
Microdrivers
A New Architecture for Device Drivers

Somesh JhaMichael Swift

Arini BalakrishnanVinod Ganapathy

HotOS XI, 8th May 2007

Computer Sciences Department

University of Wisconsin-Madison

HotOS XI Microdrivers: A New Architecture for Device Drivers 2

Introduction

� Device drivers account for a large fraction
of kernel code

• Over 70% in Linux [Chou et al., 2001]

� Buggy device drivers are a major source
of reliability problems

• Account for over 85% of Windows XP crashes
[Orgovan and Tricker, 2003]

HotOS XI Microdrivers: A New Architecture for Device Drivers 3

Challenging to write and debug

� Writing a device driver

• Must handle asynchronous events

• Must obey kernel programming rules

� Debugging a device driver

• Non-reproducible failures

• Fewer advanced development tools

� Many drivers written by non-kernel experts

Device drivers are hard to get right

HotOS XI Microdrivers: A New Architecture for Device Drivers 4

Macrokernels

Kernel Driver Device

Driver Device

Applications

���� Poor fault isolation

HotOS XI Microdrivers: A New Architecture for Device Drivers 5

Kernel

User-space device drivers

Driver

Device

Driver

Runtime

Device

Applications

HotOS XI Microdrivers: A New Architecture for Device Drivers 6

But…

� Limited by existing kernel/driver interface
[Van Maren, 1999]

• Written expecting local procedure calls

� New interfaces (e.g., new system calls)

� New device drivers [Chubb 2004, Leslie et al., 2005]

���� Poor performance

���� Incompatible with commodity OS

HotOS XI Microdrivers: A New Architecture for Device Drivers 7

Kernel

Best of both worlds: Microdrivers

Applications

Kerndriver
Device

Userdriver

Runtime

Runtime

Split device driver functionality

Microdriver

Performance-critical

functionality

Startup, shutdown,

device configuration

Common caseRare case

HotOS XI Microdrivers: A New Architecture for Device Drivers 8

How to produce a microdriver?

Userdriver

Runtime

Use program analysis & transformation

Traditional
device driver

Splitter and

Code generator

Kerndriver
Runtime

HotOS XI Microdrivers: A New Architecture for Device Drivers 9

How big is the kernel driver?

� Studied 455 drivers from Linux-2.6.18

� Identified critical functions

• Interrupt handlers

• Tasklets, bottom-halves

• Supply/receive data to/from the device

• Plus the functions that they transitively call

� Analysis is automatic

• Uses the call-graph of the device driver

HotOS XI Microdrivers: A New Architecture for Device Drivers 10

e100_xmit_frame

e100_exec_cmd

HotOS XI Microdrivers: A New Architecture for Device Drivers 11

e100_xmit_frame

e100_exec_cmd

HotOS XI Microdrivers: A New Architecture for Device Drivers 12

e100_xmit_frame

e100_exec_cmd

HotOS XI Microdrivers: A New Architecture for Device Drivers 13

26.1 20.6

72.2 73.9

92.2
79.4

7.8

27.8

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Network (134) SCSI (49) Sound (272) Average

Non-critical

Critical

In-kernel driver code is reduced

HotOS XI Microdrivers: A New Architecture for Device Drivers 14

Mechanics

HotOS XI Microdrivers: A New Architecture for Device Drivers 15

Kernel

Architecture of a microdriver

Applications

Device

Userdriver

Runtime
Responsibilities
• Communication

• Object tracking

• Recovery

Kerndriver
Runtime

HotOS XI Microdrivers: A New Architecture for Device Drivers 16

Communication

� Mechanisms for control and data transfer

� Control transfer:

• LRPC [Bershad et al., 1990], Nooks XPC [Swift et al., 2003]

• Stubs in kerndriver for userdriver functions

• Upcall and downcall mechanism

� Data transfer:

• Copy function arguments

• Copy shared data structures

� Synchronization done by object tracker

HotOS XI Microdrivers: A New Architecture for Device Drivers 17

UserdriverKerndriver

Object tracking

0x2480x196

0x5120x128

0x128 0x196 0x202

Upcall

0x512 0x248 0x296

0x202 0x296

Synchronize shared data structures

HotOS XI Microdrivers: A New Architecture for Device Drivers 18

Object tracking: Key challenges

� Challenging cases

• Locks

• Device memory and registers

• DMA memory

� Solution

• Userdriver must synchronize and update

version seen by the kerndriver

Memory objects with special semantics

HotOS XI Microdrivers: A New Architecture for Device Drivers 19

Recovery

� Detect and recover from failed userdriver

• Ideally transparent to applications

� Detection done at interface

• Parameter checks and timeouts

� Recovery – compatible with prior work

• Shadow driver mechanism [Swift et al., 2004]

• SafeDrive recovery mechanism [Zhou et al., 2006]

HotOS XI Microdrivers: A New Architecture for Device Drivers 20

Benefits

HotOS XI Microdrivers: A New Architecture for Device Drivers 21

Kernel

Improved fault isolation

Applications

Device

Userdriver

Runtime

Fewer lines of in-kernel driver code

Kerndriver
Runtime

HotOS XI Microdrivers: A New Architecture for Device Drivers 22

Kernel

Good common-case performance

Applications

Device

Userdriver

Runtime

User/kernel crosses are infrequent

Performance-critical

functionality

Kerndriver
Runtime

HotOS XI Microdrivers: A New Architecture for Device Drivers 23

Kernel

Compatibility with commodity OS

Applications

Device

Userdriver

Runtime

Kernel/driver interface is unchanged

Kerndriver
Runtime

HotOS XI Microdrivers: A New Architecture for Device Drivers 24

Kernel

Compatibility with commodity OS

Applications

Device

Userdriver

Runtime

Can coexist with traditional drivers

DeviceDriver

Kerndriver
Runtime

HotOS XI Microdrivers: A New Architecture for Device Drivers 25

Kernel

Ease of driver development

Applications

Device

Userdriver

Runtime

More tools available for driver development

gdb,gprof,

valgrind,…

Kerndriver
Runtime

HotOS XI Microdrivers: A New Architecture for Device Drivers 26

Pragmatics

HotOS XI Microdrivers: A New Architecture for Device Drivers 27

Generating a microdriver

Userdriver

Runtime

Traditional device driver

Splitter

Traditional device driver

Code generator

Marshaling
annotations

KernUser

Kerndriver
Runtime

HotOS XI Microdrivers: A New Architecture for Device Drivers 28

Marshaling annotations

� char *nullterm string;

� struct net_device *list next;

� struct pcnet32_rx_head *array(“rx_ringsize”)
rx_ring;

� Program analysis algorithms to infer need
for annotations

Need to serialize complex data structures

HotOS XI Microdrivers: A New Architecture for Device Drivers 29

Performance of a microdriver

� e1000 device driver from Linux-2.6.18

• Intel PRO/1000 gigabit network adapter

� Methodology

• Split into kerndriver and userdriver

• Ran both halves in the kernel

• Used delays to simulate user/kernel crosses

• Infrastructure is still in construction!

� Testbed

• Dual-core 3Ghz Pentium-D machine.

HotOS XI Microdrivers: A New Architecture for Device Drivers 30

TCP-send performance

0

20

40

60

80

100

120

140

1 10 100 1000 10000 20000

Throughput

CPU

60 million machine cycles

26% rise

6.8% drop

Relative
performance

Delay to simulate cost of user/kernel crossing (in microseconds)

HotOS XI Microdrivers: A New Architecture for Device Drivers 31

Open questions

� Will microdrivers improve system reliability
in practice?

• Where are most of the bugs – in the kerndriver

or in the userdriver?

� Will the transition to microdrivers expose
otherwise latent bugs in device drivers?

HotOS XI Microdrivers: A New Architecture for Device Drivers 32

Microdrivers …

… improve fault isolation

… have good common-case performance

… are compatible with commodity OSes

… reduce the amount of code in the kernel

… permit the use of user-mode

tools for driver development

… can be generated largely

automatically from existing drivers

jha@cs.wisc.eduSomesh Jha

swift@cs.wisc.eduMichael Swift

arinib@cs.wisc.eduArini Balakrishnan

vg@cs.wisc.eduVinod Ganapathy

Microdrivers
A New Architecture for Device Drivers

Computer Sciences Department

University of Wisconsin-Madison

