Whole-Program Control-Flow Path Attestation

Nikita Yadav
Indian Institute of Science
Bangalore, India
nikitayadav@iisc.ac.in

ABSTRACT

Path attestation is an approach to remotely attest the execution of a
program . In path attestation, a prover platform, which executes
%, convinces a remote verifier V of the integrity of # by recording
the path that P takes as it executes a particular input. While a num-
ber of prior techniques have been developed for path attestation,
they have generally been applied to record paths only for parts
of P’s execution. In this paper, we consider the problem of whole
program control-flow path attestation, i.e., to attest the execution of
the entire program path in . We show that prior approaches for
path attestation use sub-optimal techniques that fundamentally fail
to scale to whole program paths, and impose a large runtime over-
head on the execution of . We then develop BLAST, an approach
that reduces these overheads using a number of novel approaches
inspired by prior work from the program profiling literature. Our
experiments show that BLAST makes path attestation more practical
for use on a wide variety of embedded programs.

CCS CONCEPTS

« Security and privacy — Embedded systems security.

KEYWORDS
Control-flow attestation; trusted computing; ARM TrustZone

ACM Reference Format:

Nikita Yadav and Vinod Ganapathy. 2023. Whole-Program Control-Flow
Path Attestation. In Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’23), November 26—30, 2023,
Copenhagen, Denmark. ACM, New York, NY, USA, 15 pages. https://doi.org/
10.1145/3576915.3616687

1 INTRODUCTION

Attestation allows a remote verifier to establish trust in the integrity
of a system, called the prover. An agent on the prover measures
the state of the system to be verified, and sends these measure-
ments to the verifier, who uses them to reason about the integrity
of the prover. Because the verifier does not trust the prover, the
measurements are generally tied to a root of trust on the prover
platform, such as trusted platform modules (TPM) [43] on early
systems, or other hardware-based trusted execution environments
(TEE) such as the ARM TrustZone [6] or Intel SGX [31] in more

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0050-7/23/11...$15.00
https://doi.org/10.1145/3576915.3616687

Vinod Ganapathy
Indian Institute of Science
Bangalore, India
vg@iisc.ac.in

recent systems. Integrity measurements can attest to a variety of
properties, such as whether the prover booted up with a particu-
lar software stack [5, 25], that the system satisfies certain proper-
ties [16, 17, 32, 42], or executed certain operations [47].

Our focus in this paper is on control-flow path attestation, or
simply, path attestation. In path attestation, the verifier supplies an
input to the prover (which is a program). The goal of the prover
is to produce a measurement that allows the verifier to precisely
determine the control-flow path taken by the prover program as it
processes that input. The main advantage of path attestation is that
it provides the verifier with a non-repudiable proof of execution
of the prover on that input. This form of attestation is particularly
valuable for embedded systems, in which a remote verifier can
obtain a proof that some requested action was indeed performed by
an embedded device. For example, path attestation can be used to
assure a verifier that a syringe pump embedded within a patient has
indeed delivered the desired dosage of a drug [2], or that a robot
arm has indeed completed a task in response to a command from a
remote operator [47]. Because path attestation works on individual
runs of the program, it attests the integrity of each run, and makes
any attacks on the program more readily detectable by the verifier.
Path attestation can also be seen as a lighter-weight alternative to
verifiable computation [50].

Prior work on path attestation (e.g., [2, 3, 21, 29, 39, 47, 48, 53]) has
largely focused on programs that run atop embedded devices. Most
of these approaches work by instrumenting the prover program so
that at runtime, the instrumentation collects measurements that
are periodically committed to the TEE, e.g., the secure world of
an ARM TrustZone-enabled chip on the embedded device. This
measurement is signed by the TEE and provided to the verifier,
who can then check whether the path followed by the program is
the one expected for that program input. For example, CFLAT [2]
adds instrumentation at the end of basic blocks of the program to
compute a hash of the basic block, and integrates this hash into
a cumulative accumulator of the execution path encountered so
far. The accumulated hash is presented to the verifier as the path
measurement, which then checks it using historical profiling data
(e.g., a database of expected hashes for each input). OAT [47] adds
instrumentation after conditional instructions that commits the
direction of the taken branch to the TEE as a bit-trace, together
with the values of certain sensitive program elements (e.g., return
addresses and addresses of indirect jumps/calls). OAT’s verifier uses
symbolic execution of the program using bit-trace and recorded
values to check the control-flow path taken by the prover.

Unfortunately, as we show in this paper, prior approaches do
not scale up to whole-program path attestation, i.e., to attest the
entire control-flow path taken by the prover program. For example,
OAT is tailored to attest the integrity of “operations” in embedded
programs, which are specific regions of the program (manually

https://doi.org/10.1145/3576915.3616687
https://doi.org/10.1145/3576915.3616687
https://doi.org/10.1145/3576915.3616687

CCS ’23, November 26-30, 2023, Copenhagen, Denmark.

demarcated using annotations) that accomplish some well-defined
task. The code that implements the movement of a robot hand
would be demarcated as an operation, for instance. When the prover
executes, the verifier only obtains an attestation measurement of
the control-flow path pertaining to the operation, but not for the
entire embedded program. Prior work has shown that the verifier
can miss attacks directed against the vulnerabilities in the prover
program when paths are attested only in certain parts of the prover’s
execution [28, Table IV]. Thus, it is desirable for a verifier to be
able to attest the entire execution of the embedded program, rather
than parts of it. Also, most prior work (e.g., [2, 21, 39, 48]) has only
been applied to small programs or those that work in specialized
environments. When applied to these small programs or when path
attestation is applied to record only a part of the program’s behavior
(e.g., only “operations”), the corresponding program paths span only
a few hundred or few thousand control-flow events. By avoiding
whole-program path attestation, these methods are able to report a
relatively modest runtime overhead on the prover’s execution.

However, when we applied prior approaches to attest whole
program paths in a suite of embedded benchmarks, we found that
the approaches impose a prohibitive overhead on the runtime of
the program (see Section 2). We show that the performance bottle-
neck stems from the sub-optimal way in which prior approaches
instrument the prover program to measure the control-flow path
taken, and that this approach fundamentally does not scale to whole-
program path attestation. This instrumentation causes a large num-
ber of domain transitions to the TEE of the prover device (where
measurements are stored securely), thereby imposing a heavy run-
time overhead on the program.

We present BLAST, an approach to scale attestation to whole
program paths. BLAST incorporates several new ideas based on
the lessons learned from our detailed analysis of the overheads of
prior approaches. It aims to reduce the number of TEE transitions
that are used by prior approaches to record path attestation mea-
surements (Section 3). BLAST does so using local logging—i.e., it
stores measurements generated by the instrumentation in a log
within the program’s address space. Logging operations therefore
do not require domain transitions and can be performed with a
store instruction into the program’s own address space. It isolates
the log from the rest of the program by instrumenting the program
to implement software fault isolation (SFI) [49]. BLAST commits the
log periodically to the TEE when the space allocated for the log
is exhausted. Once committed, BLAST reuses the log to continue
recording path measurements.

BrasT uses improved methods to record path measurements. We
observe that prior approaches use sub-optimal ways to measure
paths, which unnecessarily leads to more entries in the log. For
example, CFLAT stores a path measurement at the end of every
basic block while OAT does so at each branch. Such sub-optimal
event recording fills up the log faster than necessary, which in turn
triggers a TEE transition to commit the log. BLAST instead adapts
the idea of Ball-Larus numbering [10] from the program profiling lit-
erature. For an acyclic control-flow graph (CFG) of a function with
N paths, Ball-Larus numbering selectively instruments edges of the
CFG so that they together compute an integer in the range [0, N —1]
at function exit. This integer serves as a unique identifier of the path
taken through the CFG. Ball-Larus numbering also supports CFGs

Nikita Yadav and Vinod Ganapathy

Input & Challenge
Output &

Path Measurement

Prover

platform

Figure 1: Basic setup for path attestation.

with loops; details in Section 3. Ball-Larus numbering is provably
better than bit-tracing or other approaches to instrumentation in
that it places instrumentation optimally, thereby resulting in lower
runtime performance overheads than other approaches. Ball-Larus
numbering also affords the flexibility of placing instrumentation so
that the number of instrumented CFG edges along heavily-executed
paths in the CFG is minimized. Using the Ball-Larus numbering
approach, BLAST reduces instrumentation encountered at runtime
compared to both CFLAT and OAT. This in turn reduces the fre-
quency at which BLAST needs to commit the log to the TEE.

BLAST incorporates a compact yet expressive representation of
the recorded path measurement. Ball-Larus numbering records path
numbers at a per-procedure level. Larus [34] extended Ball-Larus
numbering to store whole-program path profiles using a grammar-
based representation. In this approach, the log of Ball-Larus path
numbers encountered is compressed to produce a compact context-
free grammar that represents the whole program path. Although
compact, the context-free grammar suffices to precisely reconstruct
the entire path through the program. BrLasT offers the option of
presenting this context-free grammar based representation of whole
program paths to the verifier. The verifier can use this to easily
reconstruct the precise path taken by the prover to process the
input. BLAST also supports the option of simply storing a hash-
based commitment of the log, similar to the approach used by
CFLAT. This option simply presents the verifier with a single hash-
based measurement of the program path, which is checked against
a database of acceptable values.

Our results show that BLast brings whole-program control-
flow attestation to the realm of feasibility. On a set of embedded
benchmarks (Embench-IOT [23]), BLAST is able to attest whole-
program control-flow paths while imposing an average runtime
overhead of 67%. This is significantly smaller than the overheads
of competing path attestation approaches when applied to whole
program paths, which can slow the execution of the program by
up to 100X-1000X.

2 BACKGROUND

Figure 1 shows the basic setup for path attestation. We consider a
program %, running on a prover platform, that is equipped with a
TEE capable of attestation. A remote verifier, V, provides an input
to P together with a challenge (e.g., a nonce), in response to which
the prover platform provides the output of # on the input, and a
path measurement in response to the challenge. The verifier V has
local access to the program %, but wishes to obtain a commitment
from P on the control-flow path that it took to process the input.
The prover platform enables this by collecting path measurements
from P and uses the TEE to store the measurements securely. The
prover then requests the TEE to digitally sign the measurements
(incorporating the supplied challenge) and provides them to the

Whole-Program Control-Flow Path Attestation

T
BB2: BB3:

CCS ’23, November 26-30, 2023, Copenhagen, Denmark.

-

if (!isValid(userID)) {

return ERRONE; (en) (

} T

BB4:
if (checkPasswd(userID, passwd) {

. r
if (checkPerms(userID)) {

do_authorized_computation(); BB5: T 8

return SUCCESS;

CE!] EBG:[

}
}

return ERRTWO;

2(a) Code snippet of program 7.

BB7:| return %eax

2(b) CFG of Figure 2(a).

Store return
address in TEE

2(d) Instrumented by OAT.

R=7{(BB7||R)

2(c) Instrumented by CFLAT.

Figure 2: (a) Code snippet of running example program %, (b) its corresponding control-flow graph (CFG), (c) CFG instrumented using CFLAT [2],
and (d) CFG instrumented using OAT [47]. CFG edges with the black squares have instrumentation that domain switch into the TEE.

verifier in response. In this paper, we tailor our discussion and the
prototype implementation of BLAST to the ARM platform, with
the TrustZone secure world as the TEE. However, the new ideas
introduced in BLAST are portable to any prover platform and TEE.

The verifier V checks the freshness of the signed measurements
and then determines whether the control-flow path to which # has
committed in the measurement is acceptable for that input. The
precise details of the method that V' uses to make this determi-
nation depend upon the amount of information available in the
measurement sent by . For example, CFLAT [2] collects a set of
cumulative hashes that uniquely identify the control-flow path fol-
lowed in P as it processed the input. The verifier V can replay the
input locally on # and check that hash values match. Alternatively,
it can consult a local database that is pre-populated with acceptable
hash values for program paths to process variety of input values.

In OAT [47], the attested measurement sent by the prover con-
tains the direction of each conditional branch, and address of each
indirect call or jump in #, which V uses together with abstract ex-
ecution (akin to symbolic execution) of to determine the control-
flow path followed in . However, as mentioned before, OAT does
not attest whole program paths, and only records these measure-
ments for a portion of the actual control-flow path in £, namely,
the parts of the path manually annotated as “operations”.

2.1 Threat Model

All the approaches discussed in this paper rely on instrumenting #
to collect path measurements at runtime. BLAST relies on a compiler
pass to insert this instrumentation, but the compiler does not have to
be trusted because the correctness of the inserted instrumentation
can be verified via a simple linear pass over the resulting executable.
The verifier V does not trust the prover platform, but expects it to
be equipped with a TEE, which it trusts. The verifier V assumes
that the prover program # can be hijacked by an adversary, e.g., by
feeding malicious inputs that exploit zero-day vulnerabilities in $.

We assume that the prover platform has implemented standard
data-execution prevention techniques that are available on almost
all modern hardware platforms, to prevent code injection attacks
in . Preventing code injection attacks is important because the
inserted instrumentation is key to precisely computing the path
measurement that the verifier V will check. Commodity operating
systems generally provide data-execution prevention in concert
with the hardware (e.g., W®X). However, embedded programs of-
ten execute atop bare-metal hardware, e.g., ARM Cortex-M micro-
controllers. Prior work has developed methods for data-execution

prevention even for bare-metal settings [19, 33]. Such work is or-
thogonal to the focus of this paper, and as in prior work [2, 47], we
simply assume that the prover platform provides bare-metal data-
execution prevention, and can attest to the verifier V via boot-time
integrity measurements that the defense is enabled.

Brast targets ARM TrustZone-based prover platforms and its
design does not require V to trust any software running outside
the TEE (i.e., the secure world). For a program % executing atop a
bare-metal normal world (i.e., the rich-execution environment, or
REE, of an ARM TrustZone platform), we show that BLAST securely
records paths measurements. Our prototype implementation uses
OPTEE [41] to ease communication with the TEE, and OPTEE
requires an operating system in the normal world. As we outline in
Section 3.6, BLAST can also be adapted to work in non-bare-metal
settings, provided the normal world operating system is modified
to incorporate safeguards that let the TEE protect BLAST’s security-
critical state. Because the need for a normal world operating system
is not germane to BLAST’s design, we chose not to incorporate these
modifications in our prototype’s OPTEE normal world, and assume
it is benign in intent.

Code-reuse attacks (e.g., return-oriented [46] or jump-oriented
programming [11, 15]), and attacks that maliciously modify pro-
gram data [27] that alter the program path followed in P can readily
be detected because the path measurement that is collected by the
TEE in the prover will diverge from the value that V expects. Our
focus in this paper is only on attacks that alter the control-flow
path in P. Attacks that modify the value of a sensitive variable
without altering control-flow path can be detected using additional
instrumentation to record their values (e.g., as done in OAT), but
such instrumentation is orthogonal to the discussion in this paper.

2.2 Prior Art in Path Attestation

We now describe prior work on path attestation with a focus on
CFLAT and OAT as representative approaches. Other approaches [2,
3, 21, 29, 39, 47, 48, 53] use largely similar methods. We use the
code snippet in Figure 2(a) as a running example denoting #. Fig-
ure 2(b) shows the control-flow graph (CFG) of . Both CFLAT
and OAT instrument the program ? to collect control-flow path
measurements. However, they differ in the information collected
and in the kind of locations where instrumentation is inserted.
CFLAT instruments the CFG of each function to store a rolling
hash of the code of the basic blocks encountered during the ex-
ecution of the function. CFLAT’s path measurement is a set of
hash values for each function encountered during ’s execution.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark.

For example, if the execution follows the path BB1—-BB3—BB7
in the CFG shown in Figure 2(b), CFLAT records the hash value
H (BB7||H (BB3||H (BB1||0))), where H(.) is a suitable collision-
resistant hash function (BLAKE-2 in case of CFLAT) and || is a
suitable concatenation operator.

Figure 2(c) shows how CFLAT instruments the CFG to compute
the above hash value at runtime—each rectangle on an edge denotes
that instrumentation is added to the edge. CFLAT maintains the
path measurement in the TEE, and each instrumentation contains
a trampoline that performs a domain switch into the TEE—a world
switch to the secure world in ARM TrustZone using the smc in-
struction. At each such domain switch, CFLAT incorporates the
hash of the preceding basic block into the path measurement that
is maintained in the TEE, and transfers control back to # to resume
execution (i.e., a world switch into the normal world in ARM Trust-
Zone). On entry to each function, the instrumentation initializes
the hash value to 0. At each edge of the CFG, the instrumentation
computes the hash of the basic block that executed preceding that
hash, and appends the value to a per-function rolling hash main-
tained during the execution of that function. At function exit, the
accumulated hash value(s) is reported as the path measurement
of the function. A loop-free function that does not call any other
functions will accumulate a single hash value, denoting the path
taken by the function as it processed the input.

CFLAT supports functions that have loops or call other func-
tions, by storing a set of hash values per function. To handle loops,
CFLAT adds instrumentation on back-edges that saves the hash
value computed thus far to the TEE, and re-initializes the hash
computation to zero for the next iteration of the loop. Thus, CFLAT
performs a domain switch at each loop header and collects a set of
accumulated hash values, each accumulated hash corresponding to
the execution of one acyclic fragment of the CFG. The number of
accumulated hash values in the set also provides information (to
V) about the number of times each loop iterated. To support func-
tion calls, CFLAT’s instrumentation saves and restores the value of
the hash across call instructions encountered in a function. CFLAT
adds instrumentation to save to the TEE the accumulated hash
preceding a call instruction. When the called function returns, it
adds instrumentation that restores the saved value from the TEE
and resumes execution within the caller.

CFLAT reports path measurements on a per-function basis. A
verifier presented with CFLAT’s path measurements simply per-
forms a lookup in a measurement database to check whether the
computed hash values corresponds to the hash values of (one of)
the acceptable path(s) for the input provided to the program. CFLAT
assumes that the verifier has access to such a measurement data-
base that is pre-populated with a list of acceptable hash values,
e.g., by profiling the program with various regression tests under
a non-adversarial environment. In the absence of an entry in this
database for a particular input, CFLAT’s verifier must re-execute a
local copy of P on that input, compute the path measurement, and
check that it matches the value provided by the prover.

OAT requires application developers to annotate # to demarcate
“operations” OAT’s goal is to check the integrity of these operations
via attestation. Each operation consists of a top-level function that
can itself invoke other functions. However, in OAT, one operation
must proceed to completion before another operation is invoked

Nikita Yadav and Vinod Ganapathy

CFG edge CFLAT OAT | BLAsT
Conditional branch v v | Vo6t
Unconditional branch v X X
Direct function call v X v LoG
Indirect function call v v v 1L0G
Return/function exit v v V106G

#In BrasT, path measurements are committed to the local
log only on conditional branches that are loop headers.

Table 1: Control-flow edges in CFLAT and OAT that contain instru-
mentation to perform a domain switch to the TEE. Although BrasT
also instruments some of these edges as shown in the table (with
V' L0G), BLAST’s instrumentation stores the path measurement in a
local log and does not trigger a domain switch (see Section 3).

(i.e., operations cannot nest). OAT reports one path measurement
for each operation. The path measurement consists of: (a) a bit trace
denoting the direction of conditional branches encountered during
operation execution; (b) the return addresses of functions invoked
during operation execution; and (c) addresses of functions invoked
by indirect call instructions that were executed as the operation
was performed. This path measurement is stored in the TEE and
updated via the instrumentation that OAT inserts in P.

To collect the bit-trace, OAT initializes the bit-trace when a
new operation is started. At each control-flow edge following a
conditional jump, OAT’s instrumentation appends a single bit to
the bit-trace, denoting the direction of the conditional. Figure 2(d)
shows the CFG edges at which OAT adds instrumentation (this
denotes a single function’s CFG). Because the bit-trace is stored
securely in the TEE, each instrumented edge will result in a do-
main switch to the TEE. The key difference from CFLAT is that
OAT only instruments the edges following conditional statements,
unlike CFLAT, where every CFG edge is instrumented. This, in
turn, translates to fewer TEE switches at runtime, and therefore
potentially lower runtime performance overheads. At the end of
each function, OAT’s instrumentation collects in the TEE the re-
turn address to which the present function returns (i.e., the return
address within the callee). OAT does not instrument direct call
instructions because they unconditionally jump to the referenced
function. However, OAT instruments indirect call sites to store
the address of the called function in the TEE. OAT reports path
measurements on a per-operation basis.

Table 1 summarizes the CFG locations instrumented by CFLAT
and OAT, each of which involves a domain switch to the TEE. We
have also shown BLAST’s instrumentation for comparison; as will be
explained in Section 3, BLAST’s approach does not trigger a domain
switch at these instrumentation locations.

2.3 TEE Domain Switches in Path Attestation

As must be clear from the preceding description, path attestation
requires extensive instrumentation to be inserted into the program
#. Despite such intrusive instrumentation and the need for fre-
quent domain switches, both CFLAT and OAT reported relatively
low runtime overheads on $’s execution. CFLAT was evaluated
on a syringe pump application and the paper reports an absolute
runtime overhead of a couple of seconds to collect path attestation
measurements. OAT was applied to attest operation integrity of
operations in five embedded applications, and reported an average
runtime overhead on P of 2.7%.

Whole-Program Control-Flow Path Attestation

CCS ’23, November 26-30, 2023, Copenhagen, Denmark.

Embench-I0T Number of Control-Flow Events (categorized by CFG edge types) Total TEE Domain Switches
Program Conditional Unconditional Loop Direct Returns Encountered at Runtime
Branches Branches Headers Calls and Exits

aha-mont64 384,507,002 456,417,002 189,927,000 8,460,006 8,460,006 857,844,016 392,967,008
crc32 174,420,002 348,670,002 174,250,000 174,420,006 174,420,006 871,930,016 348,840,008
cubic 660,007 970,003 310,000 200,006 200,006 2,030,022 860,013
edn 371,925,005 732,801,003 360,876,000 696,006 696,006 | 1,106,118,020 372,621,011
huffbench 495,825,002 486,255,002 233,266,000 1,078,006 1,078,006 984,236,016 496,903,008
malmult-int 406,732,884 794,099,724 387,366,840 92,807 92,807 | 1,201,018,222 406,825,691
minver 109,335,036 155,955,031 56,610,012 6,105,006 6,105,006 277,500,079 115,440,042
nbody 6,228,064 10,849,050 4,621,020 101,006 101,006 17,279,126 6,329,070
nettle-aes 78,000,771 147,732,515 51,168,256 858,006 858,006 227,449,298 78,858,777
nettle-sha256 30,400,019 185,250,019 24,225,008 3,800,006 3,800,006 223,250,050 34,200,025
primecount 880,205,002 726,973,002 282,281,000 1,006 1,006 | 1,607,180,016 880,206,008
sglib-combined | 680,950,108 627,474,208 144,884,400 76,618,308 76,618,308 | 1,461,660,932 757,568,416
st 9,204,004 18,317,003 9,113,000 7,904,006 7,904,006 43,329,019 17,108,010
tarfind 80,905,424 114,040,424 48,400,474 36,331,006 36,331,006 267,607,860 117,236,430
ud 412,362,003 616,326,003 255,694,000 1,478,006 1,478,006 | 1,031,644,018 413,840,009

Table 2: Number of TEE domain switches seen at runtime with CFLAT’s and OAT’s instrumentation for the Embench-IOT benchmark suite. For
all our experiments with Embench-IOT, we set CPCU_MHZ=1000, a parameter denoting the number of runs of each top-level benchmark function.
The total numbers for CFLAT and OAT can be computed from the control flow event types shown here, together with Table 1. This table also
shows the number of branches that are loop header edges, which are the only branches at which BLAST inserts log entries.

In an effort to understand CFLAT and OAT’s performance when
applied to attest whole program paths, we implemented their instru-
mentation approaches as compiler passes in LLVM-11.0.0, and in-
strumented benchmarks from the Embench-IOT suite [23]. Embench-
IOT is a set of benchmarks that represents the requirements of
modern connected embedded systems.

Table 2 reports the results of whole program path attestation
on these benchmarks using the corresponding inputs provided as
part of the suite. Recall that OAT requires developers to demarcate
operations, whose integrity it attests; for the purposes of evaluation,
we considered the whole program as one “operation.” Because the
raw runtimes depend heavily on the actual hardware platform used
by the prover, for this part of our evaluation, we restricted ourselves
to measuring the number of relevant control-flow events (classified
using CFG edge types) encountered at runtime. We report raw
runtimes with BLAST on our hardware platform in Section 3.

For this experiment, we only instrumented direct call instruc-
tions and elided instrumenting indirect calls. Recall that OAT’s
approach instruments only conditional branches, unlike CFLAT.
Note also that OAT avoids instrumenting direct call instructions
(cf. Table 1), while they are instrumented by CFLAT. We merged
the functionality implemented at function exits, and at the return
point of the callee function into a single switch into the TEE, and
Table 2 reports the consolidated number of TEE domain switches
for that control-flow event.

To understand the raw performance implications of these num-
bers, recall from our prior discussion that both CFLAT and OAT
make a TEE domain switch for each of the control-flow events
for which they insert instrumentation. The time taken for a TEE
domain switch differs based on the hardware platform, but OAT
reported a TrustZone world switch time (switching to the TEE and
returning) of 45usec on their HiKey (with an ARM Cortex A53 pro-
cessor) evaluation platform ([47, Table II]); CFLAT’s evaluation also
suggests an overhead of ~40usec on their Raspberry Pi 2 evaluation
platform ([2, Figure 8]). We used a Raspberry Pi 3 Model B+, for
our evaluation of BLAST, and observed an average world switch
time of 190usec on our platform. Observe that with such overheads
for TEE domain switches and the numbers reported in Table 2, the
raw runtimes for whole-program control-flow path attestation of
the benchmarks in Embench-IOT will run into several hours. Given
that the baseline execution time of these benchmarks is just a few
seconds (under 35 seconds in all cases, cf., Table 4), whole-program

control-flow path attestation would impose more than a 1000x over-
head for most of these benchmarks. We contrast this with BLAST’s
results, where the overhead for Embench-IOT benchmarks is an
average of just 1.67X (Section 4.1).

On further analysis, we noted that the benchmarks or “opera-
tions” measured in the experiments reported in both the CFLAT and
OAT papers contain only a few thousand control-flow events. For
example, the attestation reports in the five benchmarks to which
OAT was applied were all smaller than a kilobyte in size. These at-
testation reports contain the bit-trace that records the direction of
each conditional branch encountered, and addresses of indirect calls
and jumps. This suggests that the operations in these benchmarks
whose paths were measured consisted of fewer than a thousand
control-flow events. This contrasts sharply with the numbers ob-
served in whole program paths encountered in a modern embedded
benchmark suite such as Embench-IOT (which denote the charac-
teristics of a wide-variety of embedded applications), which contain
hundreds of millions of control-flow events. We conclude that prior
approaches to path attestation do not scale to whole program path
attestation, thereby motivating us to develop BLAST.

3 DESIGN AND IMPLEMENTATION OF BLAST

The analysis reported in the prior section shows that the key bottle-
neck that prevents prior methods from scaling to whole-program
path attestation is the number of TEE domain transitions that they
perform. BLAST aims to reduce the number of TEE domain tran-
sitions encountered during path attestation by performing local
logging of control-flow events (Section 3.1). That is, the instrumen-
tation inserted by BLAST writes out information to a local log in ’s
address space, rather than performing a domain transition on each
control-flow event. The log accumulates a history of control-flow
events, is periodically flushed to the TEE as it reaches capacity, and
is reused to continue logging events until the program terminates.
However, this approach of local logging requires some care:

e Optimizing events to be logged. Local logging of control flow
events can immediately improve the performance of prior approaches
by reducing the number of TEE domain transitions. However, prior
approaches are sub-optimal in the set of control-flow events that
they instrument. BLasT uses Ball-Larus numbering [10], an ap-
proach to optimally place instrumentation in the control-flow graph,
to reduce the number of entries that are logged. This in turn reduces
the rate at which the log is populated, and therefore the number of

CCS ’23, November 26-30, 2023, Copenhagen, Denmark.

Log
entries

Accumulated

path
measurement
Sentinel
pages Commit log state to

TEE when log head
reaches sentinel pages

Figure 3: Structure of the log in BLasT.

domain transitions required to commit the log to the TEE when it
reaches capacity (Section 3.2).

o Protecting log integrity. Because the log is stored in the ’s ad-
dress space, it is vulnerable to attacks launched on the prover plat-
form. Such attacks can alter the log state, and the resulting path
measurement presented to V will no longer faithfully represent
#P’s behavior on the prover platform. BLAST protects the integrity
of the log using software-fault isolation in ¥ (Section 3.3).

BrasT processes the log to present a commitment of the whole-
program control-flow path followed by # to V (Section 3.4). It
creates a compact grammar-based representation of the log [34],
which can be presented to V to unambiguously reconstruct the path
followed within . Finally, we qualitatively analyze the security of
BraAsT (Section 3.6).

3.1 Avoiding TEE Domain Switches

In BLAST, control events are committed to a log that is allocated
locally within $’s own address space. This avoids TEE domain
switches on control events that contribute to the overhead of prior
systems. Both CFLAT and OAT can be adapted to commit path
measurements to a log rather than to the TEE.

Figure 3 shows how BLAST structures the log. The memory re-
quired for the log is pre-allocated at the start of £’s execution.
On an ARM TrustZone system, BLAST sets up the log from the
TEE (i.e., secure world) as a memory region that is shared between
the TEE and the normal world. The program # executes in the
normal world and writes entries into the shared region, and the
log is readily accessible to the TEE as well. The size of the log is
decided at the time when P is instrumented, and is aligned to start
at a page boundary; both these requirements allow us to ease the
instrumentation required to protect the log (in Section 3.3).

Each control event simply commits the relevant information
to the log and increments the log header. The address of the log
header is stored in a dedicated register that we call LogReg. BLAST is
implemented as an LLVM compiler pass, and can easily ensure that
LogReg is reserved for exclusive use as the pointer to the log header
by making this register unavailable for general register allocation
when P is compiled. We quantify the cost of dedicating an exclusive
register for LogReg later in the paper (Figure 5).

BrasT logically divides the log into two symmetric halves. When
one half is completely filled with log entries, its state is committed
to the TEE. The program % can continue to execute and populate

Nikita Yadav and Vinod Ganapathy

the other half of the log even as the first half is committed. Provided
sufficient hardware resources are available on the prover platform
(i.e., a second CPU core), the execution of # and the operation to
commit the log state to the TEE can proceed in parallel.

BLAST’s instrumentation to insert entries into the log simply
adds the corresponding entry into the log and increments the value
of LogReg. In particular, BLAST does not perform any range checks
on LogReg during each write, which would impose additional over-
head on each store to the log. Instead, BLAST uses the approach
of inserting sentinel pages, one at the end of each half of the log,
which are write-protected by the TEE. This approach ensures that
a hardware fault is generated when LogReg points to a location in
the sentinel page, indicating that the corresponding half of the log
is full and that it is time to commit that half of the log to the TEE.
The fault handler executes in the TEE and initiates the operation of
committing the log state to the TEE in a separate thread. It changes
LogReg in the main thread to point to the beginning of the other
half of the log, and allows P to continue execution and generate log
entries. BLAST’s fault handler write-protects the portion of the log
that is being committed to the TEE, and makes this half writable
only after the operation to commit it to the TEE is completed. This
ensures that the log is not overwritten even if exhausts the other
half of the log even as the current half is committed to the TEE.
We discuss the operations to commit the log into the TEE in more
detail in Section 3.4.

3.2 Ball-Larus Numbering for Optimal Logging

Brast builds upon the influential idea of Ball-Larus numbering [10].
The Ball-Larus algorithm places instrumentation in an optimal fash-
ion by selectively adding instrumentation to the edges of a control-
flow graph that increments the value of a counter in specific ways
along specific edges. The instrumentation satisfies the invariant that
the value accumulated in the counter will be between 0 and N — 1,
where N is the number of acyclic paths in the control-flow graph.
The value in the counter uniquely determines the runtime path that
was followed in the function. Ball-Larus numbering is provably
up to 2X more compact than instrumentation for bit-tracing (a la
OAT) [10, Section 2], and places instrumentation at fewer locations.
Background on the Ball-Larus Algorithm. The Ball-Larus al-
gorithm works at a per-function level and adds instrumentation to
the edges of the CFG of that function. The algorithm works in two
steps: edge numbering, followed by edge instrumentation. We first
describe the algorithm for acylic CFGs, and then generalize.
Given an acyclic CFG with uniquely-designated entry and exit
nodes, the number of paths in the CFG is finite, say N. Ball-Larus
numbering assigns a numeric value to each edge (valEdge(.)) of the
CFG so that a runtime path from the entry to the exit node produces
an integer identifier € [0, N — 1] unique to that path. The identifier
of the path is the sum of the valEdge(.) values of the edges in that
path. Intuitively, the algorithm iterates over the edges of the CFG
in reverse topologically-sorted order, and assigns to each node p a
value valNode(p) that denotes the number of paths from p to the
exit node. At each step, it assigns values valEdge(e) to each outgoing
edge e from p so that the following invariant is maintained—the
sum of the valEdge(.) values of the edges from p to the exit node is
a unique integer € [0, valNode(p) — 1]. Algorithm 1, adapted from

Whole-Program Control-Flow Path Attestation

4(a) Ball-Larus number- 4(b) Instrumentation to compute 4(c) Instrumented CFG from Fig-
ure 2(b) with a loop added.

ing of CFG in Figure 2(b). path numbers (one alternative).

CCS ’23, November 26-30, 2023, Copenhagen, Denmark.

PathNum Path

0 0—BBI—BB2—BB4—BB5—BB7
R+=3; 1 BB0—BB1—BB2—BB4—BB6—BB7
StoreLog(R); 2 BB0—BB1—BB2—BB6—BB7
R=5; 3 BB0—BB1—BB3—BB7

4 BB0—BB8

5 BB7—BB0—BB1—BB2—BB4—BB5—BB7

6 BB7—BB0—BB1—BB2—BB4—BB6—BB7

7 BB7—BB0—BB1—BB2—BB6—BB7

8 BB7—BB0—BB1—BB3—BB7

9 BB7—BB0—BB38

4(d) Path numbers for the CFG in Figure 4(c) obtained

from the associated instrumentation.

Figure 4: Ball-Larus numbering and corresponding instrumentation. We also show how Ball-Larus numbering handles loops.

the original Ball-Larus paper [10], shows how valNode and valEdge
are calculated for an acyclic CFG.

We are interested in the valEdge(.) values assigned to the edges
of the CFG. Figure 4(a) shows one possible assignment of valEdge(.)
values, for the reverse-topological ordering BB7, BB6, BB5, BB3,
BB4, BB2, BB1 (there can be multiple assignments, based on how
the nodes are sorted). Each path from the entry to the exit gets a
unique value € [0, 3] as there are 4 paths in this CFG.

Algorithm 1: Ball-Larus acyclic CFG edge numbering.

Input: Control-flow graph (CFG) of a function
Output: valEdge(p—q) for each edge of the CFG

1 nodeList = nodes of CFG, in reverse topologically sorted order
2 for (each p € nodeList) do

3 if (p is a leaf node) then

4 ‘ valNode(p) = 1

5 else

6 valNode(p) = 0

7 for (each edge p—q) do

8 valEdge(p—q) = valNode(p)

9 valNode(p) += valNode(q)
10 end
11 end
12 end

With edges numbered with valEdge(.) values, the instrumenta-
tion algorithm places instructions along edges that compute the
value of each path. One obvious approach would be to simply in-
crement the path counter using the valEdge(.) value of each edge.
However, the Ball-Larus approach provides significant flexibility
in how instrumentation is inserted. In particular, it allows weights
to be assigned to edges, and the Ball-Larus approach places instru-
mentation so that the overall weight of the instrumented edges is
minimized. It does so by identifying a maximum weight spanning
tree of the CFG so that the weight of the chords (i.e., the edges
of the CFG that are omitted from the spanning tree) is minimized.
It places the instrumentation on the chords. There can therefore
be multiple ways in which to instrument the CFG, and the edge
weights provide significant flexibility in minimizing instrumenta-
tion along hot paths. Figure 4(b) shows one way to instrument the
CFG to compute path numbers.

The Ball-Larus algorithm generalizes to loops much like CFLAT.
Each loop induces a back-edge in the graph. We insert instrumen-
tation on back-edges that records the path number recorded until
execution reaches that edge, and reset the path number on that edge,
effectively breaking the CFG into acyclic portions. A small modifi-
cation to the original Ball Larus numbering algorithm also yields

unique path identifiers for the loop in its entirety as illustrated in
Figure 4(c), which adds a loop to the CFGs from our running exam-
ple. As can be seen, the Ball-Larus approach adds instrumentation
to the back-edge BB7—BBO0 to increment the value of BLReg com-
puted thus far, store it in the log, and then reset the value of BLReg
to 5. When reading the acyclic paths ending in BB7, the register
operation BLReg+=3 must also be added to obtain the path number
of the corresponding acyclic path (i.e., the path number of the path
is the value of BLReg just before it is committed to the log). This
is akin to the final operation performed on the exit of a function
with an acyclic CFG. The corresponding path numbers in this CFG
for the acyclic portions are as shown in the adjoining table in the
figure. We refer the reader to the original paper [10] for complete
details on handling loops.

We have described the Ball-Larus algorithm at a per-function

level for a single-threaded program. BLAST records whole program
paths by storing the path numbers taken in each function encoun-
tered along the path. In Section 3.4, we describe BLAST s compact
representation of the whole program path that builds on prior
work in this area [34]. The Ball-Larus algorithm can also soundly
record path numbers in multi-threaded programs (path numbers
are recorded per thread), but our BLAST prototype currently works
for single-threaded programs. CFLAT and OAT’s approaches do
not work on multi-threaded programs as presented.
Ball-Larus Instrumentation for Logging. BLasT directly lever-
ages Ball-Larus instrumentation placement. In BLasT, we dedicate
a register (BLReg) that computes the path number at runtime. On
entry into a function’s CFG, BLAST’s instrumentation initializes
BLReg to 0. It adds operations to increment or decrement BLReg to
the CFG’s edges as determined by the Ball-Larus algorithm (e.g., Fig-
ure 4(b)). At the exit edge, BLAST adds instrumentation to store the
value of BLReg to the log. Thus, for an acyclic CFG that does not
invoke any other functions (i.e., a call-graph leaf node), BLAST ap-
pends only a single entry to the log. Loopy CFGs and function calls
require additional log entries, as will be explained.

It is important to note a key point of difference between CFLAT,
OAT, and BLAsT’s approaches. Note that in both CFLAT and OAT
the inserted instrumentation performs a domain switch to store
path measurements in the TEE. Even if CFLAT and OAT were
modified to use local logging, each instrumented CFG edge would
be a control-flow event that must be appended to the log. In contrast,
BLAsT computes the path number via register operations to BLReg
for the most part, and only commits the value of BLReg at certain
CFG locations (at function exits, calls to other functions, and loop

CCS ’23, November 26-30, 2023, Copenhagen, Denmark.

0.30
0.25 @ One Register Reserved
= 7 Two Registers Reserved
£0.20
B
© 0.15
£
30.10 o
0.05 é % 2 2
000 4 % 7 Z
> A ¢ S S £ QPSR
@o"‘\ & F e ‘g\o“‘o & & &Q:b ,;o""b Qo°‘\' éé'\o @{“
e O > ¢ & & ©
X & ¢ &L
> oz q\’\o

Figure 5: Impact of reserving registers for BLReg and LogReg.

back edges). This also means that BLAST must protect the path
number being computed in BLReg from malicious modifications
until it is committed to the log. The register BLReg must also not
be overwritten by other benign operations in .

To protect BLReg from attack and to prevent it from being over-
written, we implement BLAST’s instrumentation as an LLVM com-
piler pass, and remove BLReg from the pool of available registers for
general register allocation for # (just as it did with LogReg). Thus,
the only occurrence of BLReg and LogReg is at instrumentation
locations, and the contents of BLReg and LogReg are not spilled
to or stored in £’s memory. Because we assume that the prover
runs P with data-execution prevention enabled, the attacker is also
unable to insert code that can otherwise modify BLReg and LogReg.
That leaves code-reuse attacks as the only remaining threat vector.
However, even such attacks are readily detected by BrasT if they
alter the control-flow path in P (see Section 3.6).

BLAsT’s approach requires two registers—BLReg and LogReg—to
be exclusively reserved for the required instrumentation. In the ab-
sence of these registers, operations that could otherwise use these
two additional registers would instead have to be implemented with
memory operations instead, which leads to runtime overhead. Fig-
ure 5 quantifies the impact of register reservation for the Embench-
IOT benchmark suite. We ran these experiments on a Raspberry
Pi 3 Model B+ platform with an ARM Cortex A53 Quad core 64-bit
processor clocked at 1.4GHz, equipped with 1GB LPDDR2 SRAM.
We compared the performance of the baseline (i.e., the benchmark
executing with all available registers) both with a single register re-
served, as well as with two registers reserved. As this figure shows,
except for matmult-int, the performance of the remaining bench-
marks remains unaffected if a single register is reserved. If two
registers are reserved for instrumentation, as required in BLAsT,
more benchmarks are impacted, but in all cases, the runtime over-
head remains under 0.25%. While it is true that reserving registers
will in general result in runtime performance overhead, we can
conclude that at least for the Embench-IOT suite, the impact of
reserving registers is minimal.

We now discuss how Brast works on CFGs with loops and
function calls. Loops introduce cycles in the CFG and therefore lead
to an unbounded number of paths. BLAST uses Ball-Larus’ trick of
resetting the path number (to a non-zero value) at the back-edge
of the loop (i.e., the entry point into the loop header) to split the
CFG into a set of acyclic components, each of which computes
path numbers independently. Because the path number is reset at
loop entry, BLAST saves the value of BLReg into the log. Thus, for a

Nikita Yadav and Vinod Ganapathy

loopy CFG, the integrity measurement of a function is a set of path
numbers, each denoting the execution of one acyclic component of
the CFG. The path number at the loop header is reset in such a way
that the the resulting path numbers of each acyclic component are
unique across the function, and help identify the acyclic component
being executed. A fresh measurement is stored in the log for each
loop iteration, thereby also helping identify the number of times a
loop iterated. See Figure 4(c)/(d) for an example.

Because BLAST records path numbers at function granularity, a
function call (direct or indirect) requires a reset of the path counter
in BLReg to store the value of the path counter. In BLAST, we insert
instrumentation at function call instructions to record the address of
the called function in the log, and also commit the current value of
BLReg to the log, so that it can be reset for use in the called function.
As with our handling of loops, this also requires a slight redefinition
of how path numbers are computed. In particular, CFG edges leading
into a basic block containing a procedure call terminate acyclic
paths (as also discussed in prior work [34]), and path numbers are
computed afresh for subsequent segments of the control-flow graph
of the function. The called function resets BLReg and computes a
path number, which is similarly committed to the log. Following the
call instruction, BLReg is initialized to suitably so that the following
acylic path fragment in the CFG also yields a unique path number
within that function (as with loops). The code snippet below shows
an example of BLAST’s instrumentation inserted before a function
call (check_alarm is the called function, shown in bold). BLAST uses
ARM64 register x19 for LogReg and w20 for BLReg:

str w20, [x19], #4 // store path value in log before call
mov w8, #func_id // store ID of called function in log
str w8, [x19], #4 // (continuation of above step)

bl func_addr <check_alarm> // function call

mov w20, #init_val // reset BLReg as per Ball-Larus

To summarize, the integrity measurement recorded during the
execution of # includes, for each function: (a) the full set of acyclic
path numbers encountered within the function; (b) addresses of
functions called by that function (both directly and indirectly);
(c) addresses of the locations in the caller to which called functions
return. This information is available for each function. The last
column in Table 1 qualitatively compares the instrumentation in
Brast to CFLAT and OAT.

Empirically, we found that Ball-Larus numbering results in many
fewer control events requiring entries in the log when compared to
CFLAT and OAT adapted for local logging (instead of TEE domain
switches to store measurements). Table 4(c) shows that BLAST out-
performs CFLAT and OAT even when they are adapted for local
logging. In this section, we show that this is empirically because
BrasT’s Ball-Larus approach results in many fewer control events
requiring entries in the log when compared to CFLAT and OAT
adapted for local logging (instead of TEE domain switches to store
measurements). Table 3 shows the total number of log entries that
result using BLAST’s approach for each of the Embench-IOT bench-
marks, and also how this compares to the corresponding number
of log entries in a log-based adaptation of CFLAT and OAT. Recall
that BLAST creates log entries only for loop headers, function calls,
and returns/function exits (cf. Table 1). The number of log entries
reported in Table 3 is therefore simply the sum of the corresponding
control events reported in Table 2.

Whole-Program Control-Flow Path Attestation

Embench-IOT | # Log entries using | CFLAT OAT

Program | BLasT’s approach | Brast BrasT
aha-mont64 206,847,012 4.14X 1.90X
crc32 523,090,012 1.66X 0.66X
cubic 710,012 2.85X 1.21x
edn 362,268,012 3.95X 1.03X
huffbench 235,422,012 4.18X 2.11X
malmult-int 387,552,454 3.09% 1.05X
minver 68,820,024 4.03% 1.68X%
nbody 4,823,032 3.58% 1.31X
nettle-aes 52,884,268 4.30% 1.49%
nettle-sha256 31,825,020 7.01X 1.07x
primecount 282,283,012 5.69% 3.18%

298,121,016 4.90X 2.54X

24,921,012 1.74X 0.68X
tarfind 121,062,486 2.21X 0.97X
ud 258,650,012 2.21X 1.60X

Table 3: Number of control-flow events with BLAST’s instrumenta-
tion that result in entries into the local log. The last two columns
show how many fewer entries the Ball-Larus instrumentation ap-

sglib-combined
st

proach inserts into the log compared to the approaches used by
CFLAT and OAT (reported as TEE domain switches in Table 2).

As Table 3 shows, BLAST reduces the number of log entries by up
to 7x compared to CFLAT, and up to 3.18X compared to OAT. For a
handful of benchmarks (crc32, st, and tarfind), we observed that
BLAST results in more log entries than a log-based adaptation of
OAT. Upon further analysis, we found that this was because these
benchmarks contain a large number of (direct) function calls. Recall
(from Table 1) that direct function calls are uninstrumented in OAT,
but do require instrumentation in BLAST to commit the current
value of BLReg to the log. In these cases, inlining can help BrasT
significantly reduce the number of control-events that can be logged
by eliminating direct function calls. For example, inlining function
calls in crc32, a benchmark in which there are a large number of
direct function calls to small functions, completely eliminates the
need to insert log entries into direct calls, thereby resulting in a
total of 348,670,006 log entries, which marginally improves upon
OAT (348,840,008 entries, as reported in Table 2). Section 4 presents
detailed results showing the impact of inlining.

3.3 Log Integrity using Software Fault Isolation

BLAsT must protect the integrity of the log from unauthorized
writes. In particular, only the instructions inserted as part of BLAST’s
instrumentation are allowed to append entries into the log. While
BLAST uses register reservation to ensure that LogReg cannot be
modified in P, it must also ensure that memory store instructions
in P do not target the log region.

As mentioned in Section 3.1, BLAST sets up the log as a mem-
ory region that is shared between the secure world and normal
world of an ARM TrustZone prover platform. The size of the log
is fixed prior to instrumenting $. Because the size of the log is
known, the instrumentation can hard-code this size in the fault
isolation range checks that BLAST’s instrumentation inserts in #.
The log is page aligned so that sentinel pages cleanly represent
the boundaries of the log halves. BLasT’s implementation uses the
TEEC_AllocateSharedMemory from the OPTEE library [41] that helps
set up shared memory regions that are cleanly aligned with page
boundaries. BLAST stores and write-protects the start address of the
log in the global area so that it is not modified during $’s execution.

After every memory store instruction, BLAST adds instrumenta-
tion to fetch the address of the store, retrieves the start address of
the log, and ensures that the store address does not target the log.
The following snippet shows the instrumentation inserted after a
store instruction (shown in bold) assuming a 1MB log.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark.

str w8, [x29, #4] // perform the store

add x9, x29, #4 // obtain the store address
and x9, x9, #ox7ffffffffffoe0ed // mask the store address
ldr x10, log_start_addr // 1MB-aligned log start
subs x9, x9, x10 // if equal, then abort.
b.e _abort

The store instruction in this snippet writes the memory address
[x29+4] (x29 is an ARM64 register). We ensure in the shared mem-
ory allocator (from TEEC_AllocateSharedMemory that creates the log)
that the log starts at a 1MB aligned address for a 1MB log, which
allows us to implement the fault isolation check using just a mask
instruction rather than a range check. The instrumentation masks
the memory address of the store on the third line (in x9), and ob-
tains the 1MB aligned start address of the log in x10. The masked
value in x9 will be equal to the value in x10 only if the store address
pointed to a location within the log; this in turn aborts execution.

Unlike traditional SFI [49], we insert the check after the store. If
the check was placed before the store, then it may be possible for a
control-flow integrity attack [1] on P to bypass the preceding SFI
check and directly transfer control to the store instruction. In our
approach, the store will necessarily be followed by the SFI check,
thereby aborting execution if the store address targets the log.

3.4 Path Measurement and Verification

BrasT’s fault handler is triggered when one half of the log is filled
to capacity (via the write to the sentinel page). This fault handler
creates a new thread that executes in the TEE and begins the oper-
ation of committing the log to the TEE. We note that the log itself
need not be copied into the TEE—it suffices to obtain a commitment
of its state. For example, it suffices to store a hash of the contents
of the log in the TEE. If required, the log’s contents can be saved
within the untrusted partition, e.g., the normal world of an ARM
TrustZone platform. Its integrity can be checked at any time using
the hash value committed to the TEE. BLAST stores a single hash
value as the commitment of the log. When the next half of the log is
full, its hash is integrated with the value already in the TEE, thereby
resulting in a cumulative hash.

Recall that the log is set up in memory that is shared between
the TEE and the normal world. The thread that is tasked with com-
mitting the log’s state to the TEE can work concurrently with the
thread that continues $’s execution. Note that the former thread
must perform a domain switch (e.g., via an smc, switching the pro-
cessor into the secure world), while the latter thread executes in
the normal world. On a multicore prover platform, the thread that
commits the log state to the TEE can execute in parallel with P,
thus eliminating log commitment cost from #’s execution.

The prover can present (a signed, nonced) hash that serves as the
log commitment to V. Provided that V has a measurement database
of acceptable hash values, indexed by input (as in CFLAT [2]), this
hash value itself serves as a commitment from the prover to V on
the control-flow path followed within . However, there are several
situations in which the hash value by itself proves insufficient for
V to learn about the path followed in . As examples, (1) V may
not have an entry in its measurement database of the acceptable
hash value for a particular input; (2) £’s execution may involve
executions of loops in its code, and the number of iterations is not
known to “V a priori; or (3) P’s execution may be non-deterministic

CCS ’23, November 26-30, 2023, Copenhagen, Denmark.

oo
Efg_%m:'lesil WPP grammar: 5o axdx
<foobar, 2> — a X — bc
<foo, 8> b
<bar, 9> > ¢

<foobar, 5> +— d

Each line is a production rule in the context-free gram-

mar, S and X are the non-terminals output by the WPP

Zgg?’ ‘Zi : 2 generation algorithm and the lower-case symbols are
L terminal symbols.

Figure 6: Fragment of a log produced by BLasT. Each entry is a tuple
of the form <func_name, Ball_Larus_PathID>. Each unique entry is
mapped to a distinct terminal symbol to represent it in the WPP.

because of signal handlers in its code that are triggered during P’s
execution, or because P is multi-threaded.

In each of these cases, presenting V with the full log of control-
flow events allows it to reconstruct the execution of ¥ step by step.
The hash received from the prover’s TEE serves as the commitment
of the log’s state, and “V can verify that the hash indeed corresponds
to the log that it receives from the prover.

However, the key challenge is that the log itself can be very
large, and this can result in the prover having to transfer several
megabytes of data to V. BLAST draws upon a classic idea from the
program profiling literature—that of compactly representing a log
of the program’s execution using a context-free grammar, called the
WPP [34]. WPPs build upon Ball-Larus numbering, and compactly
represent a single control flow path through the whole program,
including calls and returns from functions (with acyclic path frag-
ments represented in the WPP using its Ball-Larus number), as well
as precisely capturing loop iterations.

WPP construction from a log of control-events proceeds as fol-
lows. As collected, each entry in the log generated by BLAST can be
thought of as a tuple <func, PathID>, that represents the acyclic
Ball-Larus path number PathID followed within the function name
func. Each such tuple is assigned an identifier that then becomes a
terminal symbol in the resulting grammar. The WPP construction
algorithm [34] identifies common fragments in the log, and “lifts”
them to non-terminal symbols. Consider, for example, a fragment
from a log shown in Figure 6. This log fragment can be represented
symbolically as abcdbc, and its compressed WPP representation
would be as shown on the right in Figure 6. Intuitively, the WPP
construcion algorithm identifies repeated sequences of control-
events that appear in the log (e.g., generated by execution of loops
or repeated invocations of functions) and compresses their occur-
rence into a non-terminal symbol. The WPP grammar satisfies two
properties: (1) it is a more compact representation of the “string”
representation of the log (i.e., the string obtained by composing
the terminal symbol identifiers assigned to each <func, PathID>
tupe); and (2) the log is the only “string” that can be generated from
the starting non-terminal symbol of this context-free grammar (S).
We refer the reader to the original paper [34] for full details on the
algorithm to construct the WPP.

If the value presented by the prover does not suffice (for any
of the reasons outlined earlier), V can request the prover send it
the WPP representation of the log. The prover can run the WPP
construction algorithm offline on the log, and send the WPP to
V. The verifier can independently reconstruct the log from the
WPP, check that the hash it received from the prover’s TEE can
be obtained from this log, and then uses the log to identify the
control-flow path followed in #. Figure 7 summarizes the workflow
for path measurement verification.

Nikita Yadav and Vinod Ganapathy

Prover platform Verifier 9
Normal world Request path
Generate nonce
measurement
........................
Return signed 1) Verify digital
Log I signature; Path
<foobar, 2> hash 2) Check 3¢ ¢==p| Hash
<foo, 8> against DB; bB
<bar, 9> Request WPP 3) Return verified i
or WPP needed.
1) Generate log from WPP;
2) Verify that log produced
corresponds to hash #;
Compute WPP Return WPP 3) Reconstruct the whole
represenla_tlon program path from log;
from the log in the 4) Return verified or path
normal world violation detected.

Figure 7: Workflow for verification of path attestation.

3.5 Implementation

We have implemented BLAST’s instrumentation as an LLVM (ver-
sion 11.0.0) compiler pass that uses LogReg and BLReg exclusively
to store a pointer to the log, and to accumulate path counter infor-
mation, respectively. As it instruments %, it also emits the list of
program locations where instrumentation is inserted. Although we
trust the compiler to instrument the # correctly, compilers are com-
plex and could be buggy. The list of program locations emitted by
the compiler allows us to build a simple static binary analyzer that
performs a linear pass over P to ensure that LogReg and BLReg are
used exclusively at the instrumentation points (i.e., that it does not
appear anywhere else in the program’s text). In practice, we target
the ARM-64 bit architecture. We use the register x19 as LogReg and
w20 as BLReg. We therefore disallow these registers (and also w19,
which are the 32 LSB bits of x19 and x20, whose 32 LSB bits w20
represents) for general-purpose register allocation during compila-
tion. Our implementation uses the ARM TrustZone as the TEE, and
we link # with the OPTEE library [41] to ease domain switching
when the log state must be committed to the TEE. This allows us to
include just the logically simple static analyzer in the TCB, which
can check the work of the benign (but potentially buggy) program
instrumenter. Our prototype uses the BLAKEZ2s function to hash
the log and we configured it to produce a 32-byte hash. Because
of the associated engineering overheads, we have built the BLasT
prototype to only supports single-threaded programs, although
BrasT’s instrumentation and verification approaches readily ex-
tend to multi-threaded programs.

3.6 Qualitative Security Analysis

In BLAST, an attacker is a malicious prover that alters the execution
of # while ensuring that the path measurement reflects a “cor-
rect” execution to V. We show that BLasT’s design makes this
task difficult for the attacker. Code corruption attacks that simply
replace P’s code are easily detected because the path numbers
and addresses of function calls/return addresses collected in the
path measurement will not match. We assume that the prover plat-
form implements data-execution prevention in the normal world
to eliminate code injection attacks on $. With Brast’s SFI instru-
mentation, this ensures that any memory stores from instructions
that are already in do not impact the integrity of the log.

We are thus left with the possibility of the attacker launching
code-reuse attacks on #. Because BLAST’s goal is to faithfully record
the program path followed in P, a successful attack would have to
cause the path measurement recorded in the log to deviate from

Whole-Program Control-Flow Path Attestation

the actual path followed in P. Thus, the attack must not leave any
trace in the log that will be visible to V. For this to be possible,
the attacker must either (a) modify BLReg suitably (to reflect a
different path number than the one actually followed) between two
control-flow events that result in entries being appended to the log;
or (b) violate the append-only property of the log by modifying
LogReg to point to an earlier fragment of the log that will then
cause any log entries inserted during the attack to be overwritten.
We argue that neither case is possible.

For case (a) to happen, the attacker must identify and chain
together gadgets that modify the BLReg register suitably. Recall that
BLAST reserves BLReg for exclusive use at instrumentation locations,
and this register cannot be used elsewhere in the program. Thus, the
gadgets will have to be composed using instrumentation inserted
by BrasT. However, any attempt in the attack to chain together
gadgets using non-local control-flow instructions (such as returns
or jumps) will result in a log entry because BLAST inserts log entries
at such locations (Table 1). Moreover, BLAST s instrumentation at
all return or indirect jump locations records the corresponding
return/jump addresses in the log. For case (b), the attack must
reset the value of LogReg to point to an earlier fragment of the
log. BLAST reserves LogReg for exclusive use at instrumentation
locations, and every such location only increments LogReg. Its value
is only reset within BLasT’s fault handler, but the fault handler also
causes the log to be committed to the TEE. Thus, the attacker cannot
reset LogReg without leaving a detectable trace. Although BrasT
can generalize to any architecture, our prototype currently targets
ARM64, a RISC architecture with fixed-length instructions that start
at word-aligned boundaries, and for which gadget construction is
more challenging than on the x86 [12, 20].

The discussion above assumes that # executes atop a bare-metal
normal world, and that the entire program ¥ is instrumented with
BrasT, including any interrupt handlers in # (as was also assumed
in OAT). However, the presence of an operating system in the un-
trusted normal world could undermine security. For example, the
operating system could maliciously modify the stack-saved values
of BLReg, LogReg or the log itself when it gets control via a system
call or during interrupt/exception handling. Neto and Nunes [36]
provide a detailed overview of the security implications of inter-
rupt handling to path attestation. Prior work [9, 26] developed an
approach that modifies the normal world operating system to allow
security-sensitive operations to be mediated by the TEE, thus pro-
tecting the integrity of key normal world data structures (e.g., page
tables). BLAST can build on this approach by additionally requiring
control transfers from % to the operating system to be mediated by
the TEE. The TEE saves the values of BLReg and LogReg, and com-
putes a checksum over the log before allowing the normal world
operating system to perform its task. Once the task is complete,
the TEE restores BLReg, LogReg, and ensures using the checksum
that the log is unmodified. The TEE must ensure via boot-time
attestation that this modified operating system is loaded into the
normal world and protect it from unauthorized modification [9, 26].
Running # atop such a normal world operating system will natu-
rally result in additional TEE domain switches, and evaluating the
cost of this approach is an interesting topic for future research.

BrasT’s focus is on control-flow path measurement, i.e., to en-
sure that the verifier has an accurate picture of the control-flow

CCS ’23, November 26-30, 2023, Copenhagen, Denmark.

path followed in P. It does not aim to attest the integrity of data
operations. Attacks or unauthorized modifications of program data
that alter the control-flow path followed will still be detectable
by V using BLAsST’s path measurement. However, it may still be
possible for an attacker to modify the value of a sensitive variable
in P that does not alter the program path taken. Such attacks are
not within the threat model or the scope of BrLasT, and can be
addressed using additional instrumentation to also log the values
of these sensitive variables in the integrity measurement [47].

4 EVALUATION

We evaluated BLAsT using the Embench-IOT benchmark suite atop
a Raspberry Pi 3 Model B+ that runs an ARM Cortex A53 Quad-
core 64-bit processor clocked at 1.4GHz and is equipped with 1GB
LPDDR2 SRAM. In our evaluation:

(D Table 4 presents the runtime overhead and memory overhead
imposed by BLAST’s instrumentation on #’s execution. It also com-
pares BLasT with CFLAT and OAT adapted to use local logging;

(2 Figure 8 breaks down the contribution of each of Ball-Larus
instrumentation, SFI, and log commit operations to this overhead;

(3 Table 5 analyzes the energy consumption of BLasT;
able 6 quantifies the benefits o or log compression;
@ Table 6 quantifies the benefits of WPP for log compressi

(B Section 4.4 shows the effectiveness of BLAST at detecting anoma-
lous behavior in # using a case study.

4.1 Performance Analysis

Recall that BLasT’s fault handler spawns a new thread to commit the
log state to the TEE via hashing. This thread is logically concurrent
with $’s execution, and provided sufficient hardware resources are
available (i.e., an additional CPU core on which it can switch into
the TEE and execute), ’s execution and the log commit operation
can execute in parallel. In this section, we first evaluate BLAST
assuming the presence of an additional core to periodically execute
the commit thread. We then analyze BLasT’s performance for the
case where an additional thread is not available, and the commit
thread’s execution interleaves with # on the same CPU core.
Performance with parallel log commit. Table 4(a) compares the
execution time and the size of the instrumented binary of # with a
baseline in which # runs without any instrumentation. The thread
that commits the log executes on a separate CPU core than # and
computes a rolling BLAKE2s hash of the log in the TEE. The log is a
1MB region pre-allocated in #’s address space.

The first set of results (without function inlining) shows that
BLAST’s instrumentation results in an average runtime overhead of
185% across all the benchmarks. The instrumented binary is 64%
bigger than the uninstrumented version of —this metric is called
bloat. While most of the benchmarks have an overhead of less than
100%, there was significant slowdown for a handful of benchmarks,
namely crc32 (808%), sglib-combined (215%), st (528%), and tarfind
(518%). Upon further analysis, we found that these benchmarks have
a large number of direct function calls. BLAST commits the value of
BLReg to the log at direct function calls, and for these benchmarks,
the log is filled faster than the thread that commits its state to the
TEE can complete execution. Thus, P is forced to wait until the log
is committed before it can resume execution.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark.

Nikita Yadav and Vinod Ganapathy

Embench-10T Baseline BrasT w/o func. inlining BrasT with func. inlining BEST BLAST w/o parallellism Brast versus CFLAT & OAT
Program 1 Time Code Time (s) & Code (KB) Time (s) & Code (KB) CASE Time (s) & Waiting CFLAT CFLAT | OAT OAT
(sec) (KBs) Overhead & Bloat Overhead & Bloat OVHD. Overhead Time (s) time (s) BLAST time (s) BLAST
aha-mont64 11.62 15 29.15 (151%) 29 (93%) | 28.10 (141%) 53 (253%) 141% 46.10 (296%) 185 87.12 (3.10X) 40.4 (1.44X)
crc32 11.58 19 | 105.23 (808%) 29 (52%) | 18.33 (58%) 33 (73%) 58% 35.05 (202%) 17.13 105.23 (5.74X) | 52.64 (2.87X)
cubic 1.77 115 2.04 (15%) 125 (8%) 2.02 (14%) | 149 (29%) 14% 2.05 (15%) 0.03 2.08 (1.03%) 2.03 (1.00x)
edn 26.03 23 45.72 (75%) 37 (60%) 55.88 (114%) 53 (130%) 75% 80.51 (209%) 35.81 111.24 (2.43Xx) | 45.29 (0.99%)
huffbench 13.72 19 25.61 (86%) 33 (73%) 26.01 (89%) 61(221%) 86% 48.44 (253%) 23.58 99.2 (3.87X) | 50.09 (1.96x)
matmult-int 33.42 19 44.21 (32%) 29 (52%) 4547 (36%) 37 (94%) 32% 81.51 (143%) 38.01 120.68 (2.73%x) | 43.83 (0.99%)
minver 4.39 19 8.88 (102%) 29 (52%) 7.96 (81%) 65 (242%) 81% 13.31 (203%) 5.6 28.61 (3.59%) | 12.34 (1.55X)
nbody 0.52 15 0.82 (57%) 25 (66%) 0.84 (61%) 37 (146%) 57% 1.26 (142%) 0.45 1.90 (2.32x) 0.83 (1.01%)
nettle-aes 16.47 32 21.57 (31%) 46 (43%) | 2147 (30%) 90 (181%) 30% 26.37 (60%) 5.05 23.60 (1.10x) | 22.30 (1.04X)
nettle-sha256 12.04 27 13.24 (9%) 37 (37%) | 13.14 (9%) 45 (66%) 9% 16.38 (36%) 3.42 2290 (1.74x) | 13.24 (1.01X)
primecount 15.34 14 28.44 (85%) 24 (71%) 28.48 (85%) 32 (128%) 85% 50.6 (229%) 27.31 161.59 (5.68%) | 88.63 (3.12X)
sglib-combined 16.84 39 53.11 (215%) 101 (158%) | 32.98 (95%) | 145 (271%) 95% 55.96 (232%) 23.61 154.74 (4.69%X) | 83.89 (2.54%)
st 0.80 15 5.03 (528%) 25 (66%) 1.47 (83%) 49 (226%) 83% 2.32 (190%) 0.9 5.30 (3.61x) 2.66 (1.81x)
tarfind 3.76 15 23.26 (518%) 25 (66%) 6.89 (83%) 41 (173%) 83% 11.51 (206%) 4.74 30.68 (4.45X) | 15.56 (2.26X)
ud 18.14 15 30.90 (70%) 25 (66%) 3179 (75%) 45 (200%) 70% 56.03 (208%) 26.11 103.95 (3.36X) | 41.79 (1.35X)
Average Overhead: 185% 64% 70% 162% | 67% Avg. Ovhd.: 175% Avg.: 330X 1.66X

4(a) Log commit thread parallely executing with # on dedicated CPU core. We compare the runtime
overhead/code bloat of BLasT with and without function inlining and report the best case.

4(c) BrasTt versus CFLAT and
OAT adapted to local logging.

4(b) Log commit thread
interleaved with P.

Table 4: Performance of BLAST on the Embench-IOT benchmark suite. Numbers reported are average of 10 runs, and the standard deviation is
< 0.2%. BLAST preallocated a log of size 1IMB split into two 512KB symmetric halves with sentinel pages.

The performance of these benchmarks improves significantly
with function inlining, which eliminates the instrumentation at the
direct calls that are inlined. We configure the compiler to inline
small functions (with fewer than 1000 LLVM IR instructions) up to
a call-depth of 5. That is, at each direct call site, we check whether
the called function has fewer than 1000 LLVM IR instructions; if so,
we inline it. We recurse similarly for all direct calls in the inlined
code, and repeat this at a call depth of 5. Such inlining improves
the runtime performance of most benchmarks compared to the
non-inlined counterpart, reducing the average runtime overhead
across all benchmarks to 70%. The runtime overheads of crc32,
sglib-combined, st, and tarfind reduces to 58%, 95%, 83%, and 83%,
respectively, post-inlining. While inlining does increase the size
of the binary by 162%, we note that this cost is offset by the fact
that it results in many fewer log entries—effectively setting up a
time-space tradeoff. Some benchmarks, such as edn perform worse
with inlining, and hence we do not advocate blind use of function
inlining. Considering the best of #’s performance with and without
inlining, we observe an average runtime overhead of 67% for whole-
program path attestation across all our benchmarks.

Three factors contribute to the runtime overhead of Brast-
instrumented binaries—Ball-Larus instrumentation, SFI instrumen-
tation, and the log commit operation. Figure 8 shows how each
of these factors contributes to the runtime overhead of the bench-
marks. For this experiment, we show the breakdown of the overhead
only for the inlined version of . Our results indicate that the log
commit operation, which proceeds in parallel to #, contributes
negligibly to the overhead of most benchmarks, except in the case
of primecount (the overhead manifests as waiting time in $). The
bulk of the overhead is due to Ball-Larus instrumentation, which is
uniformly more than the overhead due to SFI instrumentation.
Performance with serial log commit. When an extra CPU core
is not available for the log commit thread to execute, that thread
must execute interleaved with . Because the CPU can either be
in the normal world or in the TEE (secure world) at any given
time, its state must be toggled based upon whether the thread
performing the log commit operation is executing or whether #’s
thread is executing. Moreover, £ may be required to wait if it has
written a log half to capacity while the other half has not yet been
committed. These factors contribute to overhead in the execution

SFl instrumentation @ Ball Larus instrumentation mLog Hashing

100% po— oy
S 90%
S 80%
§ 70%
3 60%
‘s 50%
c 40%
2 30% %
-}
3] / 7
v an
£V L
0% A v
o&h 69' 6‘"‘0 > &b O
& & ¢ @
&

>

Figure 8: Contribution of SFI, Ball-Larus instrumentation, and log
commit operations to overhead.

of P. Table 4(b) reports the overhead observed with such serial
execution on a single CPU core. For each benchmark, we report
the lower of the runtime overheads observed for with either the
inlined or non-inlined version of that benchmark. Observe that the
average runtime overhead is 175%, compared to 67% when the log is
committed in parallel. Some benchmarks, such as crc32, matmul-int,
primecount, and ud, spend close to 50% of their total runtime waiting,
showing the benefit of committing the log in parallel if an extra
CPU core is available.

Comparison with CFLAT and OAT. As previously discussed,
the number of domain switches in CFLAT and OAT imposes an
unacceptably large overhead on the raw runtimes of the Embench-
10T programs. However, it is possible to adapt CFLAT and OAT to
also perform local logging. Even in this setting, BLAST’s approach
inserts fewer entries into the log compared to CFLAT and OAT. We
modified CFLAT and OAT to perform local logging, and integrated
them with SFI to protect LogReg, as done in BLAST.

Table 4(c) shows the performance of the benchmarks on the
local-logging versions of CFLAT and OAT. We assume the presence
of a dedicated CPU core to execute the log commit thread, i.e., the
parallel log commit setting. BLAST outperforms CFLAT and OAT
by up to 5.74x and 3.12X, respectively, and on average, by 3.30x
and 1.66X, respectively. The improvement is because BLAST inserts
fewer entries into the log as compared to CFLAT and OAT, thus
triggering fewer log flushes to the TEE. However, note that the
multiplicative factor by which BrasT outperforms CFLAT or OAT

Whole-Program Control-Flow Path Attestation

Embench-I0OT Energy Consumption in Joules
Program | Baseline BLrasT (Overhead)
aha-mont64 34.37 88.59 (158.52%
crc32 34.24 59.84 (74.75%
cubic 5.24 6.03 (15.14%
edn 76.19 | 146.42 (92.17%
huffbench 40.57 82.93 (104.39%
matmult-int 97.48 | 141.38 (45.03%
minver 12.74 2517 (97.57%
nbody 1.50 2.53 (68.54%
nettle-aes 48.28 64.61 (33.80%
nettle-sha256 35.00 39.80 (13.71%
primecount 44.92 91.23 (103.71%
sglib-combined 49.29 | 104.77 (112.58%)
st 2.31 4.64 (101.01%
tarfind 10.93 21.80 %99443%
ud 52.74 99.77 (89.16%
Average overhead: 80.60%

Table 5: Energy consumption with and without BLasT on Embench-
I0T benchmarks. The input voltage to the Raspberry Pi3 is constant
at 5.1V, and the overall energy consumption is the product of the
voltage, current draw, and the execution time of the benchmark.

as reported in Table 4(c) is somewhat smaller than the multiplica-
tive factor by which BLasT reduces the number of log entries as
compared to CFLAT and OAT (as reported in Table 3). This is be-
cause of the additional register operations to BLReg in BLasT that
are required by the Ball-Larus approach, which are absent in both
CFLAT and OAT.

4.2 Evaluating Energy Consumption in Brast

Brast-instrumented programs have additional instructions to en-
able path measurement, logging, and periodic commitment of the
log state to the TEE. We conducted an experiment to evaluate the
energy overhead of executing these additional instructions on our
Raspberry Pi3 Model B+ evaluation platform.

To conduct these experiments, we connected a Hioki 3274 current
probe to the 5.1V DC power supply of the Raspberry Pi3 board. We
paired this with a Tektronix TBS1064 four channel digital storage
oscilloscope that runs at 60MHz, and has a sampling rate of 1GS/s.
This setup measures the current (in mA) drawn by the Raspberry
Pi3 board every 50ms. Multiplied with the constant input voltage
of 5.1V, this yields the instantaneous power draw (in mW), which
we integrated over the execution time of each benchmark to obtain
the overall energy consumption.

We compared the energy consumption of unmodified Embench-
IOT benchmarks with the best performing BLAasT-instrumented
variant from Table 4(a). Table 5 reports the results of these experi-
ments, which show an average increase in energy consumption of
about 80% across the Embench-IOT benchmarks.

4.3 Effectiveness of the WPP Representation

We observe hundreds of millions of control-flow events when we
execute BLAsT-instrumented versions of each benchmark (see Ta-
ble 3 for raw log entry numbers). The size of the resulting log can
therefore run into MBs (or even GBs), as shown in Table 6. Recall
that BLAST computes the cumulative hash over the log during the
program execution and sends only a nonced, and digitally-signed
32-byte hash value to the verifier V. However, as discussed in
Section 3.4, V may request more information from the prover. In
such cases, transmitting large raw log files is infeasible, and the
prover resorts to computing and sending a WPP. Table 6 compares
the raw size of the log, a version of the log compressed with the
bzip2 utility [13], and the WPP representation of the log. Bzip2 uses

CCS ’23, November 26-30, 2023, Copenhagen, Denmark.

Embench-10T Raw log bzip?2 file WPP
Program size (MB) size (bytes) size (bytes)
aha-mont64 724.5MB 475,740 bytes 768 bytes
cre32 664.7MB 33,490 bytes 147 bytes
cubic 1.2MB 233 bytes 216 bytes
edn 1376.6MB 211,078 bytes 818 bytes
huffbench 889.8MB 4,706,860 bytes 9750 bytes
matmult-int 1477.7MB 105,882 bytes 370 bytes
minver 215.9MB 63,145 bytes 699 bytes
nbody 17.6MB 2,051 bytes 408 bytes
nettle-aes 195.2MB 40,022 bytes 843 bytes
nettle-sha256 132.3MB 35,055 bytes 336 bytes
primecount 1076.8MB | 23,034,525 bytes 73,478 bytes
sglib-combined 910.0MB 421,6020 bytes 6,716 bytes
st 34.7MB 3,784 bytes 476 bytes
tarfind 184.6MB 382,229 bytes | 257,756 bytes
ud 975.4MB 297,473 bytes 533 bytes

Table 6: Comparison of the size of the raw log against a log com-
pressed with two lossless approaches: bzip2 and WPP.

Open Syringe Pump | Baseline BLasT
Bolus (ml) | Time (s) | Time (s) Overhead
05 ml 1.28 142 (+10.93%)
1ml 2.56 271 (+5.86%)
2 ml 5.12 5.28 (+3.13%)

Table 7: Performance evaluation for different bolus amounts. Bolus
(mL) is the dose of drug.

a lossless compression technique based on the Burrows-Wheeler
block sorting text compression algorithm and Huffman coding. The
WPP construction algorithm identifies and compactly represents
repeated fragments in structure of the log using a context-free gram-
mar. Table 6 clearly shows the benefits of the WPP representation,
which is just a few hundred bytes in each case.

4.4 Case Study: Open Syringe Pump Benchmark

We evaluated BLasT using the Open Syringe pump benchmark
[40], an implementation of a medical syringe pump for low-end
embedded devices. We chose this benchmark because it has also
been used by prior work to evaluate the security and performance
of their systems. We used the publicly-available version of the
application that the CFLAT authors ported for their work. The
application takes a numeric input which sets the quantity of bolus
(set-quantity), and a trigger input (+/-) which moves the syringe
pump to dispense or withdraw the set bolus (move-syringe).

We conducted a performance evaluation of the instrumented
Open Syringe pump benchmark similar to CFLAT by executing
it with different bolus quantities. As shown in Table 7, the raw
whole-program path attestation overhead incurred using the BLasT-
instrumented application is 0.14s for 0.5ml, 0.15s for 1ml, and 0.16s
for 2ml. In contrast, the raw performance overhead of the corre-
sponding CFLAT-instrumented benchmark is 1.2s for 0.5ml, 2.4s for
1ml, and 4.8s for 2ml for attesting paths only in the set-quantity and
move-syringe functions [2, Section 6.3]. Further, we observed only
a single TEE domain switch in the BLAsT-instrumented version of
the application. This is because the number of control-flow events
observed during the execution of this application did not fill the
log to capacity, i.e., there were fewer entries than to even fill one
half of the space allocated for the log. In contrast, CFLAT makes a
TEE domain switch on every basic block.

Next, we illustrate the effectiveness of WPP at detecting anoma-
lous behaviour of the set-quantity function. The functionality of
the application is such that depending on the bolus amount, the
stepper motor runs a different number of steps, which is imple-
mented as a loop in the ported application. The CFG consists of
three acyclic paths: a loop entry path with Ball-Larus value 1, a

CCS ’23, November 26-30, 2023, Copenhagen, Denmark.

Open Syringe Pump Code

Code Paths

\
8
dispenseMedicine();,

VL

for (i=0; i<steps; i++)
dispenseMedicine();

WPPs

Bolus = 0.010 ml Bolus = 0.011 ml

Execution path trace:
1 8 (repeated 67 times) 9

Execution path trace:
1 8 (repeated 74 times) 9

S -> 1 AAEF 9 S -> 1 AACE 9
A -> BB A -> BB
B -> CC B -> CC
C -> DD Cc -> DD
D -> EE D -> EE
E -> FF E -> FF
F->8 F->8

Figure 9: Code snippet of Open Syringe Pump showing the Ball Larus
path numbers (we have omitted the function names for brevity),
accompanied with execution path traces and WPPs for different
bolus amounts, 10 L and 11 pL.

loop iteration path with value 8, and a loop exit path with value
9 as shown in Figure 9. The loop runs 68 iterations for 10uL, and
75 iterations for 11uL, i.e., path number 8 occurs 67 times in path
trace for 10uL, and 74 times in path trace for 11xL. Both path traces
start and end with path numbers 1 (loop entry) and 9 (loop exit).
We consider an attack on the program that causes it to pump 114L
when it is expected to pump 10pL. The WPPs capture the differing
number of loop iterations in the path traces and are easily distin-
guishable to a verifier V based on the number of bolus given as
input. BLAST similarly detects errant behavior in the move-syringe
function since the trigger inputs (+/-) causes the program to take
different paths in the CFG.

5 RELATED WORK

Remote attestation has been explored in various domains [4, 8, 24,
35, 47] to establish the absence of malicious changes to the memory
content. Software-based attestation techniques such as SWATT [45]
and PIONEER [44] were originally proposed for low-end embedded
devices because TEEs were generally unavailable (historically) on
low-end embedded devices. These methods implemented attesta-
tion via a self-checksumming function, implemented entirely in
software. The security of these techniques relies on precise timing
measurements, and is applicable only in settings where the com-
munication delay between V and P is deterministic, e.g., commu-
nication between peripheral and host CPU [35]. Moreover, attacks
have been proposed on software based attestation [14, 51].

Hybrid attestation techniques provide the same security guaran-
tees as hardware-based approaches while minimizing modifications
to the underlying hardware platform and reducing the assumptions
of software-based approaches. VRASED [37] implements integrity-
ensuring functions (e.g., MAC) in software and uses trusted hard-
ware to control the execution of this function. These attestation
techniques share a standard limitation—they measure the state of
the prover only when it executes remote attestation. They do not
provide information about the program before measurement or
its state between two consecutive measurements, and thus suffer

Nikita Yadav and Vinod Ganapathy

from time-of-check to time-of-use (TOCTTOU) attacks. RATA [38]
proposes a hybrid design to avoid TOCTTOU in microcontroller
units. BLAST is complementary to these approaches and focuses on
attesting the program’s control flow.

DIAT [4] is an integrity measurement approach that, like BLAST,
attempts to address the issue of performance overheads of path
attestation. DIAT decomposes the program # into modules and
attests selective modules that process specific data of interest. DIAT
ensures that the communication between the modules takes place
over a well-defined interface that allows data-flow tracking between
the modules. In DIAT the modules that are attested are identified
beforehand, and V does not have flexibility in choosing which
modules to attest. LAPE [29] also uses an approach similar to DIAT
for firmware attestation by splitting firmware into modules. BLasT
provides whole-program attestation in contrast to DIAT. Methods
from BLAST can also be used to improve the attestation of the
modules that DIAT identifies, thus resulting in a better system
overall. LO-FAT [22], LiteHAX [21], Atrium [52] and Tiny-CFA [39]
introduce hardware support to reduce the overheads of control-flow
path attestation on the prover and securely store measurements.

ReCFA [53] proposes an alternative approach to optimizing path
attestation. It proposes a multi-phase program analysis to reduce
the number of control events to be recorded at runtime. ReCFA’s
call-site filtering analyzes the control-flow graph and elides record-
ing a call to a function if it is guaranteed to follow a call to its
predecessor. ReCFA’s control-flow event folding compresses the
amount of data recorded in the integrity measurement sent to the
verifier. The verifier itself uses a form of abstract execution to check
the integrity of ’s execution. ReCFA uses Intel MPK [30] for light-
weight protection of the integrity of critical data structures used
for call-site filtering and control-flow event folding within #’s ad-
dress space. ReCFA’s methods are complementary to BLAST’s—in
particular, ReCFA can benefit from BrLasT’s Ball-Larus-based in-
strumentation placement, and vice-versa. However, ReCFA did not
evaluate the performance impact of domain switches into the TEE,
which are a key part of the design of path attestation methods
for embedded devices and also severely impact their performance.
Also, ReCFA cannot be implemented securely on embedded sys-
tems, which lack Intel MPK support that is presently available only
on Intel server-class chipsets. Although similar in design to Intel
MPK, ARM Memory Domains [7, 18] require a trap to the kernel to
switch memory domains unlike MPK, in which the corresponding
operation is done entirely in user-space.

MG-CFA [28] proposes dual attestation at function-level: (1) fine-
grained that records every branch, function call and return events,
or (2) coarse-grained that records only function entrance and exit
events. It associates a vulnerable probability p with every function
(which is predicted using ML models). Functions with p above a
threshold are called vulnerable functions and others are normal
functions. Vulnerable functions are checked at fine-granularity,
others are checked at coarse-granularity. They evaluate their work
on Raspberry Pi with ARM Trustzone and reports upto 600X over-
head on real-benchmarks when all functions are checked at fine-
granularity. These numbers are consistent with the results that we
observed when we attempted to scale CFLAT and OAT to whole-
program path attestation (Table 2). BLAsT’s overhead, in contrast,
is an average of 1.67X on the Embench-IOT benchmark suite.

Whole-Program Control-Flow Path Attestation

6

CONCLUSION

Whole program path attestation has proven to be an elusive goal.
This paper showed that prior methods for path attestation fail to
scale to whole program paths because of the prohibitive number of
TEE domain transitions that they make. We then proposed BrasT,
which combines local logging, optimal instrumentation placement
in P and software fault isolation in a novel way, thereby enabling
whole-program path attestation with runtime performance over-
heads of 67% on a set of embedded benchmarks.
Acknowledgements. (1) Raghavan Komondoor and the CCS’23
reviewers for their insightful comments; (2) The Department of
Science and Technology, the National Security Council of India,
and a Prime Minister’s Research Fellowship for financial support.

REFERENCES

(1]
(2]

(3]

[10

[11]

[12]

=

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity principles,
implementations, and applications. ACM Trans. Inf. Sys. Sec., 13(1), 2009.

T. Abera, N. Asokan, L. Davi, J. Ekberg, T. Nyman, A. Paverd, A-R. Sadeghi, and
G. Tsudik. C-FLAT: Control-Flow attestation for embedded systems software. In
ACM Conference on Computer and Communications Security, 2016.

T. Abera, R. Bahmani, F. Brasser, A. Ibrahim, A-R. Sadeghi, and M. Schunter. DIAT:
Data integrity attestation for resilient collaboration of autonomous systems. In
ISOC Network and Distributed Systems Security Symposium, 2019.

T. Abera, R. Bahmani, F. Brasser, A. Ibrahim, A-R. Sadeghi, and M. Schunter. DIAT:
Data Integrity Attestation for Resilient Collaboration of Autonomous Systems.
In Networked and Distributed Systems Security Symposium, 2019.

W. A. Arbaugh, D. J. Farber, and J. M. Smith. A secure and reliable bootstrap
architecture. In IEEE Symposium on Security and Privacy, 1997.

ARM security technology. https://developer.arm.com/documentation/PRD29-
GENC-009492/c.

Memory domains (page b3-31). ARM v7A/v7R Architecture Reference Manual.
N. Asokan, F. Brasser, A. Ibrahim, A-R. Sadeghi, M. Schunter, G. Tsudik, and
C. Wachsmann. Seda: Scalable embedded device attestation. In ACM Conference
on Computer and Communications Security, 2015.

A. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma, and W. Shen.
Hypervision across worlds: Real-time kernel protection from the ARM TrustZone
secure world. In ACM Conf. on Computer and Communications Security, 2014.
T. Ball and J. Larus. Efficient path profiling. In 29th Annual ACM/IEEE Symposium
on Microarchitecture, Dec 1996.

T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-oriented programming: A
new class of code-reuse attack. In 6th ACM Symposium on Information, Computer
and Communications Security, 2011.

E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When Good Instructions Go
Bad: Generalizing Return-Oriented Programming to RISC. In ACM Conference
on Computer and Communications Security, 2008.

bzip2. Linux man page. https://linux.die.net/man/1/bzip2.

] C. Castelluccia, A. Francillon, D. Perito, and C. Soriente. On the difficulty of

software-based attestation of embedded devices. In Proceedings of the ACM
conference on Computer and communications security, 2009.

S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and
M. Winandy. Return-Oriented Programming Without Returns. In ACM Confer-
ence on Computer and Communications Security, 2010.

L. Chen, R. Landfermann, H. Lohr, M. Rohe, A-R. Sadeghi, and C. Stiible. A
protocol for property-based attestation. In Proceedings of the first ACM workshop
on Scalable trusted computing, pages 7-16, 2006.

L. Chen, H. Lohr, M. Manulis, and A-R. Sadeghi. Property-based attestation
without a trusted third party. In International Conference on Information Security,
pages 31-46. Springer, 2008.

Y. Chen, S. Reymondjohnson, Z. Sun, and L. Lu. Shreds: Fine-grained execution
units with private memory. In IEEE Symposium on Security and Privacy, 2016.
A. A. Clements, N. S. Almakhdhub, K. S. Saab, P. Srivastava, J. Koo, S. Bagchi, and
Mathias Payer. Protecting bare-metal embedded systems with privilege overlays.
In IEEE Symposium on Security and Privacy, 2017.

T. Cloosters, D. Paaf8en, J. Wang, O. Draissi, P. Jauernig, E. Stapf, L. Davi, and
A-R. Sadeghi. RiscyROP: Automated Return-Oriented Programming Attacks
on RISC-V and ARM64. In Proceedings of the 25th International Symposium on
Research in Attacks, Intrusions and Defenses, 2022.

G. Dessouky, T. Abera, A. Ibrahim, and A-R. Sadeghi. LiteHAX: lightweight
hardware-assisted attestation of program execution. In International Conference
on Computer Aided Design, 2018.

G. Dessouky, S. Zeitouni, T. Nyman, A. Paverd, L. Davi, P. Koeberl, N. Asokan,
and A-R. Sadeghi. Lo-fat: Low-overhead control flow attestation in hardware. In

'S
=

W w
N =

[33

[34

(35]

[46

[47]

(48

[49

[50

[51]

[52

[53

CCS ’23, November 26-30, 2023, Copenhagen, Denmark.

Proceedings of the 54th Annual Design Automation Conference 2017, 2017.
Embench”™: A Modern Embedded Benchmark. https://www.embench.org/.

T Fraser,] Molina, and W Arbaugh. Copilot-a coprocessor-based kernel runtime
integrity monitor. In USENIX, 2004.

M. Gasser, A. Goldstein, C. Kaufman, and B. Lampson. The digital distributed
system security architecture. In 12th National Computer Security Conference,
pages 305-319, 1989.

X. Ge, H. Vijayakumar, and T. Jaeger. SProBEs: Enforcing Kernel Code Integrity
on the TrustZone. In IEEE Workshop on Mobile Security Technologies, 2014.

H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang. Data-Oriented
Programming: On the Expressiveness of Non-Control Data Attacks. In IEEE
Symposium on Security and Privacy, 2016.

J. Hu, D. Huo, M. Wang, Y. Wang, Y. Zhang, and Y. Li. A probability predic-
tion based mutable control-flow attestation scheme on embedded platforms. In
IEEE International Conference On Trust, Security And Privacy In Computing And
Communications (TrustCom/BigDataSE). IEEE, 2019.

D. Huo, Y. Wang, C. Liu, M. Li, Y. Wang, and Z. Xu. LAPE: A Lightweight
Attestation of Program Execution Scheme for BareMetal Systems. In 22nd IEEE
Intl. Conference on High Performance Computing and Communications, 2020.
Intel. Intel-64 and IA-32 architectures software developer’s manual, 2018. https:
//software.intel.com/en-us/articles/intel-sdm.

Intel SGX for Linux. https://github.com/intel/linux-sgx.

C. Kil, E. C. Sezer, A. M. Azab, P. Ning, and X. Zhang. Remote attestation
to dynamic system properties: Towards providing complete system integrity
evidence. In 2009 IEEE/IFIP International Conference on Dependable Systems &
Networks, pages 115-124. IEEE, 2009.

C. H. Kim, T. Kim, H. Choi, Z. Gu, B. Lee, X. Zhang, and D. Xu. Securing real-
time microcontroller systems through customized memory view switching. In
Networked and Distributed Systems Security Symposium, 2018.

J. Larus. Whole program paths. In ACM SIGPLAN Symposium on Programming
Language Design and Implementation, May 1999.

Y. Li, J. M. McCune, and A. Perrig. Viper: Verifying the integrity of periph-
erals’ firmware. In Proceedings of the 18th ACM conference on Computer and
communications security, pages 3-16, 2011.

A.]. Neto and I. Nunes. ISC-FLAT: On the Conflict Between Control Flow Attes-
tation and Real-Time Operations. In IEEE Real-Time and Embedded Technology
and Applications Symposium, 2023.

L Nunes, K. Eldefrawy, N. Rattanavipanon, M. Steiner, and G. Tsudik. Vrased:
A verified hardware/software co-design for remote attestation. In 28th USENIX
Security Symposium USENIX Security, pages 1429-1446, 2019.

I. Nunes, S. Jakkamsetti, N. Rattanavipanon, and G. Tsudik. On the TOCTOU
problem in remote attestation. In ACM Conf. on Comp. and Comm. Sec., 2021.

L. Nunes, S. Jakkamsetti, and G. Tsudik. Tiny-CFA: Minimalistic control-flow
attestation using verified proofs of execution. In DATE Conference, 2021.

Open syringe pump. https://github.com/manimino/OpenSyringePump.

Open portable trusted execution environment. https://www.op-tee.org/.

A-R. Sadeghi and C. Stiible. Property-based attestation for computing platforms:
caring about properties, not mechanisms. In Proceedings of the 2004 workshop on
New security paradigms, pages 67-77, 2004.

R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and implementation of a
TCG-based integrity measurement architecture. In USENIX Security, 2004.

A. Seshadri, M. Luk, E. Shi, A. Perrig, L. Van Doorn, and P. Khosla. Pioneer:
verifying code integrity and enforcing untampered code execution on legacy
systems. In ACM Symposium on Operating Systems Principles, 2005.

A. Seshadri, A. Perrig, L. Van Doorn, and P. Khosla. Swatt: Software-based
attestation for embedded devices. In IEEE Symposium on Security and Privacy,
2004. Proceedings. 2004, 2004.

H. Shacham. The geometry of innocent flesh on the bone: Return-into-libc
without function calls (on the x86). In Proceedings of the 14th ACM conference on
Computer and communications security, pages 552-561, 2007.

Z.Sun, B. Feng, L. Ly, and S. Jha. OAT: Attesting operation integrity of embedded
devices. In IEEE Symposium on Security and Privacy, 2020.

F. Toffalini, E. Losiouk, A. Biondo, J. Zhou, and M. Conti. Scarr: Scalable runtime
remote attestation for complex systems. In International Symposium on Research
in Attacks, Intrusions and Defenses, 2019.

R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Efficient software-based fault
isolation. In ACM Symposium on Operating Systems Principles, 1993.

M. Walfish and A. Blumberg. Verifying computations without reexecuting them.
Communications of the ACM, 58(2), February 2015.

G. Wurster, P. C. Van Oorschot, and A. Somayaji. A generic attack on
checksumming-based software tamper resistance. In 2005 IEEE Symposium on
Security and Privacy (S&P’05), pages 127-138. IEEE, 2005.

S. Zeitouni, G. Dessouky, O. Arias, D. Sullivan, A. Ibrahim, Y. Jin, and A-R. Sadeghi.
ATRIUM: Runtime attestation resilient under memory attacks. In International
Conference on Computer Aided Design, 2017.

Y. Zhang, X. Liu, C. Sun, D. Zeng, G. Tan, X. Kan, and S. Ma. ReCFA: Resilient
Control-Flow Attestation. In Annual Computer Security Applications Conf., 2021.

https://developer.arm.com/documentation/PRD29-GENC-009492/c
https://developer.arm.com/documentation/PRD29-GENC-009492/c
https://linux.die.net/man/1/bzip2
https://www.embench.org/
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://github.com/intel/linux-sgx
https://github.com/manimino/OpenSyringePump
https://www.op-tee.org/

	Abstract
	1 Introduction
	2 Background
	2.1 Threat Model
	2.2 Prior Art in Path Attestation
	2.3 TEE Domain Switches in Path Attestation

	3 Design and Implementation of BLAST
	3.1 Avoiding TEE Domain Switches
	3.2 Ball-Larus Numbering for Optimal Logging
	3.3 Log Integrity using Software Fault Isolation
	3.4 Path Measurement and Verification
	3.5 Implementation
	3.6 Qualitative Security Analysis

	4 Evaluation
	4.1 Performance Analysis
	4.2 Evaluating Energy Consumption in Blast
	4.3 Effectiveness of the WPP Representation
	4.4 Case Study: Open Syringe Pump Benchmark

	5 Related Work
	6 Conclusion
	References

