
Whole-Program Control-flow
Path Attestation

Nikita Yadav and Vinod Ganapathy

nikitayadav@iisc.ac.in, vg@iisc.ac.in

ACM Conference on Computer and Communications Security (CCS) 2023

Problem Setting
Peter (Prover)Victor (Verifier)

Command

Proof of executionPath DB

Secure
Hardware

Record the
path

Verify

Verified
or path violation
detected

Path commitment
e.g., set of executed instructions

2Whole-program Control-flow Path Attestation

Secure World/TEE

Background & Threat Model
Peter's Device

ARM
TrustZone

Normal World/REE

User mode

Privileged mode

User mode

Privileged mode

Secure Monitor

Capabilities of TEE:
1. Verify REE configuration.

2. Generate digital signatures.

3. Provides secure storage.

3Whole-program Control-flow Path Attestation

P

Raspberry Pi

Assumptions:
1. TEE is available.

2. Data Execution Prevention (DEP) is
enabled by REE OS, attested by TEE.

Secure World/TEE

Peter's Device

Normal World/REE

User mode

Privileged mode

User mode

Privileged mode

Secure Monitor

4Whole-program Control-flow Path Attestation

P

Background & Threat Model

Raspberry Pi

ARM
TrustZone

Possible Threats:
1. P could be modified

2. Code injection in P

3. Code-reuse attacks/ Return-
oriented attacks.

4. Input corruption/Data corruption

5. Out of scope – Physical attacks.

Types of Runtime attacks

(i) Attacker injected code execution

(ii) Code-reuse attack

(iii) Non-control data attack

Runtime Attacks

Whole-program Control-flow Path Attestation 5

1

2 35 6

4

X(iii)

(ii)

(i)

Source: CFLAT – Control-Flow Attestation for Embedded System Software, CCS'16

Secure World/TEE
Possible Threats:
1. P could be modified -> TEE attests

the code image of P in REE.
2. Code injection in P -> DEP, ensured

by TEE attestation of REE OS.
3. Code-reuse attacks/ Return-

oriented attacks. -> This work
4. Input corruption/Data corruption ->

This work
5. Out of scope – Physical attacks.

Peter's Device

Normal World/REE

User mode

Privileged mode

User mode

Privileged mode

Secure Monitor

6Whole-program Control-flow Path Attestation

P

Background & Threat Model

Raspberry Pi

ARM
TrustZone

Record program execution path securely.

Problem

7Whole-program Control-flow Path Attestation

Strawman Approach I

BB1

BB2BB3

BB4 BB5

BB6

8Whole-program Control-flow Path Attestation

TEE
T F

T F

Strawman Approach I

BB1

BB2BB3

BB4 BB5

BB6

TEE

9Whole-program Control-flow Path Attestation

T F

T F BB1

Switch to
TEE

Strawman Approach I

BB1

BB2BB3

BB4 BB5

BB6

TEE

10Whole-program Control-flow Path Attestation

T F

T F BB1

BB2

Switch to
TEE

Strawman Approach I

BB1

BB2BB3

BB4 BB5

BB6

TEE

11Whole-program Control-flow Path Attestation

T F

T F BB1

BB2
BB5

Switch to
TEE

Strawman Approach I

BB1

BB2BB3

BB4 BB5

BB6

TEE

Prior work: CFLAT – Control-flow attestation on Embedded System Software, ACM CCS'16.

12Whole-program Control-flow Path Attestation

Signed Path
Commitment

T F

T F BB1

BB2
BB5
BB6

Path DB

Verified or path
violation detected!

Verify

Switch to
TEE

Strawman Approach II

TEE

13Whole-program Control-flow Path Attestation

Path DB

BB1

BB2BB3

BB4 BB5

BB6

T F

T F

Strawman Approach II

BB1

BB2BB3

BB4 BB5

BB6

TEE

14Whole-program Control-flow Path Attestation

T F

T F False

Path DB

Switch to
TEE

Strawman Approach II

BB1

BB2BB3

BB4 BB5

BB6

TEE

15Whole-program Control-flow Path Attestation

T F

T F False

False

Path DB

Switch to
TEE

Strawman Approach II

BB1

BB2BB3

BB4 BB5

BB6

TEE

16Whole-program Control-flow Path Attestation

T F

T F False

False

Path DB

Switch to
TEE

Strawman Approach II

BB1

BB2BB3

BB4 BB5

BB6

TEE

17Whole-program Control-flow Path Attestation

Signed Path
Commitment

T F

T F False

False
Return Addr

Path DB

Verified or path
violation detected!

Verify

Prior work: OAT – Attesting Operation Integrity of Embedded devices, IEEE Symposium on Security and Privacy (SP), 2020

Switch to
TEE

Overhead Reports by CFLAT & OAT

CFLAT reported 0.13 % overhead for syringe pump benchmark.

OAT reported an average overhead of 2.7% on five embedded
programs.

Whole-program Control-flow Path Attestation 18

Evaluation on Embench-IoT Benchmark

Whole-program Control-flow Path Attestation 19

Embench-IoT Benchmark Total TEE domain Switches Encountered at Runtime

Program Strawman Approach I (CFLAT) Strawman Approach II (OAT)

aha-mont64 857,844,016 392,967,008

crc32 871,930,016 348,840,008

cubic 2,030,022 860,013

edn 1,106,118,020 372,621,011

huffbench 984,236,016 496,903,008

matmul-int 1,201,018,222 406,825,691

minver 277,500,079 115,440,042

nbody 17,279,126 6,329,070

nettle-aes 227,449,298 78,858,777

nettle-sha256 223,250,050 34,200,025

primecount 1,607,180,016 880,206,008

20Whole-program Control-flow Path Attestation

1 TEE domain switch takes ~ 190
μsecs on Raspberry Pi.

Baseline Execution Time Time with CFLAT Time with OAT
12 seconds

X 190 μsecs

> 11 hours

CFLAT and OAT impose over 1000X Overhead on all Benchmarks due
to high number of TEE domain switches.

Effect of TEE switches on Runtime

Embench-IoT Benchmark Total TEE domain Switches Encountered at Runtime
Program CFLAT OAT
nettle-sha256 223,250,050 34,200,025

~ 2 hours

X 190 μsecs

21Whole-program Control-flow Path Attestation

I. Prior works evaluate small embedded programs with only few hundreds of
control-flow events.

II. Attest only critical sections of the program (CFLAT) or certain operations in the
program (OAT).

Rationale for low overhead of CFLAT & OAT

22Whole-program Control-flow Path Attestation

I. Prior works evaluate small embedded programs with only few hundreds of
control-flow events.

II. Attest only critical sections of the program (CFLAT) or certain operations in the
program (OAT).

Rationale for low overhead of CFLAT & OAT

Critical
section

Program P

Attested
region

23Whole-program Control-flow Path Attestation

Rationale for low overhead of CFLAT & OAT

Ref: A Probability Prediction Based Mutable Control-Flow Attestation Scheme on Embedded Platforms

Critical
section

Program P

Attested
region

Program P

Attested
region

Critical
section

I. Prior works evaluate small embedded programs with only few hundreds of
control-flow events. -> This work evaluate on Embench-IoT benchmark.

II. Attest only critical sections of the program (CFLAT) or certain operations in the
program (OAT). -> This work attests whole-programs.

Selective Attestation

Whole-program Control-flow Path Attestation 24

Ref: A Probability Prediction Based Mutable Control-Flow Attestation Scheme on Embedded Platforms

void func1() {
(1) …..

scanf("%d", &n)
(4) ….....
(5) if (flag>0) func2();
(6) else func3(n);

}

void func2() {
….

}

void func3(int n) {
(8) …...

while (n) {
n- = 1;

}
}

input: 5

n = 31
2
3
4
5
6

7
8
9

Attack is missed when only func1 and
func2 are attested and not func3.

State-of-the-art path attestation approaches
are extremely slow and attests only parts of

the program.

Conclusion

25Whole-program Control-flow Path Attestation

BLAST

Whole-program
path attestation
with near-practical
overhead.

Whole-program Control-flow Path Attestation 26

Key Contributions

Whole-program Control-flow Path Attestation 27

1) Store path locally in log (reduces TEE domain switches)

2) Instrument P using Ball Larus Profiling (reduces log entries)

3) Compact & expressive path representation

Key Contributions

Whole-program Control-flow Path Attestation 28

1) Store path locally in log (reduces TEE domain switches)

2) Instrument P using Ball Larus Profiling (reduces log entries)

3) Compact & expressive path representation

Buffer in Local Log

Whole-program Control-flow Path Attestation 29

P's Address Space

TEEREE

Data

Log

Secure Storage
Code

BB1

BB2BB3

BB4 BB5

BB6

Log head

Buffer in Local Log

Whole-program Control-flow Path Attestation 30

P's Address Space

TEEREE

Data

Log

Secure Storage
Code

BB1

BB2BB3

BB4 BB5

BB6

Log head
BB1

Buffer in Local Log

Whole-program Control-flow Path Attestation 31

P's Address Space

TEEREE

Data

Log

Secure Storage
Code

BB1

BB2BB3

BB4 BB5

BB6

Log head
BB1

BB2

Buffer in Local Log

Whole-program Control-flow Path Attestation 32

P's Address Space

TEEREE

Data

Log

Secure Storage
Code

BB1

BB2BB3

BB4 BB5

BB6

Log head
BB1

BB2
BB5

Buffer in Local Log

Whole-program Control-flow Path Attestation 33

Accumulate
Path

Measurement

P's Address Space

TEEREE

Data

Log

Secure Storage

(Log Reg)

Code

BB1

BB2BB3

BB4 BB5

BB6

Log head

Switch to
TEE

BB1

BB2
BB5
BB6

Corruption of Log Data

Whole-program Control-flow Path Attestation 34

Accumulate
Path

Measurement

P's Address Space

TEEREE

Data

Log

Secure Storage
Code

Problem:
P can write
anywhere in its
data region! (Log Reg)

Log head

Switch to
TEE

Protect the Log Data

Whole-program Control-flow Path Attestation 35

P's Address Space

Data

Log

Code

Address
within
Log?

ABORT

(Log Reg)
Log head

NO

YES

Protect Log with Software Fault Isolation

36

SFI check:
and x9, write_addr, mask
cmp x9, log_start_addr

Whole-Program Control-Flow Path Attestation

store w8, write_addr

P's Address Space

Data

Log

Code

(Log Reg)
Log head

ABORT

!=

=

Key Contributions

Whole-program Control-flow Path Attestation 37

1) Store path locally in log (reduces TEE domain switches)

2) Instrument P using Ball Larus Profiling (reduces log entries)

3) Compact & expressive path representation

Flush Log to TEE

Whole-program Control-flow Path Attestation 38

P's Address Space

TEEREE

Data

Log

Secure Storage
Code

Log head

Flush Log to TEE

Whole-program Control-flow Path Attestation 39

P's Address Space

TEEREE

Data

Log is Full

Secure Storage
Code

Accumulate
Path

Measurement

Log head

Switch to
TEE

Flush Log to TEE

Whole-program Control-flow Path Attestation 40

P's Address Space

TEEREE

Data

Log

Secure Storage
Code

Accumulate
Path

Measurement

Log head
Number of TEE
switches =
Number of log
flushes!

Problem:
Reduce log
flushes.

Reduce Log Entries

Whole-program Control-flow Path Attestation 41

P's Address Space

TEEREE

Data

Log

Secure Storage
Code

BB1

BB2BB3

BB4 BB5

BB6

Log head

R = 0

Ref: Efficient path profiling, IEEE Symposium on Microarchitecture, 1996

Reduce Log Entries

Whole-program Control-flow Path Attestation 42

P's Address Space

TEEREE

Data

Log

Secure Storage
Code

BB1

BB2BB3

BB4 BB5

BB6

Log head

R = 0

Ref: Efficient path profiling, IEEE Symposium on Microarchitecture, 1996

Reduce Log Entries

Whole-program Control-flow Path Attestation 43

P's Address Space

TEEREE

Data

Log

Secure Storage
Code

BB1

BB2BB3

BB4 BB5

BB6

Log head

R = 0

Ref: Efficient path profiling, IEEE Symposium on Microarchitecture, 1996

Reduce Log Entries

Whole-program Control-flow Path Attestation 44

P's Address Space

TEEREE

Data

Log

Secure Storage
Code

BB1

BB2BB3

BB4 BB5

BB6

Log head

R = 0

Ref: Efficient path profiling, IEEE Symposium on Microarchitecture, 1996

Reduce Log Entries

Whole-program Control-flow Path Attestation 45

P's Address Space

TEEREE

Data

Log

Secure Storage
Code

BB1

BB2BB3

BB4 BB5

BB6

Log head

R = 0

R 0 Accumulate
Path

Measurement

Ref: Efficient path profiling, IEEE Symposium on Microarchitecture, 1996

Switch to
TEE

Reduce Log Entries

Whole-program Control-flow Path Attestation 46

P's Address Space

TEEREE

Data

Log

Secure Storage
Code

BB1

BB2BB3

BB4 BB5

BB6

Log head

R = 0

R 1 Accumulate
Path

MeasurementR+=1

Ref: Efficient path profiling, IEEE Symposium on Microarchitecture, 1996

Switch to
TEE

Reduce Log Entries

Whole-program Control-flow Path Attestation 47

P's Address Space

TEEREE

Data

Log

Secure Storage
Code

BB1

BB2BB3

BB4 BB5

BB6

Log head

R = 0

R 2 Accumulate
Path

MeasurementR+=1

Ref: Efficient path profiling, IEEE Symposium on Microarchitecture, 1996

R+=2

BL Reg

Switch to
TEE

Ball Larus Profiling: Handling Loops
Path Path

IDr

BB0->BB1->BB2->BB4->BB5->BB7 0

BB0->BB1->BB2->BB4->BB6->BB7 1

BB0->BB1->BB2->BB6->BB7 2

BB0->BB1->BB3->BB7 3

BB0->BB8 4

BB7->BB0->BB1->BB2->BB4->BB5->BB7 5

BB7->BB0->BB1->BB2->BB4->BB6->BB7 6

BB7->BB0->BB1->BB2->BB6->BB7 7

BB7->BB0->BB1->BB3->BB7 8

BB7->BB0->BB8 9

48Whole-Program Control-Flow Path Attestation

Ball Larus Instrumentation with Logging

We reserve physical register w20 for BL number (BL Reg) and physical register
x19 for Log head (Log Reg)

Initialization on function entry:
mov w20, #0x0

Increment on edges:
add w20, w20, #increment_val

Loop header:
add w20, w20, #increment_val
str w20, [x19], #4
mov w20, #reset_val

Function call:
str w20, [x19], #4
mov w8, #func_entry_id
str w8, [x19], #4
bl func_addr <check_alarm>
mov w20, #reset_val

Function return/exit:
str w20, [x19], #4
mov w8, #func_exit_id
str w8, [x19], #4
str x30, [x19], #8

49Whole-Program Control-Flow Path Attestation

Whole-program Control-flow Path Attestation 50

Reduction in Log entries using Ball Larus

Workflow for Verification

51Whole-Program Control-Flow Path Attestation

Peggy's Device Platform Victor

WPP Representation

Whole-Program Control-Flow Path Attestation 52

Repeated sequences of control-flow events are compressed into
context-free grammar rules.

Ref: Whole program paths, ACM SIGPLAN Symposium on Programming Language Design and Implementation, 1999

Log Entries Identifier
<foobar, 2> a
<foo, 8> b
<bar, 9> c
<foobar, 5> d
<foo, 8> b
<bar, 9> c

Execution Trace: abcdbc

WPP:
S -> aCdC
C -> bc

Qualitative Security Analysis

1. Attacker modifies BL Reg suitably to record desired path value
i. The BL Reg is reserved.
ii. The indirect jump and call addresses are logged.

2. Attacker corrupts the Log
i. Tries to use program's store instruction to write in Log

• Prevented by SFI checks on all store instructions
ii. Tries to use BLAST instrumentation to write in Log

• The Log Reg is reserved, and it is only incremented by instrumentation.
• It can only append to Log. But the execution trace is always recorded!

53Whole-Program Control-Flow Path Attestation

Effectiveness of Ball Larus Profiling

Whole-program Control-flow Path Attestation 54

crc32 with inlining
BLAST: 348,670,006
OAT: 348,840,008

BLAST

Experimental Setup

Whole-program Control-flow Path Attestation 55

ARM
TrustZone

BLAST
Compiler

Pass
P P'

Benchmark: Embench-IoT (https://github.com/embench/embench-iot)

Raspberry Pi

https://github.com/embench/embench-iot

Comparison with CFLAT & OAT

Whole-program Control-flow Path Attestation 56

BLAST overhead is not
even visible!

Performance of BLAST

Whole-program Control-flow Path Attestation 57

Runtime Overhead Breakdown

Whole-program Control-flow Path Attestation 58

Impact of Reserving Registers

59Whole-Program Control-Flow Path Attestation

Effectiveness of WPP Representation

60Whole-Program Control-Flow Path Attestation

Case Study -
Syringe Pump

61Whole-Program Control-Flow Path Attestation

Syringe Pump Benchmark

Whole-program Control-flow Path Attestation 62

Bolus (mL) Baseline
Time(s)

BLAST
Time(s)

BLAST Raw
Overhead (s)

CFLAT Raw
Overhead (s)

0.5 mL 1.28 1.42 0.14 (10%) 1.2 (93%)
1 mL 2.56 2.71 0.15 (5%) 2.4 (93%)
2 mL 5.12 5.28 0.16 (3%) 4.8 (93%)

Whole-Program Control-flow
Path Attestation

Nikita Yadav and Vinod Ganapathy

nikitayadav@iisc.ac.in, vg@iisc.ac.in

ACM Conference on Computer and Communications Security (CCS) 2023

