Mining Security-Sensitive

The X Window system

Malicious remote X client

Operations in Legacy Code REMOTE REMOTE
Vinod Ganapathy David King =
University of Wisconsin-Madison Pennsylvania State University Welcome to ABC Bank Welcome to ABC Bank i!E(
Trent Jaeger Somesh Jha I I
Pennsylvania State University University of Wisconsin-Madison Account #: plcet23 Account: loss
29 |CSE, Minneapolis, Minnesota Password: Password:
May 25, 2007
Undesirable information flow Desirable information flow Retrofitting the X server
ox ox
REMOTE REMOTE X client
Operation request l TResponse
S e e 0L X server
Welcome to ABC Bank i LOCAL / !’
Account #: Fices d Allowed? TYES/NO -
[« Subject: Alice
Password: == « Object: Bob_Window
LOCAL « Security-sensitive operation: Input_Event
Retrofitting for authorization Contributions Outline
* Mandatory access control for Linux Static analyses to retrofit legacy code
« Linux Security Modules wignt et a1, 0] for authorization policy enforcement = Challenges
* SELINUX Loscocco ang smaley. o1 = Mining security-sensitive operations via = Solution
= Painstaking, manual procedure concept analysis = Case studies
« Trusted X Compartmented-mode workstation, = Application to real-world servers = Conclusion
X11/SELiNuX (epstein et al. 90)(Berger et al.'90][Kilpatrick et al. 03] oxi2 file system
= Java Virtual Machine/SELinux fiecnero6) . X11 Sew;
= IBM Websphere/SELinuX iHocking et ar. 061 « PennMUSH

Retrofitting lifecycle

1. Identify security-sensitive operations
2. Locate where they are performed in code

3. Instrument these locations

Security-sensitive

Source Code

Policy checks

&
q

D
G

Problems

Time-consuming
= X11/SELinux ~ 2 years («ipatrick et al, ‘03]

= Linux Security Modules ~ 2 years
[Wright et al., ‘02]

Our contributions 3
Fingerprints
Mining Matching

Focus of this work

Security-sensitive

[IEEE S&P 2006]

Policy checks

operations operations Source Code
[Input_Event }x ———h Error-prone [Input_Event e —
Create | Can the client = Violation of complete mediation Create ‘x | Can the client
Destroy ~S—1A receive this § P . Destroy ~S—1A receive this
Ccopy Input_Event? = Time-of-check to Time-of-use bugs Copy Input_Event?
Paste B \/ [Zhang et al., ‘02][Jaeger et al., ‘04] Paste B \/
Map o Map o

Outline What are fingerprints? Examples of fingerprints

Code-level signatures of " Input_Event :-
security-sensitive operations Cmp xEvent->type == KeyPress
= Solution

« Fingerprints
+ Matching fingerprints
« Mining fingerprints

= Case studies

= Conclusion

108€ 2007 13

= Resource accesses that are unique to a
security-sensitive operation

= Denote key steps needed to perform the
security-sensitive operation on a resource

10S€ 2007 14

Security-sensitive
v Source Code

operations
[Input_Event —H
Create ‘x

Destroy ~
Copy

Paste E| \

Map H

108€ 2007 15

Examples of fingerprints

* Input Event :-—

Cmp xEvent->type == KeyPress
* Input Event :-—

Cmp xEvent->type == MouseMove
® Enumerate :-

Read Window->firstChild &

Read Window->nextSib &

Cmp Window # 0

IosE 2007 " 1

Fingerprint matching
Enumerate &Read Window->firstChild &
(L

Read Window->nextSib &
Cmp Window # 0

MapSubWindows (

Window *pl

joNgw *pParent, Client *pClient) {
Nepug Mlist of child windows

for (;pWin !=

0; pWin=pWin-STextsib) (
// Code that maps each child window

1

Performs Enumerate

IosE 2007 s 7

Placing authorization checks

= X server function MapSubWindows

MapSubWindows (Window *pParent, Client *pClient) {
Window *pWin;

// Run through linked list of child windows
if CHECK (pClient,pParent. == ALLOWED,
PWin = pParent->firstChild; ..
for (;pWin != 0; pWin=pWin->nextSib) {

// Code that maps each child window

1
)..else { HANDLE FATLURE)

IosE 2007 " 18

Fingerprint mining

Security-sensitive
operations

Input Event .
Create * Window

Destroy +« xEvent
Copy
Paste
Map

Source Code Resources

* Cmp xEvent->type == KeyPress
* Read Window->firstChild &
Read Window->nextSib &
Cmp Window # 0

IosE 2007 " 19

Straw-man solution | §

Each resource access
is a fingerprint

= Finest level of granularity

= Cmp xEvent->type == KeyPress
= Read Window->£firstChild

= Read Window->nextSib

= CmpWindow # 0

IosE 2007 s 20

Problem with this solution §

Difficult to write and maintain
policies at this level of granularity

= Cmp xEvent->type == KeyPress
= Read Window->£firstChild

= Read Window->nextSib

= CmpWindow # 0

IosE 2007 s Bl

Straw-man solution |l §

Each API call is a fingerprint

= Coarsest level of granularity

= CallMapSubWindows
= Call MapWindow

= Write policies allowing/disallowing the use
of an APl call

108€ 2007 2

Problem with this solution §

Does not reflect actual resource
accesses performed by API call

= Call MapSubWindows

« Enumerates child windows and maps them to
the screen

= CallMapWindows
* Maps a window onto the screen

10S€ 2007 2

are

Our solution

Cluster resource accesses
that always happen together

= Each API entry point implicitly defines a
set of resource accesses

= Cluster resource accesses based upon the
APl entry points that perform them

108€ 2007 2

Clustering resource accesses

MapSub
Windows
Set xEvent—>type To MapNotify \/ \/
Set Window->mapped T0 True \/ \/
Read Window—>firstChild \/
Read Window->nextSib \/
Cmp Window # 0 \/
Cmp xEvent->type==KeyPress \/

IosE 2007 "

Concept analysis £

Instances

MapSub | Map Keyboard
Windows |Window |Input

Set xEvent—>type To MapNotify \/ \/

ECIustering using concept analysis:

Read Window—>firstChild v
Read Window->nextSib \/
Cmp Window # 0 \/
Cmp xEvent—>type==KeyPress N

IosE 2007 s 2%

Concept analysis

s |wep | Key
wingove | winow | gt

v
v

{AB}, {1,2}
{C}. {6}

{A}, {1,2,3,4,5}

@, {1,2,3,4,5,6}

IosE 2007 " 27

Mining fingerprints

B 3
Vg | wigon |
Fingerprint |{
Fingerprint 2 v
v
Fingerprint 3 {_ =
{AB.C}, ®
(AB).4EZ
(Chi8k
(AL (12348
@, {1,2,3,4,5,6}

IosE 2007

" 2

Outline

= Case studies

= Conclusion

IosE 2007

Results on case studies

Software LOC |Fingerprints | Avg. Size
ext2 4,476 18 3.7
X Server/dix | 30,096 115 3.7
PennMUSH | 94,014 38 1.4

IosE 2007

Results on case studies

Manually identified
Benchmark Security-sensitive ops Fingerprints
ext2 11 18
X Server/dix 22 115

Results on case studies

Manually identified

Benchmark Security-sensitive ops Fingerprints
ext2 11 18
X Server/dix 22 115

T

T

Results on case studies

Manually identified
Benchmark Security-sensitive ops Fingerprints
ext2 11 18
X Server/dix 22 115

= Associated 59 candidate fingerprints with

Able to find at least one fingerprint
for each security-sensitive operation

108€ 2007 a1

Identified automatically in a few minutes

10S€ 2007 3

security-sensitive operations

= Remaining are likely security-sensitive too
Read Window->DrawableRec->width &
Read Window->DrawableRec->height

108€ 2007

Summary

Static approach to retrofit legacy code
for authorization policy enforcement

= Fingerprints
= Fingerprint mining with concept analysis
= Results:

» Mined fingerprints for security-sensitive
operations in ext2, X server and PennMUSH

IosE 2007 " 2

Mining Security-Sensitive
Operations in Legacy Code

Vinod Ganapathy
vg@cs.wisc.edu

David King
dhking@cse.psu.edu

Somesh Jha
jha@cs.wisc.edu

Trent Jaeger
tjaeger@cse.psu.edu

