
EnGarde: Mutually-Trusted Inspection of SGX Enclaves

Hai Nguyen and Vinod Ganapathy
Department of Computer Science, Rutgers University

{hdn11, vinodg}@cs.rutgers.edu

Abstract— Intel’s SGX architecture allows cloud clients to
create enclaves, whose contents are cryptographically protected
by the hardware even from the cloud provider. While this
feature protects the confidentiality and integrity of the client’s
enclave content, it also means that enclave content is completely
opaque to the cloud provider. Thus, the cloud provider is
unable to enforce policy compliance on enclaves.

In this paper, we introduce EnGarde, a system that allows
cloud providers to ensure SLA compliance on enclave content.
In EnGarde, cloud providers and clients mutually agree upon
a set of policies that the client’s enclave content must satisfy.
EnGarde executes when the client provisions the enclave,
ensuring that only policy-compliant content is loaded into
the enclave. EnGarde is able to achieve its goals without
compromising the security guarantees offered by the SGX,
and imposes no runtime overhead on the execution of enclave
code. We have demonstrate the utility of EnGarde by using it
to enforce a variety of security policies on enclave content.

1. Introduction
In recent years, the research community has devoted

much attention to security and privacy threats that arise in
public cloud computing platforms, such as Amazon EC2
and Microsoft Azure. From the perspective of cloud clients,
one of the chief security concerns is that the computing
infrastructure is not under the client’s control. While re-
linquishing control frees the client from having to procure
and manage computing infrastructure, it also exposes the
client’s code and data to cloud providers and administrators.
Malicious cloud administrators can compromise client con-
fidentiality by reading sensitive code and data directly from
memory images of the client’s virtual machines (VM). They
could also inject malicious code into client VMs, e.g., to
insert backdoors or log keystrokes, thereby compromising
integrity. Even otherwise honest cloud providers could be
forced to violate client trust because of subpoenas.

Intel’s SGX architecture [7, 14, 16, 17, 21] offers hard-
ware support to alleviate such client security and privacy
concerns. SGX allows client processes and VMs to create
enclaves, within which they can store and compute on
sensitive data. Enclaves are encrypted at the hardware level
using hardware-managed keys. SGX guarantees that enclave
content that includes enclave code and data is not visible in
the clear outside the enclave, even to the most privileged
software layer running on the system, i.e., the operating

system (OS) or the hypervisor. SGX also offers support
for enclave attestation, thereby providing assurances rooted
in hardware that an enclave was created and bootstrapped
securely, without interference from the cloud provider. With
SGX, clients can therefore protect the confidentiality and
integrity of their code and data even from a malicious cloud
provider or administrator, so long as they are willing to trust
the hardware.

Despite these benefits, SGX has the unfortunate con-
sequence of flipping the trust model that is prevalent on
contemporary cloud platforms. On non-SGX platforms, a
benign cloud provider benefits from the ability to inspect
client code and data. The cloud provider can provide clients
with services such as malware detection, vulnerability scan-
ning, and memory deduplication. Such services are also
beneficial to benign clients. The cloud provider can check
client VMs for service-level agreement (SLA) compliance,
thereby catching malicious clients who may misuse the
cloud platform in various ways, e.g., by using it to host
a botnet command and control server. In contrast, on an
SGX platform, the cloud provider can no longer inspect the
content of a client’s enclaves. This affects benign clients,
who can no longer avail of cloud-based services for their en-
claves. It also benefits malicious clients by giving them free
reign to perform a variety of SLA-violating activities within
enclaves. Researchers have discussed the possibility of such
“detection-proof” SGX malware [10, 27, 28]. Without the
ability to inspect the client’s code, the cloud provider is left
to using other, indirect means to infer the presence of such
malicious activities. For example, minibox [19] verifies that
an application behaves properly by checking system call
parameters of the application for malicious activities such as
accessing sensitive files that do not belong to the application.

Can a benign client benefit from the security offered by
the SGX while still allowing the cloud provider to exert
some control over the content of the client’s enclaves?
One strawman solution to achieve this goal is to use a
trusted-third party (TTP). Both the cloud provider and client
would agree upon a certain set of policies/constraints that
the enclave content must satisfy (as is done in SLAs). For
example, the cloud provider could specify that the enclave
code must be certified as clean by a certain anti-malware
tool, or that the enclave code be produced by a compiler that
inserts security checks, e.g., to enforce control-flow integrity
or check for other memory access violations. They inform
the TTP about these policies, following which the client

discloses its sensitive content to the TTP, which checks for
policy compliance. The cloud provider then allows the client
to provision the enclave with this content.

However, the main drawback of this strawman solution is
the need for a TTP. Finding such a TTP that is acceptable to
both the cloud provider and the client is challenging in real-
world settings, thereby hampering deployability. TTPs could
themselves be subject to government subpoenas that force
them to hand over the client’s sensitive content. From the
client’s perspective, this solution provides no more security
than handing over sensitive content to the cloud provider.
Contributions. In this paper, we present EnGarde, an en-
clave inspection library that achieves the above goal without
TTPs. Cloud providers and clients agree upon the policies
that enclave code must satisfy and encode it in EnGarde.
Thus, cloud providers and clients mutually trust EnGarde
with policy enforcement. The cloud provider creates a fresh
enclave provisioned with EnGarde, and proves to the client,
using SGX’s hardware attestation, that the enclave was
created securely. The client then hands its sensitive content
to EnGarde over an encrypted channel. It provisions the
enclave with the client’s content only if the content is policy-
compliant. If not, it informs the cloud provider, who can
prevent the client from creating the enclave.

EnGarde’s approach combines the security benefits of
non-SGX and SGX platforms. From the cloud provider’s
perspective, it is able to check client computations for
policy-compliance, as in non-SGX platforms. From the
client’s perspective, its sensitive content is not revealed to
the cloud provider, preserving the security guarantee as
offered by SGX platforms. Moreover, EnGarde statically
inspects the client’s enclave content only once—when the
enclave is first provisioned with that content. One can
also imagine an extension of EnGarde that instruments
client code to enforce policies at runtime, but our current
implementation only implements support for static code
inspection. Thus, except for a small increase in enclave-
provisioning time, EnGarde does not impose any runtime
performance penalty on the client’s enclave computations.
We have implemented a prototype of EnGarde and have
used it to check a variety of security policies on a number
of popular open-source programs running within enclaves.

2. SGX Background

Enclaves. The main feature of SGX is its support for
enclaves. An enclave is a linear span of a process’s virtual
address space whose physical pages are drawn from a region
of physical memory called the encrypted page cache (EPC).
The contents of EPC pages are protected cryptographically
by the hardware, which does not reveal the encryption key
even to the most privileged software layer on the system
(e.g., the OS or the hypervisor). A process can have multiple
enclaves in its address space.

A process enters an enclave via an instruction (EENTER).
Within an enclave, the process can have multiple threads
of execution. Each such thread can freely access the mem-
ory contents of both the enclave as well as the rest of

the process address space. If an enclave thread references
an address within the enclave, the hardware fetches cor-
responding memory page from the EPC and decrypts it
within the hardware cache hierarchy, thereby offering the
process a view of the plaintext content of the page. An
adversary outside the enclave (e.g., observing the memory
bus) will only see encrypted traffic to the EPC page, thereby
preserving the confidentiality and integrity of the EPC page.
SGX imposes a few restrictions on the code that can execute
within an enclave. An enclave can only execute user-mode
code and cannot invoke any OS services, e.g., via system
calls. If the enclave code needs to avail of such services,
it must save the enclave state, exit the enclave (via an
instruction called EEXIT), and have the non-enclave code of
the process access such services on its behalf. SGX offers
various data structures to save enclave state in an encrypted
fashion, thereby protecting it from adversaries outside the
enclave. SGX hardware ensures that code executing outside
the enclave, whether in user-mode context in the process
address space or in kernel-mode context within the OS (or
hypervisor), cannot access the plaintext enclave content.

Although an OS (or hypervisor) cannot view the plain-
text contents of a process’s enclaves, it is still responsible
for various aspects of enclave management. The OS creates
enclaves for processes (using ECREATE), adds or removes
pages from a process’s enclaves (using EADD and EREMOVE,
respectively), and manages the process’s page tables. Page
table entries corresponding to the virtual address range of
an enclave will be mapped to the EPC. Although we have
only introduced a handful of instructions, the SGX supports
a total of 24 new enclave management instructions [16, 17].
Attesting and Provisioning Enclaves. When an enclave is
newly created within a process’s address space, it is ini-
tialized with some generic bootstrap code. The exact nature
of this bootstrap code differs based on the software vendor
who offers this code. However, at the very minimum, this
bootstrap code implements basic cryptographic functionality
(e.g., for SSL/TLS), wrappers for system calls and other
popular libraries that the client’s enclave code may wish to
use. SGX offers support for attestation [7], which allows
remote clients of an SGX-based cloud platform to ensure
that enclaves are initialized securely.

Remote attestation on SGX platforms follows a standard
challenge/response scheme as in TPM-based attestation pro-
tocols [29]. The client sends a challenge to the SGX-based
machine on the cloud platform. Each SGX-based machine is
endowed with a dedicated, Intel-provided quoting enclave.
The quoting enclave obtains a measurement (a SHA-256 di-
gest of a log of all activities during enclave initialization [7],
obtained via the EREPORT instruction) of each newly-created
enclave, and signs the measurement using a device-specific
private key, called the Intel EPID key. The SGX hardware
ensures that only the quoting enclave has access to the EPID
key. The client can then verify the signed measurements,
thereby obtaining a guarantee, rooted in SGX hardware, that
the enclave was initialized correctly.

Following attestation, the client provisions the enclave

with sensitive content. Thus, the client needs an encrypted,
authenticated channel between its server and the newly-
created enclave on the cloud platform. On SGX systems,
this problem is addressed by generating an ephemeral pub-
lic/private key pair during enclave creation and initialization.
The value of this ephemeral public key is included in the
attestation quote that is signed by the quoting enclave,
thereby providing the client a hardware-rooted guarantee
that binds the public-key to the enclave. The client can then
use this public-key to bootstrap an SSL/TLS handshake,
thereby establishing a secure channel to the enclave. The
client then transmits all sensitive content to the enclave over
this encrypted channel.

3. Design of EnGarde
Problem Definition. Given the features of the SGX, a
client’s enclave is opaque to the cloud provider. This benefits
clients because it protects the confidentiality and integrity of
their sensitive content. However, the cloud provider can no
longer inspect or enforce any policies on enclave content.

In this paper, we remedy the situation by introducing
EnGarde, which statically checks the policy compliance of
the code that the client proposes to execute in its enclaves.
The client and cloud provider agree upon a set of policies
that the client’s code must satisfy. For instance, the cloud
provider may require the client to instrument its code with
certain security checks or link its code against certain ver-
sions of libraries. EnGarde’s architecture supports plugging
in policy modules, which check compliance based upon the
policies that the cloud provider and client mutually agree
upon. EnGarde executes during enclave provisioning, and
checks that the client’s enclave code is policy-compliant. If
the client’s code is not policy compliant, EnGarde informs
the cloud provider, who can prevent code from executing.
Threat Model. We assume that the cloud provider and
client are mutually distrusting. Before allowing the client to
create and provision enclaves, the cloud provider and client
mutually agree upon the set of policies that the client’s code
must satisfy. We assume that the code of EnGarde and its
policy modules is available to both the cloud provider and
client for inspection.

From the cloud provider’s perspective, the client will
attempt to violate the mutually agreed-upon policies. It
therefore verifies that EnGarde and its policy modules in-
deed enforce these policies. From the client’s perspective,
the cloud provider will attempt to learn the contents of the
enclave. Thus, the client verifies that EnGarde and its policy
modules leak no additional information about its code to
the cloud provider, i.e., the only explicit communication
between EnGarde and the cloud provider must be to inform
the cloud provider about policy compliance and to identify
the virtual addresses of the pages that contain the client’s
code. For this paper, we do not consider implicit and covert
communication channels via which EnGarde can commu-
nicate information about the client’s code to the cloud
provider; techniques to analyze EnGarde’s code for such
covert channels can be the subject of future research. The

client can also use EnGarde to independently verify policy
compliance of the enclave code that it wants to provision.

Both the cloud provider and the client trust the SGX
hardware platform. EnGarde and its policy modules are
loaded into a freshly-created enclave (as part of the bootstrap
code). Both the provider and the client use SGX’s attestation
features to ensure that EnGarde was correctly loaded into the
enclave. EnGarde receives the client code over a SSL/TLS
channel, checks policy compliance, and informs the cloud
provider. Any attempts by the cloud provider to cheat,
e.g., by falsely claiming that the code is not policy-compliant
or failing to allow policy-compliant code to execute, can
easily be detected by the client.
Overall Design. EnGarde primarily consists of in-enclave
components that are loaded when an enclave is created (see
Figure 1). As is standard on all SGX systems, the client
first ensures (using SGX’s attestation protocols [7]) that the
enclave was initialized securely.

Following this step, the client sets up an end-to-end
encrypted channel with the enclave. To do this, the bootstrap
code loaded into a freshly-created enclave first generates
a 2048-bit RSA key pair and then establishes a socket
connection to the client machine. As a next step, the enclave
sends its newly-generated public key to the client machine
so that it can encrypt its 256-bit AES key and sends the
encrypted AES key back to the loader. This key is used to
establish an end-to-end encrypted channel with the client.

Figure 1. Design of EnGarde.

EnGarde checks the
client’s enclave contents
for policy compliance af-
ter the client sends it
the contents, but before
the content is provisioned
within the enclave for ex-
ecution. The client sends
the content in encrypted
blocks, which EnGarde’s
crypto library decrypts to
form an in-memory exe-
cutable representation.

EnGarde operates at
the granularity of mem-

ory pages, and therefore splits the content into page-level
chunks. We assume that the client sends x86 binary code
and identifies pages which contain code. The remaining
pages are assumed to contain data. EnGarde rejects pages
that contain mixed code and data. We assume that clients
suitably compile their code so as to satisfy this assumption.
We also assume that the enclave code is not obfuscated to
hinder analysis.

Once EnGarde has received all the code, it proceeds to
disassemble the client’s code. To do this, EnGarde relies
on the disassembler provided by Google’s Native Client
(NaCl) [42]. NaCl makes a number of assumptions to ensure
clean, unambiguous disassembly. For example, it requires no
instructions to overlap a 32-byte boundary, that all control-
transfers target valid instructions, and that all valid instruc-

tions are reachable from the start address. EnGarde requires
the client’s enclave to satisfy the same constraints.

After disassembling the code, EnGarde checks the code
for policy compliance. Recall that the specific policies that
EnGarde checks depend on those negotiated with the client.
In general, the policies can check structural properties of the
code, e.g., that certain instrumentation has been added to the
code. EnGarde checks policies using pluggable policy mod-
ules. Each policy module checks compliance for a specific
property, and specific policy modules that are loaded during
enclave creation depend upon the policies that the client and
cloud provider have agreed upon. In Section 5, we discuss
three examples of policy modules that we have implemented
in our current EnGarde prototype. While EnGarde’s dis-
assembler works even on stripped binary code (i.e., code
without symbol-table information), specific policy modules
may require symbol table information to check compliance.
If EnGarde’s policy modules require such information, then
it requires the client to produce code using symbol tables.

The policy modules determine whether the client’s code
is policy compliant. If not, the code is rejected, and the
enclave is not provisioned. If EnGarde determines that the
code is policy-compliant, it then informs the host. EnGarde
also contains a host-level component, either running within
the host’s OS kernel or the hypervisor (if the host is vir-
tualized). EnGarde’s in-enclave components provide the in-
kernel component with a list of executable code pages. The
underlying OS component marks these pages as executable,
but not writable. The remaining pages are given write per-
missions, but are not given execute permissions. The host
OS component of EnGarde also prevents the enclave from
being extended after it has been provisioned. This ensures
that the client cannot inject any further code into the enclave
after it has been checked for compliance. EnGarde’s in-
kernel component enforces execute and write permissions
by setting page-table permission bits in the underlying host
OS. While the current version of SGX hardware allows for
page permissions to be set/cleared by the host OS, it does
not yet offer support for page permissions at the hardware
level (i.e., page permissions for EPC pages). This feature
has been proposed in version 2 of the SGX instruction
set [6]. Although EnGarde can be implemented readily even
on SGX version 1 processors, the permission check can only
be enforced in software within the host OS, and this has been
shown to be open to attack [39]. Thus, EnGarde requires the
features of SGX version 2 for security.

Following this, the enclave can be accessed and executed
as on traditional SGX platforms. Note that EnGarde only
operates during enclave provisioning. Thus, EnGarde only
imposes a performance penalty during enclave provisioning.
Enclave execution incurs no additional runtime overhead.

4. Implementation
Features of the SGX are now commercially deployed in

Intel’s Skylake series of processors. Despite the availability
of commodity hardware, for this paper, we chose to develop
EnGarde atop OpenSGX [18], a QEMU-based SGX emula-

tion infrastructure. Two factors governed our choice.
First, open-source software support for SGX enclave

development is still rudimentary. To create a system that
fully realizes the power of enclaves, we need support for
in-enclave bootstrap code and supporting libraries, drivers
within the OS, and compiler support to emit SGX code.
Although Intel provides SDKs for Windows 10, these SDKs
are closed-source, which complicates extension and modi-
fication [2]. An open-source Linux SDK [43], which we
could have extended, was released only in June 2016 when
we were already underway with our EnGarde prototype.
While Intel’s programming references [16, 17] specify the
semantics of instructions, they offer considerable freedom
to end-developers to choose their enclave programming
model. Community consensus has yet to emerge on these
programming models, and rather than define one of our
own, we chose to use the programming model defined by
OpenSGX. Moreover, OpenSGX incorporates driver support
for SGX, and has ported various utilities and libraries to
work in enclave mode, which we could readily utilize and
extend for EnGarde.

Second, even the SGX architecture itself is evolving.
Skylake processors currently implement version 1 of the
instruction set. This instruction set poses a number of restric-
tions [20, 40], the chief of which is that it does not permit
page protections to be changed at the hardware level for
pages in the EPC. Page protections can still be changed at
the level of page tables, and SGX performs a two-level page
protection check prior to writing or modifying a page: at the
page-table level and at the hardware level. However, recent
work has shown that lack of support for page protection
modifications at the EPC level can be exploited [39]. As
already discussed, EnGarde relies on the ability to change
EPC page protections. In addition, SGX hardware currently
requires all enclave memory to be committed at enclave
build time (therefore requiring the developer to predict and
use the maximum stack/heap sizes during enclave build) and
does not allow additional code modules to be dynamically
loaded into the enclave after it has been built. While these
changes have been proposed in version 2 of the instruction
set [20, 40], it is not yet commercially available [6]. In
contrast, it is easy to explore such changes within the context
of a software-based SGX emulator such as OpenSGX.

Our EnGarde prototype supports x86-64 executables that
use ELF format [11, 31], are compiled as position indepen-
dent executables and are statically linked. In this section,
we first describe our modifications to OpenSGX. We then
discuss the components of EnGarde.
Modifications to OpenSGX. The client enclave holds the
client executable as well as its decoded instructions. As a
result, the number of EPC pages should be large enough
to meet the memory requirements of the client enclave.
OpenSGX restricts the number of EPC pages to 2000. We
modified OpenSGX to increase the default number of EPC
pages to 32000 which translates to 128 MB for the physical
protected memory region. On OpenSGX, this size can be
extended to meet further memory requirements. We also

change the number of initial page frames for the heap region
from the default value of 300 to 5000.
Binary Disassembly. The executable file provided by the
client is in 64-bit ELF format. An ELF binary comprises
of several segments and each segment has one or more
sections. Each section contains information of similar type,
for instance the .text section contains the executable code,
all writable data is stored in the .data section and uninitilized
data is kept in the .bss section. The ELF format also features
an ELF header located at the beginning of the file and is
used to recognize other parts of the file.

One common challenge in disassembling a binary is
mixing of code and data within the code section. Our
EnGarde prototype assumes that the client’s executable is
compiled with separated code and data sections. Before
disassembling the code sections of the executable, the loader
checks its header to verify that the executable is correctly
formatted. The checks include checking the signature as
well as the ELF class of the executable. The loader next
reads the program header of the executable to extract all
text sections. We implement the disassembler based on the
64-bit binary disassembler of NaCl, an open source sandbox
for native code. Using prefix and opcode tables for x86-64
bit instruction set, the disassembler parses the byte sequence
of the text sections into instructions and associated metadata
information, e.g., the number of prefix bytes, number of
opcode bytes and number of displacement bytes [5].

NaCl’s disassembler does not track all disassembled
instructions. Instead, during the disassembly it uses a buffer
that stores the most recently disassembled instructions. This
stems from the fact that the NaCl validates each instruction
right after it is disassembled. We instead use a dynamically
allocated buffer that can hold all the instructions and use that
buffer as the input to policy checks. Since dynamic memory
allocation involves exiting the enclave mode and invoking a
trampoline, we reduce the involved overhead by restricting
the calls to malloc by allocating a memory page at a time
instead of just a memory region for an instruction.

Along with disassembling the executable, the loader also
reads the symbol tables to keep track of the address and
name of all the functions in the executable. It constructs a
symbol hash table whose key is the address of a function and
value is the name of the function. This symbol hash table
could be used by the policy checking component when it
perform policy checks.
Loading. After the executable has been checked and con-
firmed to follow certain policies the loader takes over. The
loader maps the text, data and bss segments to the enclave
memory, making the text segment be executable but read-
only, the data segment and bss segment be writable but non-
executable. It then locates the sections that require reloca-
tions and the locations at which the relocations should be
applied. The loader acquires all the information that it needs
for relocations from the .dynamic section of the executable.
In particular, the loader determines the address and the size
of relocation tables which contain detailed information for
relocations by reading appropriated entries of the .dynamic

Components LOC
Code Provisioning 270
Loading and Relocating 188
Checking Executables linked against musl-libc 1,949
Checking Executables Compiled with Stack Protection 109
Checking Executables Containing Indirect Function-
Call Checks

129

Client’s side program 349
Musl-libc 90,728
Lib crypto (openssl) 287,985
Lib ssl (openssl) 63,566
Total 453,349

Figure 2. Sizes of various components of EnGarde. Some of these compo-
nents (e.g., the cryptographic libraries) are part of the default loader in all
enclave implementations.

section. Upon completing relocation, the loader sets up a
call stack and transfers control to the executable.

5. Evaluation
In evaluating EnGarde, our main goals were to demon-

strate the flexibility of EnGarde by showing that it can check
compliance against a variety of policies, and understand the
performance costs of various components of EnGarde.

Our setup consisted of running OpenSGX atop of
Ubuntu 14.04 on a physical machine equipped with an
Intel Core i5 CPU and 16GB of memory. We use clang
and llvm version-3.6 to compile and instrument many real
world applications to run within enclaves: Nginx (an HTTP
server), Memcached (a popular key-value store), Netperf
(a networking benchmark), otp-gen (a password genera-
tor), graph-500 (a graph data benchmark) and two SPEC
benchmarks (401.bzip2 and 429.mcf). In all experiments,
all the applications are compiled as position independent
executables and are statically linked. To keep the size of the
executables small all applications are linked against musl-
libc [3] instead of GNU libc [1]. Figure 2 shows the lines of
code of all the components of EnGarde’s implementation. In
the following sections, we describe the performance costs of
three policy modules that we implemented in EnGarde. For
each benchmark, we assume that the benchmark executes
within the enclave, and we evaluate the cost of EnGarde as
it loads the benchmark within the enclave for execution, and
checks for policy compliance.
Compliance for Library Linking. When a cloud provider
allows a client to run code on its platform, it often expects
the client to run a particular version of the code. For exam-
ple, the cloud provider may require that the client execute
a version of the code that has been patched with the latest
security updates. As a special case of this, the cloud provider
may wish to check whether the client’s code has been linked
against specific versions of certain libraries. For example,
the cloud provider may wish to ensure that if the client’s
code uses OpenSSL, then the version of OpenSSL that is
used is free of the vulnerability that caused the HeartBleed
exploit. As another example, consider /CONFIDENTIAL [35],
a library that ensures that enclave code satisfies certain
information-flow confinement properties, i.e., enclave code
that is linked against this library will not accidentally leak
sensitive information. To prevent liability issues arising from

Benchmark #Inst. Disassembly Policy Checking Loading
and Re-
location

Nginx 262,228 694,405,019 1,307,411,662 128,696
401.bzip2 24,112 34,071,240 148,922,245 4,239
Graph-500 100,411 140,307,017 246,669,796 4,582
429.mcf 12,903 18,242,127 123,895,553 4,363
Memcached 71,437 137,372,517 489,914,732 8,115
Netperf 51,403 90,616,563 367,356,878 18,090
Otp-gen 28,125 42,823,024 198,587,525 5,388

Figure 3. Performance of EnGarde to check the Library-linking policy.
Here EnGarde checks whether each benchmark has been linked against
musl-libc. The figure shows the size of each benchmark, measured as the
number of instructions in the code to be loaded in the enclave, and the time
taken to execute each step of EnGarde, reported as CPU cycles. Wall-clock
time can be obtained by multiplying CPU clock cycles with the clock cycle
time. A CPU with a clock rate of 3.5GHz as used in our experiments has
1/3.5 nanoseconds cycle time. Therefore, the 694,405,019 cycles it takes
to disassemble Nginx, for example, consumes 198.4 milliseconds.

any accidental data leaks in the client’s code, the cloud
provider may wish to ensure that the client’s code is linked
with the /CONFIDENTIAL library.

To illustrate the power of EnGarde at enforcing such
library-linking policies, we implemented a policy module
that verifies whether an executable is linked against musl-
libc [3] version 1.0.5. To perform this check, we first
generate the SHA-256 hashes of all the functions of musl-
libc v1.0.5. For enforcement, the policy module iterates
through the instruction buffer of the code to be loaded in
the enclave, and looks for all direct function calls. For each
direct function call, the policy check computes the target
of the call and then looks up the symbol hash table to get
the function name of the target. If the target does not exist
in the symbol hash table the check will mark the function
call as invalid; otherwise, it will compute the SHA-256
hash of all the instructions of the function. Specifically,
the policy module sequentially reads instructions starting
from the computed target address and stops when it comes
across an instruction that is at the beginning of another
function. The policy module relies on the symbol hash table
to identify whether an instruction address is at the beginning
of a function. The policy check next compares the hash
of the function in the executable with its hash in musl-
libc. If the two hashes do not match, the client has not
provided the required musl-libc; otherwise, the policy check
continues with the next iteration until it reaches the end of
the instruction buffer.

To compute the performance cost, we adopt the approach
suggested in the OpenSGX paper [18] and assume that
each SGX instruction takes 10K CPU cycles and non-SGX
instructions run at native speed within the enclave. We
leverage OpenSGX’s performance counter and QEMU’s in-
struction count [4] to count SGX and non-SGX instructions.
We calculate the CPU cycles of non-SGX instructions by
measuring the instructions per cycle by executing the loader
natively without OpenSGX. Figure 3 presents the results
of our experiments when running this policy check against
different benchmarks.
Compliance for Stack Protection. Given the prevalence of
buffer overflow vulnerabilities in low-level code, a number
of modern compilers now give the option of emitting ex-

Benchmark #Inst. Disassembly Policy Checking Loading
and Re-
location

Nginx 271,106 719,360,640 713,772,098 128,662
401.bzip2 24,226 34,292,136 862,023,613 4,206
Graph-500 100,488 140,588,361 195,218,892 4,548
429.mcf 12,985 18,288,921 31,459,881 4,330
Memcached 71,677 137,877,497 325,442,403 8,081
Netperf 51,868 91,577,335 183,274,713 18,057
Otp-gen 28,217 43,053,386 217,302,816 5,355

Figure 4. Performance of EnGarde to check the Stack protection policy. As
before, for performance numbers, we report the CPU cycles.

tra code to protect loads and stores to memory locations.
Clang’s -fstack-protector flag lets the LLVM compiler add
a guard variable when a function starts and checks the
variable when a function exits. For instance, when compiled
with the flag, the following extra code is emitted:

19311: mov %fs:0x28, %rax
1931a: mov %rax, (%rsp)
193fe: mov %fs:0x28, %rax
19407: cmp (%rsp), %rax
1940b: jne 1941f
1941f: callq 8d5bf < stack chk fail>

The two instructions at addresses 193fe and 19407 check
if the variable at the top of the stack is the same as the
variable at %fs:0x28. If the values do not match, control will
be transfered to the stack chk fail function.

Clang also provides the -fstack-protector-all option
which is similar to -fstack-protector except that all func-
tions are protected. To check whether an executable is
compiled with this flag, the policy module iterates through
the instruction buffer and identifies the start of a function
using the symbol hash table. Within each function, the policy
check looks for instructions that affect the stack’s variables
(e.g., mov %rax,(%rsp) in the above example). It then identi-
fies the source operand of the instruction (%rax) and figures
out the value of the source operand (mov %fs:0x28,%rax). As a
next step, it checks if the function contains a cmp instruction
with the source and destination are the stack’s variable and
the previous source operand, respectively. It also has to
check that just preceding the cmp instruction, there is an
instruction that computes the original value of the source
operand (mov %fs:0x28,%rax). Finally, the policy looks for the
jne and callq instructions. It computes the target of the callq
instruction and checks the symbol hash table to verify that
the target corresponds to the the stack chk fail function.

Of course, our implementation of EnGarde’s policy mod-
ule is customized for Clang’s stack protection instrumenta-
tion as emitted by the -fstack-protector flag. It can easily
be customized to check stack protection instrumentation
inserted by other tools, such as Google’s AddressSani-
tizer [32], LLVM SoftBound [22], etc. Figure 4 presents the
results of our experiments when running this policy check
against different benchmarks executing in enclaves.
Restricting Indirect Function Calls. Protecting applications
against control-flow hijacking attacks is one of the emerging
concern due to the fact that attackers have recently focused
on taking advantage of heap-based corruptions to overwrite
function pointers to change the flow of a program. Control-
flow Integrity (CFI)is a measure that guards against these
attacks by restricting the targets of indirect control transfers

Benchmark #Inst. Disassembly Policy Checking Loading
and Re-
location

Nginx 267,669 821,734,999 20,843,253 128,668
401.bzip2 24,201 34,235,817 1,751,276 4,206
Graph-500 100,424 140,429,738 7,014,913 4,548
429.mcf 12,903 18,242,127 1,177,429 4,330
Memcached 71,508 138,231,446 5,301,168 8,081
Netperf 51,431 91,161,601 3,775,318 18,057
Otp-gen 28,132 42,829,680 2,334,847 5,355

Figure 5. Performance of EnGarde to check the Indirect Function-Call
policy. As before, for performance numbers, we report the CPU cycles.

to a set of precomputed locations.
We implemented a policy check to verify that exe-

cutables are compiled with indirect function-call checks as
proposed in recent work by Google (IFCC) [37]. IFCC
protects indirect calls by generating instrumentation for the
targets of indirect calls. It adds code at indirect call sites
to ensure that function pointers point to a jump table entry.
For example, the LLVM implementation of IFCC emits the
following code for an indirect function call:

1b459: lea 0x85c70(%rip), %rax
#< llvm #jump instr table 0 1>

1b460: sub %eax, %ecx
1b462: and $0x1ff8, %rcx
1b469: add %rax, %rcx
1b475: callq *%rcx

To instrument executables with these checks, we use the
LLVM/clang toolchain enhanced with the IFCC patch [25].
To check whether an executable is compiled with IFCC
checks, EnGarde’s policy module first figures out the range
of the jump table by relying on the fact that all jump table
entries have the following format:

a19d0 < llvm jump instr table 0 289>:
a19d0: jmpq 41090 <ngx execute proc>
a19d5: nopl (%rax)

EnGarde’s policy module for this check iterates through
the instruction buffer and looking for indirect function calls.
It then verifies that before the indirect function calls, there
is a sequence of instructions lea, sub, and and add, with
data dependence between registers as shown in the code
snippet above. It then computes the target of the indirect call
and verifies that the target is within the range of the jump
table. Figure 5 presents the results of our experiments when
running this policy check against different benchmarks.

6. Related Work
Intel SGX. A number of recent projects have applied In-
tel SGX for trusted computation on cloud platforms. Mi-
crosoft’s Haven [8] was the first project that leveraged Intel
SGX to enable unmodified Windows binaries to run on Intel
SGX-based cloud platforms. Haven allows an application to
be linked with a runtime library OS variant of Windows
8 and loaded into an enclave. The confidentiality and in-
tegrity of this code and data is protected from the cloud
provider. VC3 [30] is another effort to leverage SGX to
provide security for enclaves that perform MapReduce-style
computations. VC3 also recognized that enclave code with
memory safety errors could pose a threat to confidentiality
of client data, and proposed instrumenting client code with
a form of control-flow integrity instrumentation.

SecureKeeper [9] leverages Intel SGX to keep
ZooKeeper-style computations confidential. S-NFV [33]
uses Intel SGX to address security issues of today’s Net-
Work Function Virtualization (NFV) infrastructures by se-
curely move the states of NFV applications in enclaves.
SGX processors are also used to improve the performance
of privacy preserving multi-party machine learning [24].

While SGX provides attractive hardware-based security
guarantees, it places considerable burden on the enclave
code programmer to ensure that computations executing
within the enclave do not accidentally leak information.
Similarly, vulnerabilities such as memory safety errors in
enclave code can lead to exploits that leak confidential data.
Moat [36] takes a first step towards this goal by statically
analyzing x86 machine code to be loaded within the enclave
to check for information-flow violations. /CONFIDENTIAL [35]
extends the approach proposed in Moat, and provides en-
clave authors with a library that they can link their en-
clave code against. As long as code is linked against the
/CONFIDENTIAL library, and sensitive data sources are identi-
fied, the library ensures that sensitive data does not acci-
dentally leak from enclaves (a property called information-
release confinement). /CONFIDENTIAL achieves this goal by
restricting enclave communication with external memory
through a narrow interface.

The key difference between /CONFIDENTIAL (and also
Moat and VC3) and EnGarde is in the threat model—in
/CONFIDENTIAL, the client compiles his code against the the
/CONFIDENTIAL library, but the cloud provider does not check
that the code has been compiled against this library. Thus,
/CONFIDENTIAL is developed for the benefit of the client.
In contrast, EnGarde focuses on mutual trust and SLA
compliance. With EnGarde, the cloud provider can check
that the client has compiled his code against a library such
as /CONFIDENTIAL. The cloud provider therefore obtains an
assurance that the client’s code is policy-compliant. How-
ever, he does not learn any further facts about the client’s
code, thereby protecting client confidentiality.

Intel SGX does not protect applications against side-
channel attacks and EnGarde also does not attempt to elim-
inate this attack vector. Yuanzhong et al. [41] demonstrate
that by exploiting the fact that page table management in
SGX is under the control of the OS, a malicious OS can ma-
nipulate page tables and page faults to learn memory access
patterns of an enclave and therefore can infer private infor-
mation of that enclave. Similarly, AsynShock [39] controls
page access permissions of a multi-threaded enclave-based
application to exploit synchronization bugs that might lead
to memory corruption or crashes. It offers a tool to widen
the attack window in synchronization bugs by interrupting a
thread by removing the read and execute permissions from
enclave pages and then scheduling another thread whose
execution causes synchronization bugs.

Finally, recent work on Ryoan [15] has leveraged the
Intel SGX to build a sandbox for distributed applications.
Like EnGarde, Ryoan also relies on NaCl [42] to enforce
restrictions on code loaded inside an SGX sandbox, but
does so for an entirely different purpose. While Ryoan uses

NaCl to ensure that code loaded into an enclave only has
restricted control transfers, EnGarde uses NaCl only for
reliable disassembly.
Recognizing Functions in Binary Code. EnGarde assumes
that client binaries are shipped with symbol-table infor-
mation (binaries that do not contain this information are
auto-rejected by EnGarde). This helps identify functions
in binary code which might be needed by the policies
on verifying the binaries. Recognizing functions in COTS
programs which do not contain debug information has be-
come a growing interest in recent years. For instance, both
supervised machine learning [26] and neural network-based
algorithms [34] have been applied to recognize functions
in stripped binary executables. However, these approaches
are still in their infancy, and cannot guarantee 100% ac-
curacy [34]. As these techniques develop and improve in
their accuracy and performance, EnGarde can be enhanced
to even consider stripped binaries as enclave code.
Instrumenting Code to Thwart Attacks. For years, various
solutions have been proposed to defend against control flow
hijack attacks due to software bugs. These include stack
canaries to protect return addresses and other control data
on the stack [13] uses stack canaries, and various forms of
control-flow integrity protection (e.g., [12, 23, 37, 38]) use
binary rewriting to enforce CFI protection. Cloud providers
may require clients to compile their code with such instru-
mentation. As we saw in this paper, EnGarde can accom-
modate a variety of policy modules that check that enclave
code has been instrumented as agreed-upon by the cloud
provider and the client.

7. Conclusion
This paper presents the design and implementation of

EnGarde, an enclave inspection library that preserves the
security benefits offered by the SGX and allows the cloud
provider to verify the client’s SGX-based enclave against a
set of policies mutually agreed by the cloud provider and
the client. In EnGarde, the cloud provider and the client mu-
tually trust the inspection library with policy enforcement.
EnGarde achieves its goal by using SGX’s hardware attes-
tation and having an encrypted channel set up between the
cloud provider and the client. EnGarde only allows the client
content to execute if the content follows mutually agreed
policies. We have evaluated the effectiveness of EnGarde
by using it to enforce three popular security policies for
various real world applications.
Acknowledgments. Funded in part by NSF CNS-1420815
and a gift from Microsoft Research India.

References
[1] The GNU C library (glibc). https://www.gnu.org/software/libc/index.html.
[2] Intel software guard extensions (Intel SGX) SDK. https://software.intel.com/

en-us/sgx-sdk/download.
[3] musl libc: standard C/POSIX library and extensions. https://www.musl-libc.org.
[4] QEMU: a generic, open-source machine emulator & virtualizer. http://qemu.org.
[5] Intel64 and IA-32 architectures software developer’s manual volume 2 (2a, 2b,

2c & 2d): Instruction set reference, A-Z, 2016.
[6] SGX protected memory limit in SGX, 2016. Platform and Technology Discus-

sion, Intel Software Guard Extensions (Intel SGX), https://software.intel.com/
en-us/forums/intel-software-guard-extensions-intel-sgx/topic/670322.

[7] I. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata. Innovative technology
for CPU based attestation and sealing. In HASP Workshop, 2013.

[8] A. Baumann, M. Peinado, and G. Hunt. Shielding applications from an untrusted
cloud with Haven. ACM TOCS, 33(3), 2015.

[9] S. Brenner, C. Wulf, M. Lorenz, N. Weichbrodt, D. Goltzsche, C. Fetzer,
P. Pietzuch, and R. Kapitza. Securekeeper: Confidential zookeeper using Intel
SGX. In ACM Middleware, 2016.

[10] S. Davenport and R. Ford. SGX: The good, the bad and the downright ugly.
In Virus Bulletin, January 2014. https://www.virusbtn.com/virusbulletin/archive/
2014/01/vb201401-SGX.

[11] U. Drepper. How to write shared libraries. https://software.intel.com/sites/
default/files/m/a/1/e/dsohowto.pdf.

[12] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula. XFI: software
guards for system address spaces. In ACM/USENIX OSDI, 2006.

[13] U. Erlingsson, Y. Younan, and F. Piessens. Low-level software security by
example. In Handbook of Information and Communication Security, 2010.

[14] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo. Using
innovative instructions to create trustworthy software solutions. In HASP
Workshop, 2013.

[15] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel. Ryoan: A distributed sandbox
for untrusted computation on secret data. In ACM/USENIX OSDI, 2016.

[16] Intel. Intel Software Guard Extensions programming reference (rev. 1) #329298-
001US, September 2013.

[17] Intel. Intel Software Guard Extensions programming reference (rev. 2) #329298-
002US, October 2014.

[18] P. Jain, S. Desai, S. Kim, M. Shih, J. Kee, C. Choi, Y. Shin, T. Kim, B. Kang,
and D. Han. OpenSGX: An open platform for SGX research. In NDSS, 2016.

[19] Y. Li, J. McCune, J. Newsome, A. Perrig, B. Baker, and W. Drewry. Minibox:
A two-way sandbox for x86 native code. In USENIX Annual Tech. Conf., 2014.

[20] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson, R. Leslie-Hurd,
and C. Rozas. Intel software guard extensions (Intel SGX) support for dynamic
memory management inside an enclave. In HASP Workshop, 2016.

[21] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi, V. Shan-
hbogue, and U. R. Shevegaonkar. Innovative instructions and software model
for isolated execution. In HASP Workshop, 2013.

[22] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic. Softbound: Highly
compatible and complete spatial memory safety for C. In ACM PLDI, 2009.

[23] B. Niu and G. Tan. Monitor integrity protection with space efficiency and
separate compilation. In ACM CCS, 2013.

[24] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin, K. Vaswani,
and M. Costa. Oblivious multi-party machine learning on trusted processors.
In USENIX Security Symposium, 2016.

[25] T. Roeder. LLVM - Add forward-edge control-flow integrity support. https:
//reviews.llvm.org/D4167.

[26] N. Rosenblum, X. Zhu, B. Miller, and K. Hunt. Learning to analyze binary
computer code. In AAAI Conference, 2008.

[27] J. Rutkowska. Thoughts on Intel’s upcoming Software Guard Exten-
sions (part 1), August 2013. http://theinvisiblethings.blogspot.com/2013/08/
thoughts-on-intelsupcoming-software.html.

[28] J. Rutkowska. Thoughts on Intel’s upcoming Software Guard Extensions
(part 2), September 2013. http://theinvisiblethings.blogspot.com/2013/09/
thoughts-on-intelsupcoming-software.html.

[29] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and implementation
of a TCG-based integrity measurement architecture. In USENIX Security, 2004.

[30] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-Ruiz,
and M. Russinovich. VC3: Trustworthy data analytics in the cloud using SGX.
In IEEE S&P, 2015.

[31] SCO. System v application binary interface, intel386 architecture processor
supplement. http://www.sco.com/developers/devspecs/abi386-4.pdf.

[32] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. Addresssanitizer:
A fast address sanity checker. In USENIX Annual Tech. Conf., 2012.

[33] M. Shih, M. Kumar, T. Kim, and A. Gavrilovska. S-NFV: Securing NFV states
by using SGX. In 1st ACM Intl. Wkshp. on Security in SDN and NFV, 2016.

[34] E. Chul Richard Shin, D. Song, and R. Moazzezi. Recognizing functions in
binaries with neural networks. In USENIX Security Symposium, 2015.

[35] R. Sinha, M. Costa, A. Lal, N. Lopes, S. Rajamani, S. Seshia, and K. Vaswani.
A design and verification methodology for secure isolated regions. In ACM
PLDI, 2016.

[36] R. Sinha, S. Rajamani, S. Seshia, and K. Vaswani. Moat: Verifying confiden-
tiality of enclave programs. In ACM CCS, 2015.

[37] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, U. Erlingsson, L. Lozano,
and G. Pike. Enforcing forward-edge control-flow integrity in GCC and LLVM.
In USENIX Security Symposium, 2014.

[38] Z. Wang and X. Jiang. Hypersafe: A lightweight approach to provide lifetime
hypervisor control-flow integrity. In IEEE S&P, 2010.

[39] N. Weichbrodt, A. Kurmus, P. Pietzuch, and R. Kapitza. AsyncShock: Exploiting
synchronization bugs in Intel SGX enclaves. In ESORICS, 2016.

[40] B. Xing, M. Shanahan, and R. Leslie-Hurd. Intel software guard extensions
(Intel SGX) software support for dynamic memory allocation inside an enclave.
In HASP Workshop, 2016.

[41] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks: Deterministic side
channels for untrusted operating systems. In IEEE S&P, 2015.

[42] B. Yee, D. Sehr, G. Dardyk, J. Bradley Chen, R. Muth, T. Ormandy, S. Okasaka,
N. Narula, and N. Fullagar. Native client: A sandbox for portable, untrusted
x86 native code. In IEEE S&P, 2009.

[43] Y. Yu. Intel software guard extensions for Linux OS, 2016. https://01.org/
intel-softwareguard-eXtensions.

https://www.gnu.org/software/libc/index.html
https://software.intel.com/en-us/sgx-sdk/download
https://software.intel.com/en-us/sgx-sdk/download
https://www.musl-libc.org
http://qemu.org
https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/670322
https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/670322
https://www.virusbtn.com/virusbulletin/archive/2014/01/vb201401-SGX
https://www.virusbtn.com/virusbulletin/archive/2014/01/vb201401-SGX
https://software.intel.com/sites/default/files/m/a/1/e/dsohowto.pdf
https://software.intel.com/sites/default/files/m/a/1/e/dsohowto.pdf
https://reviews.llvm.org/D4167
https://reviews.llvm.org/D4167
http://theinvisiblethings.blogspot.com/2013/08/thoughts-on-intelsupcoming-software.html
http://theinvisiblethings.blogspot.com/2013/08/thoughts-on-intelsupcoming-software.html
http://theinvisiblethings.blogspot.com/2013/09/thoughts-on-intelsupcoming-software.html
http://theinvisiblethings.blogspot.com/2013/09/thoughts-on-intelsupcoming-software.html
http://www.sco.com/developers/devspecs/abi386-4.pdf
https://01.org/intel-softwareguard-eXtensions
https://01.org/intel-softwareguard-eXtensions

	Introduction
	SGX Background
	Design of EnGarde
	Implementation
	Evaluation
	Related Work
	Conclusion

