
Data Protection in Permissioned Blockchains using

Privilege Separation

Arun Joseph, Nikita Yadav, Vinod Ganapathy

Indian Institute of Science Bangalore, India

Dushyant Behl, Praveen Jayachandran

IBM Research, India

ABSTRACT—This paper concerns the Hyperledger Fabric
permissioned blockchain system. This system is in popular use
in several enterprise settings, where each participating cor-
porate entity may have sensitive business-related data whose
confidentiality it wishes to protect. Fabric provides the channel
abstraction that ensures that channel data (e.g., data stored
in that channel’s ledger, or data transmitted via the network
to members of that channel) are only accessible to members
of that channel. Unfortunately, as we show in this paper, the
channel abstraction only offers data protection under the implicit
assumption that all system components in the permissioned
blockchain are trustworthy. This assumption may not hold in
the presence of compromised container nodes, on which several
blockchain-related components execute, or malicious business
users inside any one of the participating corporate entities.
Under such situations, sensitive corporate data can be leaked
to unauthorized entities.

We present Aramid, which is an enhanced version of Fabric
that offers data protection even in the presence of compromised
blockchain components. Aramid uses a privilege-separated archi-
tecture in which blockchain components (such as peer or orderer
nodes) that are members of multiple channels execute on different
containers. Aramid is transparent to legacy Fabric applications,
requiring no changes to their codebase. Through our prototype
implementation, we show that Aramid robustly defends against
a number of attacks possible on Fabric, and that it does so with
performance comparable to Fabric.

Index Terms—permissioned blockchain, privilege separation,
security, data leakage

I. INTRODUCTION

A number of domains have now adopted blockchain-based

technologies for a variety of applications. While public block-

chains have received much attention in applications such as

cryptocurrencies, permissioned blockchains are increasingly

being deployed in a number of enterprise applications. The

participants in a public blockchain are generally pseudo-

anonymous Internet-based entities, and the main goal is typ-

ically to ensure the integrity of transactions and achieve

consensus. In contrast, the identity of the participants in a

permissioned blockchain is known to other authorized partic-

ipants. For example, a permissioned blockchain may be used

by the organizations that participate in a supply chain [1], trade

or finance [2], [3], and those offering digital identities [4]. In

such networks, each participant must be explicitly authorized

by the network consortium members, and identities of the

system components contributing to the ledger and maintaining

a copy of the ledger (called peer nodes) are known to all the

blockchain participants. Given the inherent confidential nature

of business transactions, permissioned blockchains not only

ensure integrity of transactions, but also aim to protect data

access through identity verification, authorization and access

control mechanisms.

Blockchains ensure integrity of transactions by maintaining

an append-only, immutable, hash-chained ledger of trans-

actions managed through decentralized consensus among a

set of peer nodes. They guarantee integrity by tolerating a

fraction of peer nodes being faulty or malicious based on

the type of consensus protocol used. There is a large body

of work on consensus algorithms providing different integrity

guarantees [5]–[8] and also work on verification and finding

bugs in smart contracts [9]–[11] to ensure integrity. However,

even a single misbehaving peer node (e.g., due to compromise

or an insider attack) could compromise data protection by

leaking blockchain data to an attacker. Blockchains provide no

protection against such attacks and they remain an unaddressed

problem. The central contribution of this paper is providing

data protection on the blockchain even when peer processes

and other blockchain components (such as smart contracts)

are compromised.

Blockchain data protection has primarily been addressed

through application-layer mechanisms [12], [13], such as en-

crypting the data at the application before storing them on the

blockchain. This, however, negates the power of smart con-

tracts to perform decentralized computation on the blockchain

data. Techniques such as zero-knowledge proofs have been

leveraged to provide additional application integrity guarantees

while providing data confidentiality [14], such as proof against

double spending or proof of solvency [15], i.e., asset balances

are non-negative at all points in time. Secure multi-party

computation has been proposed for use with blockchains

for more general purpose computation on private data [16].

These techniques still do not protect against a malicious

peer revealing transaction logs or membership information,

while also causing significant overhead in performance and

application complexity.

The focus of this paper is on Hyperledger Fabric [17], a

popular permissioned blockchain platform, although the pro-

posed ideas can be extended to other permissioned blockchain

platforms as well with some effort. In Fabric, peer nodes

that manage the distributed ledger could belong to different

organizations. Peers can run smart contracts (called chaincodes

in Fabric) that implement business logic and operate on the

ledger data. Each peer can be part of one or more channels.

2023 15th International Conference on COMmunication Systems & NETworkS (COMSNETS)

978-1-6654-7706-2/23/$31.00 ©2023 IEEE 748

20
23

 1
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
O

M
m

un
ic

at
io

n
Sy

st
em

s &
 N

ET
w

or
kS

 (C
O

M
SN

ET
S)

 |
 9

78
-1

-6
65

4-
77

06
-2

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CO
M

SN
ET

S5
62

62
.2

02
3.

10
04

13
04

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 10,2023 at 04:22:58 UTC from IEEE Xplore. Restrictions apply.

Each channel is associated with a ledger and an independent

consensus (or ordering service) to determine the order of

transactions and blocks to be added to the ledger. The ledger

stores transactions carried out within the channel. Fabric also

supports private data collections that allow certain data in a

channel to only be shared among a subset of organizations.

Organizations that are part of the private data collection

may endorse, commit, and query the private data through

smart contracts. Unfortunately, Fabric (and similarly other

permissioned blockchain implementations) provides a number

of avenues by which confidentiality of channel data can be

violated. Peers and other Fabric components run as containers.

Leaks of confidential ledger data and cross-channel data leaks

can happen whether through exploitable vulnerabilities in

the containers, Fabric components, and smart contracts, or

adversarial insiders seeking sabotage. We present a number

of examples of such attacks in Section IV.

In this paper, we propose Aramid, an enhanced version

of Fabric that aims to improve data protection. The key

problem in Fabric is that it offers too large an attack surface—

implementing data protection atop Fabric would require plac-

ing trust on too many system components and business users.

In Aramid, peers and other untrusted components that are

part of multiple channels are partitioned to run as different

instances, with a separate instance per channel. It ensures that

data belonging to a channel is only accessible from system

components and business users that have privileges to access

that channel. Unlike Fabric, where blockchain components

(e.g., peers, orderers, smart contracts) must be trusted in order

to achieve data protection, in Aramid, these are untrusted.

Instead, Aramid shifts the trust to vastly simpler and smaller

trusted proxies, as discussed below.

Partitioning peers into different instances by channel im-

proves data protection, but breaks the existing Fabric ab-

straction of a single representative per enterprise (e.g., in

cases where a single peer from an enterprise participates in

multiple channels). Aramid thus strives to preserve the existing

abstractions in Fabric in an attempt to ensure that applica-

tions do not have to be rewritten. Aramid thus introduces

trusted proxies that serve as the front-end to these privilege-

separated peer instances. A client application interacting with

an enterprise interacts transparently with the trusted proxy

for that enterprise, which in turn routes the information to

the suitable instance, based on channel information. Further,

we use network policies to restrict communication of each

Fabric component. For instance, each peer is permitted to

communicate only with its trusted proxy and a smart contract

process is only permitted to communicate with the peer that

initiated it. All other attempted communication is dropped by

the host network layer, protecting the system against malicious

or sabotaged user (peer or smart contract) processes.

Aramid’s privilege-separated architecture yields a vastly

reduced attack surface in comparison to Fabric. In particular,

peers and orderers are no longer part of Aramid’s TCB (they

are in Fabric), and are instead replaced by the significantly

smaller and logically-simpler trusted proxy. The trusted proxy

in Aramid is under 5% (by LOC of Go code) of the size of

peers and orderers in Fabric (see Figure 2).

We have implemented Aramid for Fabric v2.2 and have

deployed it atop the Kubernetes [18] container orchestration

framework. Aramid uses the Istio service mesh [19] to enforce

network-level policies for data protection. In our evaluation,

we show that Aramid robustly defends against several data

protection-violating attacks that are possible on Fabric, and

that it does so with performance comparable to Fabric. In

summary, this paper’s contributions are as follows:

• Identifying data protection failures in Fabric. We argue

that Fabric’s data protection model requires implicitly trusting

all system components in the permissioned blockchain. We

present a number of attacks that are possible if this assumption

is violated, e.g., through buggy/compromised containers or

insider attacks (Section IV).

• Design and implementation of Aramid. We present

Aramid’s privilege-separated architecture that improves data

protection in the presence of compromised blockchain com-

ponents (Section V).

• Evaluation. We present a security and performance evalua-

tion that shows that the performance (throughput and latency)

achieved at client applications that use Aramid is comparable

to that of Fabric (Section VI).

II. BACKGROUND ON FABRIC

In this section, we provide background on Hyperledger

Fabric [17] and its assumed threat model. We describe the

different participant roles in Fabric along with some of the

design constructs available to support data protection.

Peers are owned and operated by organizations and are the

organization’s connection points to the network. Each peer

maintains a copy of the blockchain ledger and is responsible

for its integrity. They execute business logic deployed as smart

contracts (a.k.a. chaincodes) on them and each successful

invocation of a smart contract is appended as a transaction

to the blockchain ledger. A peer process may connect to sev-

eral other components over the network—client applications,

ledger, smart contract processes, ordering service nodes, and

other peer nodes.

Channels are private sub-networks among member orga-

nizations (with peers), each having its own shared ledger,

smart contracts, and ordering service nodes. A channel is a

logical entity, which allows confidential communication and

transactions among its members. Organizations that are not

part of a channel should not have information about that

channel. A single peer process belonging to an organization

could participate in one or more channels and could thus

maintain the ledgers of multiple channels using a single

database instance.

In any organization participating in a blockchain platform,

there are typically two personas of interest. The first is a

business user, whose application data is recorded on the

ledger through transactions performed on the blockchain.

They understand the value of the data and any confidentiality

2023 15th International Conference on COMmunication Systems & NETworkS (COMSNETS)

749Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 10,2023 at 04:22:58 UTC from IEEE Xplore. Restrictions apply.

and protection needs associated with it. They may also be

subject to compliance and audit of business and regulatory

policies concerning data protection. The second is an IT system

administrator who provides the infrastructure for hosting the

blockchain, including the peer, ledger, smart contract processes

and ordering service nodes. They are responsible for the

availability and IT security of the infrastructure, but any data

stored on the blockchain is only a string of bytes to them.

Fabric’s peer and smart contract processes can be compro-

mised and leak data to other processes or send unencrypted

confidential data, which can be captured by an attacker.

Further, a compromised peer process can leak secret channel-

specific blockchain data and information to another Fabric pro-

cess that is not part of that channel. Similarly, a compromised

ordering service node can send blocks of a particular channel

to peers who are not part of that channel.

III. THREAT MODEL FOR ARAMID

Aramid aims to prevent attacks by compromised or mali-

cious Fabric system components that violate data protection.

Aramid relieves blockchain business users who control all

Fabric processes and the ledger in an organization from the

obligation of data protection. We consider that all Fabric

processes and business users that can access them are un-

trusted, and can be compromised and act maliciously. Aramid

provides systemic means for enforcing data protection rules at

the infrastructure layer, following the principle of privilege

separation. This architecture offers a vastly reduced attack

surface in comparison to Fabric.

On average a single IT administrator may manage tens or

even hundreds of applications (and therefore hundreds or more

business users using those applications). Further, they do not

comprehend the value of the bytes stored to maliciously leak

them. By trusting only the infrastructure layer and few IT

administrators who manage them, Aramid also reduces the

number of insiders trusted for data protection. Specifically,

in the infrastructure layer, we trust the operating system for

not modifying and leaking packet information. We run all

processes in a Kubernetes [18]-based infrastructure, and we

trust the Kubernetes control plane for providing pod-level

isolation (a pod is a group of one or more containers in

Kubernetes), network, and storage security.

A malicious insider (business user) on Fabric can access

all data from all channels in which the business participates.

While Aramid reduces the attack surface, it does not eliminate

data exposure. For instance, a malicious business insider with

credentials to access a particular channel’s data can still leak

that channel’s data via out-of-band methods (i.e., out of the

purview of the blockchain). Future extensions could combine

Aramid with prior art (e.g., [20]) to mitigate such attacks.

IV. MOTIVATING EXAMPLES

To motivate examples of data protection violations in Fabric,

we consider an example business scenario and present several

attacks that are possible with Fabric. We emphasize that

these attacks are merely illustrative, and not in any way a

comprehensive listing of data protection attacks that Aramid

defends against.

Consider a Fabric deployment that is used by shipping com-

panies and delivery companies (e.g., TradeLens [1]). Shipping

companies publish a list of available container slots on their

ships. Delivery companies bid for these container slots, with

each delivery company submitting a bid that consists of the

number of slots it is bidding for, and the price offered per slot.

Each shipping company then allocates container slots based on

a variety of business considerations, such as the price offered

per slot, long-term relationship with the delivery company, its

reputation, and prior business history with that company.

Each shipping company’s algorithm to select bid winners is

proprietary, and the shipping company may also wish to keep

secret the list of bids that it receives. Similarly, each delivery

company will want to protect the confidentiality of the price

that it quotes and the number of slots that it requests. For

example, a Fabric deployment could contain:

• A single public channel, available to all shipping and deliv-

ery companies, to share common data among all participants.

This channel’s ledger records the availability of container slots,

shipping data, and other common data.

• One channel per pair of shipping and delivery companies

that wish to do business with each other. The channel’s ledger

records data private to that pair of companies, e.g., the bid by

the delivery company to that shipping company.

• One channel per shipping company and consortium of

delivery companies that wish to collaborate in submitting a

bid. For example, an individual delivery company may not

have sufficiently many goods to fill a single container, in which

case it may choose to share (and submit a bid for) a container

together with collaborating delivery companies. The ledger of

this channel records joint bids submitted by the consortium of

delivery companies.

The permission infrastructure of Fabric ensures that only

channel members can access the ledger of that channel. In

fact, Fabric’s infrastructure even protects channel-membership

information. Thus, for instance, it would not be possible in the

above example for a business user in one delivery company to

determine if its competitor is in business with a particular

shipping company. As another example, one member of a

consortium of delivery companies cannot determine if another

member is part of a second consortium.

While these security checks are embedded in Fabric’s

permission-checking mechanism, they offer data protection

only under the implicit assumption that all components of

the blockchain deployment are well-behaved. Unfortunately,

as multiple CVEs and bug-reports show (e.g., [21]–[31]), this

assumption can easily be broken by compromised blockchain

components (e.g., peers, orderers) and malicious business

users.

We present below several examples of attacks that violate

data protection in the above setting:

1 Sending data to entities outside the blockchain. Fabric’s

permission infrastructure protects a channel’s ledger data by

2023 15th International Conference on COMmunication Systems & NETworkS (COMSNETS)

750Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 10,2023 at 04:22:58 UTC from IEEE Xplore. Restrictions apply.

ensuring that only peers with channel membership can access

it. However, Fabric does not have in-built mechanisms that

prevent a malicious peer from leaking ledger data to entities

outside the blockchain.

2 Sending unencrypted data. A compromised or malicious

peer can send data unencrypted. A network-based adversary

snooping on network links can read all the data sent by the

peer. This may include sensitive data, transaction inputs and

outputs processed by smart contracts that the peer executes.

This attack has the same effect as that of sending data to

entities outside the blockchain.

3 Intra-container data leaks. Fabric components run within

Docker containers on a Kubernetes cluster. In a maliciously

configured container, a Fabric-related process (e.g., one run-

ning the code of a peer) could leak data to other processes

within that container, which in turn may send data to external

unauthorized entities.

4 Inter-channel data leaks. Fabric relies on channels as

the fundamental data partitioning abstraction. However, a

malicious Fabric component can leak data that is accessible.

5 Leaking channel membership information. In Fabric,

even membership in a channel is protected information that is

privy only to members of that channel. In the example above,

a compromised peer belonging to a delivery company that

is part of multiple consortia can leak information about the

members of one consortium, either to other consortia or to

external entities.

6 Leaking smart contract business logic information. The

business logic within smart contracts (e.g., the proprietary

algorithm used by a shipping company for bid selection) is

considered confidential. The code of a smart contract executing

in one channel is only known to members of the channel, in

fact, only known to the endorsers for that smart contract. A

malicious system component process could leak business logic

information to outside the channel.

7 Leaks via non-channel messages. In Fabric, peer nodes

send out messages that are not tied to any individual channels.

A malicious peer can leak channel data to an adversary by

encoding sensitive information as part of these non-channel

messages.

8 Leaking data stored in private data collections. Fabric

supports the notion of private data collections. It allows a

subset of channel members to form a private collection and

transact privately. A malicious peer can easily leak private data

accessible to it to a non-collection member.

To summarize, Fabric provides the channel abstraction for

data protection. The mechanisms to enforce this protection are

part of Fabric’s permission model, but Fabric assumes that the

various system components are not malicious. In the presence

of malicious components, such as peers, smart contracts and

ordering services, the assumptions that Fabric makes no longer

hold, leading to the kinds of attacks discussed above. Aramid

aims to improve Fabric by providing data protection even in

the presence of malicious components.

Fig. 1. This figure compares how Fabric and Aramid organize peers. A
single peer instance that is part of multiple channels in Fabric is replaced by
multiple peer instances (one per channel) in Aramid. Each peer can run smart
contracts (denoted by “S1”, “S2”, “S3”) and can only access the ledger of
that channel. A trusted proxy acts as a front for the multiple peer instances to
external applications. The proxy inspects messages directed to the peers, and
routes the messages appropriately, based on the channel. In Aramid, peers are
untrusted, and the trust is instead shifted to a proxy node.

V. ARAMID

Aramid extends Fabric’s data security guarantees even to

situations when Fabric system components are compromised.

We designed Aramid with three objectives in mind:

• Reduce the number and complexity of trusted com-

ponents: As already discussed, Fabric’s channel-based data

protection mechanisms only work as expected when each com-

ponent (peers, orderers, smart contracts) behave honestly. In a

large blockchain deployment this assumption may no longer

hold. Aramid aims to offer data protection while trusting far

fewer and logically-simpler components than on Fabric.

• Multi-faceted policy enforcement: Aramid enforces poli-

cies both at the network layer, ensuring messages are visible

only to (authorized) participants in the blockchain, as well as

Fabric-specific policies. For instance, the notion of channels is

unique to Fabric, and Aramid ensures that channel messages

are visible only to other nodes that are part of the channel.

• Preserve Fabric components and abstractions: Aramid is

transparent to legacy Fabric applications. Existing applications

do not have to reprogrammed. Thus, any interaction with

a peer node in Fabric will continue in the same way in

Aramid. Aramid transparently introduces new, trusted network

elements that enforce policies without breaking the illusion of

communicating directly with a peer node. Moreover, Aramid

can operate and provide a measure of protection even if its

mechanisms are adopted by only some participating entities

of the blockchain network.

A. Enforcing Channel Data Separation

Fabric’s design allows a peer node (i.e., a process running

the peer code in a container instance) to be part of multiple

channels, and consequently, access the ledgers that are private

to these channels. As shown in Section IV, a compromised

or malicious peer process can leak sensitive channel data to

any network member who does not have explicit access to that

channel’s data.

Aramid’s core design is based on privilege separation that

2023 15th International Conference on COMmunication Systems & NETworkS (COMSNETS)

751Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 10,2023 at 04:22:58 UTC from IEEE Xplore. Restrictions apply.

replaces a single peer node with multiple peer nodes such that

each peer is part of only one channel and maintains only one

ledger (illustrated in Figure 1). Each such peer node runs in a

Docker container inside a fresh pod instance. Each peer node

has its own smart contract instances for its channel as separate

pods that it alone communicates with.

Simply disaggregating a single peer node in Fabric into

multiple peers breaks transparency to applications, e.g., other

Fabric nodes and client nodes that interact with the peer to

perform blockchain transactions. These applications will now

have to route messages to different peer instances, based upon

the channel on which the corresponding messages are being

exchanged. Unfortunately, this will break existing applica-

tions. To maintain transparency, Aramid instead introduces a

trusted proxy node for the peer instances. Applications that

interacted with the single peer in Fabric interact instead with

this trusted proxy in Aramid, which then routes messages to

the appropriate peer instance based on channel information.

The proxy node is part of Aramid’s TCB and transparently

mediates all communications to and from these peer instances.

The collection of proxy and peer instances represent a single

“peer” entity from the perspective of the Fabric network as

well as any client applications interacting with it.

Aramid enforces two kinds of policies:

1 Fabric-specific policies that are enforced by trusted prox-

ies. The most notable of these policies is that two commu-

nicating Fabric components that exchange channel-specific

messages must belong to the same channel. As we will

describe, the trusted proxy has the privilege to inspect all

incoming messages to and outgoing messages from the peers

for which it serves as a proxy. If the above policy is violated,

then the proxy silently discards the message. Although we

have illustrated proxies so far only for peer nodes, such trusted

proxies can be added for every Fabric component.

2 Generic network policies that apply to any permissioned

blockchain deployment. These policies are enforced by the un-

derlying service mesh and container orchestration framework

(Istio and Kubernetes, in our implementation). The trusted

proxy interacts with the service mesh and dynamically adds

these network policies that restrict communication paths.

At first blush, it may appear that Aramid’s design simply

shifts the trust boundary from peer and orderer nodes to the

trusted proxy nodes. While this is indeed the case, there are

two key benefits to this approach:

1 System components such as peers and orderers are com-

plex pieces of code that have evolved over time, and contain

complex logic to handle the plethora of messages and corner

cases that Fabric supports. In contrast, the trusted proxy

is extremely simple in its functionality, and only serves to

route messages to the correct peer or orderer node, based on

channel information. Because messages on the Fabric network

are encrypted, the trusted proxy also manages TLS keys

on behalf of the peers and orderers so that it can inspect

the packets for channel information. The proxy implements

no other functionality besides routing, key-management, and

Component LOC (Go code) # Vendor modules used

Peer 1,41,031 18
Orderer 55,501 16
Trusted proxy 8,541 13

Fig. 2. Sizes of various components in Fabric (shaded gray) and Aramid.
Peers and orderers are part of Fabric’s TCB. The trusted proxy is part of
Aramid’s TCB, but peers and orderers are not.

Fig. 3. Client/peer interaction in (a) Fabric; and (b) and Aramid.

packet header inspection to glean channel information.

2 The trusted proxy is managed by IT system administrators,

and is not accessible to business users. As discussed in

Section II, Aramid does not trust business users, who are

cognizant of the value of the ledger data.

As a result of this simplicity, the attack surface of the trusted

proxy in Aramid is vastly smaller than that of peer nodes

and orderer nodes, which are part of the TCB in Fabric. We

quantify this reduction in Figure 2, which shows the sizes (in

lines of Go code) of the components that are part of the TCB

in Fabric versus the size of the trusted component (the core

of Aramid’s TCB).

B. Implementation

We have implemented a prototype of Aramid for Fabric

v2.2 and deployed it on Kubernetes [18], a popular container

management platform for deploying and managing Fabric

networks. Each Fabric component, including peer instances,

smart contracts, ledger, orderer, and the trusted proxy, runs

in a separate Kubernetes pod. We leverage the open-source

service mesh Istio [19] to ensure that only encrypted messages

are exchanged on the network.

We next describe in detail how different transaction flows

and design aspects of Fabric are transparently supported to

client applications in Aramid.

Transaction submission: Figure 3(a) illustrates the interaction

between a client and a peer in Fabric for transaction submis-

sion. It involves the following steps:

1 Send proposal. The client initiates the transaction by creat-

2023 15th International Conference on COMmunication Systems & NETworkS (COMSNETS)

752Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 10,2023 at 04:22:58 UTC from IEEE Xplore. Restrictions apply.

ing a transaction proposal that includes the smart contract ID,

function name, arguments, channel ID, and client certificate,

among others. The Fabric SDK suitably formats and packages

the transaction proposal (as a protocol buffer over gRPC)

and takes the client’s cryptographic credentials to produce a

unique signature for this transaction proposal. This transaction

proposal is then sent to one or more endorsing peers.

2 Execute transaction. The peer performs verification checks

on the transaction proposal. It then simulates the proposal by

executing the operation on the specified smart contract.

3 Send response. The endorsing peer replies with the pro-

posal response and its signature over the proposal response.

In Aramid, the client-peer interaction is mediated by a

trusted proxy, as shown in Figure 3(b). It provides the illusion

to the client that it is interacting directly with the peer, as

illustrated in the steps below:

1 Send proposal. The client application initiates the trans-

action and creates a transaction proposal. It sets up a gRPC

connection with the proxy. The client, under the illusion that

the proxy is the endorsing peer, makes a gRPC function call

to the proxy with the signed proposal.

2 Extract channel ID. In the gRPC function, the proxy

verifies the client’s identity and extracts the channel ID from

the content of the transaction proposal.

3 Forward proposal. The proxy keeps a record of the specific

channel for which each peer instance is responsible. Using this

mapping information and channel ID (extracted in step 2),

it finds the correct peer instance. It then makes the gRPC

function call with the signed transaction proposal on behalf of

the client and waits for the response.

4 Execute transaction. The peer instance performs verifica-

tion checks on the transaction proposal. It then executes the

transaction on the specified smart contract and produces the

response. This step is identical to Fabric.

5 Send response. The peer instance returns the signed trans-

action response to the proxy. The peer instance code is

identical to a Fabric peer instance (i.e., unmodified).

6 Forward response. The proxy returns the gRPC function

call with the signed response from the peer instance.

VI. EVALUATION

We evaluate two aspects of Aramid. First, we evaluate its

ability to protect data in the presence of compromised Fabric

components. We illustrate how Aramid’s defense mechanisms

handle the example attacks listed in Section IV. Second, to

evaluate the performance of Aramid and compare it against

Fabric, we measure the latency and throughput of committing

transactions on the blockchain.

A. Experimental Setup

We set up a Fabric-based testbed for our experiments,

consisting of three organizations. There is one orderer node

and each organization has a single peer node. The default

Fig. 4. Interaction between components in Aramid in fulfilling a transaction.
In this example, a transaction initiated by the client executes a smart contract
at Organization-1 and Organization-2, following which the endorsements are
collected, and the endorsed transactions are sent to the ordering service. The
orderer then broadcasts it to all the peers, who validate the transaction and
add it to their ledgers.

parameters we used for configuring the peer and orderer nodes

are shown in Figure 5.

For the performance evaluation experiments, we use Hy-

perledger Caliper [33] as our workload generator. We run

all of our experiments with the Marbles smart contract [32].

We run each organization on a separate Kubernetes cluster

node and the resource configuration is kept same for a head-

to-head performance comparison of Fabric and Aramid. Our

experimental network configuration matches those in real

deployments, so we believe that the benchmark results are

representative of a real-world deployment of Aramid.

B. Evaluating Aramid’s Security Robustness

In Section IV, we listed the attacks that can be launched

in Fabric. We now show how Aramid successfully defends

against these attacks, focusing on the mechanism(s) that pre-

vents each of these attacks. We first review the mechanisms

in Aramid:

• TLS by default. Aramid uses the open-source service mesh

Istio [19] to ensure that all the data leaving a pod is encrypted.

Istio deploys a sidecar proxy in every pod that intercepts all

communications between pods. It provides transparent TLS

encryption support without requiring any application changes.

• Trusted proxy. The trusted proxy provides complete medi-

ation for all communications to and from Fabric components

(such as peers and orderers) and enforces Fabric-specific

policies. It makes routing decisions based on message content

and network information.

Parameter Values

No of Channels : 2
State Database : GoLevelDB

Endorsement Policy : Any one peer on channel endorses
Batch Size : 500 transactions per block

Batch Timeout : 2 sec
Validation Pool Size : 64

Caliper Transaction Send Rate : 1500 tps
Caliper Workers : 16 (local)

Smart Contract (Chaincode) : Marbles [32]
Chaincode Transaction : initMarble [32]

Fig. 5. Default configuration used for experiments.

2023 15th International Conference on COMmunication Systems & NETworkS (COMSNETS)

753Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 10,2023 at 04:22:58 UTC from IEEE Xplore. Restrictions apply.

• Network policies. Kubernetes network policies are firewall

rules which monitor traffic to, from, and between pods. Aramid

leverages these rules to block all traffic that is not explicitly

allowed. Trusted proxies in Aramid define these network rules

dynamically in the form of network paths for each pod, when

it is created.

We now discuss which component of Aramid prevents the

various attacks listed in Section IV.

1 Sending data to entities outside the blockchain. Aramid

prevents a compromised peer belonging to a shipping company

from leaking the bid values to an outside entity with network

policies and policy checks at the trusted proxy. Aramid’s

network rules restrict a compromised peer to interact with only

the trusted proxy pod and smart contract pods with the network

rules. It cannot send any data outside the network itself.

2 Sending unencrypted data. Aramid uses TLS by default

for all network connections, and this is enforced by the under-

lying service mesh. This attack is not possible on Aramid—all

data leaving a pod is always encrypted.

3 Intra-container data leaks. When a container is miscon-

figured, or vulnerable Fabric components in it get exploited,

the corresponding process can leak confidential information

accessible to the container. Aramid follows standard security

best-practices for Docker and Kubernetes and runs containers

unprivileged, restricting file system access to read-only, and

limiting interactions with the host.

4 Inter-channel data leaks. When a compromised Fabric

peer is part of multiple channels, it can leak information from

one channel to another. Aramid runs a separate peer instance

per channel, each running on a different pod, and restricted in

its communication using the network rules and pod security

policies, thereby preventing the attack by construction.

5 Leaking channel membership information. In Aramid, a

peer (or orderer) is part of only one channel and does not know

about the existence of any other channels on the network. The

trusted proxy handles new channel membership for a peer.

While a peer has access to membership information for the

channel it serves, it has no means of leaking this information

to external entities.

6 Leaking smart contract business logic. In Aramid,

smart contracts are deployed as external contracts, running in

separate pods. A compromised smart contract cannot leak the

business logic to anyone else but the peer instance on which

it is deployed because it is restricted to communicate only to

the peer instance. The compromised peer instance is restricted

to communicate only to its trusted proxy, allowing Aramid to

enforces policies to verify the message destination and content.

7 Leak via non-channel messages. In Fabric, a compro-

mised peer can cleverly craft a non-channel gossip message

with channel data and send it to peers on a different channel.

In Aramid, the trusted proxy handles the non-channel gossip

messages and responds on behalf of all the peer instances to

prevent such attacks.

-0.96%

-0.36

-0.05%

-0.46%

-0.32%

-0.02%

-1.74% -0.58%

+1.37% +4.67% +6.12% +7.77% +9.67%
+1.35%

+35.75%

+19.73%

0

5

10

15

20

25

0

500

1000

1500

2000

250 500 750 1000 1250 1500 1750 2000

L
a
te

n
c
y
 (

s
)

T
h

ro
u

g
h

p
u

t
(t

p
s
)

Transaction Send Rate (tps)

Fabric Throughput Aramid Throughtput Fabric Latency Aramid Latency

Fig. 6. Measuring the impact of transaction send rate on throughput and
latency in both Fabric and Aramid.

8 Leaking private data stored in private data collection.

A malicious Fabric peer can send private data to peers that

are not part of that collection. Aramid’s proxy prevents this

by checking the gossip message content and collection policy

before forwarding the private data to other organizations.

C. Performance Evaluation

In this section, we compare the performance of Aramid with

that of Fabric by varying several parameters: (1) the workload

send rate; and (2) the number of channels.

The major difference between Fabric and Aramid is the

addition of the trusted proxy in Aramid. Our experiments

are designed to analyse the performance impact of adding

this new network element on the overall performance of the

blockchain. The throughput and latency numbers presented in

this section are averaged over 10 runs. Each run completes

200,000 transactions.

Impact of Transaction Send Rate Figure 6 plots the

average throughput and latency achieved in Fabric and Aramid

with different transaction send rates. Transactions are sent

by Caliper workers. As our default endorsement policy is

OR(Organization-1, Organization-2, Organization-3), i.e., that

the transaction must be endorsed by the membership ser-

vice provider of any one of these organizations, Caliper is

configured to send transaction proposals to only the peer of

Organization-2 and get endorsements from it. Other parame-

ters are configured as per Figure 5.

We observe that the throughput profile of Fabric and Aramid

closely match over varying transaction send rates. With an

increase in transaction-send rate the throughput increases

linearly until it saturates at about 1670 transactions per second

(tps) for both Fabric and Aramid.

For lower send rates (250 tps and below) the latency is

little higher than that of higher send rates. This can be

attributed to cases where the send rate is below block size

which is set to 500 transactions. This increases latency because

the system waits for the block to be filled or until the

block-creation timeout. Overall, however, our conclusion from

this experiment is that the performance of Aramid compares

favourably with that of Fabric. On average, Aramid throughput

is 0.56% less than Fabric.

Impact of Multiple Channels Figure 7 plots impact of in-

creasing the number of channels on the average throughput and

latency in Fabric and Aramid. We create six channels between

2023 15th International Conference on COMmunication Systems & NETworkS (COMSNETS)

754Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 10,2023 at 04:22:58 UTC from IEEE Xplore. Restrictions apply.

-0.24% -0.10% +0.24% +0.35% +0.36% +0.58%

0

0.5

1

1.5

2

2.5

3

0

500

1000

1500

1 2 3 4 5 6

L
a

te
n

c
y
 (

s
)

T
h

ro
u

g
h

p
u

t
(t

p
s
)

Number of Channels

Fabric Throughput Aramid Throughtput Fabric Latency Aramid Latency

Fig. 7. Measuring the impact of the number of channels on throughput and
latency in Fabric and Aramid.

+0.58%

+0.61%
+0.72%

+0.84%
+4.19%

+9.78%

0

2

4

6

8

10

12

14

16

0

500

1000

1500

2000

2500

1500 1800 1900 2000 2100 2200

L
a
te

n
c
y
 (

s
)

T
h

ro
u

g
h

p
u

t
(t

p
s
)

Transaction Send Rate (tps)

Fabric Throughput Aramid Throughtput Fabric Latency Aramid Latency

Fig. 8. Fabric and Aramid with six channels.

Organization-1 and Organization-2. We join the endorsing peer

of Organization-2 on all channels. Caliper sends transactions

simultaneously on multiple channels with a transaction send

rate of 1500 tps evenly split among the available channels.

We first observe that both Fabric and Aramid maintain

nearly constant throughput and latency as the number of

channels is increased. As Figure 7 shows, the throughput is

at around 1475tps and latency less than 2s. We note that the

throughput and latency of Aramid is slightly better than Fabric

when number of channels increases.

To study this trend in more detail, we conducted another

experiment with six channels set and varied the transaction

send rate. As Figure 8 shows, Fabric’s throughput saturates at

around 1950 tps, while Aramid’s throughput saturates at 2100

tps. After the saturation point, the difference in the latencies

increases. Aramid outperforms Fabric because it has a separate

peer instance and separate smart contract instance for each

channel. Our conclusion from this experiment is that Aramid

performs better when number of channels increases (in this

case, more than six channels).

VII. RELATED WORK

Confidentiality of data for blockchain applications has in

the past been supported using cryptographic mechanisms in

the application layer (e.g., [12]–[14], [34]). Zerocash [14], for

instance, extends the Bitcoin protocol by adding new types of

transactions on a separate privacy-preserving currency, where

the transactions hide the sender, the recipient as well as the

quantum of payment. This is achieved using zero knowledge

proofs, specifically zk-SNARKs.

Recent work has leveraged secure multiparty computation

(MPC) to support general-purpose computation on private

data, leveraging blockchain for properties such as auditability,

verifiability and fairness [35]–[38]. In both ZKP and MPC-

based confidentiality mechanisms, confidential data is held

privately and not stored on the blockchain and the application

is written in a specific manner to provide confidentiality guar-

antees. Blockchain is leveraged as a tamper-proof auditable

log. In contrast, Aramid aims to support confidentiality for

application data stored on the blockchain even in the midst

of malicious or compromised actors, and in a manner that

is transparent to legacy Fabric applications. Several works

have analyzed the security of container implementations, and

many vulnerabilities have been found [21]–[25]. An attacker

could exploit these vulnerabilities to write to arbitrary files,

execute arbitrary code (with root privileges), set arbitrary

Linux Security Modules (LSM), or gain access to control

regions of the device attached to the host PCI bus. Lin el

al. [39] collect an attack dataset of 223 exploits, of which

56.8% are effective against default container configurations.

Several works propose design changes to container imple-

mentations to enhance their security. The proposed methods

include, for example, (a) employing proxies to mediate all

commands from end-users to the docker daemon for least-

privilege enforcement [40]; (b) using lightweight VMs as a

faster and safer replacement for containers [41]; and (c) im-

proved security policy enforcement using namespaces [42] and

using seccomp [43].

Finally, we note that there is a long history of work

on privilege separation in the systems security community.

Privtrans [44] is an early tool that aimed to automatically

transform source code into multiple, privilege-separated com-

ponents, using programmer-supplied annotations. Privilege

separation methods have also been investigated for specific

kinds of applications, such as databases [45], HTML5 Web

applications [46], [47], Web servers [48] and Android appli-

cations [49]. Diesel [45], which applies privilege separation

for database access, is closest in spirit to the design of

Aramid. Applications that access the database are split into

multiple modules (each isolated and running with reduced

privileges), with a proxy mediating access to the database.

Aramid’s design does not modify the source code of any

Fabric components, but instead works with existing Fabric

components, and applies data isolation at the granularity of

channels, even in the presence of compromised containers.

VIII. CONCLUSIONS

Aramid improves upon the channel-based data protection

mechanisms of Fabric. Aramid’s privilege-separated design

allows us to relax the assumptions that Fabric makes about

all participants being trusted, and provides channel-based data

protection even in the presence of compromised peers, orderers

and smart contracts. Aramid is transparent to end-user appli-

cations, thereby allowing interoperability with legacy Fabric

applications, and provides transaction latency and throughput

rates comparable to that of Fabric.

2023 15th International Conference on COMmunication Systems & NETworkS (COMSNETS)

755Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 10,2023 at 04:22:58 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Tradelens, “Tradelens: Digitizing the global supply chain,” 2021.

[2] We.Trade, “We.trade,” 2021. [Online]. Available: https://we-trade.com

[3] M. P. Network, “Marco polo network,” 2021. [Online]. Available:
https://www.marcopolo.finance/

[4] I. Blockchain, “Blockchain for digital identity,” 2021. [Online].
Available: https://www.ibm.com/blockchain/solutions/identity

[5] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in
OSDI, vol. 99, no. 1999, 1999, pp. 173–186.

[6] D. Ongaro and J. Ousterhout, “In search of an understandable con-
sensus algorithm,” in 2014 {USENIX} Annual Technical Conference

({USENIX}{ATC} 14), 2014, pp. 305–319.

[7] K. Lei, Q. Zhang, L. Xu, and Z. Qi, “Reputation-based byzantine fault-
tolerance for consortium blockchain,” in 2018 IEEE 24th International

Conference on Parallel and Distributed Systems (ICPADS). IEEE, 2018,
pp. 604–611.

[8] J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messaging
system for log processing,” in Proceedings of the NetDB, vol. 11, 2011,
pp. 1–7.

[9] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety
of smart contracts.” in NDSS, 2018.

[10] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC conference

on computer and communications security, 2016, pp. 254–269.

[11] M. Zhang, X. Zhang, Y. Zhang, and Z. Lin, “{TXSPECTOR}: Uncover-
ing attacks in ethereum from transactions,” in 29th {USENIX} Security

Symposium ({USENIX} Security 20), 2020, pp. 2775–2792.

[12] E. Cecchetti, F. Zhang, Y. Ji, A. Kosba, A. Juels, and E. Shi, “Solidus:
Confidential distributed ledger transactions via pvorm,” in ACM SIGSAC

Conference on Computer and Communications Security (CCS), 2017.

[13] A. Poelstra, A. Back, M. Friedenbach, G. Maxwell, and P. Wuille, “Con-
fidential assets,” in International Conference on Financial Cryptography

and Data Security. Springer, 2018, pp. 43–63.

[14] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized anonymous payments from
bitcoin,” in IEEE Symposium on Security and Privacy, 2014.

[15] G. G. Dagher, B. Bünz, J. Bonneau, J. Clark, and D. Boneh, “Provi-
sions: Privacy-preserving proofs of solvency for bitcoin exchanges,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security (CCS). ACM, 2015.

[16] F. Benhamouda, S. Halevi, and T. Halevi, “Supporting private data on
hyperledger fabric with secure multiparty computation,” in 2018 IEEE

International Conference on Cloud Engineering, IC2E. IEEE Computer
Society, 2018.

[17] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich,
and et al., “Hyperledger fabric: A distributed operating system for
permissioned blockchains,” in ACM Eurosys, 2018.

[18] Kubernetes, “Kubernetes: Production grade container orchestration,”
2021. [Online]. Available: https://kubernetes.io/

[19] Istio, “Istio,” 2021. [Online]. Available: https://istio.io/latest/

[20] E. V. Mangipudi, K. Rao, J. Clark, and A. Kate, “Towards automatically
penalizing multimedia breaches (extended abstract),” in 2019 IEEE

European Symposium on Security and Privacy Workshops, EuroS&P

Workshops 2019, Stockholm, Sweden, June 17-19, 2019, 2019.

[21] M. C. Vulnerabilities and Exposures, “Cve-2014-6407,” 2014.
[Online]. Available: http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2014-6407

[22] ——, “Cve-2014-9357,” 2021. [Online]. Available: http://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2014-9357

[23] ——, “Cve-2015-3631,” 2015. [Online]. Available: http://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2015-3631

[24] U. L. Package, “Lxc sysrawio abuse,” 2015. [Online]. Available:
https://bugs.launchpad.net/ubuntu/+source/lxc/+bug/1511197/

[25] M. C. Vulnerabilities and Exposures, “Cve-2015-3627,” 2015.
[Online]. Available: http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2015-3627

[26] “API endpoints are vulnerable to SQL injection,” September 2020, https:
//jira.hyperledger.org/browse/BE-833.

[27] “Couchdb name collisions due to similar named channels,” February
2017, https://jira.hyperledger.org/browse/FAB-2487.

[28] “ECDSA signature validation vulnerability by accepting wrong ASN.1
encoding in jsrsasign,” June 2020, https://jira.hyperledger.org/browse/
FABN-1585.

[29] “Cwe: Cwe-502 vulnerability in deserialization of untrusted data
in google guava,” November 2018, https://jira.hyperledger.org/browse/
FABJ-390.

[30] “Fabric sdk node memory exposure vulnerability,” July 2019, https://
jira.hyperledger.org/browse/FABN-1290.

[31] G. Shaw, “Fabric security assessment management report,” September
2017, https://wiki.hyperledger.org/download/attachments/13861997/
management\ report\ linux\ foundation\ fabric\ august\ 2017\
v1.1.pdf.

[32] I. Blockchain, “Marbles chaincode,” 2021. [Online]. Available:
https://github.com/IBM-Blockchain-Archive/marbles

[33] Hyperledger, “Hyperledger caliper,” 2021. [Online]. Available: https:
//www.hyperledger.org/use/caliper

[34] N. Narula, W. Vasquez, and M. Virza, “zkledger: Privacy-preserving
auditing for distributed ledgers,” in Usenix Symposium on Networked

Systems Design and Implementation (NSDI), 2018.
[35] G. Zyskind, O. Nathan, and A. Pentland, “Enigma: Decentralized com-

putation platform with guaranteed privacy,” arXiv, vol. abs/1506.03471,
2015. [Online]. Available: http://arxiv.org/abs/1506.03471

[36] F. Benhamouda, S. Halevi, and T. Halevi, “Supporting private data on
hyperledger fabric with secure multiparty computation,” IBM Journal of

Research and Development, vol. 63, no. 2/3, pp. 3:1–3:8, 2019.
[37] H. Zhong, Y. Sang, Y. Zhang, and Z. Xi, “Secure multi-party computa-

tion on blockchain: An overview,” in Parallel Architectures, Algorithms

and Programming, H. Shen and Y. Sang, Eds. Springer, 2020, pp.
452–460.

[38] R. K. Raman, R. Vaculı́n, M. Hind, S. L. Remy, E. K. Pissadaki,
N. K. Bore, R. Daneshvar, B. Srivastava, and K. R. Varshney,
“Trusted multi-party computation and verifiable simulations: A
scalable blockchain approach,” arXiv, 2018. [Online]. Available:
http://arxiv.org/abs/1809.08438

[39] X. Lin, L. Lei, Y. Wang, J. Jing, K. Sun, and Q. Zhou, “A measurement
study on linux container security: Attacks and countermeasures,” in Pro-

ceedings of the 34th Annual Computer Security Applications Conference,
2018, pp. 418–429.

[40] M. Zhang, D. Marino, and P. Efstathopoulos, “Harbormaster: Policy
enforcement for containers,” in 2015 IEEE 7th International Conference

on Cloud Computing Technology and Science (CloudCom). IEEE, 2015,
pp. 355–362.

[41] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati,
K. Yasukata, C. Raiciu, and F. Huici, “My vm is lighter (and safer) than
your container,” in Proceedings of the 26th Symposium on Operating

Systems Principles, 2017, pp. 218–233.
[42] Y. Sun, D. Safford, M. Zohar, D. Pendarakis, Z. Gu, and T. Jaeger,

“Security namespace: making linux security frameworks available to
containers,” in 27th {USENIX} Security Symposium ({USENIX} Secu-

rity 18), 2018, pp. 1423–1439.
[43] S. Ghavamnia, T. Palit, A. Benameur, and M. Polychronakis, “Confine:

Automated system call policy generation for container attack surface
reduction,” in 23rd International Symposium on Research in Attacks,

Intrusions and Defenses ({RAID} 2020), 2020, pp. 443–458.
[44] D. Brumley and D. Song, “Privtrans: Automatically partitioning pro-

grams for privilege separation,” in USENIX Security Symposium, vol. 57,
no. 72, 2004.

[45] A. P. Felt, M. Finifter, J. Weinberger, and D. Wagner, “Diesel: Applying
privilege separation to database access,” in Proceedings of the 6th ACM

symposium on information, computer and communications security,
2011, pp. 416–422.

[46] D. Akhawe, P. Saxena, and D. Song, “Privilege separation in html5
applications,” in Presented as part of the 21st {USENIX} Security

Symposium ({USENIX} Security 12), 2012, pp. 429–444.
[47] D. Akhawe, F. Li, W. He, P. Saxena, and D. Song, “Data-confined

html5 applications,” in European Symposium on Research in Computer

Security. Springer, 2013, pp. 736–754.
[48] M. Krohn, “Building secure high-performance web services with

OKWS,” in USENIX Annual Technical Conference, 2004.
[49] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner, “Addroid: Privilege sepa-

ration for applications and advertisers in android,” in Proceedings of the

7th ACM Symposium on Information, Computer and Communications

Security, 2012, pp. 71–72.

2023 15th International Conference on COMmunication Systems & NETworkS (COMSNETS)

756Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 10,2023 at 04:22:58 UTC from IEEE Xplore. Restrictions apply.

