evaluation (Section 5) shows that Privaros

robustly enforces privacy policies. Furthermore, Privaros’s core

mechanisms only introduce low runtime overheads in terms of

communication latency and power consumption on the drone.

To summarize our contributions:

• We motivate the problem of enforcing host-specified privacy

policies on guest delivery drones and discuss the shortcomings of

existing methods to enforce such policies;

• We present Privaros, a set of new mechanisms added to ROS and

the underlying OS to enforce such policies;

• We show how the policy specification for Privaros can be inte-

grated with the Digital Sky interface; and

• We present a robustness and security evaluation of Privaros on

an NVidia Jetson TX2 board, and a performance evaluation showing

that its overheads are low enough for practical use.

2 BACKGROUND AND THREAT MODEL

We now present examples of the kinds of policies that we consider

in this paper, background on the regulations that have already been

proposed by Indian aviation authorities, and our threat model.

Example policies. A host airspace may wish to impose a variety

of policies on guest drones:

1 ProcessLocally. Autonomously-navigated drones capture im-

ages or video of their surroundings. These images/video are pro-

cessed on-board by a computer vision application to detect obstacles

that the drone must fly around. A host may wish to ensure that

the images/video captured by such a drone are only used by the

computer vision application, which in turn communicates this infor-

mation only to the navigation board. In particular, the images/video

must not be transmitted outside the drone via its network inter-

faces. They should also not be stored in the drone’s filesystem for

retrieval by the drone operator at a later point in time.



Privaros: A Framework for Privacy-Compliant Delivery Drones CCS’20, November 9–13, 2020, Virtual Event, USA

Aviation
Authority

Drone Fleet 
Operator

City 
neighbourhood

Digital Sky 
policy server

1

1

2

3

Drones equipped 
with Privaros

Host 
Airspaces

College campus
4

1 Host airspaces, such as college/school campuses, office com-

plexes/IT parks, and city neighbourhoods, identify their privacy

policies and upload it to the aviation authority (Digital Sky in

India); 2 A delivery drone operator starting up a drone sends

information identifying the drone (e.g., its registered public key),

and declares the flight path of the drone’s delivery run; 3 The

aviation authority server vets the flight plan (e.g., for NPNT com-

pliance) and then sends the drone the privacy policies of the

host airspaces along its flight path; 4 The drone then begins

its delivery run. Any host airspace along the drone’s flight path

can challenge it to provide TEE-backed attestations, to verify the

integrity of the drone’s Privaros-enabled software stack.

Figure 1: Deployment scenario for Privaros-enabled drones.

2 BlurExportedImages. A large majority of drones available

today are controlled by a ground-based operator. These drones

transmit a video feed from the drone to the operator (called the first
person view) who navigates the drone manually, often with visual

line of sight. Alternatively, one could imagine an autonomously-

navigated drone that transmits its video feed to a cloud-based server

for obstacle detection, and obtains its navigation decisions from

this server. For such drones, it is impractical for hosts to impose the

ProcessLocally policy. Hosts may instead wish to ensure that the

video feed exported from the drone is scrubbed to remove sensitive

information. For example, the host may require the video feed to be

processed by an on-board application (vetted by the host) that blurs

peoples’ faces and car registration plates that appear in the video

feed (e.g., as is done in images published in Google Street View).

3 UseDroneLanes. The host may require guest drones to fly only

within designated drone lanes to ensure safety and privacy. In a

campus or university setting, campus security may identify drone

lanes that are away from sensitive installations within the campus.

Localities in a city may likewise identify drone lanes that border

public spaces at a comfortable distance away from private homes.

These policies have been discussed in prior work [48, 83], but are

by no means a comprehensive listing of policies that Privaros can

enforce. Hosts may choose different combinations of these or other

policies to enforce in their airspaces. The policies may also have to

be tailored to the abilities of the guest drone, e.g., an autonomous

drone can operate under ProcessLocally, but a semi-automated

or manual drone may require BlurExportedImages.

These example policies cover the main concerns that have been

raised in drone privacy laws proposed in several countries, e.g., the

United States [9, 54], United Kingdom [6, 40], Australia [62], and

India [38, 39], where privacy of individuals and the integrity of the

drone’s flight path are the primary considerations. None of these

proposals suggest a way to enforce these policies beyond seeking

an individual’s permission before recording their picture or video.

Digital Sky. The Digital Sky platform is a set of regulations [38, 39]

and supporting computing infrastructure [37] that India’s aviation

authority (DGCA) is using to formulate its drone policy. A first set

of regulations [38] was adopted on December 1, 2018 as part of

the Civil Aviation Regulations, and the policy continues to evolve.

Aimed primarily at drone operators, the Digital Sky portal [37]

provides interfaces for authorized users (e.g., licensed commercial

drone operators) to register the identity of their drones with DGCA,

and obtain permission to fly before each delivery run.

Digital Sky’s policy is focused on ensuring safety and security.

For example, Digital Sky allows operators to specify the geographic

region over which they intend to fly using a visual map-based in-

terface. This information is sent to a back-end server, which checks

whether the region intersects any red-zones (e.g., sensitive military

installations), which are no-fly zones. The proposed flight path may

also intersect airspaces that impose altitude restrictions. Drones

are not allowed to fly above a certain altitude as they approach

an airport, for instance, and the permitted altitude reduces as the

drone approaches the airport (thereby imposing a conical exclusion

zone centred at the airport).

One of the centrepieces of Digital Sky’s proposal to enforce these

restrictions is No-permission No-takeoff (NPNT). With NPNT, the

DGCA server would review the drone’s flight path and issue a

permission artifact, digitally-signed by the aviation authority. This

permission artifact is sent to the drone, and the drone is permitted

to fly only after validating the digitally-signed permission artifact.

Finally, Digital Sky certifies drones at various levels [39, Page 39],

based on the hardware capabilities of the drone. A level 0-certified

drone stores cryptographic artifacts pertaining to its identity (i.e., its
public/private key pair) completely within software. A level 1-

certified dronemust have a hardware-based TEE to store the drone’s

private keys, perform attestations, and perform NPNT validation

and enforcement. Level 1-certified drones are robust to attacks on

the drone’s software stack because they offer a hardware-only TCB.

Privaros aims to build upon the basic protections offered by Dig-

ital Sky by providing fine-grained policy enforcement within the

drone. Privaros allows enforcement of policies such as ProcessLo-

cally, BlurExportedImages and UseDroneLanes that are beyond

the current scope of Digital Sky. Figure 1 depicts how we envision

Privaros-enabled drones to be deployed, and how policies will be

communicated to the drones. Section 4 presents our deployment

vision in more detail.

Threatmodel. Privaros is tailored for delivery drones. E-commerce

companies considering drone-based delivery (e.g., Amazon, Flip-

kart) will likely use decentralized models akin to those used in

ground-based delivery, wherein procurement and operation of deliv-

ery vehicles is outsourced to delivery-service providers (DSPs) [20,

29, 49]. While it is reasonable to assume that e-commerce compa-

nies are trusted and have no overtly-malicious intentions (because

they have reputations to protect), host airspaces may not trust DSPs.
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In particular, the e-commerce company may prescribe a Privaros-

enhanced software stack for use on a DSP’s delivery drones. How-

ever, the host airspace cannot trust that the DSP’s guest drone is

indeed executing that software stack. For example, the drone may

have been compromised by a rogue DSP employee who covertly

reflashes the drone’s software or installs malware on it.

We therefore require guest drones to attest their software stack

to host airspaces. Our trusted-computing base (TCB) consists of

the guest drone’s hardware TEE and its OS, enhanced with the

mechanisms of Privaros. The goal of attesting the drone is to en-

sure that the TCB in the guest drone is untampered. Applications

running on top of Privaros are not trusted and could be malicious in

intent. Privaros also introduces modifications to ROS (Section 3.3.3).

However, ROS consists of library modules that are linked against

applications. Since we do not trust applications, the modifications

that Privaros introduces in ROS are not part of the TCB.

To enable attestations, we assume that each drone is equipped

with a hardware TEE (i.e., a level 1-certified drone in Digital Sky

terminology) that stores the drone’s private key. The drone’s public

key serves as its identity to hosts and the aviation authority. The

hardware TEE enables features like secure boot and attestations in

response to challenges from hosts or the aviation authority.We have

implemented Privaros on a hardware platform that has a TEE based

on ARM TrustZone [5]. However, Privaros only requires a TEE to

attest the software stack (in the standard way [75]) and its design

does not currently leverage many other features of the TrustZone

(e.g., peripheral partitioning across worlds). It can therefore be

adapted to any hardware TEE design that drone vendors evolve in

response to Digital Sky regulations.

A single drone typically has multiple compute platforms. For

example, a flight control board (such as Pixhawk [64]) runs the

autopilot software (such as Ardupilot [4] or PX4 [66], running on

top of a real-time operating system such as ChibiOS [18]) and in-

teracts with a companion board (that typically uses an ARM-based

processor) that runs applications. We assume that attestations pro-

vided by the drone cover the software running on all these compute

platforms. This could be implemented with a single master board
(i.e., the registered flight module whose identity is provided to the

aviation authority) obtaining local attestations from all slave boards,
and providing a consolidated attestation to an external entity such

as a host. Digital Sky requires all master-slave communications

to be encrypted with 128-bit symmetric keys, at minimum [39,

Page 39]. For now, we only obtain attestations from the compan-

ion board that executes Privaros. This is primarily because flight

control boards are not currently equipped with hardware TEEs,

although they are likely to evolve to be equipped as such.

By corollary, our threat model excludes physical attacks that

attempt to bypass the mechanisms of Privaros. For example, a rogue

employee could attempt to bypass Privaros by clipping on a remote-

controlled camera with in-built networking that is not connected

as a sensor to the compute platform running Privaros. To an extent,

some of these attacks can be mitigated with regulatory compliance

checks. For example, regulations may require the fleet operator to

have procedures that perform an automated physical check of the

drone before it flies out of the warehouse on its delivery run to

ensure that there are no unauthorized peripherals on the drone.

Message format for topic CamOutput

uint32 height # image height
uint32 width # image width
string encoding # encoding of pixels
uint32 step # row length
uint8[] data # image matrix (step*height)

Figure 2: Example declaration of message format in ROS.

To send messages, an application uses a topic name (say

CamOutput) to refer to the message stream, and publishes

messages in this format under that topic name.

Privaros provides the ability to control how applications con-

sume sensor data. However, it is well-known that mandatory access

control (e.g., based on subject and object labels) is a not perfect

mechanism. It cannot protect against applications attempting to

communicate with each other via covert timing or storage channels.

We exclude covert channel-based attacks from our threat model.

3 ENFORCEMENT MECHANISM

This section presents the details of the policy enforcement mecha-

nism in Privaros. Section 4 will describe how policies are specified

and communicated to the drone.

3.1 ROS

Privaros enhances ROS and the underlying OS, and mediates the

actions of all the applications running on the drone. As discussed

in our threat model, drone applications are typically executed on a

companion board. This is standard in all ROS-based platforms. The

flight-control board and the sensors connected to it communicate

with applications on the companion board using the MAVLink

protocol [51]. Applications receive and process data from drone

sensors and can also communicate with each other. For example,

the output of the camera can be processed by an image-processing

pipeline to detect obstacles. The output from this pipeline may be

processed by a navigation application that sends MAVLink control

commands to the flight-control board. Privaros aims to control inter-

application communication based on the host’s privacy policies.

ROS primarily uses a publish/subscribe model to facilitate appli-

cation communication. The publish/subscribe mechanism in ROS

is built using the Data Distribution Service (DDS) [24, 74], an open

middleware standard created for real-time and embedded systems.

ROS enables asynchronous communication between applications

while decoupling spatial and temporal concerns, i.e., applications
don’t need to know where other applications that they commu-

nicate with reside (they can even run on a different drone), and

applications can exchange information even if they are not simulta-

neously running. Applications publish or subscribe to one or more

topics, identified by a topic name. Topics have associated types that

specify how messages published under that topic must be parsed.

Figure 2 presents an example of how an application would spec-

ify a ROS topic (in this case, an image). The fields shown in the

topic declaration are the various data members of messages that

are published under that topic.

ROS uses the DDS protocol to match publishers with subscribers

based on topic. At the application level, the abstraction presented

is one of publishing messages to a bus, which are delivered to all



Privaros: A Framework for Privacy-Compliant Delivery Drones CCS’20, November 9–13, 2020, Virtual Event, USA

Camera Navigator

Dynamic 
Application 
Discovery

LinuxSocket

1
2 2

3

ROS
+ DDS

Legend:

1 – Registration of 
Publishers and Subscribers

2 – DDS Dynamic 
Discovery
and Connection 
Establishment

3 – Socket Communication

1

ROS
+ DDS

Publishes to
CameraOutput

Subscribes to
CameraOutput

Socket
3

3

1 Every application on ROS links against the library. The dotted

lines show the process boundary. An application registers its

topics via the ROS library; 2 A decentralized protocol discovers

and identifies applications with matching topics; 3 ROS sets up

socket communication via the underlying OS for the applications.

Figure 3: Publisher/subscriber communication in ROS.

subscribers of the bus. Figure 3 illustrates how this abstraction is

implemented. When ROS starts an application that subscribes to

a topic, it checks which applications publish to that topic; DDS

implements a decentralized protocol for application discovery. If it

identifies a publisher, it sets up a network socket for the publisher

and subscriber to directly communicate with each other. ROS is

built to support distributed robotics platforms, so a publisher and

subscriber application need not necessarily run on the same physi-

cal machine. However, if they do, ROS may choose to optimize their

communication using shared memory instead of sockets. Applica-

tions that exclusively use the ROS API for communication remain

oblivious to the means of communication (sockets, shared memory)

that ROS uses to establish communication. The ROS library, which

applications are linked with, transparently marshals and unmar-

shals data beneath the application layer, thereby exposing a simple

publish/subscribe API at the application layer.

We use a communication graph to represent the flow of messages

between applications on a ROS system. The nodes of this graph

represent ROS applications while edges denote topic names. Note

that each application can publish or subscribe to multiple topics.

We present examples of communication graphs in Section 3.3.

3.2 SROS and its Shortcomings

In its most basic form, ROS does not offer security. Applications do

not authenticate each other and messages between applications are

exchanged in the clear. This leads to a number of attacks [25, 26, 42,

52, 69, 84] that compromise message confidentiality (e.g., snooping
on messages), data integrity (e.g., false data injection) and sender

integrity (e.g., by impersonating an application).

ROS does not impose restrictions on the topics to which an

application can publish or subscribe. This leads to situations where

an application can publish a synthetic image feed with the same

topic name as the real camera (say, CamOutput is the topic name).

Applications that subscribe to the CamOutput topic will consume

this image feed, possibly with dire consequences. For example, a

malicious application can fool an obstacle-detection application

that subscribes to CamOutput by publishing an obstacle-free image

<permissions>
<grant name="/camera">
<subject_name>CN=/camera</subject_name> ...
<allow_rule>

<publish>
<topics>

<topic>CamOutput</topic>
<topic>CameraStatus</topic>

</topics>
</publish>
<subscribe>
<topics>

<topic>Clock</topic>
</topics>
</subscribe>

</allow_rule>
<default>DENY</default>
</grant>

</permissions>

Figure 4: Snippet of an application manifest in SROS.

feed, thereby causing the drone to crash into a building. Similarly, a

malicious network-facing application can subscribe to CamOutput

and transmit the image feed to the attacker’s server.

A number of prior papers have investigated these security short-

comings and have also proposed solutions [25, 26, 52, 69]. The first

version of ROS also had a centralized ROS master node, which was

responsible for matchmaking. As a centralized entity, its failure

could lead to denial-of-service attacks [42]; ROS version 2, which

we use for Privaros, eliminates the ROS master node, and instead

uses the decentralized DDS protocol for communication setup.

To address these concerns, the community has developed the

Secure ROS extension (SROS) [90, 92]. SROS requires each node in

the communication graph to be associated with an identity backed

by a X.509 certificate, signed by a trusted third-party. SROS secures

communication between nodes using TLS. It also allows application-

writers to specify a manifest that lists the topics to which that

application can publish or subscribe (e.g., see Figure 4). Themanifest

is cryptographically bound to the application’s identity and cannot

be modified without regenerating associated the X.509 certificate.

SROS thus ensures that an application cannot listen to or produce

messages on topics that are not already part of its declared manifest.

These mechanisms prevent a number of basic attacks that are

otherwise possible on a ROS system. But they are not perfect, and

do not suffice to enforce policies end-to-end. We identify two fun-

damental, design-level shortcomings:

1 Lack of end-to-end reasoning. SROS restricts the list of topics to
which an application can publish or subscribe via its manifest. How-

ever, when an application author specifies this list in the manifest,

he does not know a priori what other applications will execute on
the drone platform. This lack of context-specific, end-to-end reason-

ing about the data produced or consumed by an application restricts

our ability to enforce policies in arbitrary settings. For example, the

ProcessLocally policy prevents any images published by the cam-

era (under the topic CamOutput) from being transmitted outside

the drone. However, BlurExportedImages does allow images to
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leave the drone as long as they are scrubbed by another application

to blur any privacy-sensitive data in the images. The application

author, who specifies the manifest, has no way to reason about all

the contexts in which the application will execute. Without such

reasoning about the application’s end-to-end usage, the application

author can at best produce a one-size-fits-all manifest that may

poorly fit the situation in which the application is used.

2 Lack of control over lower-level abstractions. SROS only imposes

constraints on communication that goes via the ROS platform. Ap-

plications (both malicious and benign ones) can choose to bypass

ROS entirely, and communicate directlywith each other via network

sockets, shared memory, the file system, or inter-process communi-

cation. Such communication happens directly via OS abstractions

and therefore completely bypasses SROS enforcement.

In addition to these design-level shortcomings in SROS, we also

identified some quirks in its implementation that could lead to

unexpected attacks. First, SROS only allows application authors to

specify restrictions in the manifest using topic names. ROS version 2
allows an application to publish messages belonging to different
types under the same topic name. For example, a camera application

publishing under the topic CamOutput could publish images under

one type (say,CamOutput::ImageType) and its status under another

type (say, CamOutput::StatusType). An application can choose to

subscribe to messages of one or more of these types under the same

topic. However, the type of data consumed by the application will

not be evident in themanifest file, which only specifies the topic. For

example, an application called CameraStatus2 could periodically

poll the camera’s status by subscribing to CamOutput and only

read the data value published with type CamOutput::StatusType.

The fact that this application does not read the image feed from the

camera is not evident from the manifest file.

The second quirk is that SROS internally uses the full path of the

application binary to identify the application at runtime. Using the

path rather than the actual executable to determine identity makes

the system vulnerable to attacks where the application binary is

replaced with a malicious version. SROS will use the same manifest

as the original application to determine the list of topics accessible

to the malicious application.

Taken together, these quirks enable a malicious drone operator

to engineer data leaks in certain situations. For instance, suppose

the CameraStatus application is allowed to upload the camera’s

operational status to the network. A well-behaved CameraStatus
application only reads data of typeCamOutput::StatusType, but not

its image feed (of type CamOutput::ImageType). A drone running

such an application should therefore be acceptable to a host that

wishes to enforce the ProcessLocally policy. However, if SROS

were used for policy enforcement, a malicious drone operator could

violate the ProcessLocally policy by replacing the CameraStatus
application binary with a malicious version. The malicious applica-

tion reads data of type CamOutput::ImageType and leaks it over the

network. SROS allows this attack because a it only uses the topic

name in the manifest file to restrict the data channels accessible to

the application; and b it only uses the path name of the binary and

does not bind the executable to its identity.

2
Throughout the paper, please note the font conventions used for Applications,
Topics, versus Policies.

We do not view these implementation-level quirks in SROS to be

foundational. Indeed, there are easy workarounds: e.g., a modify

ROS to include the type name with the topic in the manifest file (or

match types at runtime); b rewrite applications to decouple differ-

ent types of data into different topics; and c bind the application

binary to its identity, possibly coupled with hardware TEE-based

attestation of the binary to the host. However, the design-level

shortcomings of SROS are the primary motivation for Privaros.

3.3 New Mechanisms in Privaros

Privaros enforces mandatory access control policies that regulate

inter-application communication. Privaros builds upon the basic

facilities of SROS that assign identity to applications. It also lever-

ages SROS to ensure that TLS is used for all inter-application net-

work communication. However, it supplements the manifest-based

access-control mechanism of SROS by: a allowing end-to-end pol-

icy specifications; and b enforcing policies within the OS.

3.3.1 End-to-end Policy Specifications

In Privaros, policies are specified in terms of permitted data flows

between applications. Given a high-level policy such as Process-

Locally, BlurExportedImages or UseDroneLanes, the policy is

compiled down to restrictions on inter-application communication

(Section 4 will discuss policy specification in more detail). Thus,

rather than require an application writer to a priori commit to spe-

cific topic restrictions, with Privaros, restrictions to be imposed are

identified based upon the environment in which the application

will execute. Consider our three example policies, for instance:

• ProcessLocally. This policy is expressed using restrictions that

prevent a any network-facing application from talking to the appli-

cation that publishes the camera feed; and b preventing the camera

application from writing to the file system mounted on the SD card.

A navigation application may consume the output of the camera

feed, but the policy would place the same restrictions on the navi-

gation application (i.e., no network or file system communication)

to prevent a leak of data from the navigation application.

• BlurExportedImages. This policy is compiled down to a re-

striction that all images from the camera must pass through a

blurring application before they are consumed by a network-facing

application. The blurring application is entrusted with the task of

identifying and blurring out faces, car number plates, and other

sensitive data.

• UseDroneLanes. This policy is compiled down to a restriction

that the output of the GPS feed must pass through a trusted logger
that stores the GPS feed in tamper-proof storage, e.g., either in an

audit log within the drone’s hardware TEE, or in a trusted cloud

server. Logs can later be analyzed to determine if the drone violated

the drone lanes.

The above implementation only allows passive enforcement of

UseDroneLanes, in which violations are detected post factum. To

actively enforce the policy, a trusted application would need to

analyze the GPS feed and issue navigation commands to the flight-

control board to keep the drone in the lane. We restricted ourselves

to the passive enforcement variant because our experimental hard-

ware platform [80] is not integrated with a flight-control board.
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Figure 5: Illustrative communication graphs.

Figure 5 depicts the communication graph structure imposed by

these restrictions. Privaros relies on trusted applications (e.g., the
blurring application and trusted logger), shown as shaded ovals in

Figure 5, to permit data flows that would otherwise be forbidden.

These trusted applications serve a role similar to declassifiers/en-

dorsers from the information-flow control literature [58] or trans-

formation procedures from the Clark-Wilson security model [19].

The host that specifies the policy must also specify any trusted

applications that may be needed to enforce the policy. These trusted

applications may be drawn by the host from an app store-like portal.

It is the host’s responsibility to ensure that the trusted applications

indeed meet their privacy requirements, e.g., that an app indeed

identifies and blurs faces suitably. Privaros confirms to the host that

the trusted applications are executing on the drone (via hardware-

based attestation, Section 3.4), and ensures that data passes through

these trusted applications before it reaches other downstream appli-

cations. Privaros works at the granularity of processes, and does not

track how data is processed within the applications to ensure that

they perform their advertised functionality (e.g., blurring faces).

Note that privacy laws of the future may require drones to en-

force some of these policies by default. Even with such laws in place,

we foresee Privaros as being useful to hosts that wish to enforce

customized policies. For example, a host may wish to specify and

protect additional sensitive objects beyond those that are required

to be blurred-out by law. Such hosts can use provide customized

blurring applications so that BlurExportedImages can identify

and blur out sensitive objects of their choosing.

3.3.2 OS-level Enforcement

Privaros restricts application-level communication within the OS

(Linux, in our case) at the process level of granularity. Unlike SROS,

Privaros can therefore restrict application communication via pipes,

the file system, shared memory, message queues, network- and

UNIX-domain sockets. Privaros validates the application binary at

startup (using a digitally-signed hash of the binary) and enforces se-

curity policies on the corresponding process. As a result, Privaros’s

enforcement binds the application’s runtime identity to its process

rather than the path name of its binary (cf. Section 3.2, the approach
used by SROS).

As is standard in many mandatory access control systems, Pri-

varos also uses labels to enforce policies [8, 10]. Each kernel object

is tagged with a label; subjects (i.e., processes) also have labels.

The labels of a subject and object determine whether the subject

is allowed to access an object. An object’s label can be changed

by trusted endorsers or declassifers. This approach has been used

in classical systems, e.g., Bell-LaPadula [8] and Biba [10], which

use centralized labels determined by a system administrator. More

recent approaches that implemented information-flow tracking in

modern OS kernels have used expressive decentralized label sys-

tems, where applications decide the labels they assign to their data

objects [30, 46, 59, 96].

Privaros adopts a simple label system that restricts data flow

between subjects using mandatory access control. Policy rules are

expressed at the process-level, and determine whether a process is

allowed to create/read/write to sockets, shared memory, IPC, pipes

or the file system.

The approach of statically specifying which subjects can com-

municate with each other is somewhat more restrictive than the dy-

namic approach adopted by more expressive label systems (e.g., [30,
46, 59, 96]). In these systems, the label associated with a data object

encodes its dynamic security state, which stores the history of how

it was processed (e.g., its taint status). In contrast, our policies are

specified as static restrictions on subject (i.e., process) communica-

tion alone, and data labels do not feature in the policy specification.

Thus, policy rules in Privaros must be crafted carefully to keep

track of the security state of an object. This difference has practical

consequences in how a policy must be expressed.

To illustrate the difference, consider enforcing the BlurExporte-

dImages policy on a drone that has a Navigator application which

uses images of the camera to make local navigation decisions. How-

ever, suppose that Navigator also needs to occasionally transmit

some of these images over the network to a cloud server for further

analysis (e.g., if Navigator’s algorithms produce low confidence

scores when identifying obstacles in those images). To enforce

BlurExportedImages, all images sent out over the network would

have to be processed by a trusted BlurFilter application.
With a label system that tracks the dynamic state of data objects

(e.g., [46, 59, 96]), the label associated with the image will determine

whether it has been processed by BlurFilter. There are no a
priori restrictions placed on when BlurFilter should process the

image. The only restriction is that the image should be processed

by BlurFilter at some point during its lifetime before it is sent

over the network.

In contrast, in Privaros we encode BlurExportedImages by

placing restrictions on application communication. One way to

express this would be using the communication graph in Figure 5 b ,

where we place the restriction that the camera application’s output

can only be consumed by BlurFilter, whose output in turn can

be consumed by Navigator and other applications.

However, this is clearly not the only way to express this policy

and may in fact be restrictive. For example, the Navigator applica-

tionmay require a high-fidelity image stream tomake decisions, and



CCS’20, November 9–13, 2020, Virtual Event, USA Rakesh Rajan Beck, Abhishek Vijeev, and Vinod Ganapathy

Camera

Blur
Filter

CameraOutput

Camera
Status

SanitizedStatus

[Network]

[MAVLink] to the Flight Control Board

Navigator

CameraOutput

NavOutput

Blur
Filter

Figure 6: Alternative communication graph to enforce Blur-

ExportedImages when Navigator needs a raw image feed

and also has to be network-facing.

the images processed by BlurFiltermay not be of the desired qual-

ity. In this case, the desirable option would be to use the communica-

tion graph shown in Figure 6. To realize this communication graph,

Privaros could either: a run two instances of the BlurFilter ap-
plication (as different processes), one for each node shown in the

communication graph; or b only run one BlurFilter process, but
modify the application to decouple the two logical flows. To process

the first flow, BlurFilter would subscribe to CameraOutput and

publish that stream after processing to SanitizedStatus. To pro-

cess the second flow, it would subscribe to NavOutput and publish

scrubbed images to the network. BlurFilter must be configured

carefully to segregate these flows. Privaros must ensure that flows

are directed to downstream applications correctly based on topic.

In Privaros, we chose to express policies by statically restricting

subject communication to keep the design of our enforcement

mechanism simple. We found empirically that this approach works

in the settings we considered. But it also means that policies must

be crafted carefully to balance both the host’s privacy requirements

and the functionality of applications executing on the drone.

We have implemented Privaros’s enforcement mechanism using

a kernel module. The kernel module hooks into the Linux Security

Modules (LSM) framework [57] to mediate kernel operations corre-

sponding to various communication abstractions, and enforces the

access control rules specified by the host. We base our implementa-

tion on AppArmor [3], so as to leverage their policy specification

language and enforcement framework, which is quite mature and

stable. Applications may communicate through kernel abstractions

such as pipes, files, network- and UNIX-domain sockets, shared

memory, and message queues. Privaros tracks such communication

by attaching the label of the sending subject with the correspond-

ing kernel abstraction. For example, we tag files with the identity

of the process that created it (using xattrs, extended attributes

provided on modern Linux file systems), and ensure that they can

be read only by the same process or other processes as allowed by

the policy. In the Linux kernel, most kernel abstractions provide

extra fields to store such security state.

While Privaros’s in-kernel mechanisms are largely confined to

the loadable kernel module, we did require some changes to the

kernel itself in its networking subsystem. In particular, we found

that when the LSM hook for the sendmsg system call is invoked,

the recipient’s information is not available from the socket data
structure when the recipient is on the local host (i.e., the recipient’s
port is not yet bound). The kernel binds this information to the

socket deeper down in the network stack. Therefore, we attach

the sending process identifier with the socket data structure, and

propagate this information as the socket descends down the net-

work stack into the transport layer. When the packet is processed

by the kernel for delivery to the recipient process, the identities

of both the sender and receiver process are available, and Privaros

can decide whether the communication must be permitted.

As discussed earlier, ROS supports distributed robotics platforms,

where the publisher and subscriber need not be on the same host.

Thus, for instance, ROS can support fleets of drones where an appli-

cation on one drone publishes data that can be consumed by appli-

cations running on other drones. Thus, network packets may leave

the drone as well. One could consider a situation where a fleet of

drones enforces BlurExportedImages by running the BlurFilter
application on just one drone (say, the fleet coordinator drone), and

only allowing outbound network communications (i.e., out of the
fleet) from that drone. In such cases, simply forbidding network

packets containing the raw image feed from leaving a drone would

be too restrictive. Instead, network packets must be allowed to the

fleet coordinator, but not to other servers. Privaros uses a whitelist

of allowed domains (e.g., as done in Weir [59] and Hails [36]) to

allow such communication. The LSM hook for sendmsg determines

whether the packet will leave the localhost, and if so, allows the

communication only if the IP address of the destination (e.g., the IP
address of the fleet coordinator) appears in a whitelist.

3.3.3 Modifications to ROS

A key problem arises when Privaros attempts to enforce policies

such as BlurExportedImages or UseDroneLanes with off-the-

shelf ROS applications. These policies require redirection of flows

through trusted declassifiers before they can be consumed by down-

stream applications. However, the manifests of ROS applications

will likely not allow redirection to happen easily. For example,

consider a camera application’s manifest that allows it to pub-

lish to the topic CamOutput and a Navigator application whose

manifest declares that it subscribes to CamOutput. We cannot

simply introduce a trusted BlurFilter application between the

Navigator and the camera applications. Privaros’s OS-level mech-

anisms will permit the information flow from the camera process to

the BlurFilter process and the output of the BlurFilter process
to be consumed by Navigator, based on the policy. However, the

ROS publish/subscribe system will not set up the flow because the

topics do not match (BlurFilter publishes to ScrubbedImage, to

which Navigator has not subscribed).
One way to address this problem is to generate manifest files for

ROS applications based on the whitelisted flows in the communica-

tion graph. For example, BlurFilter’s manifest would declare that

it subscribes to the topic CamOutput and publishes to the topic

ScrubbedImage. In turn, Navigator’s manifest would allow it to

subscribe to ScrubbedImage (but not toCamOutput). However, this

approach may not be practical for off-the-shelf ROS applications

whose manifests are part of their identity (i.e., X.509 certificates).
The key difficulty is that fresh X.509 certificates have to be issued

for each manifest configuration, which may not be feasible.

Privaros modifies ROS to allow flows to be transparently redi-

rected between applications, as requested in the policy. In particular,

it modifies the publish/subscribe system in ROS to: a tear down

an existing communication channel between a pair of applications;

b setup a new connection between applications, thereby allowing

us to introduce a trusted declassifier; and c assign a ROS topic and
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type to each newly-established connection. Recall from Section 3.2

that application manifests only specifies the topic; the type is only

available from the ROS runtime. Privaros probes the publish/sub-

scribe system to identify the type, and uses this information to

annotate newly-added edges in the communication graph.

Note that these modifications are required only to enable com-

munication between processes that is already permitted by the

MAC-based enforcement of the OS. Privaros relies solely on OS-

level mechanisms to prevent applications from communicating.

Thus, the modifications to ROS are not part of our TCB. In particu-

lar, Privaros allows a pair of applications to communicate only if

allowed by both ROS and the OS’s MAC-based policy enforcement.

Privaros works with off-the-shelf ROS applications. Recall from

Figure 3 that applications use the ROSAPI via the ROS library that is

linked into the process address space. The modifications discussed

above are implemented within the ROS library and are transparent

to ROS applications, which dynamically link against the ROS library

on the drone platform. Privaros’s kernel-level mechanisms are also

transparent to ROS applications.

3.4 Role of the Hardware TEE

As previously discussed, we use a TEE based on ARM TrustZone

in our prototype implementation. Our prototype makes use of the

TEE in the standard way for attestation [75]. A TrustZone processor

offers twoworlds of execution. The normal world executes untrusted
applications and is typically the environment with which the end-

user interacts. In our case, all drone applications, and Privaros

(i.e., ROS and the OS-based mechanisms) run in the normal world.

The secure world manages the drone’s private key, implements

remote attestation, and is therefore trusted and protected by secure

boot. Its memory is isolated from the normal world. After booting

securely, the secure world boots the normal world. It obtains and

stores integrity measurements of the normal world boot process

(i.e., a hash chain of software initialized during the boot sequence).

These measurements can be used in remote attestations to convince

a challenger (e.g., the aviation authority or any host airspace) that

the normal world booted with an untampered TCB. The attestation

report also includes a log of the applications started by Privaros

(as in TPM-based integrity measurement of applications executed

over the system lifetime [75]). Hosts can use this log to verify that

any trusted declassifier applications that they entrust for policy

enforcement in Privaros are running on the drone.

Standard TEE-based attestation can detect attempts by a mali-

cious DSP to install certain kinds of rootkits in the normal world.

Rootkits that modify the normal world’s kernel code or static data

can be detected using integrity measurements at boot time. Al-

though not currently implemented in our prototype, prior work

has developed TEE-based methods to protect the normal world

from advanced rookits, e.g., those that use direct kernel object ma-

nipulation. These methods have primarily been developed to offer

real-time protection for kernel code [7, 35] or obtain runtime snap-

shots of the normal world memory for analysis [79]. In addition, a

CFI-protected [34] normal world kernel (attested at boot-time using

standard TEE-based integrity measurement) can provide real-time

protection from various attacks directed against the kernel. We

plan to integrate these methods in our prototype in future work.

4 POLICY INTERFACE

Specifying and loading policies. Policies in Privaros are speci-

fied using communication graphs. The graph identifies a whitelist

of permitted flows between applications. Edges in the graph may be

annotated with a topic name to denote the ROS topic that restricts

the communication between that pair of applications to that topic

alone. Edges may lack an annotation if applications are allowed to

communicate outside the purview of ROS, e.g., using OS primitives.

Security administrators specify these policies by hand. However,

a real-world drone may run dozens of ROS applications in addition

to tens of daemons or other processes running natively on top of

the underlying OS. For example, the communication graph on our

experimental platform (Section 5) has 29 nodes and 69 edges, even

without any ROS applications running on it. Writing a comprehen-

sive whitelist of allowed flows would therefore be time-consuming

and might erroneously omit certain flows that prevent applica-

tions from working. We thus built a tool to extract communication

graphs from a running drone (encapsulating all the flows between

applications on that drone), which the security administrator can

then use as a starting point and refine. We view this approach as

being similar to the popular practice of using the audit2allow
tool to write SELinux and SEAndroid policies. While we also fully

acknowledge the usability concerns with audit2allow, we view
policy specification as an orthogonal problem that must be studied

separately. Advanced policy analysis tools, such as those developed

to configure SEAndroid policies [17, 85, 86], could be brought to

bear as better alternatives to formulating policies.

Once a policy is written, it can be loaded into the drone for

enforcement by Privaros. We have built a user-level agent that

identifies the process IDs of applications running on the drone, and

translates the application names in the policy to the correspond-

ing process IDs. Privaros then applies the constraints imposed by

this whitelist policy directly on the processes. The policy itself is

expressed as a user-space file, but is serialized and loaded into the

kernel via a user-agent (similar to the infrastructure provided by Ap-

pArmor, which Privaros builds upon). The policy can be updated at

any time by simply unloading the old policy and loading a new one,

without restarting any applications. Privaros thus transparently

supports dynamic policy updates. This feature is important because

dynamic policy updates may be required as the drone moves from

one host airspace to another.

On integration with India’s Digital Sky portal. India’s Digital

Sky portal offers a Web-based service [37] via which drone opera-

tors indicate the proposed delivery route using a visual map-based

interface. The Digital Sky server permits the delivery run if the

route does not intersect any no-fly or other restricted zones.

We can extend the same interface for the setting that Privaros

considers. Each host specifies their privacy policies and geo-tags

the policy with the coordinates of their airspace. The Digital Sky

server stores a database of all registered hosts and their policies.

When a drone operator uses the Digital Sky server to mark the

delivery route, the server identifies all host airspaces that the route

intersects with (recall Figure 1). It then sends all the associated

policies to the drone, where they are stored in the drone’s local

storage. The policies can be communicated to the drone using the
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Figure 7: Integrating policy specification in Privaros with

the Digital Sky interface.

same infrastructure (be it WiFi, 5G, or LTE) that the Digital Sky

server uses to send NPNT approval certificates to the drone, prior

to take-off. For the case of delivery drones, this step can happen

at the warehouse from which the delivery run starts, where the

availability ofWiFi or wired network infrastructure can be assumed.

Once the drone is airbrone, Privaros continuously monitors the

GPS coordinates of the drone, determines if it is entering a host

airspace, and loads the corresponding policy from local storage for

enforcement. It unloads the policy as it departs that host’s airspace.

We obtained the code of the Digital Sky Web server [27, 28] and

created a mock setup in our lab. Figure 7 shows a screenshot of

the Web server interface in which a drone operator has declared

a drone’s proposed delivery zone. It intersects two host airspaces,

who have declared their privacy requirements. Figure 7 also shows

a red-zone (in this case, the Indian Parliament house in New Delhi;

such sites would be identified by the aviation authority) that this

drone’s proposed delivery zone avoids.

Using the Digital Sky portal also has the benefit of simplifying

the UI that a host would use for policy specification. Recall that Pri-

varos policies are specified as a communication graph of whitelisted

flows. The key challenge in deploying this approach is that the com-

munication graph must be customized for each policy and each
drone. For example, to write the policy specification for ProcessLo-

cally for a particular drone, the host would have to a identify all

network-facing applications on that drone; and b carefully create a

communication graph in which the camera application never talks

to a network-facing application. This exercise would have to be

repeated for BlurExportedImages, UseDroneLanes and other

policies of interest. And the whole exercise has to be repeated for

every drone that potentially enters that host’s airspace.

Digital Sky simplifies this exercise because it contains a database

of all registered drones. This database could simply be extended

to maintain a list of all applications installed on the drone, which

Digital Sky can reliably obtain from the drone using the hardware

TEE. We could pre-compute the communication graphs for various

popular policy choices (e.g., ProcessLocally, BlurExportedIm-
ages, UseDroneLanes) in an offline fashion and store them in the

database. From the host’s perspective, the UI to specify policies can

be simplified to a pull-down menu of common policy choices that

they may wish to apply to their airspace. When a drone expresses

its intent to fly to the host’s airspace, the Digital Sky server looks

up the database to obtain the pre-computed communication graph

corresponding to the combination of that drone and policy, and

sends it to the drone.

5 EVALUATION

We implemented Privaros on a system running Ubuntu 18.04 with

Linux kernel version 4.9. We used ROS version 2 (Dashing Diade-

mata) with eProsima FastRTPS version 1.8.2 [31, 32] as the under-

lying implementation of the DDS protocol. We enhanced it with

the Secure ROS module available for ROS version 2 to enable TLS

communication and to leverage the SROS application manifest in-

frastructure. We used AppArmor’s user-space policy specification

framework (version 2.13) to specify and download policies into the

kernel for enforcement. Overall, we added or modified 402 lines

of code in the ROS client library for C++ and 1651 in Linux to

implement Privaros (measured with sloccount). We also modified

431 lines in the AppArmor user-space tool to parse policies, and

added 213 lines of Python/bash code to support redirection of flows

between ROS applications.

We evaluated Privaros on an Nvidia Jetson TX2 [80] development

kit, with a dual-core Denver 2 64-bit CPU and quad-core ARM A57

complex, 8 GB LPDDR4 memory and 32 GB eMMC flash storage.

Our choice of Jetson was motivated by the fact that unlike most off-

the-shelf drones, it is equipped with a hardware TEE (based on ARM

TrustZone) and allows programmable access to both the secure

world and the normal world. The specification of the Jetson board

is similar in architecture to the companion boards of commercially-

available drones. It also consists of 256 Nvidia CUDA cores, making

it the companion board of choice for navigation software that makes

extensive use of graphics processing units, e.g., those that use deep-
learning based navigation. We reflashed the normal world of this

board with a Privaros-enhanced software stack.

Our evaluation considers two questions: a How effective is Pri-

varos at enforcing policies, and how secure is it in comparison to

SROS? (Section 5.1); b What is the impact of Privaros’s mechanisms

on latency, CPU utilization and power consumption, as evaluated

with microbenchmarks? What is the impact of redirecting commu-

nication through trusted applications? (Section 5.2).

5.1 Robustness of Policy Enforcement

To showcase that Privaros offers defense-in-depth, we built a ma-

licious application that SROS cannot confine, and demonstrate

the multiple layers Privaros provides to confine this application.

Consider a Camera application that publishes to a topic called Cam-

eraOutput. The application publishes two types of data under

this topic: a the image feed from the camera under type Cam-

eraOutput::ImageType, and b its status, under type CameraOut-

put::StatusType (see Figure 8 a ).

The primary goal of publishing CameraOutput::StatusType is

so that it can be consumed by CameraStatus, which is a benign
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a Basic setup to be protected.
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b Redirecting communication with Privaros.

Figure 8: Setup used in the experiments to demonstrate ro-

bustness of policy enforcement in Privaros (Section 5.1).

application that subscribes to the topic CameraOutput only to read

the data published under the type CameraOutput::StatusType. This

application periodically uploads the camera’s operating status to

the drone operator’s server that monitors the health of its fleet.

We examine various ways in which it is possible for an attacker

to write a malicious application called BadCameraStatus that sub-

scribes to the topic CameraOutput but instead reads CameraOut-

put::ImageType and transmits it over the network. The primary

concern of a host would be to ensure the privacy of their image feed.

We now examine how SROS and Privaros compare in their ability to

prevent the camera’s output from being leaked either accidentally,

or through malicious applications such as BadCameraStatus. We

empirically validated each of the following attacks by implementing

them and showing that Privaros prevents them:

• Certificate checks. The certificate checks in SROS can prevent

an overt attempt at an attack, such as an attacker attempting to

install BadCameraStatus. Under the assumption that such an ap-

plication will not receive a valid certificate from a trusted authority,

SROS certificate validation would fail, and SROS would not install

the application. SROS would also prevent such an application (as-

suming it got installed) from subscribing to CameraOutput if this

is not declared in its manifest. For context, ROS (without SROS)

would simply allow BadCameraStatus to be installed and allow it

to subscribe to CameraOutput and even publish messages to the

same topic (e.g., a fake image feed).

However, the checks performed by SROS can easily be bypassed.

An attacker (e.g., a malicious drone administrator) could replace

the binary of the benign CameraStatus application with that of

BadCameraStatus at the same file path (cf. Section 3.2). The at-

tacker would launch this program using the same file path as the

benign CameraStatus application, but it would perform the func-

tionality intended by BadCameraStatus. SROS checks X.509 cer-

tificates of apps, but does not associate the application’s identity

with their binary and instead only their full path name, and would

therefore miss this attack. Privaros prevents this attack because it

checks the application binary’s hash during certificate validation.

• Redirection of app communication. To prevent accidental

disclosure of the Camera application’s image feed, a host could

require that no network-facing application directly subscribe to

CameraOutput. It could instead require the camera’s status to pass

through a trusted application called ScrubStatus, which performs

sanity-checks on the status feed. For example, ScrubStatus could

ensure that the status feed only transmits a single byte. It could

also rate-limit the flow (e.g., status updates allowed only once every
10 seconds), thereby mitigating the effects of any side-channels,

via which an attacker attempts to leak images via the status feed,

byte-by-byte.

One way to implement such enforcement in SROS would be to

cleanly decouple the topics representing the image feed and the

status feed by having the Camera application publish to two topics,

ImageFeed and StatusFeed (because SROS only matches topics, and

not types, as discussed in Section 3.2). The ScrubStatus application
could subscribe to StatusFeed, but not ImageFeed, and then publish

the output to a topic SanitizedStatus to which CameraStatus could
subscribe and transmit over the network.

Privaros can enforce this policy even if it is not easily possi-

ble to decouple the topics, e.g., because the Camera application

code is not available or its manifest cannot be rewritten. With Pri-

varos, the trusted ScrubStatus application could still subscribe

to CameraOutput, but only read the CameraOutput::StatusFeed

type, and publish to SanitizedStatus (see Figure 8 b ). Note that

Privaros’s modifications to ROS (Section 3.3.3) are essential to allow

CameraStatus to read the output of the ScrubStatus application.

This is because the manifest of CameraStatus only allows it to

subscribe to the topic CameraOutput and not to SanitizedStatus.

However, Privaros’s modifications to ROS allow CameraStatus and
ScrubStatus to communicate with each other.

• Direct communication via OS. The BadCameraStatus appli-
cation could directly establish an inter-process channel (say, via

UNIX domain sockets) to communicate with the Camera application,
obtain images and send it over the network. SROS cannot mediate

non-publish/subscribe communication and would allow this attack.

The OS-level mechanisms of Privaros prevent any communication

between the processes unless allowed by the policy. Assuming the

application redirection discussed above (through ScrubStatus),
Privaros can prevent any form of direct communication between

Camera and BadCameraStatus (or even CameraStatus). All com-

munication to network facing applicationswould have to go through

the process that implements ScrubStatus.

• Whitelisting network domains. Finally, CameraStatus is a

network-facing application. Privaros uses whitelisting can ensure

that the output of CameraStatus only goes to a particular IP ad-

dress. SROS does not confine network communication this way.

5.2 Performance

We used microbenchmarks to measure the impact of Privaros’s core

mechanisms on latency, CPU utilization, and power consumption.

We used PerformanceTest [2], a DDS microbenchmark from Apex

AI that is designed to evaluate the performance of publish/subscribe

systems. PerformanceTest consists of a suite of workloads, each
of which runs publishers and subscribers in different threads, and

measures the latency involved in publishing/subscribing. Figure 9

presents the details of the PerformanceTest workloads we used.
We ran each workload configured to use one publisher and one

subscriber, publishing at a rate of 10Hz for a duration of 10 seconds.
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Workload Type of data published/subscribed

Array Simple byte array

PointCloud Collection of N-dimensional points (e.g., 2D images pro-

duced by camera depth sensors)

Struct Structure holding a set of bytes (e.g., 16 bytes in Struct16)
NavSat Status of navigation satellite

Range Single range reading obtained from a range sensor

Figure 9: Workloads from PerformanceTest [2].

Workload Latency (ms) CPU (%) Power (mW)

Baseline
Array1m 16.255 6.728 2435.133

PointCloud1m 16.160 6.612 2441.062

Struct32k 6.494 2.526 2225.375

NavSat 1.543 1.381 2349.353

Range 1.433 1.378 2268.059

Privaros
Array1m 17.225 (+5.9%) 7.050 (+4.8%) 2508.222 (+3.0%)

PointCloud1m 17.386 (+7.6%) 7.141 (+8.0%) 2437.294 (-0.2%)

Struct32k 7.109 (+9.5%) 2.665 (+5.5%) 2500.412 (+12.4%)

NavSat 1.922 (+24.6%) 1.506 (+9.1%) 2389.167 (+1.7%)

Range 1.928 (+34.5%) 1.501 (+8.9%) 2367.412 (+4.4%)

Figure 10: Microbenchmark performance.

Workload Baseline Privaros

Latency (𝜇s) Latency (𝜇s)

Pipe 15.471 15.640 (+1.093%)

UNIX domain sockets (TCP) 20.015 23.188 (+15.9%)

UDP (localhost) 35.039 35.374 (+1.0%)

TCP (localhost) 38.473 38.764 (+0.8%)

UDP (RPC) 51.549 52.335 (+1.5%)

TCP (RPC) 49.457 49.977 (+1.1%)

Figure 11: Experiments using lmbench.

PerformanceTest reports the latency numbers for each work-

load. We measured the CPU utilization as the workload ran. To

measure power consumption, we used the 3-channel INA3221 hard-

ware power monitors on the Jetson TX2, which reports power draw

of the board in milliwatts. Figure 10 reports the results of our ex-

periments. The baseline column reports the results of performing

these experiments on a vanilla ROS/Linux setup with SROS enabled,

and serves as the baseline. The Privaros column reports the same

numbers with the workloads running on Privaros. As these num-

bers show, Privaros imposes only a marginal increase in latency

(under 10% except when the latency numbers themselves are under

2ms) and power draw (under 5% except in the case of Struct32k).
Because drones are battery-powered, with current drones only pro-

viding an average flight time of about 20 minutes on a single charge,

it is critical for Privaros to be efficient with respect to power draw.

Finally, we also measured the performance impact imposed by Pri-

varos’s hooks on individual kernel network subsystems using the

lmbench [55] benchmark. Figure 11 reports these results.

Finally, we studied the performance impact of redirecting data

flow through a trusted application, as would be required for exam-

ple to enforce BlurExportedImages or UseDroneLanes. Since

these trusted applications are now part of the data-flow path, their

presence will likely increase the latency of data delivery and overall

Scenario Latency (ms) Power (mW)

No redirection 8.124 4749.400

BlurFilter/Null 17.509 (+115.5%) 4836.200 (+1.8%)

BlurFilter/OpenCV 21.511 (+164.8%) 5132.400 (+8.1%)

Figure 12: Performance impact of flow redirection.

power consumption. To illustrate the impact of trusted applications,

we use the example of a Camera application whose images must

pass through a trusted BlurFilter application before they are

consumed by downstream applications. We measure the baseline

performance, without application redirection, and two variants of

the BlurFilter application: a a null-filter that simply redirects

network flows but does not otherwise process the image (tomeasure

the raw cost of redirection), and b a second one that is based on

OpenCV, and blurs all image frames by 10%. In this case, the applica-

tion’s processing logic itself performs non-trivial image-processing

and consumes CPU and power.

Figure 12 reports the results of this experiment. The end-to-

end latency of transmitting images from the camera to the net-

work increases significantly when the BlurFilter application is

introduced. The increase in latency is as expected, because of the

additional user-space element involved in the outbound network

path, and the associated transitions of the data packets between

kernel-space and user-space. The end-to-end increase in power con-

sumption remains under 10% even with OpenCV-based blurring.

Power consumption overheads will depend on the nature of

processing involved in the trusted application. A real-world drone

running dozens of applications will require many such trusted de-

classifiers, depending on the host policy to be enforced. Communi-

cation graphs must be carefully configured to minimize the number

of distinct trusted elements required and their power consumption.

6 RELATEDWORK

Drones and privacy. To our knowledge, there has not been much

prior work focusing on enforcing privacy policies in drones. In a

prior paper [83], we proposed the vision of restricted airpsaces for

drones, in which host-specified policies would be enforced on guest

drones. This paper builds upon that vision but makes significant

additional contributions. In particular, this paper fully explores the

challenges of building an enforcement framework, which was only

sketched in our vision paper. We learned that it was not possible to

build an enforcement system on top of ROS alone, as outlined in

our prior paper. We showed that even the primitives provided by

SROS are insufficient to prevent a number of attacks and that OS-

level enforcement is central to ensuring robust policy enforcement.

Finally, in this paper, we also showed how our policy-enforcement

framework can be integrated with Digital Sky.

Nassi et al. [60] consider the problem of determining whether a

drone’s first-person view violates an individual’s privacy. A first-

person view projects the drone’s camera feed as to a ground-based

remote controller, operated by a human(for purposes of navigation).

The communication between the remote controller and the drone is

encrypted. Nassi et al. develop a cryptanalysis technique by which

an analyst with access to the encrypted first-person view feed can

determine if the feed is focused on a particular object(or person) of

interest. They apply physical perturbations to the object, e.g., by
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shining a light on it, at chosen points in time. The cryptanalysis

determines if the encrypted feed is affected by these perturbations;

if yes, they determine that the camera is focused on the object. They

also develop techniques that spatially localize the offending drone

by analyzing the first-person view feed.

Drones and security. In contrast to privacy, there is much prior

work on security of drones. These range from using hardware TEEs

to ensure that applications running on drones are able to securely

access sensor data from its peripherals [47] and to ensure that

drones only fly along drone lanes [48] (i.e., UseDroneLanes), to
investigating attacks against and protecting drones from common

vulnerabilities, such as cleartext communication between drones,

signal jamming and GPS spoofing [41, 43, 44, 65, 77, 78, 82, 87]. Pri-

varos can benefit from techniques developed to defend against these

attacks but has an orthogonal focus on enforcing host-specified

privacy policies on drones.

The ROS community has also actively identified security vulner-

abilities and attacks that stem from the unauthenticated, plaintext,

publish/subscribe-based communication in ROS [25, 52]. There

have been proposals to use encrypted communication between

applications [69], and to integrate TLS with the core libraries of

ROS [25, 26]. SROS [90–92], which is under active development,

incorporates many of these ideas. As already discussed, Privaros

enhances the basic security features of SROS, eliminates some of its

key shortcomings, and adds the ability to enforce privacy policies.

While the above projects focus on securing drones from at-

tacks, there is also work on detecting drones i.e., securing physical

premises against unauthorized rogue drones. These include meth-

ods to detect drones using their radar [33] or radio-frequency sig-

nature [11, 61], computer vision techniques to identify drones [73],

acoustic arrays that detect the sound of the drone’s motors [14, 15],

and hybrid combinations of these techniques [81]. These techniques

are undoubtedly important in formulating regulations to operate

drones. However, they are orthogonal to Privaros whose focus is

on ensuring that authorized and legally-permitted drones conform

to the privacy requirements of a host airspace.

Mandatory and context-based access control. The idea of con-

trolling the flow of information in computer systems can be traced

back to some of the classic papers in computer security [8, 10, 19, 53].

SELinux [50], SEAndroid [76], and related systems (e.g., [13, 63])
have brought to bear some of these methods to modern OS settings.

In these systems, subject and object labels are set by the system

administrator, and the enforcement system applies label flow rules.

In modern device-centric settings, some of these concepts have

been adapted as context-based access control systems [12, 13, 23,

56, 70, 88], where the context in which the device is used (e.g., at
home or in the workplace) determines the policies that must be

enforced on the device. Some of these systems [13, 56, 70] also

employ methods to actively infer the context in which the device is

being used, and trigger the enforcement of the appropriate policy.

Privaros can also be viewed as a context-based access control system

for delivery drones, and our focus in this paper has primarily been

on building an enforcement mechanism integrated with ROS. Key

contributions of this paper include: a exploring the shortcomings

of SROS; b designing and implementing the cross-stack changes

required for policy enforcement; and c redirecting flows through

trusted applications for policy compliance. Privaros’s policies are

location-tagged, and the drone’s GPS coordinates serve as the policy

trigger to load access control policies. As discussed in Section 4,

Privaros allows dynamic loading/unloading of policies as a guest

drone navigates between host airspaces.

Information-flow control. Recent attempts to enforce informa-

tion flow control on operating systems [46, 96] and Android [30,

59, 93] have focused on decentralized information-flow control

(DIFC) [58]. DIFC systems differ from classic systems in that each

application can specify its own labels, and the role of the system

is to only use these labels to enforce certain rules on information

flow. DIFC is particularly well-suited for settings where each appli-

cation wants to control how its own data is used by the rest of the

system. In contrast, our setting requires us to apply host-specified

privacy policies uniformly to all applications on the drone. Privaros

is therefore closer in spirit to the earlier work on using mandatory

access control to regulate information flow [8, 10, 19], SELinux [50]

and SEAndroid [76]. Privaros adapts these concepts to a ROS-based

platform and tightly integrate ROS-level and OS-level mechanisms.

7 CONCLUSIONS

In this paper, we presented Privaros, a framework that enforces

privacy policies specified on guest drones visiting host airspaces

for delivery runs. Our main conclusions are that:

• The problem of enforcing host-specified privacy policies on guest

drones can be modeled as one of controlling the flow of data be-

tween applications executing on the drone;

• Existing mechanisms in ROS do not suffice to enforce these kinds

of policies. Tight integration of ROS-level and OS-level mechanisms,

as provided in Privaros, are necessary for robust enforcement;

• Policy specification for Privaros can be integratedwith upcoming

drone regulatory platforms such as Digital Sky;

• The core mechanisms of Privaros impose low overheads on la-

tency and power consumption. However, the host’s policies may

require the drone to execute trusted applications, which may them-

selves impose additional latency or consume additional power.

Supplementary material. Additional material related to this pa-

per, including slides and code may be obtained from http://www.

csa.iisc.ac.in/~vg/papers/ccs2020.
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