Publishedn Proceedingsf ECOOP'14the 28th EuropearConferenceon Object-OrientedProgrammin

Retargetting Legacy Browser Extensions
to Modern Extension Frameworks

Rezwana Karim!, Mohan Dhawan?, and Vinod Ganapathy]

! Rutgers University, Piscataway NJ, USA
{rkarim,vinodg}@cs.rutgers.edu
2 IBM Research, New Delhi, India
mohan.dhawan@in.ibm. com

Abstract. Most modern Web browsers export a rich API allowing third-party ex-
tensions to access privileged browser objects that can also be misused by attacks
directed against vulnerable ones. Web browser vendors have therefore recently
developed new extension frameworks aimed at better isolating extensions while
still allowing access to privileged browser state. For instance Google Chrome
extension architecture and Mozilla’s Jetpack extension framework.

We present Morpheus, a tool to port legacy browser extensions to these new
frameworks. Specifically, Morpheus targets legacy extensions for the Mozilla
Firefox browser, and ports them to the Jetpack framework. We describe the key
techniques used by Morpheus to analyze and transform legacy extensions so that
they conform to the constraints imposed by Jetpack and simplify runtime pol-
icy enforcement. Finally, we present an experimental evaluation of Morpheus by
applying it to port 52 legacy Firefox extensions to the Jetpack framework.

Keywords: JavaScript browser extensions. Privilege separation.

1 Introduction

Extensions enhance the core functionality of Web browsers, enabling end users to cus-
tomize the look and feel of their browsing experience. The ease with which browser
extensions can be written, downloaded and installed and the features that they enable
have all contributed tremendously to their popularity, as well as to the browsers that they
target. Browsers such as Mozilla Firefox and Google Chrome have galleries with thou-
sands of extensions implementing a wide array of features. Popular extensions often
have in excess of a million users.

To support extensions, browsers typically expose an API that gives access to privi-
leged browser objects. For example, Mozilla’s XPCOM (cross-domain component ob-
ject model) API [25] allows browser extensions to access the file system, the network,
the cookie store, and user preferences, among others. Such a rich API is often neces-
sary to implement extensions with useful features. In sharp contrast, code that executes
within a Web page is often tightly sandboxed by the browser, e.g., using the same-origin
policy, and does not have access to such privileged browser APIs.

Unfortunately, browser extensions do not undergo the same quality control as the
rest of the browser, and are riddled with vulnerabilities. In a recent study of over 2400

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 463-488, 2014.
© Springer-Verlag Berlin Heidelberg 2014

vg
Typewritten Text
 Published in Proceedings of ECOOP'14, the 28th European Conference on Object-Oriented Programming

464 R. Karim, M. Dhawan, and V. Ganapathy

Mozilla Firefox extensions, Bhandakavi et al. [8] found several instances of insecure
programming practices that can easily be exploited for malicious purposes. Any such
exploit would endow the attacker with access to privileged browser APIs, thereby com-
pletely undermining the security of the Web browser.

Given such concerns, browser vendors have begun to develop new frameworks that
aim to better isolate extensions [9, 2, 6, 5]. These frameworks force extension authors
to adhere to core security principles, such as privilege separation and least privilege
to some extent. They partition extensions to limit how extensions access privileged
browsed objects. An attacker who hijacks one of the partitions of such an extension is
unable to access privileged browser objects available to other partitions. Mozilla’s Jet-
pack framework and the Google Chrome extension model are two popular examples of
modern extension frameworks that use these techniques to improve extension security.

While the quantitative impact of such frameworks at reducing attacks against exten-
sions is as yet unknown, it is qualitatively clear that by embracing first principles, they
improve extension security. However, such frameworks require extensions to be writ-
ten from ground up, adhering to the programming disciplines that they enforce. To be
applicable to legacy extensions, the extensions must be ported to the new frameworks.
However, doing so manually would be expensive and time-consuming.

In this paper, we present Morpheus, a static analysis and transformation tool that al-
lows legacy extensions to be systematically ported into modern extension frameworks
in a manner that allows enforcement of fine grained security policies without any mod-
ification to browser runtime. Our prototype targets legacy Mozilla Firefox extensions,
and rewrites them to make them compatible to the Jetpack framework while conform-
ing to the security principles. We chose to focus on Firefox because of the abundance
of legacy extensions for this browser. There are currently over 9000 extensions avail-
able for Firefox. Morpheus targets an important subset of these extensions, those written
fully in JavaScript. Rather than require these extensions to be rewritten for Jetpack from
scratch, Morpheus preserves the investment in these extensions and provides a path for
automatically refactoring them to work in Jetpack. We have applied Morpheus to port
52 popular Firefox extensions into the Jetpack framework, and are actively applying it
to more extensions from the Firefox extension gallery.

This paper makes the following contributions:

o We identify the key challenges in building a reliable and usable toolchain (Mor-
pheus) for systematic conversion of legacy Firefox extensions to the more secure Jet-
pack framework.

e We present an automated transformation toolchain to partition legacy extension code
into Jetpack modules that satisfy the principle of least privilege. Each module encap-
sulates objects corresponding to sensitive browser APIs and enables accessor methods
which provide the required API functionality.

e We present a policy checker framework for Jetpack extensions. The modular and
extensible architecture of Jetpack extensions allows developers to seamlessly add or
remove security policies without affecting the rest of the code.

e Our evaluation with a suite of 52 popular legacy extensions demonstrates that the
design of Morpheus is practical and it is deployable for real world use.

Retargetting Legacy Browser Extensions to Modern Extension Frameworks 465
2 Overview

In this section, we describe the architecture of legacy extensions, with a particular focus
on issues that motivated browser vendors to develop new extension frameworks. We
then discuss the key components of the new Jetpack framework from Mozilla.

2.1 Threats to Extension Security

Browser extensions are written using open technologies such as HTML, CSS and
JavaScript, but they often utilize privileged browser APIs to perform useful tasks. For
example, Mozilla’s XPCOM API gives an extension access to the file system, the net-
work, and sensitive browser state such as cookies and browsing history. The goal of an
attacker is to misuse the extension to access the capabilities provided by browser APIs.

A typical browser extension can interact with content on Web pages and any remote
server on the Internet. For example, a DisplayWeather extension may access the Web
page to search for locations in the text as specified by the user, and its home server
to get the corresponding weather data to be shown in the Web page itself. An attacker
can hijack an extension by either (1) tricking the user into visiting a malicious Website
and then exploiting vulnerabilities in the extension, or (2) compromising the extension’s
communication with its home server, i.e., the attacker can inject malicious packets in the
network stream or compromise the remote server to which the extension communicates.

Browsers attempt to safeguard against the first class of attacks by isolating the ex-
ecution of JavaScript code on the Web page (unprivileged content scripts) from the
JavaScript code executing within the extension (privileged chrome scripts). This isola-
tion of content scripts from chrome scripts limits the threats posed by a Web attacker by
disallowing direct access to sensitive browser APIs. Nevertheless, there are often bugs
in this isolation mechanism, leading to exploits. To defend against the second class of
network-based attacks, extensions can use SSL to secure their connection with their
home server.

2.2 Legacy Extensions on Firefox

Consider Figure 1, which shows a snippet from the DisplayWeather extension that we
developed. The extension provides options to overlay weather information on a browser
panel for which it reads the zipcode from persistent storage. In lines 1-6, the function
getZipCode reads the file *zip.txt’ from the user’s profile directory to retrieve the
zipcode for the user specified location. In line 2, import attaches the FileUtils ob-
ject to the extension’s global namespace. FileUtils. jsminternally invokes XPCOM
APIs to enable all file I/O operations. Lines 9-28 define the Weather object that en-
capsulates properties and methods to fetch weather data from a remote server. The
method requestDataFromServer defined in lines 16-27 uses XMLHttpRequest to
fetch weather data for a given zipcode from a remote server. Line 30 registers a click
event listener with the extension’s icon in the browser’s status bar to display weather
in a panel. In lines 33-37, the code creates an event listener addiWeatherToWebpage
to overlay weather information on the Web page, whenever a new Web page is loaded.

466 R. Karim, M. Dhawan, and V. Ganapathy

1) function getZipCode(locationStr){

2) Components.utils.import(’resource://gre/modules/FileUtils.jsm’);

3) var dir = 'ProfD’, filename = ’zip.txt’;//get the ’zip.txt’ file from profile directory
@ var file = FileUtils.getFile(dir, [filename]);

) var locationZipcodeMap = readFile(file);

©) return locationZipcodeMap[locationStr]; //retrieve zipcode for the location

™ }

® ...

9 var Weather = {

10) temperature: null,

1 L.

(12) getWeatherData: function(zipcode){

13) Weather.requestDataFromServer(zipcode) ;

(14) return processWeatherData(Weather.temperature);// format weather data
as) 3

(16) requestDataFromServer: function(sendData){

a7 var httpRequest = new window.XMLHtttpRequest();

18) Ca

(19 //set the listener to handle response from Server

20) httpRequest.onreadystatechange = function(){

@1 // extract temperature data from response and set Weather.temperature
22) Weather.extractTemperature(httpRequest.response);

23) e

24

25 httpRequest.open(’GET’, serverUrl, true);

(26) httpRequest.send(sendData);//contact remote server

@7 }
@28 }
29) //Add the click listener to the extension’s icon to show Weather in panel
30) document.getElementById(’weatherStatusBar’).addEventListener
(’click’, showWeatherInPanel, false);
[€3
32) window.addEventListener(’DOMContentLoaded’, addWeatherToWebpage, false);
33 function addWeatherToWebpage(){

(34) var locationStr = getLocationFromWebpage (gBrowser.contentDocument) ;
35) var temperature = Weather.getWeatherData(getZipCode(locationStr));
(36) modifyWebpageContent (gBrowser.contentDocument, temperature) ;

an)

Fig. 1. Code snippet from the DisplayWeather extension

Lines 34-36 identify all DOM' elements that contain a user-specified location in the
active Web page and invoke getWeatherData method defined on the Weather ob-
ject to retrieve latest weather updates. The method modifyWebpageContent in line 36
actually overlays the weather information on the active Web page.

This example highlights several features used by legacy Firefox extensions:

(1) Unified JavaScript heap: Mozilla’s legacy extension development environment pro-
vides a unified heap for all JavaScript code execution. Both privileged chrome scripts
and unprivileged content scripts reside in the same heap, raising the risk of shared ref-
erences. For example, line 36 invokes the modifyWebpageContent method with a
reference to the document object of the active Web page. Mozilla uses XrayWrappers
(also know as XPCNativeWrappers) to isolate the untrusted references of the content
JavaScript from the chrome JavaScript. However, this mechanism has a history of ex-
ploitable bugs [9, 29]. If this interface is exploited, and the user navigates to a malicious
Web page, the document object would belong to the attacker, who could then influence
the execution of the privileged code within the extension [30].

A second consequence of having a unified heap for JavaScript execution results is that
top-level objects declared in chrome scripts are attached as properties of the global
object. This often results in namespace collisions across different extensions or even

! Document Object Model (DOM) provides a structural representation of the document, en-
abling developers to modify its content and appearance using JavaScript.

Retargetting Legacy Browser Extensions to Modern Extension Frameworks 467

different chrome scripts within the same extension. Further, since globals defined in
one script can be accessed and modified from another script, data races may occur.

(2) Privileged objects: All chrome scripts have default access to the global window
object and its properties. The Components object is a special property of the window
which provides access to the browser’s sensitive XPCOM APIs. If an attacker gets a
reference to the Components object, he effectively has control over the entire browser.
The fact that the Components object is so powerful and is yet available to all scripts by
default is a significant threat to security in a shared heap environment.

(3) Chrome DOM: Much as the DOM API available to content scripts on a Web page,
chrome scripts also have access to the chrome DOM. The chrome DOM is responsible
for the visual representation of the browser’s Ul including toolbars, menus, statusbar
and icons. Since much of Firefox’s Ul is also written in JavaScript, chrome scripts can
programmatically access and modify the browser’s entire UI (line 30).

The issues discussed above stem in part due to the architecture of Mozilla’s legacy
extension framework. Parts of the browser itself are written in JavaScript, as are exten-
sions. With a unified heap and lack of any isolation primitives in the language itself,
extension developers must consciously and carefully restrict access to critical function-
ality. The legacy extension framework makes it easy for developers to commit mistakes,
and much prior work has shown the pitfalls of legacy extensions [13, 8, 14, 9].

2.3 The Jetpack Extension Framework

The Jetpack extension framework [2, 20] is an effort by Mozilla to incorporate secu-
rity principles in the design of the extension architecture, thereby improving the overall
security of extensions. Jetpack uses a layered defense architecture to make it harder
for an attacker to compromise extensions, and limit the damage done if he succeeds in
compromising all or part of the extension. The Jetpack project shares ideological sim-
ilarities with the Google Chrome extension architecture [9]. It has also been motivated
by the goal of easing extension development process with an emphasis on modular de-
velopment and code sharing, and partly by the new multi-process Firefox architecture
[24].

Conceptually, each Jetpack extension has two parts: (1) at least one add-on script
(also known as chrome script) that interacts with a set of core modules, which have
access to the sensitive browser APIs, and (2) zero or more content scripts. The chrome
script(s) execute within the Web browser with restricted but elevated privileges: it must
explicitly request access at load time to the browser APIs that it requires access to; any
attempt to access other APIs at runtime is blocked. Content scripts interact with the
Web page and are unprivileged. In addition, Jetpack incorporates these features:

(1) Chromejcontent heap partitioning. Chrome and content scripts execute in separate
processes. This partitioning guarantees isolation of the JavaScript heap for the chrome
and content scripts and prevents inadvertent access by content scripts to privileged ref-
erences in the chrome code. Communication amongst the chrome and content scripts is
made possible through IPC with all messages exchanged in the JSON [3] format.

(2) Content script integrity. Content scripts execute in the context of the Web page and
a malicious Web page can redefine objects referenced by the content script, thereby

468 R. Karim, M. Dhawan, and V. Ganapathy

Content process Chrome process

Load content
script Chrome

Content S

proxy
Communicate " " |
i g

with L
chrome scripts content script éﬁ@
Request access
to core modules
b ot)
Interact with]
the web page s)
= i i Core
| Policy i
| Checker modules
[

Invoke content

|
|
|
|
|
|
script !
p

Content
scripts

Send / receive
JSON data from

I
I
|
I
I
I
I
I
|
|
|
|
|

Fig. 2. Architecture of a simple Jetpack extension. Policy Checker is not part of original architec-
ture and is introduced by Morpheus.

affecting its integrity. Jetpack uses content proxies to protect the integrity of content
scripts. Content proxies allow the content script to access the content on the Web page
while still having access to the native objects and APIs (e.g., document and window),
even if the Web page has redefined them.

(3) Chrome privilege separation. Jetpack provides developers with a set of core mod-
ules that encapsulate the functionality of the privileged browser APIs, thus preventing
inadvertent misuse of these APIs by the developer. Further, developers must explic-
itly request these core modules as required by the extension’s chrome scripts. If com-
promised, this restricts the set of privileges that an attacker can obtain to only those
requested by the exploited script.

The Jetpack framework further recommends developers to partition the chrome script
and organize an extension as a hierarchy of user modules, each of which may itself re-
quest other user modules and zero or more core modules using the require interface.
The set of privileges thus acquired by each user module is determined statically by an-
alyzing the source code and enforced by the framework at runtime. The Jetpack frame-
work further provides isolation among all modules. Objects declared within a module
are local to the module unless exported via the module’s exports interface.

Figure 2 shows the overall architecture of a Jetpack extension. In summary, Jet-
pack attempts to improve extension security by separating content scripts from chrome
scripts, employing privilege separation for chrome scripts, and restricting the privileges
of chrome scripts to those declared at load time. While this architecture does not prevent
vulnerabilities in extension scripts, it ensures that the effect of any exploits is contained
to the vulnerable components of the extension, and will not give the attacker unbridled
access to privileged browser APIs.

However, a compromised chrome script can still trick core modules to access sen-
sitive resources of the attacker’s choice. Consider the scenario where the attacker has
compromised the chrome script in the DisplayWeather extension, and has changed the
parameter value in FileUtils.getFile() to read the passwords stored on disk. The
core module with privileges to access file-system will then read and return all the saved

Retargetting Legacy Browser Extensions to Modern Extension Frameworks 469

passwords to the attacker. Similarly, the attacker can redirect stolen data to an attacker-
controlled remote server by changing serverUrl in httpRequest.open(). In both
cases, the attacker does not need to extend the script’s privileges at runtime. Instead,
lack of policy checker to enforce fine-grained access control enables the attacker to
exploit benign extensions even in the security enhanced Jetpack framework.

3 Morpheus

While the Jetpack framework provides clear security benefits to extensions, legacy ex-
tensions must be rewritten in Jetpack in order to enjoy these benefits. Morpheus is
a static dataflow analysis and transformation tool that automates this process. In this
section, we identify the key requirements that Morpheus’s analysis and transformation
must provide and describe its design.

3.1 Design Requirements

The transformations in Morpheus must perform the following tasks:

(1) Chromejcontent partitioning. Jetpack requires chrome and content scripts to exe-
cute in isolated heaps. Morpheus must analyze the code of the legacy extension and
identify object references that should be part of either chrome scripts or content scripts.
Code that transitively accesses these object references should also correspondingly be
marked for execution within the context of chrome or content scripts.

In Jetpack, chrome scripts interact with content scripts via asynchronous
message passing protocols using JSON. In contrast, legacy extensions use
synchronous calls for content/chrome communication. For example, calls to
getLocationFromWebPagecontent and modifyWebPageContent (lines 34-36, Fig-
ure 1) are synchronous invocations in the legacy extension. Thus, to preserve the control
flow of the legacy extension, Morpheus must use the asynchronous communication API
available in Jetpack and emulate the synchronous nature of content/chrome communi-
cation in legacy extensions.

(2) Module construction. The Jetpack framework encapsulates a selection of the priv-
ileged browser APIs as core modules and requires developers to arrange their code as
user modules to limit the extent of the damage in case of a breach. A Jetpack exten-
sion is a hierarchical collection of such core and user modules. Morpheus must identify
the use of privileged browser APIs in the legacy extension and create core modules for
them. Although creation of user modules is not mandatory, it is recommended. Thus,
Morpheus must analyze the legacy extension and extract related functionality that can
be compiled into a user module.

Modules interact using the require and exports interfaces. Although modules are
allowed to export privileged objects that they access, doing so would undermine the se-
curity of the whole extension (by exposing the object to other modules). Morpheus must
therefore ensure that the modules it creates never export references to privileged objects.
Instead, they should export accessor methods to these privileged objects, which can be
invoked by other modules to achieve their desired tasks. One may argue that exporting

470 R. Karim, M. Dhawan, and V. Ganapathy

accessor methods is akin to accessing capabilities to achieve the desired functionality.
However, as will be described later in Sections 3.3 and 4, isolating capabilities in sepa-
rate JavaScript modules makes it harder for an attacker to compromise other modules.

(3) Scope and global objects. Legacy extensions make frequent use of global ob-
jects as shown in Figure 1. Morpheus must ensure that partitioning the code into
chrome/content and user/core modules does not affect visibility of the globals (or
other objects in scope) in the Jetpack extension.

(4) Policy Checker. Benign software that exposes an API to third-party code is often
vulnerable to the confused deputy problem [16]. To safeguard core Jetpack modules
from becoming confused deputies themselves, (see Section 2) and also protect benign-
but-buggy extensions, Morpheus must allow enforcement of fine-grained access control
and other security policies at runtime. A key requirement here is that the extension code
should be oblivious to the security policies and the policy checker implementation.

(5) Preserve extension Ul The transformed Jetpack extension must retain the look and
feel of the legacy extension. Thus, the browser’s UI overlays, including any CSS, XUL
and icons, must be appropriately mapped.

In our work to date, we have not attempted to optimize the performance of the trans-
formed extension. The goal of Morpheus is to preserve the investment in legacy ex-
tensions, while also improving their security by making them amenable for use within
Jetpack. In doing so, Morpheus may degrade the performance of the legacy extension,
e.g., by using an asynchronous communication API to emulate synchronous communi-
cation. We plan to optimize performance in future work.

3.2 Analyses and Transformations

Morpheus invokes TrRaNsFoRM (see algorithm 1) over the legacy extension to transform
it into the corresponding Jetpack extension. TRANsFORM takes in (i) the JavaScript code
of the legacy extension L, which has been preprocessed to resolve any global-local
scope conflict, (ii) an alias relation A as computed by the CFA2 algorithm [32] over the
extension’s JavaScript code, and (iii) some basic transformation rules R (see Table 2).
Each transformation rule modifies an expression & from the program’s abstract syntax
tree (AST) T. TRANSFORM in turn invokes algorithms 2(a), 2(b) and 3 to complete the
transformation. Table 1 lists the common notations used in all algorithms and rules.

We now discuss in detail the analyses and transformations implemented in Morpheus
corresponding to each of the design requirements listed above.

Chrome/Content Separation. To identify object references that must appear in chrome
or content scripts, Morpheus identifies the context in which object references and their
property accesses should be evaluated. The context of an object reference is the context
in which it was declared. Thus, any object declared in chrome code must be evaluated
in chrome context and similarly all accesses to content objects must be evaluated in the
context of the current Web page (content). For the rest of the paper, we refer chrome
context as chrome and content context as content.

Morpheus uses static dataflow analysis to identify whether code that accesses an ob-
ject reference should be evaluated in either chrome or content. Our analysis leverages
the dataflow rules given in prior work [32]. The analysis is based on the observation that

Retargetting Legacy Browser Extensions to Modern Extension Frameworks 471

Table 1. Common notations used in transformation rules and algorithms

E Set of all expressions

EI,,,f Fixed property access expression of the form e.x, e[’x"]

Epa, Dynamic property access expression of the form e [v]

Epq Property access expression where E,, := Ep, T U Ep,, where Ep, CE

E,; Method invocation expression e. £(args), e[’ £’]1(args), e[vf](args)
Epcom XPCOM invoke expression, where E,,com C E. It can be one of the two forms, either

(i) Components.classes[.*].getService(Components.interfaces[.*]]),or
(ii)Components.utils.import ("resource://gre/modules/*.jsm");

Eopjmit Object Literal expression of the form { a:1, b:function(){}}, where Eypjjnir CE

Ejec Function/ variable declaration expression, where Eg.; C E. Can be any of the following expressions
const c; let 1; var a; var b=5; function foo(){}

EXPRESSION(77) Expression for AST node n

OBIECT(¢) expression representing object whose property is accessed in expression &, where £ € (Ep, U Eyy;)

PROPERTY(£) expression representing property being accessed in expression £, where & € E},,

NobE(17, £) AST node for expression ¢ and a descendant of node 7,

GETALIASSET(A, 1) Consults alias relation A and returns all may-alias for the node n.

INCoNTENT(£) Checks if object denoted by expression & belongs to content context.

CaNMakeMobuLE(n, 7)) Decides if code corresponding to AST node n can be extracted and put in a separate module. In our
implementation, it embodies the criteria that the object, represented by n, must have at least one
method defined as its property that is invoked from outside the object.

TransForRM(L, A, R)
Input: L : Legacy code, A : alias relation, R : set of rewriting rules
Output: M a set of Jetpack modules

Initialize:
T :=AST(L); O:=0/*Set of AST nodes for object literals*/
S := ComPUTESENSITIVESET(L, A) ; D := CompuTEDOMSET(L, A)

foreach n € Nopes(7") do
&, = EXPRESSION(1)
if &, € Eypcom then REwrITE(,, T, R1) /*rewrite with require, import core modules*/;
else if &, € E,;; A (Nobe(n, OBJEcT(£,)) € S V NobEe(n, OBiect(£,)) € D) then RewritE(E,, T, R3) ;
elseif &, € E,, A (NobE(n, OBIECT(E,)) € S V NopE(n, OBIECT(E,)) € D) then RewRITE(E,, 7 ,R2) ;
else if &, € E,pjjnir A CANMAKEMoDULE(n, 77) then O U = {n} ;

M := ExtrRAcTMODULE(T ", O) /*Creates user modules from the relevant code*/

return M

Algorithm 1. Transforming legacy extension code to Jetpack modules

JavaScript code in legacy extensions is evaluated in chrome unless it specifically makes
a transition to access objects in content scripts. There are only a limited number of ways
to make a transition from chrome code to content code, i.e., by accessing content,
contentWindow and contentDocument properties on selected chrome objects, like
window and gBrowser. This observation forms the basis of our static analysis.

All JavaScript in a legacy extension executes in the same heap, and thus objects
have global visibility. To precisely identify which objects must reside in the chrome
or content, Morpheus does a whole program analysis of the legacy extension. It con-
catenates all JavaScript code within the extension before performing the static analysis.
This concatenation includes scripts defined within JavaScript files, event handlers and
globals declared within overlay files and also JavaScript code modules. The result of
the static analysis is a table where each entry is an object reference and the context in
which it should be evaluated.

Static analysis to determine the chrome/content context of object references can
suffer from false positives and negatives when content references are accessed using
JavaScript’s reflective constructs. This happens, for instance, when object references
are used within the eval string, or passed as parameters to functions but are accessed

472 R. Karim, M. Dhawan, and V. Ganapathy

CompuTEDOMSET(L, A)
Input: L: Legacy code, A: Alias relation
Output: D : set of AST nodes for DOM objects
Initialize:
T :=AST(L); D:=0
foreach n € Nopes(7") do
&, := EXPRESSION(1)

CoMPUTESENSITIVESET(L, A)
Input: L: Legacy code, A: Alias relation
Output: S : set of AST nodes for sensitive objects
Initialize:
T :=AST(L); S:=0
foreach n € Nopes(7") do
&, := EXPRESSION(n)

&), := RVALUEEXP(,), f,’, := LVALUEEXP(&,)) if &, € Expeom
if (&, €D) V(& € Epi A (NoDE(n, OBIECT(E,)) € S))
V(& € Epi A (NopE(n, OBIECT(S})) € D) V(i € Epq A (NoDE(n, OBIECT(,)) € §)) then
V INCoNTENT(OBIECT(£),)))) S U={n}

V(& € Epq A (Nobe(n, OBIECT(E])) € D) A, = GETALIASSET(A, n)
V INCONTENT(OBJECT(£))))) SU=A,/*add all alias of &,
V(& € Epa A (NopE(n, OBJECT(4))) € D) to S*/
V INCoNTENT(PROPERTY(E})))) then return §
D U = {Nobk(n, &)}
A; = GETALIASSET(A, NopE(n, £))
DU=A, /*add all alias of & to D*/
return D

(@) (b)

Algorithm 2. Algorithms for computation of set of nodes corresponding to (a) content DOM
objects and (b) sensitive objects

Table 2. Rewrite rules for expression. Each rule modifies an expression & and updates AST T

Rule: (¢ = &) — (T = T’), where ¢ := expression(n). 7 is set to T’ after applying each rule
Rule R1: Import Module
m := get-module-name(¢)
& :=require(’m’)
Rule R2: Rewrite property access with setProperty, getProperty
o := object(£), prop := property(exp)
(7%2.51) , property-read(7’, &)
¢&':=o0.getProperty(’'p’)
Rule R3 : Rewrite method invocation with invoke
o := object(¢), ¢ := method(exp), @ := arguments(exp)
¢ :=o.invoke('y’, @)
Rule R4: Rewrite Global Access with GlobalGET, GlobalSET
(R4.a) IGlobal read(7, &) (R4.b)
&= GlobaGET(’&”)
Rule R5: Global Write ** This rule creates a new statement
o := GlobaSET(’¢’,¢)

(7{2 b) property-write(7,&) v := value-to-store(7’, £)

¢ := o.setProperty(’p’, v)

Global-write(7, &) v := value-to-store(7’, &)
&:= GlobaSET(’&’, v)

as elements of the arguments array within the function. Morpheus currently does not
handle such cases and instead relies on the developer to rewrite the code to make it
more amenable to analysis, or to manually classify the context of the object reference.
By default, a legacy extension executes in chrome, so object references that remain
in chrome in Jetpack can be evaluated as before. To evaluate objects in content, Mor-
pheus considers the content as a sensitive resource and models it as a core Jetpack
module called contentDOM. Algorithm 2(a) identifies all program points correspond-
ing to property accesses of content objects and Morpheus then rewrites these accesses
by accessor methods to abstract away the design of the content module from the exten-
sion code. For example, the code gBrowser.contentDocument in a legacy extension
would be rewritten as gBrowser.getProperty(’contentDocument’). Likewise,
the property access gBrowser.contentDocument.location would be rewritten as
gBrowse.getProperty(’contentDocument’).getProperty(’location’).

Retargetting Legacy Browser Extensions to Modern Extension Frameworks 473

switch(property) {
var table = require(’core module table’); case ’'< depends on the core module >’:
var policyChecker = require(’policy checker’); var retval = ref[property];
var module = { var newref = < new core module instance>
id: initModule(), /*initializes the module*/ table.setReference(newref.id, retval);
getProperty: function() { return newref;
var property = arguments[0]; ... /* more case statements */
var violated = policyChecker.check default:
(<core module name>, property); return null;

if(violated){ }
return {}; },
/*code for setProperty, invoke*/
var ref = table.getReference(this.id);
exports.module = module ;

Fig. 3. Template for secure core module with policy

Morpheus addresses a key challenge that arises as a result of the design
of Jetpack’s contentDOM module. As shown in line 36 in Figure 1, legacy
extensions may contain statements that refer to objects in both chrome and
content, i.e., modifyWebPageContent is a method defined in the chrome while
gBrowser.contentDocument is the active window’s document object and is there-
fore an object in content. Moreover, the call to modifyWebPageContent is syn-
chronous in the legacy extension. Since the Jetpack framework executes chrome scripts
and content scripts in separate processes, they cannot share object references, but only
exchange data in JSON format asynchronously. Thus, in the Jetpack counterpart of this
extension, the call in line 36 would be asynchronous because modifyWebPageContent
should be part of content script as they operate on the gBrowser.contentDocument
from the active Web page. Morpheus addresses this challenge by creating opaque iden-
tifiers for objects in the content and transmitting these identifiers across the JSON
pipe to the chrome. Morpheus’s transformation also attempts to retain the control flow
of the original extension code as intended by the developer (see Section 5).

Module Construction. Modules in Jetpack must ideally not export references to priv-
ileged objects. Any such leaking references to other modules can lead to privilege es-
calation attacks, i.e., a module to which a reference is leaked may be able to access a
privileged object without explicitly requesting access to it at load time. Morpheus cre-
ates extensions that do not export privileged objects. Instead, Morpheus creates mod-
ule templates (see Figure 3) that export accessor methods to these privileged objects.
These modules export only four properties, namely id, getProperty, setProperty
and invoke to privileged objects. Each module encapsulates a privileged object, which
is assigned an opaque identifier (id) on module initialization. Other modules access the
object using getProperty and setProperty, which are getter and setter methods, and
invoke, which allows invocation of methods defined on the privileged object. The first
argument to each of getProperty, setProperty and invoke is the property to be
accessed followed by a list of arguments. Each of these methods can either return prim-
itive values or an instance of a module. Accessor methods also embody any security
policies associated with access to privileged objects. Section 4 discusses the security
implications of creating modules in this way.

Morpheus transforms legacy extensions to use core modules designed as above in
the following way. It first analyzes the legacy extension to locate the use of browser’s
privileged XPCOM APIs and generates a list of program points (as shown in algorithm
2(b)) for the property access and methods invoked on corresponding privileged XPCOM

474 R. Karim, M. Dhawan, and V. Ganapathy

ExTtrRACTMODULE(T, O, A)
Input: 7 : AST for Legacy, O : Set of nodes for object literals, A : alias relation
Output: M a set of Jetpack modules
Initialize:
T:=0 /*Map from node n€ O to AST*/; (:=0 /*Map from node n € O to parentAST from
which it is extracted*/
foreach n; € O do
Ty; = CopyAsTFORNODE(T , n;); Tlni] :=Ty;5 tnil :=T
/*update parent AST for nested object Literal expression*/
foreach n; € O do
if IsNesteDOBIECT(1;, 7) then
T? := FINDPARENTAST(n;, T) ; ¢[n;]:=T? /*T? is the smallest AST T from T[n;] such that
n; # root(T)*/
foreach n; € O do
Ty, :=Tln;] /*AST for node n;*/
Gy; = GETGLOBALIDENTIFIERS(T;) /* G, is set of identifiers used but not defined in 7,*/
Hy, = GeTLocALIDENTIFIERSGLOBALLYUSED(T", O, T),;) /*Identifiers defined in T, but also used
in other 7%/
/*Hy, is set of identifiers defined in T,, and used in other modules*/

foreach g € Nobes(T,,) do
£, := EXPRESSION(q)
if ¢, € Gy, then RewRrITE(S,, T,,,.,R4) /*rewrite with GlobalGET, GlobalSET*/;

else if £, € Eye; then
0 := CREATENEWSTATEMENT(LVALUEEXP({,), R5) /*create a GlobalSET*/
ADDTOAST(Ty;, 07)
m; := MAKeENEwMobuLe(T,;) /*Place the code for AST T,; in a new module and append
necessary code*/
MU =m;

/*modify the parent AST*/
T? :=([n;] /*get parent AST*/
&n; = ExPRESSION(GETNODEFROMAST(1;, T7)); REWRITE(E;,, TP,R1) /* rewrite with require*/
Ay, := GETALIASSET(A, GETNODEFROMAST(1;, T7))
foreach A € Nobes(77) do
&, := EXPRESSION(A)
if &3 € Eji A (OBIECT(E)) = &) then REWRITE(Sy, TP, R3) /*rewrite with invoke*/;
elseif &, € E,, A (OBIECT(Ey) = &,,) then RewriTE(éy, T”,R2) /*rewrite property access*/;
m := MAKENEWMODULE(7) ; M U =m /*construct the main module and add to set M*/
return M

Algorithm 3. Algorithm for extracting user modules

APIL. Morpheus then rewrites the extension code by replacing all such references as
per the rules R1, R2, R3 in Table 2 for the corresponding core module in Jetpack.
The Jetpack framework does not provide core modules for all XPCOM APIs, so core
modules may have to be supplied separately. We have used our module template to
build a suite of core modules for a variety of XPCOM APIs. We developed these core
modules by hand, and used an off-the-shelf static analysis tool [17] to verify that these
core modules do not export references to privileged objects.

Morpheus also creates user modules by analyzing legacy extension code. The main
objective is to partition the chrome script into multiple modules in a way to attenuate the
authority of individual modules and limit the effect of a vulnerability exploit. Ideally,
user modules should be generated by clustering functions based on access to XPCOM
functionality. However objects with privilege to access different XPCOM can be used
in a single statement. This makes splitting based on XPCOM access non-trivial, since
it would require more precise and sophisticated static analysis and semantic-preserving
transformation algorithm. Therefore we adopted a simpler approach of encoding the
developer’s way of partitioning code.

Retargetting Legacy Browser Extensions to Modern Extension Frameworks 475

Morpheus identifies code fragments in the legacy extension that achieve related func-
tionality. The underlying intuition is that these code fragments can then be grouped into
a single module. Morpheus uses a simple notion of object ownership to identify related
functionality: it identifies a set of functions that are owned by the same object, and
groups such functions into a single module. This heuristic is based on the observation
that developers often group functionality as object hierarchies that are more likely to
access similar, if not the same, XPCOM interfaces within one object. Even though this
might provide less meaningful partitions if the developer does not arrange his code us-
ing purposeful object hierarchies, our evaluation shows that this approach is practical
and we do extract a reasonable number of user modules with most of them accessing
only a few core modules. User modules follow the same template as core modules with
the difference that the object encapsulated within the module is the one that owns the
functions grouped in that module, instead of a sensitive XPCOM object as for core
modules. Morpheus rewrites references to the encapsulated objects with a require
invocation. Algorithm 3 encodes the user modules extraction and rewriting technique.

As shown in line 2 in Figure 1, an extension can load a JavaScript code module
(JSM) using an invocation to Components.utils.import. The import API takes as
arguments the URL of the script to be loaded and an optional scope object. On execu-
tion of the import statement, the array of objects defined in the script (referenced by
the URL) is attached to the scope object. In case the scope object is not defined, the im-
ported objects are attached to the global object, i.e., they can be accessed and modified
by any script in the extension code. Browser-provided JSMs internally access XPCOM
interfaces and therefore are treated as privileged API by Morpheus. Core modules are
constructed for them and accesses of such JSMs are rewritten accordingly. In contrast,
Morpheus rewrites all JSMs, defined by legacy extension developers, to access only
core modules designed as above. However since these JSMs are self contained code
fragments with a well defined interface for exporting objects, Morpheus rewrites the
entire JSM as a user module, and does not partition it further into smaller modules.

Scope and Global Objects. When Morpheus creates user modules from a legacy exten-
sion, it is possible that the resulting user modules may require access to scope or global
variables defined in the legacy extension. However, Morpheus creates modules, which
are isolated by the Jetpack framework, and therefore cannot share references/updates
to scope and global variables. Morpheus therefore creates a new global module that
(1) stores references to all the scope and global variables, and (2) exports two meth-
ods GlobalGET and GlobalSET to enable access to these variables. It then analyzes all
user modules, identifies instances of scope or global variables used (but not defined) and
rewrites access to these variables as per rule R4 in Table 2, i.e., using either GlobalGET
or GlobalSET.

Preserving Extension UI. As mentioned in Section 2.2, most of the browser’s Ul is
scriptable, i.e., it can be accessed and modified using JavaScript. Morpheus leverages
this ability and generates JavaScript code to dynamically modify the browser’s UI on
invocation of the Jetpack functionality. To do so, Morpheus analyzes the legacy exten-
sion’s CSS and XUL overlay files, which represent UI descriptions as XML markups,
and dynamically loads the appropriate JavaScript code at runtime to preserve the Ul of
the legacy extension.

476 R. Karim, M. Dhawan, and V. Ganapathy

2 var FileUtils = require(’core/FileUtils’).module;
@ var file = FileUtils.invoke(’getFile’,dir, [filename]);
9) var Weather = require(’user/Weather’).module;
() GlobalSET(’Weather’, Weather); /*new statement added*/
30) document.invoke(’getElementById’, weatherStatusBar’)
.addEventListener(’click’, showWeatherInPanel, false);
32) window.invoke(’addEventListener’,’DOMContentLoaded’, addWeatherToWebpage, false);
(34) var locationStr = getLocationFromWebpage(gBrowser.getProperty(’contentDocument’));
(35) var temperature = Weather.invoke(’getWeatherData’, getZipCode(locationStr));
36) modifyWebpageContent (gBrowser.getProperty(’contentDocument’, temperature));

Fig. 4. Code snippet from Main module of the transformed DisplayWeather Jetpack extension.
Only statements from Figure 1 that are rewritten by Morpheus are shown.

9 var module = {

(12) getWeatherData: function(zipcode){

a3) GlobalGET(’Weather’) .invoke(’requestDataFromServer’, zipcode);

a4 return processWeatherData(GlobalGET(’Weather’).getProperty(’temperature’));
(15) 'y

(16) requestDataFromServer: function(sendData){

a7) var httpRequest = require(’core/XMLHtttpRequest’) .module;

(20) httpRequest.setProperty(’onreadystatechange’, function(){

22 GlobalGET(’Weather’).invoke (’extractTemperature’, httpRequest.getProperty(’response’));
4 H

25) httpRequest.invoke(’open’, 'GET’, serverUrl, true);

(26) httpRequest.invoke(’send’, sendData); /*contact remote server*/

@ }
@8 }
() exports.module = module ; /*new statement added*/

Fig. 5. Code snippet from Weather module of the transformed Display Weather Jetpack extension.
Only the statements from Figure 1 that are rewritten by Morpheus are shown.

Figures 4 and 5 show the rewritten statements and extracted user modules on apply-
ing Morpheus to our DisplayWeather extension (see Figure 1).

3.3 Policy Checker

Transformations on legacy extensions as applied by Morpheus greatly simplify enforce-
ment of security policies on a per extension granularity. Morpheus supports both simple
access control checks as well as complex stateful policy checks on sensitive browser re-
sources and APIs managed by the core modules.

Security policies for preventing undesired accesses by the core modules are encoded
in a separate Jetpack module named PolicyChecker, and all accessor methods in core
modules must consult the PolicyChecker before actually granting access to the sen-
sitive resources requested by a potentially compromised user module. To do so, Mor-
pheus mandates that core modules place a trap in their accessor methods, as shown in
Figure 3. PolicyChecker exports an API check to validate the request for accessing
the sensitive resource by the user module. If the request does not conform to the exten-
sion’s security policy, a violation is raised and the PolicyChecker simply blocks the
requested access and returns an empty object.’

Since policies are encoded within the isolated PolicyChecker module and core
modules can only invoke the check API to validate the access, Morpheus allows poli-
cies to be added or removed with no modification of the extension code.

2 The supplementary materials contain an example of a security policy.

Retargetting Legacy Browser Extensions to Modern Extension Frameworks 477

‘ Main J Module m;; Module m

ﬁ [

e \ s
| e _[getProperty Up?)

Content DOM
p
Network File p
[..
(@) (b) (©

Fig. 6. (a) Module hierarchy in transformed DisplayWeather extension. Difference of heap map
of property access of a sensitive object where A, is the heap object for the expression £. (b) s.p
in legacy extension (c) s.getProperty(’p’) in Jetpack. m; is a user module, m, is a module
wrapping sensitive object s.

4 Security Analysis

A Jetpack extension’s ability to limit the consequences of a breach depends on the
structure of its modules and the security policies. Figures 6(b) and 6(c) show the effect
of Morpheus’s transformations in accessing property of sensitive object in terms of the
heap model.

In a legacy extension when accessing a property p in sensitive object s, the heap
object i for s and hy), for s.p lies in the same address space, as shown in Figure 6(b).
However when processed by Morpheus, s.p is rewritten as s.getProperty(’'p’)
and the heap object i, for s does not have direct access to Ay ,, as shown in Figure 6(c).
Instead, invoking the getProperty method gives it access to the actual heap object 7/,
that has direct access to its property p heap object /{ ,,. The dotted line between £ , and
hs., denotes that (i) the latter is the wrapped version of the former object, and (ii) this
relation is further protected by the policy enforcement mechanism. Note that both £/, and
n » lie in a different module my, which is isolated from the module m; corresponding
to the transformed legacy code. Thus, if an attacker manages to compromise n2; he will
not have direct access to the actual heap object from m;.

Given the above heap model, we now analyze the security of a legacy exten-
sion transformed by Morpheus using several properties (enumerated in Table 3), pro-
vided in part by the Jetpack framework, Morpheus’s transformation, and Morpheus’s
PolicyChecker for policy enforcement.

Let P(m) denote the set of privileges that can be accessed by a module m. It is com-
puted as follows:

P(m) = (Um—»x P(x)) U(Umb—)m” LP(m”)) U(Um»—»m" P(mc)), Where

m — x means module m has direct access to XPCOM interface x,
m; — m; means module m; imports module m;,

U is the set of user modules m" in an extension,

C is the set of core modules m in an extension and U N C is 0, and
LP(m") denotes the set of privileges leaked from user module m"

478 R. Karim, M. Dhawan, and V. Ganapathy

Table 3. Security properties

Provider Property

P1 Each Jetpack extension is a hierarchical collection of modules that are isolated and share no state except
that is explicitly exported using the exports construct.

P2 The set of privileges that can be manipulated and exported by a module depends on (i) user modules, and

(ii) core modules it includes using the require construct.
P3 Jetpack A module can import a privilege only when the Jetpack framework first loads the module. This implies that
the module cannot dynamically extend its privileges at runtime.

P4 All Jetpack modules lie in chrome space and can contact with content Web page over an asynchronous
message passing channel.

P5 Only core module can directly access XPCOM APIs. User modules can never directly access XPCOM APIs.

P6 Each core module encapsulates reference to only one XPCOM interface and does not have direct access

to other XPCOM interfaces
P7 Morpheus Core modules can not import any user module

P8 Each module exports only an opaque identifier and accessor methods, that can return either primitive values
or instances of other modules
P9 Each module stores the reference to the sensitive object it encapsulates within another designated module,

i.e., all core modules share a common module to store sensitive objects.
P10 Policy Each core module can access a specific sensitive resource after being verified by security policy mediate
Checker the particular sensitive resource that a core module can access.

P3 together with P2 guarantees that P(m) can be statically determined and cannot
be changed during execution, and thus prevents the attacker from creating and dynam-
ically loading instances of other core modules inside the compromised core (or user)
module m. PS5, P6 and P7 limit the privileges P(m) for any core module m € C to
(Umox P(x) UWUmsme P(m©)). In case m is compromised, P9 guarantees that the at-
tacker only has access to the reference to the privileged object encapsulated by it (see
Figure 6(b)), and no access to objects managed by other core modules, e.g., ms. This
is because core module table, which stores the sensitive references for other core
modules, does not support iteration and its accessor methods need an opaque identifier
to return the sensitive reference. Since the opaque identifier itself is a reference, it is not
possible for the attacker to manufacture the reference and access all sensitive objects.

For a user module m € U, P5 and P8 guarantee that | J,,_,, P(x) is @ at all times.
This implies that a user module cannot export references to privileged objects, because
it has none. Therefore, we need not implement accessor methods for user modules,
but Morpheus still keeps the same interface as it allows developers to conveniently
enforce security policies on user modules. P8 also guarantees that | J,,,.,,« LP(m") is @
that makes P(m) for any user module m € U equal to |, P(m°). In other words,
the privileges of a user module can be determined by inspecting privileges of the core
modules it imports. Thus, the above properties ensure that for any module m, P(m) =
Umsme P(m€) always holds.

The DisplayWeather extension with access to the user’s file system and the network
is an attractive target for Web attackers, who may want to steal sensitive user data, such
as stored passwords, from the file system and send it over to an attacker controlled re-
mote server. We now illustrate how Morpheus improves the security of the transformed
DisplayWeather extension. Figure 6(a) shows the module hierarchy for the transformed
Jetpack extension. Using the above formula and the transformed code (Figures 4 and
5), we claim that P(mg;.) = {file}, P(Myenwork) = {network}, P(myain) = {file}, and
P(mweaner) = {network} holds even if these modules get compromised.

Unlike in the legacy DisplayWeather extension, P4 guarantees that the modules in the
corresponding Jetpack are isolated from the content. Assuming that the attacker has

Retargetting Legacy Browser Extensions to Modern Extension Frameworks 479

(i) compromised the asynchronous message passing channel between the content and
the chrome, and (ii) can infiltrate into the chrome space (that contains all the modules),
we consider the case of a security breach in a user module myeqser- The only privi-
lege that the attacker gets is access to the network via the myenorx module. Although
we place no restriction on the nature of code that the attacker can evaluate within the
extension, as listed earlier, P3 restricts the powers of the attacker by disallowing him
from loading a new core module 71y ,ginManager (t0 read all stored passwords), as it was
not requested by the compromised my.qs.- module at load time.

Due to the fixed module hierarchy in Jetpack extensions, the attacker cannot even
trick mp;, module (to read the password file) by only compromising myeaner, and must
also compromise my,;, or mpj,. If we assume that the attacker has managed to infil-
trate a core module mg;,, then the only privilege he gets is file, i.e., access to the file
system. Similar scenario applies if the attacker has managed to infiltrate the core mod-
ule my.ork- In €ach of the above cases, the attacker only gets access to the privileges
available in the compromised module m computed by P(m) and no more. This is in
contrast to the legacy extensions where a breach in any portion of an extension enables
the attacker to obtain access to any privileged object managed by the browser.

P10 further attenuates the authority of core modules. Let us assume that the attacker
has compromised both the my,;, and Myeqme modules, and also managed to modify the
file path in FileUtils.getFile to the intended password file, and the URL for the re-
mote server to one that is controlled by attacker. In such a scenario, the PolicyChecker
will prevent the mg;,, and myeswork core modules to read file other than ProfD/zip. txt
from the file system and contact a remote server other than the legitimate weather server.
Even if the attacker has compromised mp;;, and myenore module, the PolicyChecker
will still prevent access to unauthorized resources.

We note that if the myeqm.r module was not extracted using Morpheus’s transfor-
mations, P(my,n) Would have evaluated to {file, network}. In the absence of any se-
curity policy, compromising only m,;; module would have sufficed for the attacker.
In other words, Morpheus does not worsen the security guarantees given by Jetpack
framework. In fact, its module extraction based on the owning object algorithm along
with the PolicyChecker make it harder for the attacker to mount a successful attack,
by increasing the minimum number of modules that need to be compromised.

5 Implementation

We realized the entire Morpheus toolchain in about 13, 400 lines of JavaScript (node.js
[4]), of which about 10, 500 lines were devoted to implement 100 core modules with
wide ranging functionality. We used node.js to ease the implementation of the proto-
type. We leveraged Doctor JS [1], which also uses node.js as its backend, to implement
our JavaScript code analyzer. Specifically, we added about 100 lines of code to cus-
tomize Doctor JS for analysis of legacy extensions. Generation of Jetpack modules and
rewriting of the global variables utilized the Narcissus [21] parser and decompiler to
(i) rewrite the source ASTSs, and (ii) convert the rewritten ASTs back to source code.
This required about 4200 lines of JavaScript code. Finally, dynamic generation of the
UI and subsequent packaging of the modules into a Jetpack addon required 900 and 100

480 R. Karim, M. Dhawan, and V. Ganapathy

lines of JavaScript code, respectively. Another 370 lines of shell scripts were required
to automate the entire toolchain. Policy checker is implemented as a Jetpack module
and requires only 150 lines of JavaScript code to encode all policies listed in Table 6.

The transformation of legacy extension into the corresponding Jetpack, and correct
evaluation of chrome and content scripts in the transformed Jetpack posed several is-
sues. We discuss a few of them here:

e Content proxy. A content proxy is required for mediating interaction between chrome
and content scripts (see Section 2.3). The default content proxy implemented in the Jet-
pack framework was stateless, i.e., execution of content scripts across different invoca-
tions of the proxy did not share any execution context. This stateless execution posed
a problem since the transformed Jetpack requires multiple invocations to the proxy de-
pending upon context switches, i.e., from chrome to content and back (see line 36 in
Figure 1). We overcame the problem by modifying the default content proxy to retain
all execution state after initialization. The content proxy is initialized every time a new
document is loaded.

e Opaque identifiers. Message exchange between the chrome and content scripts is
asynchronous and is limited to transfer of primitive values and opaque identifiers only.
Since object creation may also happen in the content, management of opaque identi-
fiers must also be done in the content. We therefore inject the content proxy with scripts
to manage opaque identifiers during its initialization.

e Synchronous execution. In order to retain the synchronous execution semantics as in-
tended by the extension developer, Morpheus implements a synchronous execution pro-
tocol for evaluating object references in the content. Specifically, Morpheus utilizes
the processNextEvent API defined on XPCOM’s thread interface to implement the
synchronous behavior by repeatedly processing the next pending event on the currently
executing thread until it receives a response from the content process. This technique
along with a stateful content proxy ensures that the transformed extension achieves
synchronous execution semantics without blocking the CPU. However, this mechanism
may affect the performance of the transformed extension if it makes numerous context
switches between the chrome and the content.

e Custom XPCOM interface. Firefox allows extension developers to declare their own
XPCOM components and register them with the extension architecture by packaging
supporting JavaScript files, which implement the component interfaces, with the exten-
sion. Morpheus treats such JavaScript files as modules, redefines the components using
helper methods provided by Jetpack and rewrites them like other JavaScript code in the
legacy extension. All top level objects in extension scripts are also added to global
module so that they can be accessed by the modules defining the XPCOM interface.

6 Evaluation

We evaluated Morpheus using four criteria: (i) correctness of the transformation, (ii)
conformance to the principle of least authority (POLA), (iii) effectiveness of user mod-
ule creation and (iv) effectiveness of policy-checker. We performed the evaluation us-
ing a suite of 52 legacy extensions (50 popular legacy extensions from Mozilla’s addon

Retargetting Legacy Browser Extensions to Modern Extension Frameworks

481

Table 4. Legacy extensions transformed using Morpheus and corresponding Jetpack statistics

Legacy Extension Functionality # Users

Amazon Search Search in amazon.com using the right click context menu from any Website. 1,866
BlockSite Blocks Websites and disables hyperlinks of user’s choice. 214,173
Bookmark All Bookmark all opening tabs quickly without any dialog. 5,304
Clear Cache Clears the browser cache with one click 10,557
Clear Cache Button Clears the browser cache. 44,843
Comment Blocker Blocks or hides all unwanted comments on Websites. 1,415
Context Search Expands the context menu’s “Search for” item for all installed search engines. 67,070
Copy Link Text Adds an option to the context menu to select the text of a link on right-click. ,199
Copy Link URL Copy the URLSs of the selected links to clipboard. 13,025
Ebay Quick Search Search in ebay.com using the right click context menu from any Website. 1000
Email This Email link, title, and a selected summary of the Web page being viewed. 15,853
Empty Cache Button Cache clearing made easy. One click. 53,048
Facebook Bookmark Allow visiting Facebook Bookmarks by adding a special Button to Toolbar. 11,222
Facebook New Tab Loads Facebook.com quickly when a new tab is opened. 7,439
Facebook Toolbar Button Loads Facebook.com on clicking toolbar icon. 21,026
Facebook Touch Panel Allow quick check Facebook Notifications and Messages by a touch Panel. 10,054
FlagFox Displays a country flag depicting the location of the current Website’s server. 1,296,480
FlashBlock Blocks all Flash content from loading. 1,372,826
Go To Bing Loads bing.com in a new tab when clicked on status-bar Bing icon. 139
Go To Google Loads google.com in a new tab when clicked on status-bar Google icon. 15,700
Google Search By Image Adds Google Search by Image context menu item for images. 45,838
Google Translator Translates selected text or page into chosen language with a click or hot-key. 453,029
Google Viewer Prompt to open supported documents with Google Docs Viewer. 1,472
Image Block Adds a toggle button to conditionally block/allow images on Web pages. 22,147
ImageSearch Adds a context-menu item for images to search Google for that image. 14,285
LEOs Dictionaries Translates selected words/phrases with the help of LEOs Online Dictionaries 10,501
Leo Search Searches selected words at dict.leo.org and opens the result in a new tab. 9,835
LibraryDetector Detects which JavaScript libraries are being used on the current Web page. 1,590
Live IP address Retrieves Live IP Address and displays in the status bar. 9,090
My Home Page Load the homepage in a new Tab. 40,439
My Public IP Address Show browser IP address. 2,959
New Tab Homepage Load the homepage in a new tab; load the first in case of multiple homepages. 245,540
Open Bookmark (new tab) Always opens new tab from bookmarks. 44,683
Open GMail (new tab) Opens Google Mail Web page on a new tab. 22,107
Open GMail (pinned tab) Opens Google Mail Web page on a new pinned tab in HTTPS mode. 10,092
Open Image (new tab) Adds right-click context menu item for opening images in new tabs. 14,285
Place Cleaner Replace the default “Print” button with Mozilla’s “Print Preview” button. 21,878
Plain Text links Open plain-text urls as links via context menu. 4,738
Print Preview Replace the default “Print” button with Mozilla’s “Print Preview” button. 37,966
Really Simple Sticky Allow to add notes, reminders directly in the browser. 924
Right Click Link Opens selected text in a new tab. 6,861
Search IMDB Search the highlighted text at IMDB. 19,635
Show MyIP Displays user’s current IP address in the status bar. 11,239
Tab History Menu Enables opening the history menu for a selected tab just by clicking on it. 7,237
TinEye Rev Img Srch Adds a context menu to search for an image, where it came from, etc. 208,496
Twitter New Tab Loads twitter.com quickly when a new tab is opened. 830
Twitter Toolbar Button Loads twitter.com on clicking toolbar icon. 210
Web2Pdf Converter ‘Web page to PDF conversion tool. 42,185
YouTube Auto Replay Enables automatic replay of a YouTube video or part of it. 26,478
YouTube IT Search the selected Text in Youtube. 15,036
DisplayWeather Displays weather of chosen location N/A
Steal-login Steal passwords and send to remote server N/A

gallery (AMO) and 2 synthetic extensions) and then transformed them using Morpheus.
Our dataset contained extensions that use common extension development technolo-
gies, such as JavaScript, HTML, XUL, CSS, etc., and did not contain any binary XP-
COM component.

Correctness of transformation. We tested the correctness of the transformation by ex-
ercising the advertised functionality of each of the 52 extensions transformed with Mor-
pheus. In each case, we enhanced the browser with the Jetpack extension being tested
and observed the results of interaction with the extension’s UI. Table 4 lists the exten-
sions evaluated along with their functionality. The top 50 entries are for the real-world
extensions whereas the bottom 2 correspond to the synthetic ones. For all cases the Jet-
pack extension was able to provide the advertised functionality of the original (legacy)
extension.

482 R. Karim, M. Dhawan, and V. Ganapathy

Frequency distribution of core modules

#User modules

; apn | B
1234567 8 91011121314151617181920212223 2425262728

Frequency

Fig. 7. Frequency of core modules in Jetpack user modules

FlagFox is one of the larger extensions that we transformed. It utilizes 28 core mod-
ules, and over 1307 lines of JavaScript (out of 3971 lines of extension code) are used
to implement the UI. The remaining 2667 lines implement the core functionality of the
legacy extension. We also observed that several extensions from our dataset had just a
single user module after being transformed to Jetpack extension. Go To Google, Go To
Bing, Steal-login are few instances of such case. This is due to the absence of any object
definition or absence of property method invocations from objects defined in the legacy
code. We also noticed the same Jetpack extension structure for TinEye Reverse Image
Search entry even though the legacy code defines a top-level object. This is because it
had all the functionality included in just that one object whose methods were invoked
from event handlers.

Conformance to POLA. We used an off-the-shelf tool Beacon [17] to check whether
modules in a Jetpack extension adhere to the principle of peast authority (POLA). Bea-
con detects whether a Jetpack module leaks references to privileged objects that it en-
capsulates. If so, any other code that requires this module will be able to directly
access the privileged object without an explicit require of this object, thereby violat-
ing POLA. None of the 100 core modules leaks any object reference or violates POLA.

Privilege separation in user modules. We estimated the effectiveness of our user mod-
ule extraction algorithm in approximating the ideal privilege separation by counting
the number of core modules imported by each user module. The less the number of
core modules accessed by a user module, the more effective is our module extraction
algorithm in separating the privileges in extension code, as this corresponds to possible
increase in the minimum number of modules that needs to be compromised to misuse
multiple privileges.

We analyzed the user modules produced by Morpheus for all 52 Jetpack extensions
and observed the frequency of the require invocation for various core modules within
each user module. The goal is to demonstrate that user modules created using the own-
ing object algorithm do not have access to large number of privileged objects as com-
pared to legacy extensions. Figure 7 reflects the frequency distribution of core modules.
We see that out of a total of 100 user modules across all the Jetpack extensions, there are

Retargetting Legacy Browser Extensions to Modern Extension Frameworks 483

Table 5. List of Jetpack modules accessing multiple categories of core modules®. User modules
created using owning object algorithm are named using random strings, except when they are
either JavaScript code modules (JSMs) or the entry point of the extension i.e., main module.
Extensions not invoking any core module corresponding to XPCOM interfaces are omitted.

. Cat .
Jetpack Module name I HC :i\}fglovrle‘s/ VI Jetpack Module name I ?Ifgf)vrl% 9
M-1 v Google Translator M-1 v
Amazon Search M-1 v v Image Block M-1 v
BlockSite M-2 v ImageSearch M-1 v /Y
ﬁalln 5 j LEOs Dictionaries M-1 j
- Leo Search main
Bookmark All M-2 v L‘ie\?e Iic:’ajfddress main 4 4
Clear Cache main v My Home Page M-1 v
Clear Cache Button malF(JSM) 5 v My Public IP Mz;']n v v v
app: New Tab H 1
CommentBlocker lr\nllailn j O;\évn l;look?nlzllf]?%ﬁzw tab) mailn 4 j
Context Search " Open Gmail (pinned tab) -
ontext Seare main v Open Image (new tab) M-1 v
Copy Link Text M-1 a4 Plain Text Links M-1 44
Copy Link URL M-1 v Places Cleaner M-1 v v
Email This M-1 v v v M-2 4
Empty Cache Button M-1 =4 Really Simple Sticky M-1 v
Facebook Bookmarks M‘} 5 5 j Search IMDB M-1 54 5
F: k New T - Show MyIP main
acebook New Tab main v Tab History Menu main v
Facebook Toolbar M-1 X% Twitter New Tab M-1 X%
Button M-2 4 Twitter Toolbar Button M-1 A
Facebook Touch M-1 x4 YouTubelT M',l v
Panel M-2 X% TinEye Rev Img Srch main v v
flagfox JSM) v vV vV V V V/ Web2Pdf M-1 v v
FlagFox ipdb (JSM) v main v o/
main v . ; M-1 v
FlashBlock M-1 v v/ v/ Dispaly Weather main v
M-2 v Steal Login main v/

56 modules with one or more accesses to distinct core modules. From the distribution,
it is seen that around 14 modules use only one core module and as the number of core
modules increases, the number of modules requesting multiple core modules decreases.
We also note that there is one user module with 28 accesses to core modules. This user
module is part of the FlagFox extension and is in fact a JavaScript code module (JSM)
that was wrapped as a user module. Recall that JSMs are not partitioned into smaller
modules because they are self contained code fragments (see Section 3.2).

Table 5 categorizes the usage of core modules corresponding to XPCOM interfaces
across different categories, and we make four observations about it. First, most of the
table is relatively sparse which indicates that user modules use related functionality.
Second, almost all Jetpack extensions use core modules under the Application category
and the reason is because they set user preferences. Third, since user modules created
from JavaScript code modules, like flagfox in the FlagFox Jetpack, are just wrappers,
they typically use core modules across multiple categories. Fourth, many Jetpack exten-
sions which interact with content on Web pages, like DisplayWeather, do not explicitly
invoke the core module contentDOM (see Section 3.2) responsible for access to the
content objects. Instead they access properties of either chrome window or gBrowser,

3 Core modules are grouped into 6 categories. Modules that access application or user prefer-
ences, create application threads, etc. are categorized under I. II contains core modules that
represent browser neutral functionality such as access to timers and console. Modules facili-
tating access to content objects like window and document are grouped under III. Modules
that handle browser permissions and cookies are grouped under IV, while those that access
network, file system or storage come under V. The remaining modules are grouped under VL.

484 R. Karim, M. Dhawan, and V. Ganapathy

Table 6. List of policies checked for evaluation data set

Policy Generic # extensions
Contact only specified remote server No 3
Access only files in profile directory as advertised No 1
Cannot access preference branch other than its own Yes 2
Cannot contact server if the extension has already accessed file system Yes 1
Cannot contact server if the extension has already accessed LoginManager ~ Yes 1
Cannot contact server if the extension has access browsing history Yes 1
Cannot contact server if the extension has access browser cache Yes 2

which in turn invoke the contentDOM to make a transition to the content. Because
of this implicit invocation, column entires in category III are empty for such Jetpack
extensions.

Runtime policy checking. We evaluated the effectiveness of PolicyChecker at block-
ing attacks originating from misuse of the core modules. To do so, we encoded seven
policies in the PolicyChecker module for the transformed extensions in our dataset.
Table 6 lists these policies, which are classified as being either generic or extension-
specific. The first three policies enforce fine-grained access control over extension re-
sources, and the remaining policies are stateful. Of the extensions in our dataset, only
Steal-login exhibits malicious activity, while the others are benign and do not violate the
policies in Table 6. Thus, to verify that PolicyChecker can actually identify and block
violations in core module, we introduced synthetic violations in benign extensions. We
did so by appending additional code within the user modules of the benign but trans-
formed extensions to trigger policy violations. The third column in the table lists the
number of extensions that were used to check such synthetic violations of the corre-
sponding policy. In each case, we observed that PolicyChecker was able to identify
the violation and block the undesired operation in the core module. In our experiments,
we refrained from checking any policy for an extension if it can potentially block the
advertised functionality. For example, we did not apply policy to block network access
after file system access for the DisplayWeather extension, as the extension contacts a
weather server after reading ’zip.txt’ from the file system, which is its advertised func-
tionality. We do envision developer assistance when encoding such policies.
We now list specific observations on applying Morpheus over legacy extensions.

(1) An extension from our dataset CommentBlocker* installs event handlers that ma-
nipulate objects from both chrome and content to achieve its advertised functional-
ity. Specifically, it installs two mutation event listeners (for DOMNodeInserted and
DOMNodeRemoved events) in the content while their handlers are declared in the
chrome. Execution of such event handlers invokes frequent invocations to the syn-
chronous execution mechanism due to context switches between the chrome and
content. Since the Jetpack framework disallows direct access of references across the
chrome/content boundary, Morpheus transforms the handler defined in the chrome
to operate using opaque identifiers for the event object (which is passed implic-
itly to all handler functions). Creating opaque identifiers for event attributes like
target and originalTarget allows most functionality, but prevents operations such
as evt.target instanceof HTMLDocument. This is because the Jetpack framework

4 CommentBlocker:https://addons.mozilla.org/en- US/firefox/addon/commentblocker/

 https://addons.mozilla.org/en-US/firefox/addon/commentblocker/

Retargetting Legacy Browser Extensions to Modern Extension Frameworks 485

itself does not provide support for all objects available in the legacy Firefox extension
architecture. For example, comparison of object instances against HTMLDocument and
other HTML elements using the instanceof operator does not succeed in the Jetpack
framework. Thus, legacy extension using such comparisons must be rewritten to use
alternate comparisons (such as Ci.nsIHTMLDocument and Ci.nsIHTMLElement).

(2) The interface definitions for most XPCOM APIs inherit from other interfaces.
For example, the nsILocalFile interface inherits from nsIFile. QueryInterface
[22] is a construct that allows JavaScript to perform runtime type discovery and
identify the interfaces supported by an object. Thus, on instantiating an object of
type nsILocalFile, the object can perform a QueryInterface to access meth-
ods and properties defined on the nsIFile interface as well. With the core mod-
ules exporting only accessor methods, QueryInterface on module objects would
be incorrect. To correctly implement the behavior of QueryInterface, the get-
ter method in core module table maintains a linked list of objects which were
QueryInterface’d on a module object and on every property access, it traverses the
list and returns the object on which the property was defined.

(3) If an XPCOM API returns an instance of a string object, its core module returns
a wrapped string object that exports an opaque identifier and the three accessor meth-
ods (i.e., getProperty, setProperty and invoke). Since this wrapped string object
cannot be directly used for string operations like concatenation, Morpheus appends an
additional toString property on the wrapped string object.

In its current form, Morpheus is constrained mainly due to Narcissus and Doctor JS.
The Morpheus toolchain uses both these tools during different phases of its operation.
Both Narcissus and Doctor JS are under active development and do not support all
JavaScript constructs and features. For example, Narcissus does not support various
forms of the let block, array comprehension, destructuring, generators, etc. Doctor
JS uses the CFA2 algorithm [32] for JavaScript implemented atop Narcissus. Doctor
JS also does not support a number of JavaScript statements. For example, it throws
exceptions when performing string concatenation via the += shorthand operator, or if
the loop variable is not defined explicitly within the for loop itself. We are actively
working to remove such limitations by porting Morpheus to a more stable platform,
like SpiderMonkey [23], and allow evaluation of more complex extensions.

7 Related Work

There has been much interest recently in the research community to improve defenses
against vulnerable and malicious browser extensions. This paper presents an automated
approach to port legacy extensions to secure, modern platforms and to our knowledge,
Morpheus is the first tool to do so.

Securing browser extensions. The Jetpack framework is similar to the Google Chrome
extension architecture [9] which encourages a modular design. Recent work [11, 19]
explores the latter to highlight its deficiencies in developing secure Chrome extensions.

VEX [8] implements a flow- and context-sensitive static analysis of JavaScript to
study vulnerabilities in legacy Firefox extensions. Beacon [17] performs information-
flow for modular JavaScript extensions and is designed to detect poor software

486 R. Karim, M. Dhawan, and V. Ganapathy

engineering practices in modules, i.e., violation of POLA or leaked capabilities across
module interface. Sabre [13] and Djeric and Goel [14] both present dynamic informa-
tion flow tracking system to detect extensions that can leak sensitive browser data. IBEX
[15] is a framework for specifying fine-grained access control policies guarding the be-
havior of monolithic browser extensions, but requires extensions to first be written in a
dependently-typed language (to make them amenable to verification), following which
they are translated to JavaScript.

Runtime policy enforcement has also been applied to prevent extensions from leak-
ing sensitive data and limiting extension privilege in [27, 31]. Even though the approach
presented in [27] is more light-weight than [31], both techniques require modifications
to the browser. Similar to Morpheus, [27] wraps all accesses to XPCOM interfaces in
legacy extensions to validate the operations with regard to security policies specified on
the extension. In contrast, our main goal in wrapping privileged objects in individual
modules is to adhere to Jetpack’s security principles and limit the damage to only the
compromised module. The extension architecture also enables embedding fine-grained
security policy enforcement without modifying browser or Jetpack runtime. Morpheus
improves security of extensions by both porting to Jetpack and enforcing policies.

Privilege separation. Morpheus is most closely related to Privtrans [10] and Swift [12].
Privtrans automatically integrates privilege separation into legacy source code using
context switching between a secure monitor and an untrusted slave. Swift defines a
principled approach to build secure web applications by partitioning the source code.
Morpheus uses both approaches. It defines an evaluation context for object references,
as either chrome or content, and switches contexts when execution of a JavaScript
statement contains references from both contexts. This context switching approach is
needed because the Jetpack framework is restrictive and does not allow placement of
content code in chrome or vice-versa. Morpheus differs from both Privtrans and Swift
and several other privilege separation mechanisms [28, 18, 26, 33, 34], because it is en-
tirely automatic and does not require any user annotations to accomplish partitioning. A
new architecture is proposed in [7] to achieve privilege separation for HTMLS5 web ap-
plications including browser extensions. Morpheus is orthogonal to [7] and ports legacy
code to the Jetpack framework that mandates chrome-content privilege separation.

8 Conclusion

We present Morpheus, a streamlined mechanism to port legacy Firefox extensions to
the more secure Jetpack framework. It utilizes module isolation provided in Jetpack
framework to overcome challenges in code partitioning and secure module construc-
tion. Transformation applied by Morpheus enables fine-grained policy enforcement on
ported Jetpack extension. We evaluate Morpheus with a suite of 52 legacy extensions
and show that the automatically transformed extensions are secure by construction.

Acknowledgments. This work was funded in part by AFOSR grant FA9550-12-1-0166
via subaward 4628-RU-AFOSR-0166. We thank Santosh Nagarakatte, Chung-chieh
Shan, and the anonymous reviewers for comments on early drafts of this paper.

Retargetting Legacy Browser Extensions to Modern Extension Frameworks 487

References

LA L~

10.

11.

20.

21.

22.

23.
24.

25.

26.

. Doctor, J.S.: http://doctorjs.org/
. Jetpack, https://wiki.mozilla.org/Jetpack

JSON, http://www.json.org/

. node.js, http://nodejs.org/
. Opera extensions, http://dev.opera.com/extension-docs/
. Safari extensions, https://developer.apple.com/library/safari/

documentation/Tools/Conceptual/SafariExtensionGuide/
Introduction/Introduction.html

. Akahawe, D., Saxena, P., Song, D.: Privilege separation in HTMLS5 applications. In:

USENIX Security Symp. (2012)

. Bandhakavi, S., King, S.T., Madhusudan, P., Winslett, M.: Vetting browser extensions for

security vulnerabilities with VEX. CACM 54(9) (September 2011)

. Barth, A., Felt, A.P,, Saxena, P., Boodman, A.: Protecting browsers from extension vulnera-

bilities. In: Network and Distributed Systems Security Symp. (2010)

Brumley, D., Song, D.: Privtrans: automatically partitioning programs for privilege separa-
tion. In: 13th USENIX Security Symp. (2004)

Carlini, N., Felt, A.P., Wagner, D.: An evaluation of the google chrome extension security
architecture. In: USENIX Security Symp. (2012)

. Chong, S., Liu, J., Myers, A.C., Qi, X., Vikram, K., Zheng, L., Zheng, X.: Secure web appli-

cations via automatic partitioning. SIGOPS Oper. Syst. Rev. 41(6) (2007)

. Dhawan, M., Ganapathy, V.: Analyzing information flow in javascript-based browser exten-

sions. In: Annual Computer Security Applications Conference (2009)

. Djeric, V., Goel, A.: Securing script-based extensibility in web browsers. In: USENIX Secu-

rity Symp. (2010)

. Guha, A., Fredrikson, M., Livshits, B., Swamy, N.: Verified security for browser extensions.

In: Proc. of IEEE Symp. on Security and Privacy (May 2011)

. Hardy, N.: The confused deputy (or why capabilities might have been invented). SIGOPS

Oper. Syst. Rev. 22(4) (October 1988)

. Karim, R., Dhawan, M., Ganapathy, V., Shan, C.-c.: An analysis of the Mozilla Jetpack exten-

sion framework. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313, pp. 333-355. Springer,
Heidelberg (2012)

. Kilpatrick, D.: Privman: A Library for Partitioning Applications. In: USENIX Annual Tech-

nical Conference, FREENIX Track (2003)

. Liu, L., Zhang, X., Yan, G., Chen, S.: Chrome Extensions: Threat Analysis and Countermea-

sures. In: Network and Distributed Systems Security Symp. (2012)

Mozilla. Add-on SDK,
https://addons.mozilla.org/en-US/developers/docs/sdk/latest/
Mozilla. Narcissus,
http://mxr.mozilla.org/mozilla/source/js/narcissus/

Mozilla. Query Interface, https://developer.mozilla.org/en-US/docs/
XPCOM Interface Reference/nsISupports#QueryInterface

Mozilla. Spidermonkey, https: //developer.mozilla.org/en/SpiderMonkey
Mozilla Developer Network. Electrolysis,
https://wiki.mozilla.org/Electrolysis

Mozilla Developer Network. XPCOM,
http://developer.mozilla.org/en/XPCOM

Myers, A.C.: Jlow: practical mostly-static information flow control. In: ACM Principles of
Programming Languages (1999)

http://doctorjs.org/
https://wiki.mozilla.org/Jetpack
http://www.json.org/
http://nodejs.org/
http://dev.opera.com/extension-docs/
https://developer.apple.com/library/safari/documentation/Tools/Conceptual/SafariExtensionGuide/Introduction/Introduction.html
https://developer.apple.com/library/safari/documentation/Tools/Conceptual/SafariExtensionGuide/Introduction/Introduction.html
https://developer.apple.com/library/safari/documentation/Tools/Conceptual/SafariExtensionGuide/Introduction/Introduction.html
https://addons.mozilla.org/en-US/developers/docs/sdk/latest/
http://mxr.mozilla.org/mozilla/source/js/narcissus/
https://developer.mozilla.org/en-US/docs/XPCOM_Interface_Reference/nsISupports#QueryInterface
https://developer.mozilla.org/en-US/docs/XPCOM_Interface_Reference/nsISupports#QueryInterface
https://developer.mozilla.org/en/SpiderMonkey
https://wiki.mozilla.org/Electrolysis
http://developer.mozilla.org/en/XPCOM

488

27.

28.

29.

30.

31.

32.

33.

34.

R. Karim, M. Dhawan, and V. Ganapathy

Onarlioglu, K., Battal, M., Robertson, W., Kirda, E.: Securing legacy firefox extensions with
SENTINEL. In: Rieck, K., Stewin, P., Seifert, J.-P. (eds.) DIMVA 2013. LNCS, vol. 7967,
pp- 122-138. Springer, Heidelberg (2013)

Provos, N., Friedl, M., Honeyman, P.: Preventing privilege escalation. In: 12th USENIX
Security Symp. (2003)

Addon SDK. Content proxy, https://addons.mozilla.org/en-US/
developers/docs/sdk/latest/dev-guide/guides/
content-scripts/accessing-the-dom.html

Simon Willison. Understanding the Greasemonkey vulnerability,
http://simonwillison.net/2005/Jul/20/vulnerability/

Ter Louw, M., Lim, J.S., Venkatakrishnan, V.N.: Enhancing web browser security against
malware extensions. J. Computer Virology 4 (2008)

Vardoulakis, D., Shivers, O.: CFA2: a context-free approach to control-flow analysis. In:
Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 570-589. Springer, Heidelberg (2010)
Zdancewic, S., Zheng, L., Nystrom, N., Myers, A.C.: Secure program partitioning. ACM
Trans. Comput. Syst. 20(3) (August 2002)

Zheng, L., Chong, S., Myers, A.C., Zdancewic, S.: Using Replication and Partitioning to
Build Secure Distributed Systems. In: IEEE Symp. Security & Privacy (2003)

https://addons.mozilla.org/en-US/developers/docs/sdk/latest/dev-guide/guides/content-scripts/accessing-the-dom.html
https://addons.mozilla.org/en-US/developers/docs/sdk/latest/dev-guide/guides/content-scripts/accessing-the-dom.html
https://addons.mozilla.org/en-US/developers/docs/sdk/latest/dev-guide/guides/content-scripts/accessing-the-dom.html
http://simonwillison.net/2005/Jul/20/vulnerability/

	Retargetting Legacy Browser Extensions to Modern Extension Frameworks
	1 Introduction
	2 Overview
	2.1 Threats to Extension Security
	2.2 Legacy Extensions on Firefox
	2.3 The Jetpack Extension Framework

	3 Morpheus
	3.1 Design Requirements
	3.2 Analyses and Transformations
	3.3 Policy Checker

	4 Security Analysis
	5 Implementation
	6 Evaluation
	7 Related Work
	8 Conclusion
	References

