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Introduction

� Device drivers account for a large fraction 
of kernel code

• Over 70% in Linux [Chou et al., 2001]

� Buggy device drivers are a major source 
of reliability problems

• Account for over 85% of Windows XP crashes 
[Orgovan and Tricker, 2003]
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Challenging to write and debug

� Writing a device driver

• Must handle asynchronous events

• Must obey kernel programming rules

� Debugging a device driver

• Non-reproducible failures

• Fewer advanced development tools

� Many drivers written by non-kernel experts

Device drivers are hard to get right
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Macrokernels

Kernel Driver Device

Driver Device

Applications

���� Poor fault isolation
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But…

� Limited by existing kernel/driver interface 
[Van Maren, 1999]

• Written expecting local procedure calls

� New interfaces (e.g., new system calls) 

� New device drivers [Chubb 2004, Leslie et al., 2005]

���� Poor performance

���� Incompatible with commodity OS
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How to produce a microdriver?

Userdriver

Runtime

Use program analysis & transformation

Traditional
device driver

Splitter and

Code generator

Kerndriver
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How big is the kernel driver?

� Studied 455 drivers from Linux-2.6.18

� Identified critical functions

• Interrupt handlers

• Tasklets, bottom-halves

• Supply/receive data to/from the device

• Plus the functions that they transitively call

� Analysis is automatic

• Uses the call-graph of the device driver
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e100_xmit_frame

e100_exec_cmd
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e100_xmit_frame

e100_exec_cmd
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e100_xmit_frame

e100_exec_cmd
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Mechanics
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Kernel

Architecture of a microdriver
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Communication

� Mechanisms for control and data transfer

� Control transfer: 

• LRPC [Bershad et al., 1990], Nooks XPC [Swift et al., 2003]

• Stubs in kerndriver for userdriver functions

• Upcall and downcall mechanism

� Data transfer:

• Copy function arguments

• Copy shared data structures

� Synchronization done by object tracker
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Object tracking: Key challenges

� Challenging cases

• Locks

• Device memory and registers

• DMA memory

� Solution

• Userdriver must synchronize and update 

version seen by the kerndriver

Memory objects with special semantics
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Recovery

� Detect and recover from failed userdriver

• Ideally transparent to applications

� Detection done at interface 

• Parameter checks and timeouts

� Recovery – compatible with prior work

• Shadow driver mechanism [Swift et al., 2004]

• SafeDrive recovery mechanism [Zhou et al., 2006]
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Benefits
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Kernel

Improved fault isolation
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Kernel

Good common-case performance
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Kernel

Compatibility with commodity OS
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Kernel

Ease of driver development
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Pragmatics
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Generating a microdriver
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Marshaling annotations

� char *nullterm string;

� struct net_device *list next;

� struct pcnet32_rx_head *array(“rx_ringsize”)
rx_ring;

� Program analysis algorithms to infer need 
for annotations

Need to serialize complex data structures
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Performance of a microdriver

� e1000 device driver from Linux-2.6.18

• Intel PRO/1000 gigabit network adapter

� Methodology

• Split into kerndriver and userdriver

• Ran both halves in the kernel

• Used delays to simulate user/kernel crosses

• Infrastructure is still in construction!

� Testbed

• Dual-core 3Ghz Pentium-D machine.
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Open questions

� Will microdrivers improve system reliability 
in practice?

• Where are most of the bugs – in the kerndriver 

or in the userdriver?

� Will the transition to microdrivers expose 
otherwise latent bugs in device drivers?
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Microdrivers …

… improve fault isolation

… have good common-case performance

… are compatible with commodity OSes

… reduce the amount of code in the kernel

… permit the use of user-mode 

tools for driver development

… can be generated largely 

automatically from existing drivers
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