
An Evaluation of Methods to Port Legacy Code to SGX Enclaves ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Figure 3: Design of an enclave-based application that uses
Porpoise. Porpoise consists of the trusted in-enclave shim,
and an untrusted shim outside the enclave (shown in gray).

SUPPLEMENTARY
MATERIAL
DESIGN AND IMPLEMENTATION OF
PORPOISE
Our goal in this paper is to quantitatively evaluate the benefits and
costs of the library OS, library wrapping and instruction wrapping
approaches to port code to enclaves. While we could find open-
source prototypes representing the library OS and library wrapping
approaches, the source code for SCONE [4], which implements
instruction wrapping, was not available (SCONE is the basis for a
commercial offering from scontain.com). We therefore built our
in-house prototype, called Porpoise, for our evaluation. We plan to
make Porpoise’s code available upon the paper’s acceptance. In this
section, we describe, in brief, the implementation of Porpoise and
some key challenges we had to overcome in its implementation.

Porpoise is implemented as a set ofmodifications to musl-libc [18]
version 1.1.9. As discussed in Section 3.3, we make the assumption
that applications do not directly invoke the raw low-level instruc-
tions, but rather rely on libraries for doing so. musl-libc is an
API-compatible implementation of the standard C library that is
much more modular and easier to modify than its counterparts
such as glibc.

Figure 3 depicts an enclave that uses Porpoise to support an
enclave application. Porpoise relies on the Intel SGX SDK (version
2.7.1) [12] for various standard tasks such as enclave initialization,
ecalls (calls to the enclave from outside), ocalls (calls from the
enclave to the outside), maintaining the thread-control structures,
the state save area and other structures that are part of the SGX’s
hardware/software interface. The hardware uses these structures to
store the state of registers when it exits the enclave, so as to protect
them from untrusted code outside the enclave. The Intel SGX SDK
also has some untrusted support code outside the enclave that the
untrusted code in the process uses to interact with the enclave. The
core functionality of Porpoise is implemented in two shim layers: a
trusted shim that runs within the enclave, and an untrusted shim

that facilitates the interaction of the enclave with the rest of the
user process.

The trusted shim layer is implemented as a set of wrappers
around the evaluation of syscall instructions in musl-libc. The
shim is responsible for marshaling data outside the enclave. It cre-
ates a copy of the system call’s arguments to buffers in the untrusted
shim layer, and transfer control to the untrusted shim layer. Cor-
respondingly, the untrusted shim unmarshals the data outside the
enclave, and performs the system call on behalf of the enclave.
Once the system call returns, the untrusted shim returns control to
the enclave with any return values from the system call stored in
buffers outside the enclave. The trusted shim copies data back from
the untrusted shim layer, and unmarshals the data for consumption
by the enclave. Logically, our shim is structured as wrapper around
occurrences of the syscall instruction in musl-libc, with a case
analysis based on the system call number, to determine the number
of arguments to be copied.

Because the trusted shim is the portion of the enclave that inter-
acts with the untrusted world, it is also logically the place where
filters that detect IAGO-style attacks can be implemented. Our
Porpoise prototype currently only has wrappers for IAGO-style
attacks largely similar to the file-system shield and network shield
described in the SCONE paper [4].

Porpoise’s trusted shim provides encryption by default for data
that exits the enclave. Each piece of data that is not required for
executing the system call is encrypted with keys managed by the
trusted shim. However, we cannot encrypt all the arguments to the
syscall instruction, e.g., the system call number itself cannot be
encrypted. Similarly, an enclave that interacts with the file system
outside must be able to name the file, which must be sent in the
clear (although the bytes sent to the file can be encrypted). For
each system call, Porpoise’s trusted shim encrypts the arguments
that are not needed for the execution of the system call outside the
enclave (e.g., data blocks are not modified by the system call, and
are therefore sent encrypted.

We note here that a number of papers have proposed oblivious
file systems for enclaves [1, 17] that even hide the name of the file
from the untrusted code. This is required to prevent the untrusted
code from making inferences about the file accesses made from
within the enclave.We do not consider these techniques to bewithin
the scope of Porpoise for the purposes of the present paper, which is
to evaluate the merits and costs of different ways of porting code to
the enclave. However, Porpoise is extensible, and such algorithms
can be incorporated within Porpoise as well.

We structured our implementation of the trusted shim by cre-
ating a simple send/recv interface (as was also discussed in prior
work [27]). Each argument of the system call is wrapped with a
send_user call, whose API is as follows:

send_user (void *enclbuf, void *userbuf,
ssize_t size, int prot)

The first two arguments point to the in-enclave source buffer
containing the data and the buffer within the untrusted shim to
receive the data, respectively, size denotes the amount of data to be
copied, and prot determines whether the data in the buffer should
be encrypted on its way out. We use AES in CTR mode with 128
bit keys for encryption. A corresponding recv_user call obtains
data on the return path.



ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Kripa Shanker, Arun Joseph, and Vinod Ganapathy

Porpoise incorporates support for 145 system calls (of the total
of 325 system calls in Linux-4.4.0-169). While we have plans to add
support for the remaining system calls, prior work [35] indicates
that system calls vary in terms of importance (based on their usage
in real-world packages). Indeed, we did not encounter these system
calls in any of the application benchmarks that we studied. We now
discuss the technical challenges that Porpoise overcomes in the
implementation of some system calls.
• In-enclave threading. Porpoise supports multi-threaded applica-
tions via the pthreads API. Although Intel SGX supports multiple
threads of execution within the enclave, it does not allow thread
creation from within the enclave. Rather, an application has to pre-
declare the number of enclave threads that it would like to support,
and the application creates this number of threads in untrusted code.
Each of these threads can enter the enclave in fresh thread context,
thereby creating the illusion of a multi-threaded enclave. Thus, each
enclave thread will have an associated counterpart thread in the
untrusted user-space process.

Porpoise’s pthread-compatible threading model has to work
within the constraints of SGX. The pthread library uses the clone
and arch_prctl system calls to create new threads. The clone
system call is used to create a thread, while the arch_prctl is used
to modify the %fs and %gs registers, which point to structures that
store the thread state. For instance, each thread has its thread-local
structure (that we will call thread_data) that stores a pointer to
the base of the thread’s stack, the thread ID, signal mask, canaries,
and so on. The %fs register is used to point to this structure of the
currently executing thread. Both the %fs and %gs registers can only
be modified when the processor is in supervisor mode, and they
cannot be modified in user- or enclave-mode. They can be read
irrespective of processor mode.

Within a traditional process, pthread uses the arch_prctl sys-
tem call to set the %fs register to point to the thread_data of
the thread that is currently executing. This thread_data structure
resides in a memory location within the process’s address space.
The key difficulty with wrapping arch_prctl is that if the wrap-
per simply performs the equivalent operation outside the enclave
within the user process, the resulting call will set the %fs register
within the user-space. The kernel cannot access enclave memory,
and therefore cannot change the pointer to the thread’s state inside
the enclave.

We address this problem as follows. As discussed earlier, the Intel
SGX does not allow threads to be created within the enclave itself.
Rather, the application must pre-declare the number of enclave
threads it intends to use, and the enclave is initialized accordingly.
Internally, the Intel SGX SDKmaintains an in-enclave thread control
structure for each thread . This is akin to the thread_data structure
for traditional user-space threads, but is required for in-enclave
bookkeeping of the thread.

Porpoise maintains a table that associates the in-enclave thread-
control structure for each enclave thread with the corresponding
thread_data structure of that enclave thread’s user-space coun-
terpart. As the wrapped arch_prctl call updates the pointer to
the thread_data structure in the process (by modifying the %fs
register), Porpoise identifies the corresponding in-enclave thread to

which this %fs corresponds, and updates the thread-control struc-
ture to resume executing that thread during enclave entry (without
exiting the enclave).

A related problem happens with other data structures of the
pthread library, where the kernel directly modifies data structures.
For example, the kernel modifies the detach_state data struc-
ture in the pthread library to denote the current state of a thread
(e.g., EXITED, JOINABLE, . . .). On an enclave-based system, this data
structure cannot be stored within the enclave, because it will not be
accessible to the kernel. Porpoise addresses this problem by main-
taining two copies of the data structure: one within the enclave,
and one in the user-space process. As the kernel modifies the data
structure within the process, Porpoise modifies the corresponding
copy within the enclave.
• brk and dynamic memory allocation. The current version of Intel
SGX does not allow dynamic memory allocation within enclaves,
although this has been proposed for future versions of SGX [39].
Instead, the Intel SGX SDK implements functionality that simu-
lates the effect of dynamic memory allocation. It pre-allocates a
certain amount of memory for use by the enclave, and maintains
an internal break point to denote the top of the heap. This break
point is modified by a “malloc” call that simply returns memory
by modifying this break point. We redirect brk system calls to this
implementation to offer the illusion of dynamic memory allocation
for legacy applications.


