ACM Conference on Computer and Communications Security (CCS) 2023

Whole-Program Control-flow
Path Attestation

Nikita Yadav and Vinod Ganapathy

Security Laborato
s L ty ry

Indlan Institute of Sclence, Bangalore =< >

nikitayadav@iisc.ac.in, vg@iisc.ac.in

Problem Setting

Victor (Verifier) Peter (Prover)

Command

|
Proof of execution

Path commitment |
/e.q., set of executed instructions Record the

path

or path violation

detected Verify

Whole-program Control-flow Path Attestation 2

Background & Threat Model

Peter's Device

Normal World/REE

Capabilities of TEE:

1. Verify REE configuration.

P User mode

!

Privileged mode i
gT * 3. Provides secure storage.

2. Generate digital signatures.

Assumptions:
1. TEE is available.

| \
£ £ AN

2. Data Execution Prevention (DEP) is
enabled by REE OS, attested by TEE.

Whole-program Control-flow Path Attestation 3

Background & Threat Model

Peter's Device

Normal World/REE

P User mode

!

Privileged mode

Possible Threats:
1. P could be modified

2.

3.

4.

5.

Code injection in P

Code-reuse attacks/ Return-
oriented attacks.

Input corruption/Data corruption

Out of scope — Physical attacks.

Whole-program Control-flow Path Attestation 4

Runtime Attacks

Types of Runtime attacks

(i) Attacker injected code execution

(if) Code-reuse attack

(iii) Non-control data attack

Source: CFLAT — Control-Flow Attestation for Embedded System Software, CCS'16

Whole-program Control-flow Path Attestation

Background & Threat Model

Peter's Device

Normal World/REE

P User mode

!

Privileged mode

Possible Threats:
1

P could be modified -> TEE attests
the code image of P in REE.

Code injection in P -> DEP, ensured
by TEE attestation of REE OS.

Code-reuse attacks/ Return-
oriented attacks. -> This work

Input corruption/Data corruption ->
This work

Out of scope — Physical attacks.

Whole-program Control-flow Path Attestation 6

Problem

Record program execution path securely.

Whole-program Control-flow Path Attestation

Strawman Approach |

BB TEE

[\

BB3 BBZ

A

BB4 BBS

Strawman Approach |

BB icn o TEE

/\ TEE
s m
/{1 BB1

BB4 BB5

Strawman Approach |

Switch to TEE

-
/\ TEE
L T/\F

—

BB4 BB5

e

l

Whole-program Control-flow Path Attestation

Strawman Approach |

Switch to TEE

-
2

BB6

l

Whole-program Control-flow Path Attestation

Strawman Approach |

BB ko TEE

Path DB

Verified or path
Prior work: CFLAT — Control-flow attestation on Embedded System Software, ACM CCS'16. violation detected!

Whole-program Control-flow Path Attestation 12

Strawman Approach Il

TEE

S ¥
<>
Path DB

Strawman Approach Il

~ L

F Switch to TEE
TEE
(gs3) m
’ /{

BB4 BB5

e

l

<>
Path DB

Strawman Approach Il

Switch to TEE

g T/\F
P o Y
o o .~ BB3 \
v § T False

: False
.\, T

'BB4

BB5

Whole-program Control-flow Path Attestation

<>
Path DB

15

Strawman Approach Il

Switch to TEE

A TEE
o o .~ BB3 \
A 4 »

False

False

Whole-program Control-flow Path Attestation

<>
Path DB

16

Strawman Approach Il

BB ko TEE

False

False
Return Addr

Path DB

Verified or path

violation detected!
Prior work: OAT — Attesting Operation Integrity of Embedded devices, IEEE Symposium on Security and Privacy (SP), 2020

Whole-program Control-flow Path Attestation 17

Overhead Reports by CFLAT & OAT

CFLAT reported 0.13 % overhead for syringe pump benchmark.

OAT reported an average overhead of 2.7% on five embedded
programs.

Whole-program Control-flow Path Attestation

18

Evaluation on Embench-loT Benchmark

Embench-loT Benchmark Total TEE domain Switches Encountered at Runtime

Program 1 Strawman Approach | (CFLAT) Strawman Approach Il (OAT)
aha-mont64 857,844,016 392,967,008
crc32 871,930,016 348,840,008
cubic 2,030,022 860,013
edn 1,106,118,020 372,621,011
huffbench 984,236,016 496,903,008
matmul-int 1,201,018,222 406,825,691
minver 277,500,079 115,440,042
nbody 17,279,126 6,329,070
nettle-aes 227,449,298 78,858,777
nettle-sha256 223,250,050 34,200,025
primecount 1,607,180,016 880,206,008

Whole-program Control-flow Path Attestation

19

Effect of TEE switches on Runtime

Embench-loT Benchmark Total TEE domain Switches Encountered at Runtime

Program | CFLAT OAT
nettle-sha256 223,250,050 34,200,025

1 TEE domain switch takes ~ 190

usecs on Raspberry Pi. X190 psecs X190 psecs
Baseline Execution Time Time with OAT

12 seconds > 11 hours ~ 2 hours

CFLAT and OAT impose over 1000x Overhead on all Benchmarks due
to high number of TEE domain switches.

Whole-program Control-flow Path Attestation 20

Rationale for low overhead of CFLAT & OAT

|. Prior works evaluate small embedded programs with only few hundreds of
control-flow events.

Il. Attest only critical sections of the program (CFLAT) or certain operations in the
program (OAT).

Whole-program Control-flow Path Attestation 21

Rationale for low overhead of CFLAT & OAT

|. Prior works evaluate small embedded programs with only few hundreds of
control-flow events.

Il. Attest only critical sections of the program (CFLAT) or certain operations in the
program (OAT).

Program P

Critical

Attested
region

section

Whole-program Control-flow Path Attestation 22

Rationale for low overhead of CFLAT & OAT

|. Prior works evaluate small embedded programs with only few hundreds of
control-flow events. -> This work evaluate on Embench-loT benchmark.

Il. Attest only critical sections of the program (CFLAT) or certain operations in the
program (OAT). -> This work attests whole-programs.

Program P Program P
iti Critical
Attested C”tl.cal Attested :
. section . section
region region

Ref: A Probability Prediction Based Mutable Control-Flow Attestation Scheme on Embedded Platforms

Whole-program Control-flow Path Attestation 23

Selective Attestation

void funcl() {

8 scanf("%d", &n) «+—

(® else func3(n);

®!

void func2() {

}

input: 5

void func3(int n) {

@ .. — | n=3
while (n) {
@ n-=1;

}
}

Attack is missed when only funcl and
func2 are attested and not funcs3.

Ref: A Probability Prediction Based Mutable Control-Flow Attestation Scheme on Embedded Platforms

Whole-program Control-flow Path Attestation

24

Conclusion

State-of-the-art path attestation approaches
are extremely slow and attests only parts of
the program.

Whole-program Control-flow Path Attestation

25

BLAST

Whole-program
path attestation

with near-practlcal
overhead.

Key Contributions N

1) Store path locally in log (reduces TEE domain switches)

2) Instrument P using Ball Larus Profiling (reduces log entries)

3) Compact & expressive path representation

Whole-program Control-flow Path Attestation 27

Key Contributions

1) Store path locally in log (reduces TEE domain switches)

2) Instrument P using Ball Larus Profiling (reduces log entries)

3) Compact & expressive path representation

Whole-program Control-flow Path Attestation 28

BBl

/\

'BB3 BB2

/\

"BB4 BB5

e

BBG

Buffer in Local Log

EE

REE

Log head

Secure Storage

P's Address Space

Whole-program Control-flow Path Attestation

29

BBL
. in

/\

'BB4 BB5

I

BB6

l

Buffer in Local Log

EE

REE

Log head

Secure Storage

P's Address Space

Whole-program Control-flow Path Attestation

30

I

'BB4 BB5

BB6

l

Buffer in Local Log

EE

REE

Log head

Secure Storage

P's Address Space

Whole-program Control-flow Path Attestation

31

Buffer in Local Log

EE

REE

Secure Storage

P's Address Space

Whole-program Control-flow Path Attestation

32

Buffer in Local Log

EE

REE

P's Address Space

Whole-program Control-flow Path Attestation

Accumulate

Path
Measurement

Secure Storage

33

Corruption of Log Data

Problem: REE | TEE

P can write I

anywhere in its Log head :

data region! (Log Reg) : Accumulate

Path
Measurement

»*

Switch to
TEE

Secure Storage

P's Address Space

Whole-program Control-flow Path Attestation

Protect the Log Data

Log head
(Log Reg)

P's Address Space

Whole-program Control-flow Path Attestation

35

Protect Log with Software Fault Isolation

Log head
(Log Reg)

SFI check:
and x9, write_addr, mask
cmp x9, log_start_addr

P's Address Space

Whole-Program Control-Flow Path Attestation 36

Key Contributions

1) Store path locally in log (reduces TEE domain switches)

2) Instrument P using Ball Larus Profiling (reduces log entries)

3) Compact & expressive path representation

Whole-program Control-flow Path Attestation 37

Flush Log to TEE

REE | TEE

Log head

Secure Storage

#'s Address Space

Whole-program Control-flow Path Attestation

38

Flush Log to TEE

REE | TEE
I
[

Switch to : Accumulate

TEE Path

l Measurement
: I
Log is Full l
Log head

Secure Storage

#'s Address Space

Whole-program Control-flow Path Attestation

Flush Log to TEE

REE | TEE
[
Number of TEE I
: _ Log head
switches = — I
Number of log I Accumulate
flushes! Path
I Measurement
[
Log
[
I Secure Storage
.
[
[

#'s Address Space

Whole-program Control-flow Path Attestation

Reduce Log Entries

REE | TEE

lRO

BBl

/\

'BB3 BB2

/\

"BB4 BB5

e

BBG

Log head

Secure Storage

Ref: Efficient path profiling, IEEE Symposium on Microarchitecture, 1996

#'s Address Space

Whole-program Control-flow Path Attestation 41

Reduce Log Entries

REE | TEE

1R=O
'BBL

/\

'BB3 BB2

/\

"BB4 BB5

I

BB6

Log head

Secure Storage

Ref: Efficient path profiling, IEEE Symposium on Microarchitecture, 1996

#'s Address Space

Whole-program Control-flow Path Attestation 42

Reduce Log Entries

EE

REE

Log head

"BB4 BB5
v / / Secure Storage
BB6

Ref: Efficient path profiling, IEEE Symposium on Microarchitecture, 1996

#'s Address Space

Whole-program Control-flow Path Attestation 43

Reduce Log Entries

EE

REE

Log head

Secure Storage

Ref: Efficient path profiling, IEEE Symposium on Microarchitecture, 1996

#'s Address Space

Whole-program Control-flow Path Attestation 44

Reduce Log Entries

REE | TEE

Accumulate

Path
Measurement

Switch to
TEE

Secure Storage

Ref: Efficient path profiling, IEEE Symposium on Microarchitecture, 1996

#'s Address Space

Whole-program Control-flow Path Attestation 45

Reduce Log Entries

REE | TEE

Accumulate

Path
Measurement

Switch to
TEE

Secure Storage

Ref: Efficient path profiling, IEEE Symposium on Microarchitecture, 1996

#'s Address Space

Whole-program Control-flow Path Attestation 46

Reduce Log Entries

REE | TEE
I
Log head :
I Accumulate
: Path
Measurement
[
Switch to I
TEE I
Secure Storage
[
[
p‘s Address Space I Ref: Efficient path profiling, IEEE Symposium on Microarchitecture, 1996

Whole-program Control-flow Path Attestation 47

Ball Larus Profiling: Handling Loops

Path Path
ID
BBO->BB1->BB2->BB4->BB5->BB7 0
BBO->BB1->BB2->BB4->BB6->BB7 1
BBO->BB1->BB2->BB6->BB7 2
StoraLog®R): BBO->BB1->BB3->BB7 3
= BBO->BBS 4
BB7->BBO->BB1->BB2->BB4->BB5->BB7 | 5
BB7->BBO->BB1->BB2->BB4->BB6->BB7 | 6
BB7->BB0->BB1->BB2->BB6->BB7 7
BB7->BBO->BB1->BB3->BB7 8
BB7->BBO->BBS 9

Whole-Program Control-Flow Path Attestation

Ball Larus Instrumentation with Logging

We reserve physical register w20 for BL humber &/ 2,/ and physical register
x19 for Log head (Zey Ze4)

Initialization on function entry: Function call:
mov w20, #0x0 str w20, [x19], #4
mov w8, #func_entry _id

str w8, [x19], #4
bl func_addr <check_alarm>
mov w20, #reset_val

Increment on edges:
add w20, w20, #increment_val

Function return/exit:

Loop header: str w20, [x19], #4
add w20, w20, #increment_val mov w8, #func_exit id
str w20, [x19], #4 str w8, [x19], #4

mov w20, #reset_val str x30, [x19], #8

Whole-Program Control-Flow Path Attestation 49

Whole-program Control-flow Path Attestation

Embench-101 # Log entries using | CFLAI OAT
Program | BrLAsT’s approach | Brast BrasTt
aha-mont64 206,847,012 | 4.14X 1.90X
crc32 523,090,012 1.66X 0.66X
cubic 710,012 | 2.85X 1.21X
edn 362,268,012 | 3.95X 1.03X
huftbench 235,422,012 | 4.18X 2.11X
malmult-int 387,552,454 | 3.09X 1.05X
minver 68,820,024 4.03X% 1.68X
nbody 4,823,032 | 3.58X 1.31X
nettle-aes 52,884,268 4.30X 1.49X
nettle-sha256 31,825,020 | 7.01X 1.07X
primecount 282,283,012 5.69X 3.18X
sglib-combined 298,121,016 4.90X 2.54 X
st 24,921,012 1.74X 0.68X
tarfind 121,062,486 | 2.21X 0.97X
ud 258,650,012 | 2.21X 1.60X

Reduction in Log entries using Ball Larus

50

Workflow for Verification

Peggy's Device Platform

Log

<foobar, 2>
<foo, 8>
<bar, 9>

TEE

Hash
of log

H

Request path

measurement

Return signed

)

Compute WPP
representation
from the log in the
normal world

<€

hash g‘[

Request WPP

Return WPP

Victor

Generate nonce

signature; Path
2) Check 3¢ <==m)| Hash
against DB; DB

3) Return verified i
or WPP needed. i

) Generate log from WPP;
) Verify that log produced
corresponds to hash #;
3) Reconstruct the whole
program path from log;
4) Return verified or path
violation detected.

N =

Whole-Program Control-Flow Path Attestation

51

WPP Representation

Repeated sequences of control-flow events are compressed into
context-free grammar rules.

Log Entries Identifier Execution Trace: abcdbc
<foobar, 2> a

<foo, 8> b

<bar, 9> C WPP:

<foobar, 5> d S->aCdC

<foo, 8> b C->be

<bar, 9> C

Ref: Whole program paths, ACM SIGPLAN Symposium on Programming Language Design and Implementation, 1999

Whole-Program Control-Flow Path Attestation

Qualitative Security Analysis

1. Attacker modifies 8Z Zeg suitably to record desired path value
i. The 8L Reyis reserved.
ii. Theindirect jump and call addresses are logged.

2. Attacker corrupts the Log
i. Tries to use program's store instruction to write in Log
* Prevented by SFI checks on all store instructions
ii. Tries to use BLAST instrumentation to write in Log

* The Loy Reg is reserved, and it is only incremented by instrumentation.
* It can only append to Log. But the execution trace is always recorded!

Whole-Program Control-Flow Path Attestation

53

Effectiveness of Ball Larus Profiling

® CFLAT = OAT === BLAST

-8
3 7 ©
< 6
crc32 with inlining
BLAST: 348,670,006
OAT: 348,840,008)
s 2
(@)
E=] 1
s AMRINENrrrnrrLne
@0"{{0 c}ébq, &> > 061‘0®°c1§ é@&e}éooe)\;@"bi&(ﬁ?@o&& é§\o 9‘1@{.\\& d
5° S & NS

Whole-program Control-flow Path Attestation

54

Experimental Setup

BLAST
Compiler

Pass

Benchmark: Embench-loT (https://github.com/embench/embench-iot)

Whole-program Control-flow Path Attestation

55

https://github.com/embench/embench-iot

Overhead %

Comparison with CFLAT & OAT

m CFLAT OAT = BLAST

2000000
1500000
1000000
500000
1 . |
. N Q N o X
N ! «&W 6"\0 S ooc;o «\o & ob* & ,‘;f?co S &\’o ® 8\(\6 ®
& T EFTETTS S
’Q‘b' ’Qo é’ 00 ,&0 {\
> A\ e R

Whole-program Control-flow Path Attestation

56

Execution Time (s)

Performance of BLAST

m Baseline = BLAST

7% 3,

95%

141% 85%
86%

70%

30%
58%

9%

81% 83%
14% 57% 83%
.&V (:bq' & 06(\ (@0 xS 40\ ob* '009 "1(?6 \)& (\ob o \(\b \)b' ‘bg@
& & S N & D O & & <
“ & & I @ «°
RN & & & F v
< &N o
\ (\0 Q Q\Q
)
%

Whole-program Control-flow Path Attestation

m Log Hashing

Ball Larus instrumentation

Runtime Overhead Breakdown

SFl instrumentation

I S »
LN

NN
AN
NN 7, &oo
NN

peay4ao jo uoljoel

58

Whole-program Control-flow Path Attestation

Impact of Reserving Registers

0.30
0.25 One Register Reserved
_ 7z Two Registers Reserved
o~
< 0.20
®
® 0.15
<
go.m .
7 %
005 7 7 7 7
7 7 | 7
0.00 VA v/ 7 7.
M v O S L& <) © > O X O >
FEFETLITETETE S TS
& s@ ’&\0 & N é& 0}.}\ 6‘00 oéo Q@
” :
& <& ¢ oé& & &;o'o
)

Whole-Program Control-Flow Path Attestation

59

Effectiveness of WPP Representation

Embench-101 Raw log bzip2 file WPP
Program ! size (MB) size (bytes) size (bytes)
aha-mont64 724.5MB 475,740 bytes 768 bytes
crc32 664.7MB 33,490 bytes 147 bytes
cubic 1.2MB 233 bytes 216 bytes
edn 1376.6MB 211,078 bytes 818 bytes
huftbench 889.8MB 4,706,860 bytes 9750 bytes
matmult-int 1477.7MB 105,882 bytes 370 bytes
minver 215.9MB 63,145 bytes 699 bytes
nbody 17.6MB 2,051 bytes 408 bytes
nettle-aes 195.2MB 40,022 bytes 843 bytes
nettle-sha256 132.3MB 35,055 bytes 336 bytes
primecount 1076.8MB | 23,034,525 bytes 73,478 bytes
sglib-combined 910.0MB 421,6020 bytes 6,716 bytes
st 34.7MB 3,784 bytes 476 bytes
tarfind 184.6MB 382,229 bytes | 257,756 bytes

ud 975.4MB 297,473 bxtes 533 bztes

Whole-Program Control-Flow Path Attestation

60

Case Study -
Syringe Pump

Open Syringe Pump Code

Code Paths
\
8

dispenseMedicine();

9

for (i=0; i<steps; i++)
dispenseMedicine();

WPPs

Bolus = 0.010 ml Bolus = 0.011 ml

Execution path trace:
1 8 (repeated 67 times) 9

Execution path trace:
1 8 (repeated 74 times) 9

S -> 1 AAEF 9 S -> 1 AACE 9
A -> BB A -> BB

B -> CC B -> CC

C -> DD C -> DD

D -> EE D -> EE

E -> FF E -> FF

F -> 8 F -> 8

Whole-Program Control-Flow Path Attestation 61

Syringe Pump Benchmark

BLAST Raw CFLAT Raw
Overhead (s) Overhead (s)

Baseline BLAST
Time(s)

Bolus (mL)

Time(s)

0.5 mL 1.28 1.42 0.14 (10%) |1.2(93%)
1 mL 2.56 2.71 0.15 (5%) 2.4 (93%)
2 mL 5.12 5.28 0.16 (3%) 4.8 (93%)

Whole-program Control-flow Path Attestation

62

ACM Conference on Computer and Communications Security (CCS) 2023

Whole-Program Control-flow
Path Attestation

Nikita Yadav and Vinod Ganapathy

Security Laborato
s L ty ry

Indlan Institute of Sclence, Bangalore =< >

nikitayadav@iisc.ac.in, vg@iisc.ac.in

