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ABSTRACT
Smart phones are increasingly being equipped with operating sys-
tems that compare in complexity with those on desktop comput-
ers. This trend makes smart phone operating systems vulnerable to
many of the same threats as desktop operating systems.

In this paper, we focus on the threat posed by smart phone rootk-
its. Rootkits are malware that stealthily modify operating system
code and data to achieve malicious goals, and have long been a
problem for desktops. We use three example rootkits to show that
smart phones are just as vulnerable to rootkits as desktop operating
systems. However, the ubiquity of smart phones and the unique
interfaces that they expose, such as voice, GPS and battery, make
the social consequences of rootkits particularly devastating. We
conclude the paper by identifying the challenges that need to be
addressed to effectively detect rootkits on smart phones.
Categories and Subject Descriptors:
C.2.0 [Computer-communication networks]: General—Security
and Protection;
D.4.6 [Operating Systems]: Security and Protection—Invasive soft-
ware (e.g., viruses, worms, Trojan horses)
General Terms: Experimentation, Security
Keywords: rootkits, smart phones

1. INTRODUCTION
Over the last several years, the decreasing cost of advanced com-

puting and communication hardware has allowed mobile phones to
evolve into general-purpose computing platforms. Over 115 mil-
lion such smart phones were sold worldwide in 2007 [7]. These
phones are equipped with a rich set of hardware interfaces and
application programs that let users interact better with the cyber
and the physical worlds. For example, smart phones are often
pre-installed with a number of applications, including clients for
location-based services and general-purpose web browsers. These
applications utilize hardware features such as GPS and enhanced
network access via 3G or Wimax. To support the increasing com-
plexity of software and hardware on smart phones, smart phone
operating systems have similarly evolved. Modern smart phones
typically run complex operating systems, such as Linux, Windows
Mobile, Android and Symbian OS, which comprise tens of millions
of lines of code.
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The increasing complexity of smart phones has also increased
their vulnerability to attacks. Recent years have witnessed the emer-
gence of mobile malware, which are viruses and worms that infect
smart phones. For instance, F-Secure reported an almost 400%
increase in mobile malware within a two year period from 2005-
2007 [17]. Mobile malware typically use many of the same attack
vectors as do malware for traditional computing infrastructures, but
often spread via interfaces and services unique to smart phones, in-
cluding Bluetooth, SMS and MMS. The Cabir worm, for instance,
exploited a vulnerability in the Bluetooth interface and replicated
itself to other Bluetooth enabled phones. Recent research has also
explored the security implications of connecting smart phones to
the Internet: Enck et al. [14] demonstrated attacks that could com-
promise open interfaces for SMS (e.g., web sites that allow users to
send SMS messages) to cripple large portions of a cellular network.

In this paper, we show that smart phones are just as vulnerable as
desktop operating systems to kernel-level rootkits (or simply, rootk-
its). Rootkits are malware that achieve their malicious goals by in-
fecting the operating system. For example, rootkits may be used to
hide malicious user space files and processes, install Trojan horses,
and disable firewalls and virus scanners. Rootkits can achieve their
malicious goals stealthily because they affect the operating system,
which is typically considered the trusted computing base. Conse-
quently, they can retain longer term control over infected machines.
Stealth techniques adopted by rootkits have become popular among
malware writers, with a study by MacAfee reporting a nearly 600%
increase in rootkits in the three-year period from 2004-2006 [9].

The fact that smart phones are vulnerable to rootkits should not
be particularly surprising. However, smart phone rootkits can ac-
cess a number of unique interfaces and information that are not
normally available on desktop computers. These include GPS, the
battery, and voice and messaging. As we demonstrate via three
attacks (in Section 3), such interfaces provide rootkits with new
attack vectors to compromise privacy and security of end users.
Moreover, phones are personal devices and contain numerous ap-
plications that store sensitive information about their users. For
example, smart phones contain contact information and SMS con-
versations for people that a user normally converses with. Such
information is potentially of value to attackers, and is often not
available on desktop machines. Similarly, employees with com-
pany phones could potentially store confidential commercial infor-
mation in emails located on their smart phones.

With 3G and 4G access becoming increasingly ubiquitous, smart
phone users have easy access to the Internet and email. As a result,
there is a sharp increase in the number of services and applications
available for smart phones. In 2008, Bank of America reported
that they service over four million mobile banking sessions every
month. They also reported that there are over one million unique
users using their mobile banking services[20]. Online retailers such
as Amazon.com provide mobile websites and mobile applications,
so that users can purchase items from their smart phones. Smart
phone rootkits can therefore compromise privacy and security in
novel ways, while also being extremely difficult to detect.

Detecting and recovering from rootkits is challenging, even on
desktop systems. Because rootkits affect the operating system, any
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detection mechanism must operate outside the operating system,
typically on specialized hardware (e.g., a co-processor [18]) or in
a virtual-machine monitor [15]. Although there have been recent
efforts to deploy virtual machines on smart phones [8], such sup-
port is not widely available yet. Even so, existing rootkit detec-
tion techniques [10, 18, 21], which have primarily been developed
for desktop systems, employ heavyweight mechanisms that require
periodic scans of kernel memory snapshots. Such techniques will
likely place substantial energy demands if used on smart phones.
We conclude the paper by discussing the challenges involved in
detecting rootkits on smart phones.

2. BACKGROUND

Malware on Smart Phones
Smart phones are an attractive target for attackers, both in the kinds
of attacks that are possible and in the social implications of these
attacks. Smart phones have access to both telephony and the In-
ternet. As a consequence, malware that can attack a smart phone
has the unique advantage of being able to affect the cell phone in-
frastructure as well as other phones on the cellular network. These
abilities have driven malware authors to focus on smart phones,
with a recent report from MacAfee [3] stating that nearly 14% of
mobile users worldwide have been directly infected or have known
someone infected by mobile malware. Nearly 72% of the users
surveyed in the MacAfee study expressed concerns regarding the
safety of using emerging mobile services and more than 86% were
concerned about receiving inappropriate or unsolicited content, fraud-
ulent bill increases, or information loss and theft.

The pervasive nature of smart phones and a large, unsophisti-
cated user base also make smart phones particularly attractive to
attackers. Important personal and financial information can likely
be compromised by mobile malware because phone usage revolves
largely around day-to-day user activities. For example, smart phones
are increasingly being used for text messaging, email, storing per-
sonal data, including financial data, pictures and videos. Espionage
of such voice conversations is likely to have serious social implica-
tions. As a second example, users typically tend to carry their smart
phones (and keep them powered on) wherever they go; therefore,
an attack that compromises the GPS subsystem will compromise
privacy of the victim’s location.

Traditional threats to desktop systems, such as worms and viruses,
have already begun infecting mobile platforms. According to F-
Secure [1], there are already more than 400 mobile viruses in cir-
culation. Several existing mobile malware result in simple annoy-
ances. For example, the Skull.D virus locks the phone and flashes
an image of a skull and crossbones on the screen. However, oth-
ers are more dangerous and can cause financial damage to the user
by sending text messages to “premium” numbers. Malware such as
spyware and Trojan horses have also started affecting smart phones.

The threats posed by mobile malware can readily be countered
using many of the same tools available for desktop machines. For
example, an antivirus tool equipped with an appropriate virus sig-
nature database can detect the presence of viruses on a smart phone.
As antivirus tools begin to get deployed on mobile platforms, we
envisage that attackers will also move toward using stealth tech-
niques to maintain long-term control over infected smart phones
by maliciously modifying smart phone operating systems.

Rootkits on Desktops
The term “rootkit” originally referred to a toolkit of techniques de-
veloped by attackers to conceal the presence of malicious software
on a compromised system. During infection, rootkits typically re-
quire privileged access (e.g., root privileges) to infect the operating
system. Even on operating systems that do not run applications

Attack LOC Size of kernel module
GSM 116 92.8 KB
GPS 428 101.7 KB
Battery 134 87.2 KB

Figure 1: Lines of code and size of the kernel modules that
implement each of the three attacks.

with root privileges, an attacker may exploit vulnerabilities in ap-
plication programs, such as web browsers (e.g., drive-by-download
attacks) and the operating system, to obtain elevated privileges to
install rootkits.

Rootkits typically infect the system by installing themselves as
kernel modules, which are loaded each time the operating system
is booted. However, this approach leaves a disk footprint, i.e., the
kernel module containing the rootkit, thereby exposing the rootkit
to antivirus tools. Sophisticated rootkits avoid this problem by di-
rectly modifying data in kernel memory and do not leave a disk
footprint. Although such rootkits only persist until the system is
rebooted, they are effective on desktop computers, which are often
not rebooted for several days or months at a time.

Once infected, a rootkit can serve as the stepping stone for sev-
eral future attacks. For example, rootkits are commonly used to
conceal keyloggers, which steal sensitive user data, such as pass-
words and credit card numbers, by silently logging keystrokes. They
might also install backdoor programs on the system, which allow a
remote attacker to gain entry into the system in the future. Rootkits
can also perform other stealthy activities, such as disabling the fire-
wall/antivirus tools or affecting the output quality of the system’s
pseudo random number generator, thereby causing the generation
of weak cryptographic keys [12]. None of these activities are di-
rectly visible to the user because the rootkit conceals its presence.
Their stealthy nature enables rootkits to stay undetected, and there-
fore retain long-term control over infected systems.

3. ROOTKITS ON SMART PHONES
The increasing complexity of smart phone operating systems

makes them as vulnerable to rootkits as desktop operating sys-
tems are. However, these rootkits can potentially exploit inter-
faces and services unique to smart phones to compromise security
in novel ways. In this section, we present three proof-of-concept
rootkits that we developed to illustrate the threat that they pose to
smart phones. They were implemented by the first two authors,
with only a basic undergraduate-level knowledge of operating sys-
tems. Our test platform was a Neo Freerunner smart phone running
the Openmoko Linux distribution [5]. We chose this platform be-
cause (a) Linux source code is freely available, thereby allowing us
to study and modify its data structures at will; and (b) the Neo
Freerunner allows for easy experimentation, e.g., it allows end-
users to re-flash the phone with newer versions of the operating
system.

All our rootkits were developed as Linux kernel modules (LKM),
which we installed into the operating system. However, during a
real attack, we expect that these LKMs will be delivered via other
mechanisms, e.g., after an attacker has compromised a network-
facing application or via a drive-by-download attack. Figure 1
presents the lines of code needed to implement each attack, and
the size of the corresponding kernel module. This figure shows the
relative ease with which rootkits can be developed. It also shows
that the small size of kernel modules allows for easy delivery, even
on bandwidth-constrained smart phones.

Although our implementation and discussion in this section are
restricted to the Neo Freerunner platform, the attacks are broadly
applicable to smart phones running different operating systems. For
example, Android is a platform derived from Linux and can sup-
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Figure 2: The GSM rootkit intercepts an alarm signal, e.g., a
meeting notification, and stealthily dials the attacker, thereby
allowing him to snoop on confidential conversations.

port loadable kernel modules; consequently, our proof-of-concept
rootkits can potentially be modified to work on the Android plat-
form (and the phones that run it, such as the Droid and the Nexus
One). Since the attacks modify OS-specific data structures, they
must be re-implemented for other platforms, such as Windows Mo-
bile and Symbian OS; we expect that doing this will be relatively
easy. In the following three subsections, we will describe in detail
the three rootkits we developed. For each rootkit, we will present
the goal of the attack, the attack description and its social impact.

3.1 Spying on Conversations via GSM
Goal. The goal of this attack is to allow a remote attacker to
stealthily listen into or record confidential conversations using a
victim’s rootkit-infected smart phone.
Attack Description. The Freerunner phone is equipped with a GSM
radio, which is connected via the serial bus and it is therefore avail-
able to applications as a serial device. During normal operation
of the phone, user-space applications issue system calls to the ker-
nel requesting services from the GSM device. The GSM device
services the request allowing the application to access the tele-
phony functionality provided by the device. GSM devices are con-
trolled through series of commands, called AT (attention) com-
mands, that let the kernel and user-space applications invoke spe-
cific GSM functions. For example, GSM devices support AT com-
mands to dial a number, fetch SMS messages, and so on. To ma-
liciously operate the GSM device, e.g., to place a phone call to
a remote attacker, the rootkit must therefore issue AT commands
from within the kernel.

Most smart phones today contain calendar programs, which no-
tify users when scheduled events occur. Our prototype rootkit op-
erates by intercepting these notifications set by the user. As shown
in Figure 2, a notification is displayed by a user-space program to
notify the user of an impending meeting. The rootkit intercepts
this notification and activates its malicious functionality. The at-
tack code stealthily dials a phone number belonging to a remote
attacker, who can then snoop or record confidential conversations
of the victim. The phone number dialed by the rootkit can either be
hard-coded into the rootkit, or delivered via an SMS message from
the attacker, which the rootkit intercepts to obtain the attacker’s
phone number. Alternatively, the rootkit could be activated when
the victim dials a number. The rootkit could then stealthily place
a three-way call to the attacker’s number, thereby allowing the at-
tacker to record the phone conversation.
• Triggering the rootkit. We used a simple alarm clock program

to simulate calendar notifications on the Openmoko (we did so be-
cause the Openmoko phone does not have any released calendar
programs). In an uninfected kernel, when an alarm is signaled, a
specific message is delivered via the write system call. In our “in-
fected” kernel, the rootkit hooks the system call table and replaces
the address of the write system call with the address of a mali-
cious write function implemented in the rootkit. The goal of the
malicious write function in our prototype rootkit is to check for
the alarm notification in the write calls. Once an alarm message
is identified, the malicious functionality is triggered.
• Placing a phone call. When triggered, our rootkit places a phone
call by emulating the functionality of user-space telephony appli-
cations. Typically, user-space applications (such as the Qtopia soft-
ware stack [6], which ships with the Openmoko Linux distribution
on the Freerunner phone) make calls by issuing a sequence of sys-
tem calls to the kernel. Specifically, applications such as Qtopia
use write system calls to issue AT commands to the GSM device
(these commands are supplied as arguments to the write system
call). The number to be dialed is located in the AT command.
Our prototype rootkit calls the attacker by issuing the same se-
quence of AT commands from within the kernel. We obtained the
sequence of AT calls that must be issued to place a phone call by
studying the Qtopia software stack. The AT commands issued by
the rootkit activate the telephony subsystem and successfully es-
tablish a connection to the attacker’s phone. The prototype rootkit
must also activate the sound system by turning on the microphone.
Social Impact. Snooping on confidential conversations has severe
social impact because most users tend to keep their mobile phones
in their proximity and powered-on most of the time. Rootkits op-
erate stealthily, and as a result, end users may not even be aware
that their phones are infected. Consequently, an attacker can listen-
in on several conversations, which violates user privacy, ranging
from those that result in embarrassing social situations to leaks of
sensitive information. For example, an attack that records the con-
versations at a corporate board meeting can potentially compromise
corporate trade secrets and business reports to competitors. Simi-
larly, several automated phone-based services often require a user
to enter (via voice or key presses) PIN numbers or passwords be-
fore routing the call to a human operator; an attacker snooping on
such calls may financially benefit from such information.

3.2 Compromising Location Privacy using GPS
Goal. The goal of this attack is to compromise a victim’s loca-
tion privacy by ordering the victim’s rootkit-infected smart phone
to send to the remote attacker a text message with victim’s current
location (obtained via GPS).
Attack Description. As with the GSM device, the GPS device is
also a serial device. The kernel maintains a list of all serial devices
installed on the system. A rootkit can easily locate the GPS device.
Every serial device contains a buffer in which the corresponding
device stores all outgoing data until it is read by a user-space appli-
cation. Our prototype rootkit uses this buffer to read information
before it is accessed by user-space applications. This allows us to
monitor and suppress incoming SMS messages and also query the
GPS for location information.

A rootkit that compromises location privacy as described above
must implement three mechanisms. First, it must be able to inter-
cept incoming text messages, and determine whether a text message
is a query from a remote attacker on the victim’s current location.
Second, the rootkit must be able to extract location information
from the GPS receiver. Last, it must generate a text message with
the victim’s current location, and send this information to the at-
tacker. An overview of this attack is shown in Figure 3.

Our prototype rootkit intercepts text messages by monitoring and
changing data in the GSM device buffer. To monitor the GSM
buffer, we hook the kernel’s read and write system calls. This
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Figure 3: Sequence of steps followed in location privacy attack.

is achieved by modifying the corresponding entries in the system
call table to point to rootkit code. Consequently, the rootkit identi-
fies when user-space applications are accessing the GSM device by
checking the file descriptor that is passed into read and write.
When this occurs, our rootkit scans the GSM for certain incoming
AT commands.

When an incoming message arrives, the rootkit will check whether
this is a query from the attacker. This is done by sending the AT
command to read messages. An attacker’s message will be a certain
phrase or set of words that the rootkit can check for. If the message
is a query from the attacker, the rootkit’s malicious operation is ex-
ecuted. The rootkit can be written to enable different functionality
for different messages.1 The attacker can also enable/disable the
rootkit’s malicious functionality via text messages, in effect allow-
ing the attacker to remotely control the rootkit.

Importantly, the rookit, must also suppress the notification of the
attacker’s message, to ensure that the user does not learn about it.
The rootkit deletes the message from the SIM card by sending an-
other AT command to the GSM device.

Once the rootkit intercepts a message to query a user’s current
location, it attempts to obtain location information from the GPS
device. As before, the rootkit can easily obtain location information
from the buffer of the GPS device. The rootkit can obtain location
information even if the user has disabled the GPS. This is because
the rootkit operates in kernel mode, and can therefore enable the
device to obtain location information, and disable the device once it
has this information. If the user checks to see if the GPS is enabled
during this time, it will appear that the GPS device is off.

Having obtained location information, the rootkit constructs a
text message and sends the message by sending an AT command
to the GSM device. The attacker will now receive a user’s current
location.
Social Impact. Protecting location privacy is an important problem
that has received considerable recent attention in the research com-
munity. By compromising the kernel to obtain user location via
GPS, this rootkit defeats most existing defenses to protect location
privacy. Further, the attack is stealthy. Text messages received from
and sent to the attacker are not displayed immediately to the victim.
The only visible trace of the attack is the record of text messages
sent by the victim’s phone, as recorded by the service provider.

3.3 Denial of Service via Battery Exhaustion
Goal. This attack exploits power-intensive smart phone services,
such as GPS and Bluetooth, to exhaust the battery on the phone.
This rootkit was motivated by and is similar in its intent to a previ-
ously proposed attack that stealthily drains a smart phone’s battery
by exploiting bugs in the MMS interface [22]. However, the key
1This mechanism is also useful in Attack 1—instead of hard-
coding the number that the rootkit must dial, an attacker can trans-
mit the number that the infected phone must dial via a text message.

Figure 4: Denial of service via battery exhaustion. This figure
shows how the battery life degrades in different phone models
when the GPS and Bluetooth devices are powered on.

difference is that the rootkit achieves this goal by directly modify-
ing the smart phone’s operating system.
Attack Description. The GPS and Bluetooth devices can be tog-
gled on and off by writing a “1” or a “0,” respectively, to their cor-
responding power device files. The rootkit therefore turns on the
GPS and Bluetooth devices by writing a “1” to their corresponding
power device files. To remain stealthy, the rootkit ensures that the
original state of these devices is displayed when a user attempts to
view their status. Most users typically turn these devices off when
they are not in active use because they are power-intensive.

When a user checks the status of a GPS or Bluetooth device,
the user-space application checks the power device file for a “1”
or “0”. To do this, it calls the open system call on the file and
then reads it. The rootkit monitors the open calls by overwriting
kernel function pointer for the open system call in the system call
table, making it point to rootkit code. When an open system call is
executed, the rootkit examines if the file being opened corresponds
to the power device files of the GPS or Bluetooth devices. If so, it
ensures that the original states of the devices are displayed to the
user. The rootkit continuously checks the status of these devices; if
the devices are turned off by the user, the rootkit turns them back
on. Consequently, the devices are always on, except when the user
actively queries the status of these devices.
Social Impact. This attack quickly depletes the battery on the smart
phone. In our experiments, the rootkit depleted the battery of a fully
charged and infected Neo Freerunner phone in approximately two
hours (the phone was not in active use for the duration of this ex-
periment). In contrast, the battery life of an uninfected phone run-
ning the same services as the infected phone was approximately 44
hours (see Figure 4). We also simulated the effect of such a rootkit
on the Verizon Touch and ATT Tilt phones by powering their GPS
and Bluetooth devices. In both cases, battery lifetime reduced al-
most ten-fold. Because users have come to rely on their phones in
emergency situations, this attack results in denial of service when
a user needs his/her phone the most.

Although our prototype rootkit employs mechanisms to hide it-
self from an end user, this attack is less stealthy than Attacks 1
and 2. For example, a user with access to other Bluetooth-enabled
devices may notice his smart phone is “discoverable,” causing him
to suspect foul play. Nevertheless, we hypothesize that the vast
majority of users will suspect that their phone’s battery is defective
and replace the phone or its battery.

3.4 Rootkit Delivery and Persistence
To effectively infect a smart phone using the rootkits discussed

above, attackers must also develop techniques to deliver rootkits
and ensure that their functionality persists on the phone for an ex-
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tended period of time.
Delivery. Rootkits can be delivered to smart phones using many of
the same techniques as used for malware delivery on desktop ma-
chines. A study by F-Secure showed that nearly 79.8% of mobile
phones infections in 2007 were as a result of content downloaded
from malicious websites. Bluetooth connections and text messages
were among the other major contributors to malware delivery on
smart phones. Rootkits can also be delivered via email attachments,
spam, illegal content obtained from peer-to-peer applications, or by
exploiting vulnerabilities in existing applications.

The Neo Freerunner phone used in our experiments ran the Open-
moko Linux distribution, which directly executes applications with
root privileges. Therefore, unsafe content downloaded on this phone
automatically obtains root privileges. Smart phone operating sys-
tems that do not run applications with root privileges can also have
vulnerabilities (just as in desktop machines). Such vulnerabilities
are not uncommon even in carefully engineered systems. For ex-
ample, a recent vulnerability in Google’s Android platform allowed
command-line instructions to execute with root privileges [2]. Rootk-
its can exploit these vulnerabilities and infect the operating system
kernel, e.g., by installing malicious kernel modules.
Persistence. To be effective, rootkits must retain long-term control
over infected machines. Rootkits typically achieve this goal by re-
placing critical operating system modules, such as device drivers,
with infected versions. While this approach ensures that the rootkit
will get control even if the operating system is rebooted, it also has
the disadvantage of leaving a disk footprint, which can be detected
by malware scanners.

Rootkits can avoid detection by directly modifying the contents
of kernel memory, thereby avoiding a disk footprint. Although such
rootkits are disabled when the operating system is rebooted, they
can still retain long-term control over server-class machines, which
are rarely rebooted. However, this technique is not as effective on
smart phones, because phones are powered off more often (or may
die because the battery runs out of charge). Consequently, rootk-
its that directly modify kernel memory can only persist on smart
phones for a few days. In such cases, an attacker can re-infect the
phone. For example, a rootkit that spreads via Bluetooth can re-
infect victims in the vicinity of an infected phone.

However, the social consequences of smart phone rootkits mean
that they can seriously affect end-user security even if they are ef-
fective only for short periods of time.

4. DETECTING PHONE ROOTKITS
Rootkits vary in the sophistication of the attack techniques that

they use. Rootkits that modify system utilities and some kernel
modules often leave a disk footprint, and can possibly be detected
using user-space malware detection tools. However, these tools
rely on the operating system to provide critical services, such as
access to files, and rootkits can easily bypass them using more so-
phisticated techniques. The rootkits in Section 3.1 and Section 3.2,
for instance, modify function pointers in memory, and can there-
fore evade detection tools that check the integrity of system util-
ities. More sophisticated rootkits operate by modifying arbitrary
data structures on the kernel’s heap [10, 12]. It is therefore well-
accepted that rootkit detection mechanisms must reside outside the
control of the operating systems that they monitor.

Rootkit detection tools typically operate by directly accessing
and scanning kernel memory (i.e., without the intervention of the
operating system being monitored) for rootkits. Prior work has
developed two mechanisms to access kernel memory: hardware
support and virtual machine monitors (VMM). While these mech-
anisms suffice to detect rootkits on server-class machines, several
challenges must be overcome to adapt them to smart phones, as
discussed below.

Hardware-supported Rootkit Detection
Hardware-assisted rootkit detectors operate by using special pur-
pose hardware to directly access kernel memory via DMA. For ex-
ample, such rootkit detectors can use secure co-processors [18, 26]
or PCI cards [10] to access kernel memory, and ensure the integrity
of kernel data structures. In this approach, the machine being mon-
itored is equipped with the above hardware, and is physically con-
nected to another machine, which fetches and scans its memory.

While this approach may be practical for server-class machines,
it is not applicable to smart phones. First, commodity smart phones
are not currently equipped with special-purpose hardware, such as
co-processors and PCI cards with access to kernel memory. Sec-
ond, because the approach requires the smart phone to be physi-
cally connected to a monitor machine, it is not practical for use
with mobile devices, such as smart phones. One option would be
to trigger rootkit detection when a smart phone is physically con-
nected to a desktop machine, e.g., for charging, via an interface
such as USB. However, the USB interface does not allow direct
memory access to attached devices, and therefore cannot be used
to externally monitor the memory contents of the smart phone. To
our knowledge, only the FireWire (IEEE 1394) interface allows ac-
cess to the contents of memory [19], but commodity smart phones
are not commonly equipped with this interface.

An alternative approach is to use trusted hardware on the smart
phone to attest the software stack running on the phone. In this ap-
proach, a trusted platform module (TPM) chip on the phone takes
integrity measurements (e.g., SHA-1 hashes) of the software loaded
on the phone, and stores these measurements in tamper-resistant
hardware. A remote verification authority (e.g., the service provider)
could then engage in a challenge-response protocol (e.g., IMA [23])
with the phone, and receive a digitally-signed copy of the integrity
measurements from the phone. The verification authority would
certify the software stack by verifying the hash values of the soft-
ware loaded on the phone.

Prior work has explored the use of the TPM in combination
with an integrity verification protocol to detect rootkits [23]. It
may be practical to adapt this approach to detect rootkits on smart
phones, because an increasing number vendors are beginning to
deploy TPMs on their products (this chip is called the mobile trust
module, or MTM) [24]. Now that the MTM is beginning to be de-
ployed on commercial smart phones, using the TPM detection ap-
proach is a possibility. However, three key challenges must be over-
come in order to implement integrity verification for smart phones;
the first two challenges discussed below also apply to integrity ver-
ification on desktop computers.
(1) Reasoning about dynamic data structures. Current integrity
measurement protocols can only measure the integrity of the code
and static data (e.g., configuration files) [23]. In particular, these
protocols cannot attest the integrity of dynamic data structures in
kernel memory. Consequently, they cannot detect rootkits that mod-
ify the system call table and other critical kernel data structures. To
be effective against the kind of rootkits demonstrated in this paper,
integrity measurement protocols must be adapted to additionally
attest the integrity of dynamic data structures in kernel memory.
(2) Continuous integrity measurement. Integrity measurement pro-
tocols are vulnerable to time-of-check to time-of-measurement ex-
ploits, in which the rootkit installs itself after integrity measure-
ments are taken and the software stack has been attested. To be ef-
fective against such rootkits, integrity measurement protocols must
be adapted to provide continuous guarantees [25].
(3) Resource efficiency. Finally, integrity measurement and attes-
tation involves a challenge/response protocol between the smart
phone and remote attestation authority. Each execution of the pro-
tocol requires the smart phone to transfer integrity measurements
to the attestation authority. Although the size of the integrity mea-
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surements itself is reasonably small—about 1000 measurements on
a typical Linux system [23], which results in the transfer of about
20KB-30KB data between the phone and the attestor—frequent ex-
ecutions of the protocol (e.g., to ensure continuous integrity mea-
surement) may consume both network bandwidth and battery power.
To be applicable to smart phones, integrity measurement protocols
must therefore be adapted to be resource efficient.

VMM-based Rootkit Detection
Virtualization offers an alternative approach to implement rootkit
detection. In this approach, the smart phone’s operating system
and the monitor execute in separate virtual machines (VM). The
monitor queries the VM that runs the phone’s operating system and
extracts the contents of its memory locations to perform rootkit de-
tection [15]. A number of commercial efforts are currently under-
way to build virtual machine monitors for smart phones [4, 8, 16],
with the goal of allowing users to have multiple personalities on a
single physical device. For example, the same phone can be used
with multiple accounts and providers, such as a corporate account
and a personal account. Cox and Chen [13] also provide examples
of several other novel applications that can be enabled by deploying
virtualization on smart phones.

Rootkit detection tools can possibly leverage these virtual ma-
chine monitors to isolate themselves from the smart phone’s operat-
ing system. However, most existing rootkit detection tools [10, 11,
18, 21] operate by periodically fetching and scanning kernel mem-
ory snapshots of the operating system being monitored. Such al-
gorithms are CPU intensive and can potentially drain the battery of
the phone. For example, the Gibraltar rootkit detection system [10]
can detect sophisticated rootkits that operate by modifying arbi-
trary kernel data structures. However, it operates by periodically
fetching memory pages from the monitored system, reconstructing
data structures, and checking these data structures against integrity
specifications, each of which is a CPU-intensive operation. Gibral-
tar can potentially be optimized for use on a smart phone by re-
ducing the frequency at which it scans kernel memory for rootkits,
e.g., by enabling rootkit detection only when the phone is being
charged. However, doing so introduces a tradeoff between security
and energy-efficiency. One way to address this tradeoff would be to
adapt Gibraltar to selectively fetch memory pages to be analyzed,
e.g., only pages that were recently modified. To develop a VMM-
based rootkit detector, a smart phone will need to support the in-
stallation of a VMM. Currently, there is no platform that supports
this. Further research is therefore needed to make rootkit detection
more-efficient and practical for use on virtualized smart phones.

5. SUMMARY
Rootkits evade detection by compromising the operating system,

thereby allowing them to defeat user-space detection tools and op-
erate stealthily for extended periods of time. This paper demon-
strated that kernel-level rootkits can exploit smart phone operating
systems, often with serious social consequences. The popularity
of the mobile platform has already attracted attackers, who have
increasingly begun to develop and deploy viruses and worms that
target these platforms. As these threats gain notoriety, so will the
power of tools to detect these threats. We believe that this trend,
combined with the increasing complexity of operating systems on
modern smart phones, will push attackers to employing rootkits to
achieve their malicious goals. Currently, there is no available tech-
nique to detect rootkits on smart phones. We therefore conclude
with a call for research on tools and techniques to effectively and
efficiently detect rootkits on smart phones.
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