
Regulating Drones in Restricted Spaces
Abhishek Vijeev, Vinod Ganapathy, Chiranjib Bhattacharyya

Department of Computer Science and Automation and Robert Bosch Centre for Cyber-Physical Systems
Indian Institute of Science, Bangalore-560012, India

abhishekvijeev@iisc.ac.in,vg@iisc.ac.in,chiru@iisc.ac.in

ABSTRACT
Commercial and end-user drones come equipped with a wide array
of sensors. Unregulated use of such drones in public airspaces poses
a serious threat to the privacy of citizens. We make the case for
restricted spaces for drones, which are geographic areas for which
a host can specify its privacy policies. Guest drones must prove
to the host that they are in compliance with the host’s policies
before entering the restricted space. We then make the case for an
information-flow control-based policy enforcement framework on
drones, and sketch the design of a prototype framework atop the
Robot Operating System (ROS).

CCS CONCEPTS
• Security and privacy→Mobile platform security; Informa-
tion flow control;

KEYWORDS
Drones; privacy; restricted spaces; trusted hardware
ACM Reference Format:
Abhishek Vijeev, Vinod Ganapathy, Chiranjib Bhattacharyya. 2019. Reg-
ulating Drones in Restricted Spaces. In The 20th International Workshop
on Mobile Computing Systems and Applications (HotMobile ’19), February
27–28, 2019, Santa Cruz, CA, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3301293.3302370

1 INTRODUCTION
Commercial and end-user drones are becoming widely available.
Such drones can be employed for a number of interesting and
socially-beneficial use-cases, such as sensing, search and rescue,
and product delivery. However, the wide availability of drones has
also put a previously tightly-regulated resource, i.e., airspace, into
the hands of commercial entities and end-users. We are already
beginning to see an increasing number of cases where commercial
drones can pose dire risks. Incidents involving “near-misses” be-
tween drones and aeroplanes are becoming increasingly common,
with drones sightings being reported as high as 15,500 feet [34]. In
August 2018, two DJI Matrice 600 drones were used to carry out an
attack in Caracas during an address by the Venezuelan president
at a military event [17]. London Gatwick airport was shut down

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HotMobile ’19, February 27–28, 2019, Santa Cruz, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6273-3/19/02. . . $15.00
https://doi.org/10.1145/3301293.3302370

for approximately three days in December 2018, causing major
disruption, after suspicious drones entered the restricted airspace
of the airport.

Regulatory bodies, such as the Federal Aviation Authority (FAA),
and other law-enforcement agencies are actively seeking to evolve
tighter rules for the shared use of airspace by commercial and
end-user drones [3, 7, 8, 11, 13]. The impact of regulations on the
frequency of such drone-related incidents will only become clear
over time. However, we posit that even in a regime where rules
regarding the shared use of airspace are clearly formulated and
enforced, the future deployment of drones (e.g., those expected to be
used by Amazon’s Prime Air) will pose a serious risk to the privacy
of citizens. Most commercial drones come equipped with cameras
and other advanced sensors that can record the environment around
them. These sensors are essential features of drones, e.g., video feeds
and images captured from the drone are used for either autonomous
navigation or remote human control of the drone. However, these
very sensors can be misused to compromise privacy.

In this paper, we propose to address these issues by developing
the vision of restricted spaces for drones. A restricted space is an
area geographically demarcated by its host, within which the host
expects guest drones to conform to its usage policies. We present
the design of a framework via which the host can communicate its
privacy policies to a guest drone, and ensure that the policies are
enforced on the guest drone.

2 RESTRICTED SPACES FOR DRONES
We now develop our vision of restricted spaces for drones. The host
of the restricted space may configure its security policies to suit its
privacy needs. We consider three examples below:
• Process-Images-Locally: The host may require that any images
or video feeds captured by the drone be processed locally within
the drone and should not be transmitted over the network. The
host may additionally require that the images not be stored in the
drone’s persistent storage (from where an attacker may recover
them later). Such a policy can be applied to autonomous drones that
have sufficient processing power to locally process images/video
for navigation.
• Blur-Exported-Images: If the drone is manually controlled or re-
quires its image/video feed to be processed by a back-end cloud
server, then the host may require the image/video feed to be pro-
cessed by a filtering service that blurs sensitive portions of the
image/video (e.g., faces and car registration plates) before the being
transmitted to the cloud server. The filtering service could either
be a trusted application running within the drone, or a cloud-based
service controlled by the host. In the former case the host can lever-
age trusted hardware on the drone to establish the existence of a
filtering service on the drone.

https://doi.org/10.1145/3301293.3302370
https://doi.org/10.1145/3301293.3302370

Figure 1: Restricted spaces for drones. (1) When a guest drone wishes to enter a host’s restricted space, it presents its credentials
to the host and requests its security policy; (2) The host responds with its security policy, which the guest drone then analyzes
to determine if the policy is acceptable to it; (3) If the policy is acceptable, the drone enforces the policy on its software stack,
and sends a cryptographic proof to the host that it is in policy compliance; (4) The host verifies the proof and authorizes the
drone to enter.

• Log-GPS: The host may require the guest drone to only fly along
pre-defined “drone lanes” when within its restricted space. The host
can check this by requiring the drone to log its GPS feed during its
stay in the restricted space, and to submit this GPS log for analysis
as it leaves [20].

When a guest drone enters the restricted space from the outside,
it must first “check-in” with the host to determine the host’s security
policy (see Figure 1). For instance, it could communicate with a
Wi-Fi access point or tower controlled by the host. In a 5G or
WiMax setting, for instance, the host could have communicated
its policy to the 5G-provider, which tags the policy with the host’s
GPS markers. The drone can directly obtain the policy from the
5G-provider as it approaches the restricted space. During check-in,
the drone presents its credentials (e.g., its public key) to the host.
The host sends its policy to the drone, which the drone can then
choose to analyze to determine if it is acceptable.

If the guest finds the policy too restrictive, it can choose to reject
the policy and not enter the host’s restricted space. At this point,
the host can take suitable action if the drone still chooses to enter its
restricted space. The action taken depends on the nature of the host.
For example, a defense establishment could choose to shoot down
the drone; in contrast, a commercial establishment could choose to
report the drone’s credentials (or perhaps a close-up picture of the
drone) to a regulatory body.

If the guest drone finds the policy acceptable, it applies the policy
to the applications running on the drone. It then proves to the host
that it is in compliance with the host’s policies, and is then granted
approval to enter the restricted space. To enable cryptographically-
sound proofs, we assume that the drone is equipped with trusted
hardware (see threat model below). Once it leaves the host’s re-
stricted space, it can “check-out” by choosing to resume execution
without the host’s policy restrictions. Depending on the host’s pol-
icy, the drone may be required to submit some information (e.g., its
GPS log) during check-out, which the host can then post-process
to check for compliance.

A drone will typically fly over multiple such restricted spaces
during a single flight to its destination. It must conform to the policy
restrictions of all the hosts enroute, or choose to take an alternative
path to the destination.

Threat Model. We consider a threat model where hosts assume
that guest drones are under adversarial control. Drones must submit
their credentials and prove that they are compliant with the host’s
policies before they enter the restricted space.

To enable robust compliance proofs, we require that the drones
be equipped with trusted hardware, such as the ARM TrustZone [4].
Such hardware is becoming increasingly available on commodity
devices, and offers a hardware root of trust on the guest device.
The hardware is endowed with a public/private key pair, and can
produce digitally-signed attestations of the state of the software
stack running on the guest drone. The guest’s public key (together
with its digital certificate) could also serve as the credential used by
the host to identify the drone. The host verifies these attestations
to determine the guest’s security posture. We discuss the details
of the attestation process in Section 3. We assume the existence
of a regulatory authority that hosts can approach to report drones
that enter the restricted space without complying with the host’s
policies.

Our threat model does not currently consider the following two
important cases:
• Drones that are not equipped with trusted hardware.
• Covert use of drones.
Without trusted hardware on the drone, hosts do not have a

mechanism to reliably identify the drone or verify that it is in
compliance. We hypothesize that foolproof verification of the guest
drone’s security posture is impossible without trusted hardware.
Fortunately, consumer devices are increasingly being equippedwith
ARM TrustZone, and indeed, future regulations may require that
commercial drones have a reliable way to establish their identity,
e.g., akin to registration plates on vehicles.

A drone may covertly enter the restricted space and compromise
the host’s privacy. In cases where drones have a miniature form-
factor, it may even be difficult for a host to determine that an
unauthorized drone is present in its restricted space. Such covert
use of drones poses a major risk to privacy, and new methods are
needed to detect the presence of such drones.

1 Drone→ Host: Pubdrone + certificate
Host verifies certificate

2 Host→ Drone: Policyhost , nonce
Drone checks policy

3 Drone→ Host: Signed attestation quote
Host checks attestation/freshness

4 Host→ Drone: Okay to enter
Figure 2: The check-in protocol.

3 REGULATING DRONE BEHAVIOUR
In this section, we describe how the vision discussed above can be
realized on drones equipped with the ARMTrustZone. The methods
used by the host to determine whether a drone is in policy com-
pliance also depend on the software stack running on the drone.
We describe a concrete implementation for drones running the
Robot Operating System (ROS) [24]. We make the case for dynamic
information-flow control (IFC) as the core policy enforcement mech-
anism within the drone’s software stack, and describe how ROS
lends itself well to IFC.

3.1 Background on the ARM TrustZone
The TrustZone is a set of security extensions to the ARM archi-
tecture. A TrustZone processor executes in one of two “worlds,” a
secure world or a normal world, with the transition between the
two mediated by a security monitor. The normal world executes
complex applications within a rich computing environment, and is
the world with which the end-user interfaces during regular opera-
tion of the platform. The secure world consists of security-related
applications, and implements functionality such as secure boot,
which prevents bootup of devices in which there are unauthorized
modifications to the software stack. Device memory can be parti-
tioned between the two worlds such that a partition is reserved for
exclusive access by the secure world. This allows the secure world
to store sensitive information, such as cryptographic keys, that are
not accessible to the normal world, which is untrusted.

3.2 The Check-in Protocol
As shown in Figures 1 and 2, check-in is a four-step protocol:
1 The drone identifies itself with its public key Pubdrone and the
corresponding public key certificate. We assume that the Pubdrone
uniquely identifies the drone and that it is registered with a suit-
able regulatory authority. The host verifies the certificate with the
regulatory authority.
2 The host sends its privacy policy together with a random nonce
to the guest drone. The drone determines whether the policy is
acceptable to it. In the subsequent discussion, for instance, we show
that these policies can be expressed as information-flow control
restrictions. If not, it can abort the protocol and navigate away from
the restricted space.
3 If the policy is acceptable, the drone sends a signed attesta-
tion quote [27] back to the host. The attestation quote contains a
digitally-signed hash-chain of the software stack installed in the
drone’s normal world, and is produced by the secure world. The
nonce from step 2 is also included as part of the signed attestation.
The quote allows the host to check that suitable policy-enforcement
software is installed on the drone. Note that the host uses Pubdrone
from step 1 to verify the digital signature, thus tying the message

received in step 3 to the drone from step 1 . The presence of the
nonce in the quote convinces the host that the response is fresh.
4 If all checks succeed, the host authorizes the drone to enter its
restricted space.
The above protocol establishes to the host that the guest has policy-
enforcement software installed on it. This software could itself
execute in the untrusted normal world, with the secure world en-
suring that the enforcement code cannot be disabled or modified
at runtime. Several widely-deployed systems adopt this approach.
For example, the Samsung Knox platform [5] uses this approach to
protect against unauthorized modifications to key data structures
of the normal world’s operating system kernel. As discussed in the
following sections, we adopt a similar approach, where the normal
world tracks information-flow across applications and peripher-
als. The normal world contains the enforcement mechanisms, the
code of which remains unchanged as the drone moves from one
restricted space to another. Thus, the secure world simply needs
to attest to the host that these mechanisms exist on the drone, and
protect the normal world from unauthorized modifications. The
policy to be enforced would vary based on the host, and the secure
world places the policy to be enforced within normal world memory
(from where the enforcement mechanism reads and enforces it) and
write-protects it (see Figure 3).

3.3 Dynamic Information-flow Control
Dynamic information-flow control (IFC; also called taint-tracking)
mechanisms regulate the flow of data objects within a system. IFC
mechanisms work by attaching taint labels to data objects. The
taint of an object changes as it is processed by various entities on
the system. IFC employs flow rules that determine how labels can
change and whether certain label transitions are allowed. When
a data object reaches a sink (e.g., an output channel), the label
attached to the object can be used to determine whether it can be
transmitted via the sink. IFC has successfully been applied in a
number of domains, including most notably, to tracking data leaks
from Android applications [12].

IFC is well-suited to our setting because it can be used to ex-
press a number of useful privacy policies. For example, the policies
discussed in Section 1 can be expressed with IFC:
1 The Process-Images-Locally policy can be enforced by tagging
images obtained from the camera with a special label (e.g., camera),
and ensuring that data objects with the camera label cannot be
stored on disk or accessed by the network interface.
2 The Blur-Exported-Images policy can be enforced by ensuring
that only a trusted blur-filter application, which executes in the
normal world and is recorded as part of the attestation quote sent
to the host, can change the label of a data object from camera to
blurred-img. The network interface is allowed to transmit objects
with a blurred-img label but not those with a camera label (see
Figure 3).
3 The Log-GPS policy can be enforced by ensuring that all read-
ings from the GPS sensor, e.g., tagged GPS, pass through a trusted
logging application. The logging application executes in the normal
world and interfaces with the secure world to create a tamper-proof
audit log. The logging application is authorized to change the label

Figure 3: Policy enforcement within the guest drone. The normal world runs a version of ROS enhanced with IFCmechanisms.
During check-in, the secure world attests to the host that the normal world runs an IFC-enforcing ROS version. The secure
world places and write-protects the host’s IFC policy in normal-world memory, and also protects ROS’ security mechanisms
from unauthorized modifications. In turn, ROS ensures that information-flow restrictions imposed by the host are followed.
In this example, it ensures that only images that have been processed by a blur-filter can be read by the network interface.

of GPS sensor readings to audited-GPS, and other client applica-
tions on the drone (e.g., control software) can only consume GPS
readings with the tag audited-GPS.
Note that the normal world is only entrusted with the task of attach-
ing labels to data objects and propagating these labels as the object
is processed by various entities in the system. Label transitions
could be implemented by trusted applications running atop the
normal world, e.g., the blur-filter and the logging application in the
policies described above. These applications are trusted by the host
in that the host requires the guest drone to execute them for policy
compliance; it verifies the integrity of these applications using the
attestation quote during check-in.

3.4 IFC on ROS
We built our IFC prototype on ROS. ROS is a set of middleware
libraries that run atop Linux, and provides a convenient platform
to author robotics applications. ROS is used by a number of drone
manufacturers, e.g., 3DR, Parrot, Gaitech, Erle, BitCraze, Skybotix,
for developing robotics applications and supports a variety of hard-
ware platforms. The ROS market, including drones and other kinds
of robots, is forecasted to reach $400 million by 2026 [25]. A num-
ber of popular software packages for drones also build atop ROS.
For example, FlytOS [1], which is an operating system for drones,
and MAVROS [2], which is a communication driver for autopilots
such as PX4 and ArduPilot that use the MAVLink communication
protocol (a widely-used protocol for communicating with small
drones), are built atop ROS.

ROS is a publish/subscribe system in which applications can
either be publishers or subscribers (or both). Every publisher pro-
duces data objects on a certain topic. Subscribers can choose to listen
to messages that fall under a set of topics. When applications start
up on ROS, they register themselves as publishers or subscribers for
a certain set of topics. ROS libraries then bootstrap communication
by matchmaking publishers and subscribers based on the topics
they advertised when they started up. It does so by setting up an
IPC channel between the corresponding publishers and subscribers.

All underlying communication then directly happens between the
Linux processes that implement the publishers and subscribers. For
example, the camera application could publish images under the
topic camera, and all image-processing applications could choose
to subscribe to this topic. ROS ensures that all messages associated
with this topic (and only messages associated with this topic) are
sent to all subscriber image-processing applications.

The architecture of ROS lends itself well to IFC. Because mes-
sages are already tagged with topics, we can directly leverage these
topics as IFC labels. The IFC policy simply determines the topics of
the data objects that subscribers can consume. Label transitions on
data objects by trusted applications are implemented by registering
the application as a subscriber for the topic of the input data object
and a publisher for the output data object. For example, the trusted
blur-filter application used to enforce the Blur-Exported-Images can
register as a subscriber for the camera topic and publish objects
with the topic blurred-img.

We were able to implement a rudimentary IFC mechanism atop
ROS by adding just under 200 lines of Python code to the ROS code-
base, and used it to enforce the example policies discussed above.
Most of this code relates to parsing the host’s policy and setting
restrictions on the topics that applications can publish/subscribe.
ROS’s topic-matching algorithms in its publish-subscribe system
then automatically take care of enforcement.

3.5 Challenges and Future Directions
We are continuing work to build an end-to-end IFC in drones. Our
ROS-based implementation is only one part of the end-to-end sys-
tem. While ROS bootstraps communication between publishers and
subscribers, the underlying communication happens directly via
sockets and IPC between Linux processes. An adversary could still
bypass ROS-level IFC enforcement by directly setting up communi-
cation channels between Linux processes.

We are currently investigating IFC enforcement from within the
normal-world OS to ensure that such attacks are not possible. In
such a system, the kernel attaches labels to data objects managed

by the OS and propagates these labels as data is copied. We are
currently building atop the IFC model proposed by Flume [18],
which attaches labels to files, sockets, and other OS-level abstrac-
tions, and exposes a label interface to applications. We are adding
support for IFC within the Linux kernel, and integrating ROS to run
atop IFC-enabled Linux. With this support, applications running
on the drone can specify their label requirements using a familiar
interface, such as ROS-level topics. ROS communicates these to the
OS, which manages and propagates the labels as the application
executes. While this effort is a work in progress, our modifications
to Linux and ROS largely mirror Weir [22], which implemented IFC
atop Android using a Flume-like label model.

3.6 Deployment Considerations
The discussion thus far has assumed that a guest drone checks in
with the host and obtains an IFC policy. A practical deployment
must also consider the challenges involved in performing check-in.
We discuss two possible deployment models:
1 Designated entry corridors. A host may require that drones
that wish to enter its restricted space do so via designated entry cor-
ridors. The host could then deploy physical infrastructure (e.g.,NFC
or Wi-Fi access points) that records the identity of the guest drone
and communicates the host’s policy to the drone. Having a desig-
nated entry corridor also helps ensure that the drone has an area
in which to wait and establish compliance with the host in case
network connectivity is intermittent. This model is applicable in
settings such as office and apartment complexes, defense establish-
ments and in university campuses.
2 Cooperation with wireless provider. A host could commu-
nicate the geographic coordinates of its restricted space to 5G or
WiMax providers that service the area and also specify its IFC pol-
icy. A guest drone can then directly obtain this information from
the 5G/WiMax provider. One of the risks with this approach is
that if network connectivity is unreliable, then the drone may not
reliably receive the host’s policy prior to entry. A possible way to
mitigate this risk is to pre-load a database of restricted spaces and
the corresponding policies before the drone takes flight. This model
is applicable for delivery drones where the set of locations to be
visited is known a priori.

These models are ineffective for adversarial drones (or covertly
deployed ones) that fly unauthorized over the host’s restricted space.
These cases currently fall outside of our threat model. Additional
methods are needed to detect/prevent adversarial drones. Of course,
even for the case where drones are used overtly, the techniques
proposed in this paper are designed to benefit hosts rather than
the owners/operators of drones. Lacking additional incentives or
regulations, there is little motivation for drone manufacturers to
incorporate the hardware and software stack modifications that
we propose. However, given the increasing social and governmen-
tal concern over privacy, we hypothesize that such incentives and
regulations are likely to emerge over time. For example, if a large
commercial drone operator deploys these mechanisms, it may in-
centivize its competitors to also deploy them on their drones.

4 RELATEDWORK
Restricted Spaces. The work most closely related to ours is that
of Brasser et al. [6], which develops the notion of restricted spaces
for ARM TrustZone-enabled mobile devices. While Brasser et al.’s
work directly inspired this paper, there are a few key ways in which
this paper deviates from that work. Brasser et al.’s work focused
on host control over peripherals in guest devices, e.g., to ensure
that interfaces such as the camera, Wi-Fi, and Bluetooth on the
guest device are used in accordance with the host’s policies. Their
work used host-initiated remote memory operations as the core
mechanism for policy enforcement on guest devices. The ability of
hosts to remotely modify memory operations results in a potential
security backdoor via which malicious hosts may modify unsus-
pecting guest devices. Brasser et al. therefore introduced the notion
of a vetting service that guest devices could use to verify that the
host’s memory updates do not maliciously modify the guest device.

In contrast to their work, this paper focuses on information-flow
control between applications executing atop drones, and uses an en-
hanced ROS stack on the guest drone for policy enforcement. This
change overcomes two key drawbacks in Brasser et al.’s approach.
First, Brasser et al. employed peripheral control for policy enforce-
ment, i.e., a peripheral would simply be turned off as specified by
the host’s policies. We extend Brasser et al.’s approach beyond
peripheral control to fine-grained control over data produced and
consumed by peripherals. For example, autonomous drones rely
critically on the use of their camera for navigation, and it would be
infeasible to turn the camera off. In contrast, our finer-grained ap-
proach allows the camera to operate, but instead places restrictions
on how the pictures/video captured by the camera are used.

Second, Brasser et al.’s work used remote memory operations
on guest devices to inject policy-enforcement code. This approach
is intrusive on the guest device and requires additional supporting
infrastructure if the guest does not trust the host, e.g., the vet-
ting service mentioned above. In contrast, our approach builds the
policy-enforcement mechanism directly into the drone (e.g., atop
ROS), and the host’s restrictions are simply encoded as policies to
be enforced by the drone. The host does not inject any new code
into the drone and no vetting service is required.
Drone and UAV Security. Prior work on drone and unmanned
aerial vehicle (UAV) security has largely focused on exploitable
vulnerabilities in either the communication channels or the hard-
ware/software stack on the drone. Such attacks have focused on
exploiting unencrypted communication over wireless media to im-
plement eavedropping, cross-layer attacks, signal jamming, denial
of service, and dropping Wi-Fi communication with ground con-
trol, to name a few [14, 15, 23, 30, 31]. Other attacks on drones
involve GPS spoofing attacks to fool the drone into moving to a
different destination (possibly with the intention of hijacking the
drone) [16, 29]. Such attacks are a concern for delivery drones,
which may be captured and analyzed to obtain sensitive details
related to delivery data [28].

More recent work has investigated how ARM TrustZone may
be used to enhance drone security. PROTC [19] is a system that
leverages the TrustZone to address the lack of system-level pro-
tection for a drone’s peripherals. PROTC ensures that applications
runnning on the drone are able to securely access its periperhals

even when the operating system of the drone has been compro-
mised. Liu et al. [20] investigate the problem of ensuring a drone
has not strayed into no-fly zones. To do this, they leverage the
TrustZone to keep a tamper-proof log of the drone’s GPS locations,
which then provide an alibi to a third-party auditor that the drone
was in compliance. However, they do not consider the problem of
ensuring that the drone respects a host’s privacy policies when it
is within permitted airspace.
ROS Security. There has been a modest amount of research into
identifying the key security vulnerabilities of ROS, and proposals by
which these can be overcome [9]. McClean et al. [21] analyzed ROS
and identified a number of vulnerabilities such as plain text com-
munication between nodes, unprotected TCP ports, unencrypted
data storage and a lack of an authentication mechanism for nodes.

Some of the key security vulnerabilities within ROS are inherent
in the publish-subscribe paradigm that it employs. Publishers are
unable to control the consumption of their data, and subscribers
are unable to verify the integrity of received messages. Rodriguez
et al. [26] have proposed to use message level encryption between
nodes and find that it is a feasible solution even for low-power
robots. Prior work has also proposed integration of the ROSC++
package with TLS to provide end-to-end encrypted communication
channels [9]. Dieber et al. [10] develop an authentication mecha-
nism that allows publishers and subscribers verify each others’ iden-
tities and establish the integrity of messages exchanged between
them. These and similar enhancements are under consideration as
part of the Secure ROS [32, 33] framework, which is under active
development.

5 SUMMARY
Drones are now widely available and are soon proposed for use
in commercial settings. These drones will pose a massive threat
to security and privacy unless active steps are taken now to de-
velop suitable policy regulations and enforcement technologies.
This paper takes a step in that direction by proposing the notion
of restricted spaces for drones and demonstrating an IFC-based
mechanism to enforce privacy policies on drones.
Acknowledgments.We thank the reviewers for their comments
and Silvia Santini for shepherding the paper. This work was sup-
ported in part by a Ramanujan Fellowship from the Government of
India and by the Robert Bosch Centre for Cyber-Physical Systems.

REFERENCES
[1] FlytOS: Operating system for drones. https://flytbase.com/flytos/.
[2] MAVROS – MAVLink extendable communication node for ROS with proxy for

ground control station. http://wiki.ros.org/mavros.
[3] 112th Congress. FAA Modernization and Reform Act of 2012, February 2012.

https://www.congress.gov/112/plaws/publ95/PLAW-112publ95.pdf.
[4] ARM. Security technology building a secure system using TrustZone technology

(white paper). ARM Limited, 2009.
[5] A. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma, and W. Shen.

Hypervision across worlds: Real-time kernel protection from the ARM TrustZone
secure world. In ACM Conference on Computer and Communications Security,
2014.

[6] F. Brasser, D. Kim, C. Liebchen, V. Ganapathy, L. Iftode, and A-R. Sadeghi. Regulat-
ing ARM TrustZone devices in restricted spaces. In ACM International Conference
on Mobile Systems, Applications, and Services, 2016.

[7] A. Cavoukian. Privacy and drones: Unmanned aerial vehicles. Information and
Privacy Commissioner of Ontario, Canada Ontario, 2012.

[8] Civil Aviations Authority (CAA). CAP 722, Unmanned Aircraft System Opera-
tions in UK Airspace - Guidance, March 2015. https://publicapps.caa.co.uk/docs/

33/CAP%20722%20Sixth%20Edition%20March%202015.pdf.
[9] B. Dieber, B. Breiling, S. Taurer, S. Kacianka, S. Rass, and P. Schartner. Security

for the Robot Operating System. Robotics and Autonomous Systems, 98, 2017.
[10] B. Dieber, S. Kacianka, S. Rass, and P. Schartner. Application-level security for

ROS-based applications. In 2016 IEEE International Conference on Intelligent
Robots and Systems, 2016.

[11] Directorate General of Civil Aviation. Requirements for Operation of Civil
Remotely Piloted Aircraft System (RPAs), August 2018. http://dgca.nic.in/cars/
D3X-X1.pdf.

[12] W. Enck, P. Gilbert, B-C. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. Sheth.
Taintdroid: An information-flow tracking system for Realtime privacymonitoring
on smartphones. In ACM/USENIX Symposium on Operating System Design and
Implementation, 2010.

[13] Federal AviationAdministration (FAA). Small UnmannedAircraft Systems (sUAS),
June 2016. https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC_
107-2.pdf.

[14] K. Hartmann and C. Steup. The vulnerability of UAVs to cyber attacks-an ap-
proach to the risk assessment. In IEEE International Conference on Cyber Conflict,
2013.

[15] A. Y. Javaid, W. Sun, V. K. Devabhaktuni, and M. Alam. Cyber security threat
analysis and modeling of an unmanned aerial vehicle system. In IEEE Conference
on Technology for Homeland Security, 2012.

[16] A. J. Kerns, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys. Unmanned aircraft
capture and control via GPS spoofing. Journal of Field Robotics, 31(4), 2014.

[17] C. Koettl and B. Marcolini. A closer look at the drone attack on Maduro in
Venezuela, August 2018. https://www.nytimes.com/2018/08/10/world/americas/
venezuela-video-analysis.html.

[18] M. Krohn, A. Yip, M. Brosdky, N. Cliffer, F. Kaashoek, E. Kohler, and R. Morris.
Information flow control for standard os abstractions. In ACM Symposium on
Operating Systems Principles, 2007.

[19] R. Liu and M. Srivastava. PROTC: Protecting drone’s peripherals through ARM
TrustZone. In 3rd Workshop on Micro Aerial Vehicle Networks, Systems, and
Applications, 2017.

[20] T. Liu, A. Hojjati, A. Bates, and K. Nahrstedt. Alidrone: Enabling trustworthy
proof-of-alibi for commercial drone compliance. In IEEE International Conference
on Distributed Computing Systems, 2018.

[21] J. McClean, C. Stull, C. Farrar, and D. Mascareñas. A Preliminary Cyber-Physical
Security Assessment of the Robot Operating System (ROS). In Unmanned Systems
Technology XV, volume 8741, 2013.

[22] A. Nadkarni, B. Andow, W. Enck, and S. Jha. Practical DIFC enforcement on
Android. In USENIX Security Symposium, 2017.

[23] J-S. Pleban, R. Band, and R. Creutzburg. Hacking and securing the AR. Drone 2.0
quadcopter: investigations for improving the security of a toy. In Mobile Devices
and Multimedia: Enabling Technologies, Algorithms, and Applications 2014, volume
9030, 2014.

[24] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y.
Ng. ROS: An open-source Robot Operating System. In ICRA workshop on open
source software, 2009.

[25] Transparency Market Research. Robot Operating System Market
- Snaphshot, 2018. https://www.transparencymarketresearch.com/
robot-operating-system-market.html.

[26] F. J. Rodríguez-Lera, V. Matellán-Olivera, J. Balsa-Comerón, Á-M. Guerrero-
Higueras, and C. Fernández-Llamas. Message Encryption in Robot Operating
System: Collateral Effects of Hardening Mobile Robots. Frontiers in ICT, 5, 2018.

[27] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and implementation of a
TCG-based integrity measurement architecture. In USENIX Security Symposium,
2004.

[28] S-H. Seo, J. Won, E. Bertino, Y. Kang, and D. Choi. A security framework for a
drone delivery service. In 2ndWorkshop on Micro Aerial Vehicle Networks, Systems,
and Applications for Civilian Use, 2016.

[29] D. P. Shepard, J. A. Bhatti, T. E. Humphreys, and A. A. Fansler. Evaluation of smart
grid and civilian UAV vulnerability to GPS spoofing attacks. In Radionavigation
Laboratory Conference Proceedings, 2012.

[30] E. Vattapparamban, İ. Güvenç, A. İ Yurekli, K. Akkaya, and S. Uluağaç. Drones
for smart cities: Issues in cybersecurity, privacy, and public safety. In 2016
International Wireless Communications and Mobile computing Conference, 2016.

[31] W. Wang, Y. Sun, H. Li, and Z. Han. Cross-layer attack and defense in cognitive
radio networks. In IEEE Global Communications Conference, 2010.

[32] R. White, G. Caiazza, H. Christensen, and A. Cortesi. Using and developing
secure ROS1 systems. In Robot Operating System, 2019.

[33] R. White, D. Christensen, I. Henrik, and D. Quigley. SROS: Securing ROS over
the Wire, in the Graph, and through the Kernel. arXiv preprint arXiv:1611.07060,
2016.

[34] A. Young. Passenger jet carrying 240 people nearly hits a drone
at 15,000ft, 2018. https://www.dailymail.co.uk/news/article-6172229/
Passenger-jet-carrying-240-people-nearly-hits-drone-15-000ft.html.

https://flytbase.com/flytos/
http://wiki.ros.org/mavros
https://www.congress.gov/112/plaws/publ95/PLAW-112publ95.pdf
https://publicapps.caa.co.uk/docs/33/CAP%20722%20Sixth%20Edition%20March%202015.pdf
https://publicapps.caa.co.uk/docs/33/CAP%20722%20Sixth%20Edition%20March%202015.pdf
http://dgca.nic.in/cars/D3X-X1.pdf
http://dgca.nic.in/cars/D3X-X1.pdf
https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC_107-2.pdf
https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC_107-2.pdf
https://www.nytimes.com/2018/08/10/world/americas/venezuela-video-analysis.html
https://www.nytimes.com/2018/08/10/world/americas/venezuela-video-analysis.html
https://www.transparencymarketresearch.com/robot-operating-system-market.html
https://www.transparencymarketresearch.com/robot-operating-system-market.html
https://www.dailymail.co.uk/news/article-6172229/Passenger-jet-carrying-240-people-nearly-hits-drone-15-000ft.html
https://www.dailymail.co.uk/news/article-6172229/Passenger-jet-carrying-240-people-nearly-hits-drone-15-000ft.html

	Abstract
	1 Introduction
	2 Restricted Spaces for Drones
	3 Regulating Drone Behaviour
	3.1 Background on the ARM TrustZone
	3.2 The Check-in Protocol
	3.3 Dynamic Information-flow Control
	3.4 IFC on ROS
	3.5 Challenges and Future Directions
	3.6 Deployment Considerations

	4 Related Work
	5 Summary
	References

