
Hai Nguyen - Rutgers University

Vinod Ganapathy - Rutgers University

EnGarde: Mutually Trusted

Inspection of SGX Enclaves

1

Intel SGX

2

Data

Operating System

Application

Code

Enclave

• Intel Software Guard Extensions (Intel SGX) is an extension of the Intel

architecture

• Code and data are kept confidential inside an enclave

Intel SGX

3

• Protect against privileged software and hardware attacks

• Offer remote attestation to prove secure initialization of the enclave

Data

Operating System

Application

Code

Enclave

Problem: Policy compliance

• On non-SGX platforms, a benign provider
can verify the client’s code and data to
enforce policy compliance:

– Code Instrumented with certain security checks
to prevent attacks: stack protection, indirect
function call checks,…

– Code is linked against specific versions of
certain libraries: The versions of OpenSSL that
are free from the HeartBleed exploit,…

4

Cloud providers cannot inspect the

client’s code for policy compliance

Contributions of our work

• We build EnGarde, an enclave inspection
library that allows cloud providers to verify
clients’ code while preserves the security
properties of SGX

• EnGarde incurs small overhead during code
provisioning and no overhead during runtime

• We evaluate the effectiveness of EnGarde on
various real-world applications

5

Threat model

• The provider and client are mutually
distrusting

• The code of EnGarde is available to both the
provider and client for inspection
– The client verifies that EnGarde does not leak

confidential information to the provider

• EnGarde does not consider covert channels
via which information about the client’s code
is leaked to the provider

6

EnGarde architecture

7

Enclave initialization and remote

attestation

• EnGarde is loaded into a fresh enclave

created by the cloud provider

• The provider proves to the client that the

enclave was initialized securely by using

SGX’s remote attestation

8

Code provisioning

• EnGarde generates a 2048 RSA key pair and
sends the public key to the client

• The client uses the public key to encrypt its
AES key which will be used to encrypt the
sensitive content it sends to EnGarde

– The content includes code and data represented
in an executable using ELF format

– The executable is compiled as position
independent code (PIC) and is statically linked

9

Code provisioning

• The client sends encrypted content to

EnGarde

• EnGarde decrypts the content to get an in-

enclave representation of the client’s

executable

10

Code disassembly

• EnGarde extracts all code sections of the
client’s executable and disassembles the
code

• EnGarde’s disassembler is based on the
disassembler of Google’s native client
(NACL), a sandbox for native code

• EnGarde uses an instruction buffer to store
all disassembled instructions

11

Policy enforcement

• The provider and the client mutually agree

upon the policies that the client’s code

must satisfy

• The agreed policies are encoded into

policy modules which are loaded into the

enclave along with EnGarde

12

Policy enforcement

• Policy modules enforce policy compliance
by using the disassembled instructions
from the instruction buffer

• In general, policy modules examine
structural properties of the client’s code

• The client’s code is rejected if it is not
policy compliant

13

Loading and relocating

• EnGarde maps the text, data and bss

segments to the enclave memory

• EnGarde applies symbol relocations using

relocation tables

14

Enclave page permission

enforcement
• Page Permission Enforcement is performed

by the in-kernel component of EnGarde

• The in-kernel component receives a list of
code and data pages which need to be set
with appropriate permissions

• Code’s pages are set as executable but not
writable and the pages of the data segment
and bss segment are set as writable but non-
executable

15

Enclave page permission

enforcement

• Enclave page permission is enforced at

two levels:

– Using page table permission bits

– Manipulating the entries of an SGX’s data

structure called Enclave Page Cache Map

(EPCM)

16

Implementation

• We implemented EnGarde on top of OpenSGX, an
SGX emulation infrastructure

• OpenSGX offers rich operating system support
and an easy to use library interface for enclave
developers

• Current version of Intel SGX does not allow
changing enclave page permission at the SGX
level after enclave initialization and all enclave
memory must be committed at build time

17

Evaluation

• Goals:

– Demonstrate the effectiveness of EnGarde and the
overhead of EnGarde in enforcing various policies

• Dell Optiplex running Ubuntu 14.04

– 16 GB RAM

– Intel core i5 CPU

• Use real world applications: Nginx, Memcached,
Netperf, Otp-gen, graph-500, 401.bzip2 and
429.mcf

18

Sizes of the components of

EnGarde

Components LOC

Code Provisioning 270

Loading and Relocating 188

Checking Executables Linked Against musl-libc 1,949

Checking Executables Compiled With Stack Protection 109

Checking Executables Containing Indirect Function-Call

Checks

129

Client’s Side Program 349

musl-libc 90,728

Lib Crypto (OpenSSL) 287,985

Lib SSL (OpenSSL) 63,566

Total 453,349

19

Compliance for library linking

• Verify if applications are linked against

musl-libc v1.0.5

• The policy module has the SHA-256

hashes of all the functions of musl-libc

v1.0.5 and store them in a hash table

20

Compliance for library linking

• The policy module uses the instruction

buffer and computes the target of each

direct function call

• If the hash of a function does not match its

value in the hash table, the client has not

provided the required musl-libc

21

Performance of EnGarde to check

the library-linking policy

Benchmark #Inst. Disassembly Policy

Checking

Loading

and

Relocation

Nginx 262,228 694,405,019 1,307,411,662 128,696

401.bzip2 24,112 34,071,240 148,922,245 4,239

Graph-500 100,411 140,307,017 246,669,796 4,582

429.mcf 12,903 18,242,127 123,895,553 4,363

Memcached 71,437 137,372,517 489,914,732 8,115

Netperf 51,403 90,616,563 367,356,878 18,090

Otp-gen 28,125 42,823,024 198,587,525 5,388

22

More results in the paper

23

• Performance of EnGarde to check the

stack protection policy

• Performance of EnGarde to check the

indirect function call policy

Conclusion

• EnGarde effectively enforces policy

compliance of clients’ enclave content

• EnGarde preserves the security properties

of SGX

• EnGarde incurs no runtime overhead

24

Q&A

25

Backup Slides

26

Compliance for stack protection

• Compilers emit extra code to protect against
stack smashing

• The LLVM compiler adds a guard variable
when a function starts and checks the
variable when a function exits:

19311: mov %fs : 0x28, %rax
1931a: mov %rax, (%rsp)
193fe: mov %fs : 0x28, %rax
19407: cmp(%rsp), %rax
1940b: jne 1941f
1941f: callq 8d5bf <__stack_chk_fail>

27

Compliance for stack protection

• The policy module iterates through the

instruction buffer and identifies each

function

• Within each function, the policy module

checks if stack protection instructions are

added at the beginning and at the end of

the function

28

Performance of EnGarde to check

the stack protection policy

Benchmark #Inst. Disassembly Policy

Checking

Loading

and

Relocation

Nginx 271,106 719,360,640 713,772,098 128,662

401.bzip2 24,226 34,292,136 862,023,613 4,206

Graph-500 100,488 140,588,361 195,218,892 4,548

429.mcf 12,985 18,288,921 31,459,881 4,330

Memcached 71,677 137,877,497 325,442,403 8,081

Netperf 51,868 91,577,335 183,274,713 18,057

Otp-gen 28,217 43,053,386 217,302,816 5,355

29

Restricting indirect function calls

• Control flow integrity (CFI) is a measure that

guards against attacks that overwrite function

pointers to change the flow of a program

• Indirect Function-Call Checks (IFCC) protects

indirect function calls by adding code at

indirect call sites to transform function

pointers to point within a jump table

30

Restricting indirect function calls

• LLVM implementation of IFCC emits extra code:
1b459: lea 0x85c70(%rip), %rax

#<__llvm_#jump_instr_table_0_1>

1b460: sub %eax, %ecx

1b462: and $0x1ff8, %rcx

1b469: add %rax, %rcx

1b475: callq *%rcx

• The policy module uses the instruction buffer to
look for all indirect function calls and verifies that
before each indirect call there is a sequence of
instructions lea, sub, and and add with relevant
data dependence between registers

31

Performance of EnGarde to check

the indirect function-call policy

Benchmark #Inst. Disassembly Policy

Checking

Loading

and

Relocation

Nginx 267,669 821,734,999 20,843,253 128,668

401.bzip2 24,201 34,235,817 1,751,276 4,206

Graph-500 100,424 140,429,738 7,014,913 4,548

429.mcf 12,903 18,242,127 1,177,429 4,330

Memcached 71,508 138,231,446 5,301,168 8,081

Netperf 51,431 91,161,601 3,775,318 18,057

Otp-gen 28,132 42,829,680 2,334,847 5,355

32

