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ABSTRACT

The Intel Security Guard Extensions (SGX) architecture enables

the abstraction of enclaved execution, using which an application

can protect its code and data from powerful adversaries, including

system software that executes with the highest processor privilege.

While the Intel SGX architecture exports an ISA with low-level

instructions that enable applications to create enclaves, the task of

writing applications using this ISA has been left to the software

community.

We consider the problem of porting legacy applications to SGX

enclaves. In the approximately four years to date since the Intel

SGX became commercially available, the community has developed

three different models to port applications to enclavesÐthe library

OS, the library wrapper, and the instruction wrapper models.

In this paper, we conduct an empirical evaluation of the mer-

its and costs of each model. We report on our attempt to port a

handful of real-world application benchmarks (including OpenSSL,

Memcached, a Web server and a Python interpreter) to SGX en-

claves using prototypes that embody each of the above models. Our

evaluation focuses on the merits and costs of each of these models

from the perspective of the effort required to port code under each

of these models, the effort to re-engineer an application to work

with enclaves, the security offered by each model, and the runtime

performance of the applications under these models.
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1 INTRODUCTION

Intel’s Software Guard Extensions (SGX) [10, 14] technology has

now been commercially available since microprocessors using the

Skylake micro-architecture were launched in August 2016. Using

the facilities of the SGX, user-level applications can create enclaves

within which they can place their sensitive code and data. Enclaves

are cryptographically secured by the hardware so that an adversary

cannot observe the data or the computations with in the enclave.

SGX’s threat model accommodates a powerful set of adversaries,

including the most privileged software running on the system,

i.e., the operating system or the hypervisor.

This powerful threat model makes SGX attractive for use in

public cloud computing platforms. On such platforms, the cloud

provider controls the system software. An adversarial cloud provider

(or a benign one acting under government subpoena) can leverage

this control to completely subvert the confidentiality and integrity

of a cloud client. The cloud provider can peek into and arbitrarily

modify the state of a client’s virtual machines or containers. This

makes public cloud computing environments unattractive to clients

in several domains that handle sensitive data, such as healthcare

and banking. To accommodate clients with such sensitive comput-

ing needs, a number of public cloud providers have begun to deploy

SGX hardware in their data centres, and offer solutions that allow

clients to leverage the capabilities of the SGX to build applications.

A client that wishes to leverage SGX must write its applications

to be SGX-aware. An SGX-aware application will place its sensitive

data in enclaves, and ensure that the code that operates on this

data is also placed in the enclave. The SGX hardware places certain

restrictions on the kinds of instructions that can execute within

enclaves, e.g., system calls cannot be executed within an enclave.

Enclave code must be written to respect these restrictions, e.g., by

having the application that created the enclave make the system

call on behalf of the enclave. The enclave code must also take care

to ensure that it does not inadvertently leak sensitive data outside

the enclave, and that any sensitive data written outside the enclave

is cryptographically-protected using keys stored within the enclave.

Thus, while the SGX hardware offers powerful primitives, much of

the responsibility of ensuring the confidentiality and integrity of

enclave data falls on the application authors.

A number of techniques have been proposed in the literature to

allow application authors build secure enclave applications. These

techniques range from those that statically verify the absence of in-

formation leaks from enclave applications [27], programming-aids

and libraries to allow enclave applications to be written easily with

encryption of any egress data being handled by the library [26], and

techniques that use programmer annotations on sensitive data struc-

tures to automatically split applications into enclave/non-enclave

portions [13]. The focus of these techniques is to aid authors of

enclave applications, writing new code tailored to use SGX.
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The focus of this paper is on frameworks that have been devel-

oped to allow legacy code (i.e., code that has already been written)

to execute within enclaves. While several applications have been

tailor-built for enclaves (e.g., [20, 24]), this is a resource-intensive

process, and application developers may wish to enjoy the bene-

fits of the SGX without the upfront investment needed to build

enclave code from scratch. These frameworks provide the neces-

sary in-enclave support to allow legacy code to operate within the

constraints imposed by the enclave programming model, e.g., in-

ability to perform certain operations such as system calls within the

enclave. These frameworks broadly follow three different models:

1 Library OSmodel. In this model, an entire library OS executes

within the enclave. To port an application within the enclave, the

application developer loads the application binary togetherwith any

libraries that it uses, and executes the resulting binary within the

enclave. The library OS itself implements much of the functionality

of a traditional OS, so the enclave interface to the rest of the system

is simple and low-level. Examples frameworks implementing this

model are Haven [5], Graphene-SGX [31], and SGX-LKL [21].

2 Library wrapper model. This model, which is implemented

by Panoply [25], assumes that applications invoke system services

via libraries such as the standard C library (libc). Normally, these

libraries contain the low-level system calls and other sensitive

instructions that cannot be executed within the enclave. Panoply

provides library wrappers that enclave-based applications can link

against. Panoply’s library wrappers then ensure that the library

code is invoked outside the enclave. The enclave interface is that

of the standard C library.

3 Instruction wrapper model. In this model, wrappers are pro-

vided for low-level instructions (such as syscall, inb, outb) that

are not permitted within enclaves. The wrappers contain the ma-

chinery to cross the enclave boundary, and take care of data pro-

tection. They automatically encrypt all data leaving the enclave

boundary and decrypt and ciphertext data received by the enclave.

In this case, the enclave interface is the set of instructions that are

forbidden by Intel SGX (e.g., syscall, inb, outb), which the instruc-

tion wrapper implementation intercepts, and executes outside the

enclave. Because applications rarely use the low-level instructions

in their raw form, and rely on libraries to perform system calls,

the instruction wrapper can itself be implemented by modifying a

standard C library implementation. SCONE [4] and lxcsgx [28] use

this model.

We present these models in more detail in Section 3. While

the example frameworks discussed above have been developed

with legacy applications in mind, they implement the heavy-lifting

needed to get applications to conform to the constraints imposed by

enclave programming. The same frameworks can also be leveraged

as supporting infrastructure by new enclave-based applications.

The primary contribution of this paper is to evaluate the relative

merits of the three methods above in porting legacy code to SGX

enclaves from a software engineering perspective. The criteria on

which we wish to evaluate the methods are:

• How much effort is required to port application code to enclaves

in each of these methods? This criterion measures the amount of

effort that it takes a software developer to deploy a first-cut of an

application within the enclave.

• How much flexibility does each method offer the application

developer in engineering the enclave? For example, suppose that

the application developer decides to execute some code outside

the enclave for performance reasons, how much effort does the

developer need to invest to port the code in that way using each of

the methods?

• How much trusted code (in addition to the application’s own

code) must execute within the enclave?

• What are the performance overheads imposed by each approach?

We discuss these questions in detail in Section 4. To study these

questions, we ported a number of popular applications (including

OpenSSL, Memcached, a Python interpreter, and a Web server) to

SGX enclaves using representative frameworks that implement

each of the models described above: Graphene-SGX [31] represent-

ing the library OS model, Panoply [25] representing the library

wrapper model, and Porpoise, our in-house reimplementation of

SCONE [4], representing the instructionwrappermodel.We studied

the benefits/costs of these methods to port legacy applications.

2 BACKGROUND ON SGX

SGX enables confidentiality and integrity-protected execution of

trusted code in untrusted software environments [10, 14]. The pri-

mary end-user-visible artifact in an SGX system is the concept of an

enclave. An enclave is a linear region of a process’s virtual address

space, the contents of which are protected by SGX from even the

most privileged software running on that hardware platform.

A process creates and initializes an enclave via a set of instruc-

tions exported by the SGX ISA. To create an enclave, the process

provides a pointer to a binary executable and instructs the hardware

to initialize the enclave with this binary (which contains the code

and data which the enclave must start executing). The hardware

reserves a region of the virtual address space for the enclave, and

loads up the enclave with this binary. The pages for this portion

of the address space are drawn from a reserved region of physical

memory (called the encrypted page cache). The hardware then ob-

tains a measurement of the enclave (for attesting it to the entity

that started the enclave) and seals the enclave so that any further

modifications are not possible [2].

SGX introduces a new enclave-mode in which the hardware can

execute when executing the code of the enclave. The SGX hardware

ensures that the contents of the enclave are visible in the clear only

when the processor is in enclave mode, and the control is within

that enclave. When the processor is in kernel-mode or in user-mode,

any code that attempts to access the enclave will be unable to access

the cleartext contents of the enclave. It accomplishes this protection

by encrypting the contents of the enclave with hardware-generated

keys, and ensuring that decryption only happens when the there is

a memory access from code executing within the enclave.

The process enters enclave mode by executing an EENTER instruc-

tion exported by the SGX ISA. Once the processor is in enclave-

mode, the enclave code can freely access data stored both within the

enclave, as well as other user-space memory within the process’s

address space.
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Table 1: Set of instructions forbidden for use within the en-

clave. Adapted from the Intel SGX manual [11].

Instruction Comment

cpuid, getsec, rdpmc, sgdt, sidt, sldt, str,
vmcall, vmfunc

Might cause VM exit

in, ins/insb/insw/insd, out,
outs/outsb/outsw/outsd

I/O fault may not safely
recover. May require em-
ulation.

Far call, Far jump, Far Ret, int n/into, iret,
lds/les/lfs/lgs/lss, mov to DS/ES/SS/FS/GS,
pop of DS/ES/SS/FS/GS, syscall, sysenter

Accessing the segment
register could change
privilege level.

lar, verr, verw Might provide access to
kernel information.

enclu[eenter], enclu[eresume] Cannot enter an enclave
from within an enclave.

However, SGX places several restrictions on the instructions that

can execute when the processor is in enclave mode. Table 1 lists

the set of instructions that are forbidden in enclave mode. These in-

structions can either be executed when the process is in user-mode

(e.g., syscall, enclu), or by the privileged system software (e.g., the

OS or the hypervisor) on behalf of the process (e.g., encls, modifi-

cations to the registers DS/ES/SS/FS/GS). Applications executing

within the enclave must not include these instructions.

Legacy applications are not written with enclaves in mind, and

may include many of these instructions, e.g., instructions such as

syscall, sysenter and int are routinely used within user-space

applications to invoke kernel services. While these instructions are

permitted for execution in the processor’s user-mode, they are not

permitted when the processor is in enclave-mode. The main goal

of the enclave-execution frameworks is therefore to enable user-

space applications that use these instructions to execute within

the enclave by suitably wrapping the forbidden instructions and

forwarding them for execution outside the enclave.

Once the enclave has completed execution, it exits using the

EEXIT instruction, transferring control back to the user process that

entered the enclave. Enclave exits can also happen asynchronously

(called an AEX in SGX). In both cases, the hardware saves the state

of the enclave, scrubs registers, and returns to user-mode.

Threat Model. As is standard with SGX, we assume that the en-

clave contains sensitive code and data that must be protected from

adversaries. SGX admits a powerful adversary model in which even

the code of the user-space process that launches the enclave and the

privileged system software (e.g., OS or hypervisor) are untrusted.

SGX protects against these adversaries by encrypting the enclave

contents with hardware-managed keys, and decrypting the contents

only when the access is fromwithin the enclave. Decryption is done

within the cache-hierarchy to prevent cold-boot and bus-snooping

attacks on the contents of the enclave.

The attacker can attempt to attack the enclave in a variety of

ways to compromise confidentiality and integrity. SGX provides

confidentiality and integrity protection against such adversaries

using standard cryptographic techniques (albeit implemented in

hardware). The adversary can also attempt to subvert the execu-

tion of the enclave by feeding it malformed input, e.g., to exploit a

memory error in the enclave code itself, or by suitably modifying

return values when enclave code interacts with non-enclave code

(IAGO-like attacks [6]). Such attacks are a realistic threat, especially

the enclave contains a lot of low-level trusted code. Systems such as

Haven [5] attempt to protect against some such attacks (in particu-

lar, IAGO attacks) by implementing a shim layer that checks the

values that cross the enclave boundary. Nevertheless, it is important

to minimize the amount of trusted code running within the enclave.

Indeed, this is one of the metrics on which we evaluate the various

enclave-execution frameworks that we consider.

For the purposes of this paper, however, we do not consider

within our threat model recent work on hardware-based side chan-

nels to subvert SGX (e.g., ForeShadow [34]). While these attacks

constitute a serious threat to SGX, we consider them out of scope

for this work, whose main goal is to evaluate the merits and costs

of various approaches to enclave code development.

3 ENCLAVE-EXECUTION MODELS

In this section, we present the technical details of the three models

that have been proposed to date in the research community to

support enclave-based applications. All the three models referenced

in this section are illustrated in Figure 1. Fundamentally, the three

models differ in how much processing they perform within the

enclave before crossing the enclave boundary.

3.1 Library OS Model

In this model, used in Haven [5], Graphene-SGX [31] and LKL-

SGX [21], the enclave consists of the application to be protected

linked with a library OS. Library OSes (e.g., Drawbridge [19], the

Linux kernel library (LKL) [22], Graphene [33]) offer a user-space

implementation of much of the functionality that traditional OSes

implement in kernel-model. Privileged operations must still be exe-

cuted in the processor’s supervisor mode (e.g., operations related to

protection and isolation, such as switching page tables upon a con-

text switch). Thus, the library OS interfaces with a small privileged

software layer that implements these privileged operations.

Because library OSes often implement a lot of the functionality

of a traditional OS (e.g., they may have a file system and a network

stack implementation), the interface between the library OS and the

privileged software layer is typically narrower than the system call

layer exposed by theOS to applications, e.g., 38 distinct operations in

the interface of Graphene-SGX, 24 in Haven, and 7 in LKL-SGX [21].

The library OS redirects control to the privileged software layer

when it performs operations that require instructions from Table 1.

An application developer specifies the binary executable that

must be executed within the enclave. The application developer

specifies the list of all libraries that the application may potentially

use (together with their code). The enclave is initialized with the

code of the library OS, the code of the application, as well as all

libraries that the application may use. Because the library OS con-

tains all the supporting code needed by the application, it can link

dynamically against any libraries it uses (that are already pre-loaded

into the enclave).

From an end-user’s standpoint, the execution of the application

proceeds in a manner very similar to executing the application

on a traditional desktop (i.e., without enclaves). It is important to

note that no new code is loaded into the enclave after initialization

(SGX’s attestation model disallows this) even though the end-user

gets the illusion of dynamic linking. This is because all the code is

loaded into the enclave prior to attestation, and the dynamic linker
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Figure 1: Various models proposed in the literature to support the execution of applications within SGX enclaves.

simply patches up symbol tables as the application references the

libraries that it needs at runtime.

The primary benefit of the library OS model is that of a simpler

enclave interface. Because the library OS implements functionality

that is traditionally relegated to the OS, the enclave interface is

greatly simplified. For example, the library OS may implement

significant pieces of the file system within the enclave itself, and

by the time control reaches the enclave interface, the operations

can be specified using reads or writes at the disk block level. Many

system calls such as getpwd, fcntl, dup and brk that require a

user/kernel domain crossing on a traditional system don’t even hit

the enclave interface. The operations represented by these system

calls can simply be implemented as modifications to data structures

to the file system implementation within the library OS. These calls

do not modify security-sensitive state of any other applications and

do not need to be executed by privileged system software.

For some system calls, it is important not to cross over from

the enclave. For example, applications typically rely on the OS to

provide a source of randomness. Since the OS is untrusted, the

application can no longer simply trust the results of a getrandom

system call executed by the OS; the OS could simply cheat by pro-

viding a poor set of random values, weakening any cryptographic

keys that the application may then generate using these random

values. Instead, the underlying enclave execution framework must

leverage other mechanisms to obtain randomness, e.g., the rdrand

x86-64 instruction, which sources randomness from the hardware.

On the SGX, all code running outside the enclave is untrusted.

This includes the user-space application within which the enclave

is initiated, as well as the privileged system software layer. As a

result, enclaves must typically guard against IAGO-like attacks [6],

in which the untrusted code attempts to compromise the security

and privacy of enclave code by passing malicious return values to

calls that cross the enclave boundary.

In the library OS model, the interface to the enclave is concep-

tually simpler than even the system call interface on traditional

OSes. For example, as discussed previously, among the three library

OS execution models discussed in the literature, Graphene-SGX

has the widest interface, and even that interface consists of only

38 interfaces, as opposed to a few hundred in a typical system call

interface. As a result, on systems that use the library OS model, it

is easier to design shim layers to protect against IAGO-like attacks.

The main disadvantage of the library OS model is that the entire

library OS runs within the enclave, amounting to code that is a

few hundreds of thousands of lines within the trusted-computing

base (TCB); we provide concrete numbers in Section 4. As a result,

an attacker who targets the enclave-based application has a larger

attack surface to work with, and any bugs within the library OS or

other supporting code become a liability for the enclave.

As proposed and illustrated in the research literature on library

OS prototypes, entire applications execute within the enclave. This

offers little flexibility to a potential application developer who

wishes to execute only part of the application within the enclave.

For example, consider an in-enclave Python interpreterÐthe de-

veloper may wish to execute only the core interpreter loop within

the enclave, leaving all the other functionality of the interpreter

outside the enclave. This may either be for performance reasons,

or to reduce the amount of trusted code in the application.

In the library OS model, re-engineering application code is cum-

bersome at best. The portion of the application code that executes

will need to communicate with the rest of the application, but this

will involve communicating across the layers of the library OS. This

model also complicates the case where two enclave-based applica-

tions need to interact with each other. For example, suppose that

a Python interpreter, executing within an enclave, needs to com-

municate with a key-value store, also executing within an enclave.

The two are mutually-distrusting, and therefore cannot execute

as applications within the same library OS (and hence the same

enclave). Thus, they execute in two different enclaves, and each

message in a cross-enclave communication must go through the

library OS layers in both enclaves. Graphene-SGX implements this

idea in the notion of enclave groups, which are a group of mutually-

distrusting, yet interacting applications, derived from a common

parent process using a fork.
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3.2 Library Wrapper Model

To our knowledge, Panoply [25] is the only system that implements

the library wrapper model. In stark contrast to the library OS model,

the library wrapper model implements an interface that exits the

enclave while implementing little additional functionality within

the enclave. In Panoply, the standard C library executes outside the

enclave. It provides library wrappers that enclave applications can

link against. The wrappers simply marshal data and pass it to the

library that runs outside the enclave.

Because the in-enclave library wrappers do little more than

marshaling/demarshaling data, Panoply adds the least amount of

additional code to the enclave (thereby reducing the TCB size within

the enclave). The application developer has the flexibility to decide

which portion of the application executes within the enclave. The

task of splitting an application consists of executing all the enclave

code as a separate module, and making a cross-module call to a

function within that code. The enclave code itself is easy to produce,

by simply linking the module against the Panoply library wrappers.

The flip-side of these benefits is that the library code that ex-

ecutes outside the enclave is untrusted, and can be used by the

attacker to subvert the enclave application, e.g., via IAGO-like at-

tacks. Because the library wrapper is much larger than the library

OS interface, it becomes more challenging to defend against attacks.

The standard C library has an interface spanning several thou-

sand functions. Moreover, this interface has also been changing as

the library implementation evolves. For example, we studied the

glibc repository and observed the number of API calls across ten

versions of the library, and the number of APIs added or removed

from each version. Table 2 presents our results. As this table shows,

the library wrapper interface is over two orders of magnitude larger

than the library OS enclave interface, and evolves significantly over

the ten generations that we studied. Consequently, a library wrap-

per implementation such as Panoply must also be modified and

tailored for each version of the library.

It is also important to note that standards such as POSIX and ISO

only specify the library’s function-call interface, but leave unspeci-

fied the definitions of certain data structures. These data structures

can change from one library version to another even if the interface

remains POSIX or ISO-compliant. Changes to these data structures

will require modifications to the library wrappers to suitably mar-

shal/unmarshal the data as it crosses the enclave boundary. As an

example, Panoply does not support the FILE structure. Any appli-

cation code that uses the FILE structure must be rewritten to use

a placeholder variable of type int, which is then translated to the

corresponding FILE structure in the library (outside the enclave)

via a table lookup (see Section 4-RQ1).

In addition to a large interface, the Panoply prototype requires

invasive changes to applications to be modified to leverage its

library wrappers. All calls to the library within the application must

be modified by calls to the Panoply library instead. The Panoply

authors report modifications on the order of about a 1000 lines for

the benchmarks that they report in their paper.

Although modifying applications does impose a burden on a soft-

ware developer wishing to quickly prototype an enclave-protected

version of the application, the resulting engineering effort may

sometimes be used to improve application performance as well.

Table 2: The evolution of the standard C library (glibc) inter-

face across several versions. This table shows the number of

API calls in each version, and the number of API calls added

(+) or removed (-) from the prior version.

#Version # API size # added/removed
2.20 2021 +1/-2
2.21 2023 +2/-0
2.22 2032 +9/-0
2.23 2043 +12/-1
2.24 2046 +3/-0
2.25 2058 +13/-1
2.26 2073 +32/-17
2.27 2110 +37/-0
2.28 2126 +18/-2
2.29 2128 +2/-0

For example, we observed that the authors of Panoply had signif-

icantly modified the code of openssl in the process of porting it

to work within the enclave. For example, aside from the modifi-

cations to use Panoply library wrappers, the Panoply version of

openssl also replaces the random number generation code with

calls to the Intel SDK’s random number generator, which in turn

calls the rdrand x86-64 instruction to obtain random numbers. This

prevents a domain crossing, and is also more secure than relying

on the underlying untrusted OS to provide random numbers.

3.3 Instruction Wrapper Model

The instruction wrapper model takes a middle-ground between the

library OS and library wrapper approaches in providing an enclave

interface. It provides wrappers for instructions that are forbidden

for use within the enclave, i.e., the instructions in Table 1. The

wrappers perform marshaling of arguments, and forward them to

supporting code outside the enclave, which executes the instruc-

tions on behalf of the enclave. In contrast to the library wrapper

model, the marshaling happens at a much lower level of abstraction,

i.e., at the level of registers and memory.

In theory, this approach can be made to work on arbitrary bina-

ries by replacing all occurrences of the instruction in the enclave

code with the wrapper. However, practical implementations of the

instruction wrapper model, (e.g., SCONE [4]) make the observation

that applications rarely use these instructions in their raw form.

Rather, the applications are programmed to use libraries, which

in turn execute these low-level instructions on their behalf. Thus,

they wrap the occurrences of these instructions within the library.

Applications simply link against these libraries to leverage the

instruction wrappers.

By implementing wrappers at a much lower level (i.e., wrap-

ping instructions rather than providing library call wrappers), it

works on a much slower changing interface. To take an example,

we consider the syscall instruction, which is used to implement

system calls. Naturally, the wrappers for the syscall instruction

depend on which system call is being invoked (e.g., because the

number of arguments to each system call are different). As Table 3

shows, the system call interface on Linux is both much narrower

and much stabler over kernel versions as compared to the glibc

interface (which was shown in Table 2).

The instruction wrapper approach shares some of the benefits

of the library wrapper model. The main difference between this

model and the library wrapper model is that the standard C library

executes within the enclave. As a result, instruction wrappers have
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Table 3: Evolution of the system call interface across ver-

sions of the Linux kernel.

#version # system calls # system calls added
v4.15 333 0
v4.16 333 0
v4.17 333 0
v4.18 335 2
v4.19 335 0
v4.20 335 0
v5.0 335 0
v5.1 339 4
v5.2 345 6

Table 4: Applications used in our evaluation.

Application Description

bzip2-1.0.6 File compression utility

memcached-1.5.20 Key-value store

openssl-1.0.1m OpenSSL cryptography library

h2o-2.0.0 HTTP Web server

cpython-3.7 Python interpreter in C

a somewhat larger TCB than Panoply. Instruction wrappers must

still implement a shim to protect against IAGO-like attacks on the

(much narrower) instruction return interface. This model does not

require invasive application-level modifications for rapidly creating

an in-enclave prototype. However, application-level modifications

may be necessary to optimize its performance, and as our evaluation

shows, the instruction-wrapper model also lends itself well to any

future re-engineering of the application.

The primary costs of the model are that it has a somewhat larger

TCB than Panoply (although a much smaller TCB than the library

OS model). Applications also need to be re-linked to use libraries

in which the low-level instructions forbidden within SGX enclaves

are wrapped.

SCONE [4] uses instruction wrapping. However, its implementa-

tion is not publicly available (SCONE is the basis for a commercial

offering from scontain.com). For our study, we therefore built an

in-house replica of SCONE (which we will refer to as Porpoise).

Like SCONE, Porpoise is implemented by wrapping instructions

from Table 1 in the musl-libc [17] version 1.1.9 implementation

of the standard C library. However, unlike SCONE, the version of

Porpoise used for this paper does not incorporate asynchronous

system calls and does not integrate with Docker. Porpoise supports

threads within the enclave using a pthreads-like API. The devel-

oper pre-specifies the number of threads used by the enclave, and

these are mapped 1:1 to threads outside the enclave. This differs

somewhat from the M:N threading model proposed in SCONE. We

have archived the version of Porpoise used for the experiments

reported in this paper (DOI:10.5281/zenodo.3895761).

4 EVALUATION

We now quantitatively evaluate the costs and benefits of the three

models discussed in the previous section. Our methodology is as

follows: We consider one concrete prototype as a representative

of each modelÐGraphene-SGX for the library OS model, Panoply

for the library wrapper model, and Porpoise for the instruction

wrapper model, and port a suite of applications (see Table 4) to

enclaves using each of these models (not all applications work in all

settings, as we will see) to answer the following research questions:

Table 5: Evaluating the ability to port applications to en-

claves using each framework (RQ1).

Application Graphene-SGX Panoply Porpoise

bzip2 " " "

memcached " $ "

openssl " " "

h2o " " "

cpython " $ "

(RQ1) Porting effort. From an application developer’s point of

view, what is the effort required to port the application and get it

running within the enclave?

(RQ2) Application re-engineering effort. Suppose that an ap-

plication developer wishes to re-engineer the application by decid-

ing that he only wants to run a portion of the application within the

enclave. After the application developer has decided what code to

run within the enclave, what is the amount that he needs to invest

to get the code running within the enclave?

(RQ3) Security. How much trusted code runs within the enclave,

in addition to the application’s own enclave code?

(RQ4) Runtime performance. What is the runtime performance

overhead of each of these approaches, and how do they compare to

native execution (i.e., executing the code without enclaves)?

4.1 RQ1: Porting Effort

To answer RQ1, we attempted to port the applications from Table 4

using each of the three methods. For this research question, we

ported the entire application to run within the enclave. The applica-

tion that starts the enclave is simply a dummy main function, that

starts the application, but then has no further role to play in the

execution of the application. Other than this main function, only

the untrusted portion of the Intel SGX SDK, and any other code

required by the framework (e.g., the untrusted shim of Porpoise)

run in user-space. Table 5 presents the results of our experiments.

Of the three methods, Graphene-SGX provides the least-effort

porting experience. We simply wrote a manifest file that describes

(among other things) the set of libraries used by the benchmark,

and Graphene-SGX is able to execute the applications. The effort to

port these applications to run with Porpoise is comparable to that of

Graphene. We compiled the application with Porpoise’s version of

musl-libc, and built it as a statically-linked, position-independent

binary. We ported all five applications to Porpoise.

Panoply is the most cumbersome of the three approaches to

which to port applications. In fact, the authors of Panoply them-

selves ported openssl (version 1.0.1) and h2o (version 2.0.0), and

reported having to modify 307 SLOC and 154 SLOC in these applica-

tions, respectively [25]. In our experiments, we used the same code-

base for openssl and h2o as provided by the authors of Panoply.

As a result, we chose openssl version 1.0.1 and h2o version 2.0.0

for our experiments with Graphene-SGX and Porpoise (so that we

could compare them across the same versions for our research ques-

tions), even though both Graphene-SGX and Porpoise can execute

the latest versions of both openssl and h2o.

To understand the complexity of porting an application afresh to

Panoply, we attempted to port bzip2 and memcached from scratch.
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While we were successful in our attempt with bzip2, we were

unable to get memcached executing successfully in Panoply. We

found that bzip2 uses 10 API calls from the standard C library that

were not wrapped in the Panoply prototype available to us (Panoply

currently has about 250 wrappers implemented out of about 2000

functions in the libc interface); we therefore implemented these

10 wrappers. memcached similarly invokes a libevent library that

consists of 69 interfaces for which we had to write wrappers.

In addition to requiring more wrappers, we found that bzip2

uses the FILE structure in its code. The FILE structure includes sev-

eral pointers. Panoply does not currently support such structures

that have pointers in them as part of its library wrapper interface.

Instead, it maps each FILE structure to an index (of type int), and

uses the index as part of the library wrapper. The Panoply code

outside the enclave uses the index to look up the FILE structure,

now maintained outside the enclave, and performs the operation.

We therefore had to modify bzip2 to replace all occurrences of

the FILE structure with an index instead. In all, this and other

changes required 149 SLOC of modifications to bzip2. We found

that memcached also has similar deeply nested structures (e.g., as

part of the libevent library’s interface) that are difficult to port

easily using Panoply. We were unable to port memcached despite

adding wrappers for 30 additional libc interfaces. We note that

these challenges expose a foundational difficulty in the library wrap-

per methodÐbecause the library interface is large, and supports

complex data structures, writing library wrappers is fundamentally

a difficult task. This task is further complicated when the library

wrappers must evolve as the library interface itself evolves (see

Table 2). Moreover, wrappers must be provided for every additional

library (e.g., libevent) that the application may use.

In addition to these challenges, we were also hampered by some

implementation-related quirks of Panoply. In particular, Panoply

itself relies on the Intel SGX SDK to support enclaved execution.

The Intel SGX SDK provides support for a subset of BSD libc. Since

this subset is not sufficient to support the applications considered

in the Panoply paper, the authors added support based on the ap-

plications needs. However, they chose to use GNU libc for this

purpose. This mismatch creates a number of complications because

the GNU and BSD versions differ in the set of headers required

during compilation. For example, the definition of fields in struct

timespec in BSD and GNU libc usea different set of macros in

their type definitions, and these macros are expanded in different

header files in the BSD and GNU libc libraries. When the appli-

cation developer encounters such a situation, he must manually

identify which header file (BSD’s or GNU’s) to include. Because

the same set of definitions do not appear in the same set of files

across these library versions, blindly including a header file may

also lead to name clashes that must be resolved manually. Given

this rather time-consuming experience attempting to port bzip2

and memcached to Panoply, and the number of invasive source code

changes needed, we did not attempt to port cpython to Panoply,

because it uses many more interfaces from the standard C library.

Summary (RQ1)ÐThe library OS and instruction-wrapping ap-

proaches provide a seamless enclave-porting experience. The library-

wrapping approach, as implemented by Panoply, requires modifying a

few hundred lines of code within the application. Additional libraries

used by the application will require developing new wrappers.

Table 6: Number of new interfaces required and code added

for application re-engineering with Porpoise (RQ2).

Application #Interfaces SLOC added

bzip2 3 29

openssl 1 8

cpython 24 277

4.2 RQ2: Application Re-engineering Effort

While RQ1 concerned the effort to port an application in its en-

tirety into the enclave, RQ2 concerns the effort that an application

developer would invest to port an application after deciding to

re-engineer it. For example, an application developer may decide

that it is not necessary to execute the entire application inside the

enclave, and that it suffices to execute just certain security-critical

parts of it within the enclave. RQ2 asks the following question: how

different is the experience in building enclave code with each of

these frameworks after such application re-engineering?

The research literature does contain examples of tools that assist

with such porting, notably Glamdring [13], Civet [32], and the

gcc-based tool described by the authors of lxcsgx [28]. These tools

assist the programmer with the core task of re-engineering the

application. Given a specification of sensitive data that must be

protected (e.g., in the form of annotations), and hence execute

within the enclave, these techniques use static taint analysis to

identify the other dependent code that must also execute within the

enclave. Note that these tools assume the existence of an enclave

execution framework.

Our goal in RQ2 is not to identify the sensitive data that must exe-

cute within the enclave or assess the difficulty of splitting the appli-

cation. Rather, assuming that a suitable split has been identified, we

wish to determine how much effort it is to re-engineer the applica-

tion after such a split has been identified. We assume that the split is

identified at the function-level of granularity, i.e., certain functions

have been identified to execute within the enclave, while the rest

execute within the untrusted code. Because we manually analyzed

the applications to identify this split for RQ2, we restricted our-

selves to three of the application benchmarks, viz., bzip2, openssl,

and cpython, as described below.

• bzip2. We split bzip2 so that only the main file compression

algorithm executes inside the enclave. This results in an enclave

interface of three functions, BZ_compressInit, BZ2_compress and

BZ2_compressEnd, with which the the re-engineered bzip2 appli-

cation interacts with the compression algorithm

• openssl.We moved the functionality that generates RSA keys

to the enclave. The enclave interface to do so consists of just one

function, (genrsa_main).

• cpython. The cpython application consists of code to parse,

compile and then interpret an input python program. In real-world

settings, the interpreter is responsible for running the python code

on sensitive data. Therefore, we decided to port only the interpreter

to the enclave. The interpreter’s enclave interface has 24 functions.

We only re-engineer our benchmarks to execute atop Porpoise

and Panoply (only atop Porpoise for cpython), where the effort to

build the enclave part of the code after splitting is comparable. This
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filename: enclave.edl

public ecall_PyArena* PyArena_New(void);

filename: pythonrun.c

PyArena * ecall_PyArena_New(void);

#define PyArena_New ecall_PyArena_New

filename: function_wrapper.c

PyArena* ecall_PyArena_New(void){

PyArena *ret = NULL;

sgx_status_t status = SGX_SUCCESS;

status = ecall_PyArena_New(enclave_id, &ret);

// ret will point to a buffer that stores

// the return value from the enclave

assert(status == SGX_SUCCESS);

return ret;

}

Figure 2: Example of new code required to introduce an en-

clave interface in cpython with Porpoise (RQ2).

is because both Porpoise and Panoply have a similar enclave/non-

enclave interaction interface.

Figure 2 shows the new code that we write to create a new

enclave interface in Porpoise for the cpython application. As this

code shows, an application that wishes to invoke a function in the

enclave interface must simply perform an ecall to that function

togetherwith its arguments, and the enclave ID. A new entry for this

interface is also included as part of the enclave’s interface definition

file. Table 6 shows the number of lines of such code that we had to

write to create enclaves for each re-engineered application.

We did not attempt to re-engineer our benchmarks to run atop

Graphene-SGX. This is because Graphene-SGX was originally de-

signed to run applications in their entirety within the enclave. This

is reflected in the design of their enclave interface, which is a low-

level interface that communicates with a platform-specific adapta-

tion layer (called the Graphene-PAL). By design, the Graphene-PAL

invokes a fixed entrypoint inside the enclave, typically the equiva-

lent of the _start function in a traditional application. As a result,

re-engineering an application to work atop Graphene-SGX, with

part of its code running in the enclave, would require invasive

changes to the Graphene-SGX platform itselfÐan activity that we

did not wish to undertake, since our goal is to understand the

platforms as-is.

It would be possible to re-engineer an application atop Graphene-

SGX, so that the sensitive portion runs in its own process (with its

own enclave), and interacts over IPC with the remaining parts of

the application. However, this would require a fundamental rewrite

of the application to make it a distributed client/server system. We

view this change as being rather invasive to the application’s code

base, and therefore do not evaluate this method.

Summary (RQ2)ÐThe effort required to re-engineer applications with

the library-wrapping and instruction-wrapping models is similar. The

enclave interface exposed by library OSes does not facilitate easy re-

engineering of the application into an enclave and non-enclave portion.

4.3 RQ3: Security Evaluation

We evaluated the amount of trusted code that must execute within

the enclave for each of the three frameworks. For RQ3, we did not

consider the trusted code of the application itself (i.e., its enclave

code), because that number would depend on the application itself,

Table 7: Amount of trusted (and untrusted) code that exe-

cutes within each of the frameworks (RQ3). glibc refers to

glibc-2.27, while musl refers to musl-1.1.9.

Graphene Panoply Porpoise
Comp. SLOC Comp. SLOC Comp. SLOC

Trusted Code
LibOS 31,742 Shim 14,506 Shim 1,934
glibc 1,222,912 - musl 82,978
- Intel SDK 119,545 Intel SDK 119,545

Untrusted Code
PAL 40,493 Panoply shim 3,004 Porpoise shim 1,209

and how the developer has decided to engineer the enclave. Rather,

we only consider the code that is core to the framework itself.

In addition, both Panoply and Porpoise use the Intel SGX SDK to

bootstrap basic enclave functionality (Graphene-SGX does not), and

this code is therefore part of their trusted code base. SCONE [4],

an instruction-wrapping framework, also does not use the Intel

SGX SDK within the enclave, relying instead on a home-grown

library for basic enclave functionality. The source code for SCONE

is not publicly available, but their paper reports a TCB of size of

approximately 187,000 lines of code for the version of SCONE that

implements shielding against IAGO-style attacks.

Table 7 presents the results of our evaluation. It shows the num-

ber of lines of trusted code that executes in each of these frame-

works (measured using the sloccount utility). It also shows the

amount of untrusted support code provided by the infrastructure

(i.e., the code that executes outside the enclave, and interacts with

the enclave).

We see that Panoply emerges as the framework that reduces

the amount of code that executes within the TCB. However, they

do this at the cost of implementing wrappers at the library level

of abstraction, which means that many more wrappers have to

be written and that these wrappers have to evolve as the libraries

evolve. Recall from Table 2 and Table 3 that the library API evolves

much more than the relatively-stable system-call API. Thus, while

Porpoise hasmore trusted code (in particular, the musl-libc library,

which it modifies), its interface is more stable and requires fewer

changes as the code evolves. Graphene-SGX requires the most

trusted code, because it includes the library OS in the enclave.

The enclave-execution framework is an application’s interface

the untrusted environment outside the enclave. It must shield the

enclave by providing security. Shields proposed in prior work imple-

ment, encryption by default for file system and network traffic [4]

and check return values [5, 25, 31] to protect the enclave from IAGO

attacks [6]. For example, the file system shield of Graphene-SGX

adds a message-authentication code (MAC) to files stored outside

the enclave. When it needs to open a file, it memory maps the file,

and checks the MAC, and then copies the file into in-enclave mem-

ory. All further file operations are directed to this copy, and the

file is copied back from the enclave to the memory mapped region

when it is closed. SGX-LKL goes a step further, and implements

an in-enclave file system that encrypts, shuffles, and adds a MAC

to each disk block when it sends that block outside the enclave

for storage. Disk blocks retrieved from outside are checked and

decrypted within the file system.

It is difficult to quantitatively compare the implementation of

such shields head-to-head across frameworks. This is because the

checks are often included as part of the core functionality of the
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Table 8: Workloads used to run applications (RQ4).

Application Workload

bzip2 zipping and unzipping files of various sizes
memcached memtier_benchmark [15]
openssl HMAC (md5), DES-CBC, AES-256-CBC, SHA-256, MD5, RSA-

2048-sign and RSA-2048-verify from openssl speed benchmark
h2o wrk2 http workload generator [36]

cpython benchmarks from pyperformance using timeit

framework itself (e.g., an encrypted file system in SGX-LKL). This

functionality itself adds to the size of the TCB executing in the

enclave. Nevertheless, if we were to use the width of the enclave

interface as a metric (because it determines the number of distinct

functions that require shielding), the library OS model provides

the thinnest interface to be protected (e.g., 38 in Graphene-SGX,

and only 7 in SGX-LKL [21]). The checks are also logically simple,

e.g., for the file system, checking MAC values after decrypting disk

blocks that are read, or affixing MAC values to and encrypting

the disk blocks that are written. The instruction wrapper interface

is somewhat bigger, and SCONE implements checks for different

system calls related to the file system and network. The checks here

work at the system call interface, and therefore work atop those

abstractions, e.g., files rather than disk blocks as in the library OS

model. The library wrapper model has the widest enclave interface

and would likely require shields to extensively cover the library

interface. However, we could not directly verify this fact. While the

Panoply paper claims that they implemented shields in the library

interface, the publicly-available prototype implementation does not

include these checks.

Summary (RQ3)ÐLibrary-wrappers, as implemented in Panoply, re-

quire the least amount of support code within the enclave. However,

this code must also evolve to support changes to the library API. The

instruction-wrapper approach requires more code within the enclave,

but is likely to be stabler with respect to code evolution. The library

OS approach requires the largest amount of trusted code within the

enclave.

4.4 RQ4: Runtime Performance

We conducted experiments to understand the runtime performance

implications of the three models. We studied both the overall per-

formance impact on the applications that we ported, as well as

microbenchmarks to stress the enclave/non-enclave interface.

We conducted all our experiments on an Intel(R) Core(TM) i7-

7700 CPU (3.60GHz) with 4 cores and 2 threads per core (8 hyper-

core) and an 8192KB cache and 16GB of RAM. We used Ubuntu

16.04 LTS (Linux 4.4.0-169) as the underlying OS for Graphene-SGX,

Panoply and Porpoise. (Panoplyworks only atop Linux 4.4.0-169; we

therefore used it for our evaluation. However, Porpoise works even

on the latest version of the Linux kernel (5.3.8).) For experiments

with our application benchmarks, we run the entire application

within the enclave under each of the frameworks. The machine runs

only the application under test, and all the reported numbers are an

average of five runs. However, we are unable to report performance

numbers for each application on all frameworks, because we were

unable to port all the applications to Panoply. Table 8 shows the

workloads with which we ran the applications, while Table 9 reports

the results of our experiments

Table 9 shows the performance of each of the applications, run-

ning the benchmarks from Table 8 on Graphene-SGX, Panoply

(where applicable), and Porpoise. It also shows the native perfor-

mance of the application, i.e., when run outside the enclave. We

find that across the benchmarks, neither Graphene-SGX, Panoply

nor Porpoise consistently outperforms the other. For example, on

memcached and h2o, Porpoise provides higher throughput and

lower latency than Graphene-SGX. However, Graphene-SGX out-

performs Porpoise on bzip2 and python.

The bzip2 benchmark reads files in fixed-size chunks as it passes

the file contents to the enclave. Thus, as the file size increases, the

number of enclave/non-enclave interactions increases. However,

Graphene-SGX, being a library OS implements file caching tech-

niques, which fulfil some of the read requests, thereby ameliorating

the number of domain crossings required. For the bzip2 benchmark,

Panoply offers performance roughly comparable to Graphene-SGX,

both outperforming Porpoise, especially as file sizes increase. This

is because Porpoise executes the standard C library inside the en-

clave, in contrast to Panoply, which executes it outside the enclave.

A number of library calls such as fopen, read, and so on, result in

multiple domain crossings for Porpoise, and the number of such

domain crossings increases with file size. In contrast, the number

of domain crossings does not grow proportionally with the file size

in the case of Panoply, thus explaining the performance difference.

For openssl, we found that Panoply outperforms both Graphene-

SGX and Porpoise. This is because the version of openssl ported

to Panoply makes extensive changes to optimize the performance.

For example, as explained earlier this version replaces the random

number generation code included in the openssl release with calls

to sgx_read_rand, a function provided by Intel SGX SDK, which

uses the rdrand hardware instruction to source randomness.

Both memcached and h2o run I/O intensive workloads, making

them both network-bound. For both these benchmarks, we find

that Graphene-SGX is significantly slower than Porpoise in terms

of both throughput and latency. In case of h2o, the version running

atop Graphene-SGX saturates at around 10,000 requests per second,

with all requests exceeding that threshold being dropped by the

Web server. The latency is also rather large, at 132ms per request.

Both the versions running atop Panoply and the Porpoise are able

to sustain a larger number of requests per second, however, the

Panoply version saturates at around 33,000 requests per second,

offering a latency of more than 1 second per request. The version

running on Porpoise saturates above 40,000 requests per second.

With memcached, the version on Porpoise outperforms the version

on Graphene-SGX even as we vary the number of server threads.

EvaluationwithMicrobenchmarks.To understand the raw over-

heads of enclave crossings imposed by each of the frameworks, we

also evaluated them with microbenchmarks. Our microbenchmarks

consist of enclave code that cause an enclave crossing by requesting

the execution of a system call a million times. We considered a set

of system calls shown in Table 10.

We find that Graphene-SGX offers the best performance for se-

quential read operations, comparing favourably even with native

performance. This is because Graphene-SGX, being a library OS,

implements several file caching techniques that avoid costly do-

main crossings. However, the benefit of these optimizations does

not apply when the read operations seek to random locations in the
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Table 9: Comparing the performance of various application benchmarks running atop Graphene-SGX, Panoply and Porpoise

(RQ4). memcached and cpython are not available atop Panoply (see Table 5).

Application Workload Graphene-SGX Panoply Porpoise Native (no enclaves)

bzip2

File size (MB) Time (s) Time (s) Time (s) Time (s)
16 4.134 9.410 5.585 1.979
32 7.212 12.738 9.592 3.971
64 11.732 17.688 17.850 7.957
128 21.157 27.690 36.438 17.373
256 44.347 49.921 67.302 32.578

memcached

memtier params Throughput (MBps), Latency (ms) - Throughput (MBps), Latency (ms)Throughput (MBps), Latency (ms)

4 threads, 50 connec-
tions/thread, 10,000 req/-
client

#Threads Throughput Latency
1 0.4 9.77
2 1.15 3.83
3 1.67 2.52
4 2.37 1.81
5 2.42 1.86

N/A

#Threads Throughput Latency
1 2.11 2.73
2 4.24 1.70
3 6.46 1.17
4 8.23 0.79
5 7.78 0.78

#Threads Throughput Latency
1 6.46 0.95
2 12.38 0.51
3 17.83 0.39
4 16.34 0.41
5 11.32 0.49

openssl

Workload Throughput (KBps) Throughput (KBps) Throughput (KBps) Throughput (KBps)
HMAC (md5) 390,626 416,091 381,300 455,747
DES-CBC 103,768 97,886 103,723 103,883

AES256-CBC 250,578 135,932 250,406 259,107
SHA-256 188,996 238,508 183,482 186,413
MD5 242,736 405,965 242,270 373,865

RSA-2048-sign 303.8 ops/sec 1284.7 ops/sec 305.6 ops/sec 327.0 ops/sec
RSA-2048-verify 14,540.5 ops/sec 37,678.7 ops/sec 14,562.2 ops/sec 14,893.2ops/sec

h2o

Requests/sec Latency (ms) Latency (ms) Latency (ms) Latency (ms)
10,000 132 1.61 1.28 1.29
20,000 * 1.61 2.30 1.32
30,000 * 2.65 1.93 1.36
40,000 * > 1sec 18.21 1.77
50,000 * > 1sec > 1sec 2.13

cpython

pyperformance Time (ms) Time (ms) Time (ms) Time (ms)
html5lib 260 269 106
pyres 1940 1980 890

json_load 0.348 N/A 1.030 0.171
float 432 396 122

fannkuch 1805 1806 566

Table 10: Measuring the performance of the frameworks us-

ing microbenchmarks. The time reported (in seconds) is for

1 million executions of the system calls (RQ4).

syscall Graphene-SGX Panoply Porpoise Native

read (sequential) 0.405 3.133 4.295 0.209
write 13.268 3.471 4.742 0.609

open+close 24.946 6.973 9.192 1.103
lseek+read 3489.270 6.186 8.637 0.716
gettimeofday 4.134 2.479 3.668 0.019

getpid 0.0707 2.549 3.9308 0.0022

file, as shown in Table 10. In this case, both Porpoise and Panoply

outperform Graphene-SGX. Graphene-SGX also offers poorer per-

formance for write and open+close, likely due to the additional

operations within its shield. The performance of Panoply and Por-

poise is roughly comparable.

Summary (RQ4)ÐNo one model appears as the clear favourite with

respect to runtime performance. Using a library OS can provide the

benefits of file caching for some applications. Both the library-wrapping

and instruction-wrapping models perform better for network-bound

applications than the library OS model.

4.5 Threats to Validity

The primary threat to validity of our reported results comes from

the fact that we have only evaluated one representative prototype

for each of the enclave execution models. While the community

has invested effort in building frameworks to allow new applica-

tions to be written (e.g., [3, 9, 18, 23, 35]), these frameworks are

not readily suited to run legacy code in enclaves, which is the pri-

mary focus of this paper. For the enclave execution models that

we considered, the number of open-source frameworks available

is limitedÐonly Panoply for the library wrapper model. SCONE

was the only the instruction wrapper prototype available when

we started the work (which we reimplemented as Porpoise), and

although we became aware of lxcsgx [28] after we built Porpoise,

its source code is not yet available. However, Porpoise and lxcsgx

were substantially similar, and we decided to use Porpoise for our

evaluation. SGX-LKL [21] is a recent implementation of the library

OS model that offers a substantially smaller enclave boundary than

Graphene-SGX. However, the application developer’s experience to

port applications with both Graphene-SGX and SGX-LKL (RQ1 and

RQ2) will be similar, and those results will also hold for SGX-LKL.

A second threat to validity is that we have only considered

five applications for our study. Although we believe that these are

representative of applications used in real-world, the results may

differ if another set of applications is used. Moreover, even for the

applications that we considered, we have not attempted to verify

whether the functionality of the version ported to the enclave is

equivalent to the native application. In particular, our experience

with each ported application was restricted to the workloads on

which the application was executed.

5 RELATED WORK

Since we have already discussed various frameworks to port legacy

applications [4, 5, 21, 25, 28, 31], we will focus our discussion in

this section on other related work.

Porting applications to enclaves. Prior work has ported applica-

tions in several specific domains to enclaves. These include frame-

works for MapReduce tasks [24], language environments for JavaS-

cipt [8] and Rust [7], BitCoin and Blockchain applications [30, 37],

in-memory databases [20], object stores [12], and middleboxes [29].

SCONE [4] and lxcsgx [28] use the instruction-wrapping model to

port containers (Docker in case of SCONE and lxc containers in

case of lxcsgx) into enclaves.

Each of these projects focused on providing an enclave version of

a specific application or class of applications. Our focus, in contrast,

is on generic frameworks that can be used to port any application to
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enclaves. Naturally, because the projects cited above are tailored to

individual applications, we expect the resulting enclaves to perform

better than applications ported using the generic frameworks. Since

they are tailored from scratch for specific application domains, they

also are better engineered to just run the sensitive portions of the

applications within the enclaves, rather than the entire application,

as we did in this paper. Thus, we view the frameworks discussed

in this paper as stop-gaps, that can be used to get enclave applica-

tions up and running quickly, as developers work on rewriting the

applications to tailor them to enclaves.

Finally, there is also work on creating secure in-enclave file

systems [1, 16]. The main goal here is to ensure that file accesses

that cross the enclave boundary do not reveal any information about

the data being accessed inside the enclave. These file systems use

techniques inspired from the oblivious-RAM literature to provide

such guarantees. The frameworks discussed in this paper do not

offer such guarantees, and may leak information (e.g., about the

files accessed, the number of bytes read) even if the data is stored

encrypted in the files. However, they can be integrated with such

ORAM-inspired file systems to provide stronger guarantees.

Tool support towrite enclave code.Tools such as Glamdring [13]

and Civet [32] offer support to automatically partition a legacy ap-

plication into an enclave and non-enclave part. An application

developer provides a specification of the portions of the code/data

that are sensitive. These tools perform static taint analysis of the

application to identify data and control dependencies, and identify

the enclave boundary. Following this, they automatically partition

the code and create the enclave; they rely on one of the models

described in this paper as the enclave execution framework.

Researchers have also developed tools to help developers build se-

cure enclaves from scratch. The key consideration for these tools is

to ensure that enclaves do not accidentally leak sensitive data to un-

trusted code. Sinha et al. [26] developed a programming framework

that ensures information-release confinement, i.e., that cleartext

data never leaves the enclave. To do this, they provide a verified,

in-enclave trusted library and a simple API consisting of just a few

simple calls (send, recv) to interact with non-enclave code. Pro-

vided that an application developer adheres to this simple interface,

they can guarantee that the enclave will not accidentally leak data

to untrusted code. Moat [27] is a similar analysis tool that analyzes

the machine code of enclaves and determines whether there are

any unintended information leaks to untrusted code.

6 CONCLUSIONS

No clear consensus has emerged thus far in the community on

the right abstractions for enclave programming, especially as con-

cerns porting legacy code to enclaves. We considered the three

models that have been proposed in the research literature, namely

the library OS, library-wrapping and instruction-wrapping models.

Based on our experience porting a number of application bench-

marks to Graphene-SGX, Panoply, and Porpoise, we conclude that

the choice of the enclave programming model to be used depends

on the factors that application developers wish to optimize for:

• Rapid prototyping. Developers may wish to quickly prototype an

in-enclave version of their application. This can serve as a stop-gap

solution that provides the benefits of enclaves as a team develops a

version of the application customized for the enclave. The library OS

and instruction wrapper models are ideally suited for this setting.

• Source code availability.With a legacy application, source code

may often be unavailable or recompilation may not be feasible,

e.g., due to library compatibility issues. In such settings, only the

library OS model allows developers to create enclave versions of

the application. Both the instruction wrapper model and the library

wrapper model either require access to source code, or require the

legacy binary to be linked with suitable wrappers.

• Flexibility to re-engineer.With a quick first-cut of their applica-

tion executing in the enclave, application developers may wish to

optimize the execution of the enclave, e.g., by reducing the number

of domain crossings, or reducing the amount of code executing in

the enclave. It goes without saying that the application’s source

code is required for such re-engineering. Both the instruction wrap-

per and library wrapper models are best suited for this setting.

• Security Concerns. Application developers may wish to reduce

the amount of code executing within the enclave in an effort to

reduce the size of the attack surface of their security-critical code.

Only the Panoply implementation of the library wrapper model

optimizes for this criterion. However, it also entails executing much

of the standard C library outside the enclave (Figure 1), and the in-

enclave application must take suitable precautions when it makes

library calls (e.g., shields for IAGO attacks).

• Performance. In our evaluation, no one model emerged as a clear

winner with respect to runtime performance, and the developer

must choose the enclave programming model that works best for

the application at hand. Library OSes can provide good perfor-

mance for some applications, e.g., by offering caching and avoiding

domain crossings, as saw with bzip2 and cpython. However, be-

cause enclave execution by itself imposes overheads, and library

OSes execute entirely within the enclave, they may also offer poor

performance in some cases, as we saw with memcached and h2o.

The instruction wrapper and library wrapper models do offer the

potential for better performance if software developers have the

flexibility to profile and re-engineer their applications by reducing

domain crossings.

• Support for evolution. Finally, with respect to code evolution,

the library OS and instruction wrapper models are better suited

with respect to application code evolution than the library wrapper

model. As discussed in the paper, the system call interface evolves

much slower than the library call interface, thereby allowing the

library OS and instructionwrappermodels to provide better support

than the instruction wrapper model as the enclave application code

evolves to newer versions.
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