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• Intel Software Guard Extensions (Intel SGX) is an extension of the Intel 

architecture

• Code and data are kept confidential inside an enclave



Intel SGX
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• Protect against privileged software and hardware attacks

• Offer remote attestation to prove secure initialization of the enclave
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Problem: Policy compliance

• On non-SGX platforms, a benign provider 
can verify the client’s code and data to 
enforce policy compliance:

– Code Instrumented with certain security checks 
to prevent attacks: stack protection, indirect 
function call checks,…

– Code is linked against specific versions of 
certain libraries: The versions of OpenSSL that 
are free from the HeartBleed exploit,…
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Cloud providers cannot inspect the 

client’s code for policy compliance



Contributions of our work

• We build EnGarde, an enclave inspection 
library that allows cloud providers to verify 
clients’ code while preserves the security 
properties of SGX

• EnGarde incurs small overhead during code 
provisioning and no overhead during runtime

• We evaluate the effectiveness of EnGarde on 
various real-world applications
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Threat model

• The provider and client are mutually 
distrusting

• The code of EnGarde is available to both the 
provider and client for inspection
– The client verifies that EnGarde does not leak 

confidential information to the provider

• EnGarde does not consider covert channels 
via which information about the client’s code 
is leaked to the provider
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EnGarde architecture
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Enclave initialization and remote 

attestation

• EnGarde is loaded into a fresh enclave 

created by the cloud provider

• The provider proves to the client that the 

enclave was initialized securely by using 

SGX’s remote attestation
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Code provisioning

• EnGarde generates a 2048 RSA key pair and 
sends the public key to the client

• The client uses the public key to encrypt its 
AES key which will be used to encrypt the 
sensitive content it sends to EnGarde

– The content includes code and data represented 
in an executable using ELF format

– The executable is compiled as position 
independent code (PIC) and is statically linked
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Code provisioning

• The client sends encrypted content to 

EnGarde

• EnGarde decrypts the content to get an in-

enclave representation of the client’s 

executable
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Code disassembly

• EnGarde extracts all code sections of the 
client’s executable and disassembles the 
code

• EnGarde’s disassembler is based on the 
disassembler of Google’s native client 
(NACL), a sandbox for native code

• EnGarde uses an instruction buffer to store 
all disassembled instructions
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Policy enforcement

• The provider and the client mutually agree 

upon the policies that the client’s code 

must satisfy

• The agreed policies are encoded into 

policy modules which are loaded into the 

enclave along with EnGarde
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Policy enforcement

• Policy modules enforce policy compliance 
by using the disassembled instructions 
from the instruction buffer

• In general, policy modules examine 
structural properties of the client’s code

• The client’s code is rejected if it is not 
policy compliant
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Loading and relocating

• EnGarde maps the text, data and bss

segments to the enclave memory

• EnGarde applies symbol relocations using 

relocation tables
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Enclave page permission 

enforcement
• Page Permission Enforcement is performed 

by the in-kernel component of EnGarde

• The in-kernel component receives a list of 
code and data pages which need to be set 
with appropriate permissions

• Code’s pages are set as executable but not 
writable and the pages of the data segment 
and bss segment are set as writable but non-
executable
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Enclave page permission 

enforcement

• Enclave page permission is enforced at 

two levels:

– Using page table permission bits

– Manipulating the entries of an SGX’s data 

structure called Enclave Page Cache Map 

(EPCM)
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Implementation

• We implemented EnGarde on top of OpenSGX, an 
SGX emulation infrastructure

• OpenSGX offers rich operating system support 
and an easy to use library interface for enclave 
developers

• Current version of Intel SGX does not allow 
changing enclave page permission at the SGX 
level after enclave initialization and all enclave 
memory must be committed at build time
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Evaluation

• Goals:

– Demonstrate the effectiveness of EnGarde and the 
overhead of EnGarde in enforcing various policies

• Dell Optiplex running Ubuntu 14.04

– 16 GB RAM

– Intel core i5 CPU

• Use real world applications: Nginx, Memcached, 
Netperf, Otp-gen, graph-500, 401.bzip2 and 
429.mcf
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Sizes of the components of 

EnGarde

Components LOC

Code Provisioning 270

Loading and Relocating 188

Checking Executables Linked Against musl-libc 1,949

Checking Executables Compiled With Stack Protection 109

Checking Executables Containing Indirect Function-Call 

Checks

129

Client’s Side Program 349

musl-libc 90,728

Lib Crypto (OpenSSL) 287,985

Lib SSL (OpenSSL) 63,566

Total 453,349
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Compliance for library linking

• Verify if applications are linked against 

musl-libc v1.0.5

• The policy module has the SHA-256 

hashes of all the functions of musl-libc

v1.0.5 and store them in a hash table
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Compliance for library linking

• The policy module uses the instruction 

buffer and computes the target of each 

direct function call

• If the hash of a function does not match its 

value in the hash table, the client has not 

provided the required musl-libc
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Performance of EnGarde to check 

the library-linking policy

Benchmark #Inst. Disassembly Policy 

Checking

Loading 

and 

Relocation

Nginx 262,228 694,405,019 1,307,411,662 128,696 

401.bzip2 24,112 34,071,240 148,922,245 4,239 

Graph-500 100,411 140,307,017 246,669,796 4,582 

429.mcf 12,903 18,242,127 123,895,553 4,363 

Memcached 71,437 137,372,517 489,914,732 8,115 

Netperf 51,403 90,616,563 367,356,878 18,090 

Otp-gen 28,125 42,823,024 198,587,525 5,388 
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More results in the paper
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• Performance of EnGarde to check the 

stack protection policy

• Performance of EnGarde to check the 

indirect function call policy



Conclusion

• EnGarde effectively enforces policy 

compliance of clients’ enclave content

• EnGarde preserves the security properties 

of SGX

• EnGarde incurs no runtime overhead
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Q&A
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Backup Slides
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Compliance for stack protection

• Compilers emit extra code to protect against 
stack smashing

• The LLVM compiler adds a guard variable 
when a function starts and checks the 
variable when a function exits:

19311: mov %fs : 0x28, %rax
1931a: mov %rax, (%rsp)
193fe: mov %fs : 0x28, %rax
19407: cmp(%rsp), %rax
1940b: jne 1941f
1941f: callq 8d5bf <__stack_chk_fail>
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Compliance for stack protection

• The policy module iterates through the 

instruction buffer and identifies each 

function

• Within each function, the policy module 

checks if stack protection instructions are 

added at the beginning and at the end of 

the function
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Performance of EnGarde to check 

the stack protection policy

Benchmark #Inst. Disassembly Policy 

Checking

Loading 

and 

Relocation

Nginx 271,106 719,360,640 713,772,098 128,662  

401.bzip2 24,226 34,292,136 862,023,613 4,206  

Graph-500 100,488 140,588,361 195,218,892 4,548  

429.mcf 12,985 18,288,921 31,459,881 4,330  

Memcached 71,677 137,877,497 325,442,403 8,081 

Netperf 51,868 91,577,335 183,274,713 18,057 

Otp-gen 28,217 43,053,386 217,302,816 5,355
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Restricting indirect function calls

• Control flow integrity (CFI) is a measure that 

guards against attacks that overwrite function 

pointers to change the flow of a program

• Indirect Function-Call Checks (IFCC) protects 

indirect function calls by adding code at 

indirect call sites to transform function 

pointers to point within a jump table
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Restricting indirect function calls

• LLVM implementation of IFCC emits extra code:
1b459: lea 0x85c70(%rip), %rax 

#<__llvm_#jump_instr_table_0_1> 

1b460: sub %eax, %ecx

1b462: and $0x1ff8, %rcx

1b469: add %rax, %rcx

1b475: callq *%rcx

• The policy module uses the instruction buffer to 
look for all indirect function calls and verifies that 
before each indirect call there is a sequence of 
instructions lea, sub, and and add with relevant 
data dependence between registers
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Performance of EnGarde to check 

the indirect function-call policy

Benchmark #Inst. Disassembly Policy 

Checking

Loading 

and 

Relocation

Nginx 267,669 821,734,999 20,843,253 128,668  

401.bzip2 24,201 34,235,817 1,751,276 4,206  

Graph-500 100,424 140,429,738 7,014,913 4,548 

429.mcf 12,903 18,242,127 1,177,429 4,330  

Memcached 71,508 138,231,446 5,301,168 8,081 

Netperf 51,431 91,161,601 3,775,318 18,057 

Otp-gen 28,132 42,829,680 2,334,847 5,355
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