
Inferring Likely
Mappings Between APIs

Department of Computer Science
Rutgers University

Amruta Gokhale - amrutag@cs.rutgers.edu!
Vinod Ganapathy - vinodg@cs.rutgers.edu!

Yogesh Padmanaban - ypadmana@cs.rutgers.edu!

ICSE’13, the 35th International Conference on Software Engineering
San Francisco, California, May 2013

ICSE 2013 Inferring Likely Mappings Between APIs 2

“There is an app for that!”

ICSE 2013 Inferring Likely Mappings Between APIs 3

 Approximately 1 million apps available
on Google Play and Apple app stores

Developing a new mobile app

ICSE 2013 Inferring Likely Mappings Between APIs 4

Your
app

Your
app

Apple iOS

ICSE 2013 Inferring Likely Mappings Between APIs 5

Apple iOS

Android BlackBerry 10 Windows 8 Nokia Qt

Your
app

Challenge: Porting across platforms

“Publishing an app in an enterprise today means supporting
around four platforms to cover all of your employees.”
Information Week Jan 2013 “Tips for Multi-Platform App Development”

Challenges in porting apps

ICSE 2013 Inferring Likely Mappings Between APIs 6

•  Different SDKs for app development
•  Different programming languages
•  Different development environments
•  Different debugging aids

Every mobile platform exposes
its own programming API

Platform Language Development Tools
Android Java Eclipse
Apple iOS Objective C XCode
Windows 8 C# Visual Studio

Each API has different features

ICSE 2013 Inferring Likely Mappings Between APIs 7

Android
class

Android method name

android.
graphics!

void drawRect(Rect r,
Paint paint)!
 Draws the specified

Rect using specified
Paint

android.
graphics!

bool contains(int x,
int y) !
 Returns true if (x,y) is

inside the rectangle.

Android
App

Android
phone

iOS class iOS method name

CGGeometry! CGRect CGRectMake
(CGFloat x, y, width,
height)!

Returns a rectangle with
the specified coordinate
and size values.

CGGeometry! bool
CGRectContainsPoint
(CGRect rect, CGPoint
point)!

Returns whether a
rectangle contains a
specified point.

Each API has different features

ICSE 2013 Inferring Likely Mappings Between APIs 8

iPhone

iPhone
App

But API features often map to each other

ICSE 2013 Inferring Likely Mappings Between APIs 9

Android class name Android method name

android.graphics! void drawRect(Rect r, Paint paint)!

android.graphics! bool contains(int x, int y)!

iOS class name iOS method name

CGGeometry! CGRect CGRectMake (CGFloat x, y,
width, height)!

CGGeometry! bool CGRectContainsPoint (CGRect
rect, CGPoint point)!

API mapping databases store target API
methods that map to a source API method

Microsoft’s API mapping database

ICSE 2013 Inferring Likely Mappings Between APIs 10

windowsphone.interoperabilitybridges.com/porting!

Assistance for
Android, iPhone
& Qt developers

Help forums for
developers

Nokia’s API mapping database

ICSE 2013 Inferring Likely Mappings Between APIs 11

 Use cases of apps ported to Qt
Developer stories about porting

 developer.nokia.com/Develop/Porting/!

Creating API mapping databases

ICSE 2013 Inferring Likely Mappings Between APIs 12

Mapping databases are populated
manually by domain experts

•  Microsoft and Nokia’s app interoperability
Web sites shown earlier

•  Painstaking, error-prone and expensive
–  Involves reading and understanding API docs
– Or crowdsourcing, asking on help forums, etc.
– Hard to evolve API mapping databases as the

corresponding APIs evolve

Our contribution

ICSE 2013 Inferring Likely Mappings Between APIs 13

A methodology to automatically create
API mapping databases

•  Prototyped in a tool called Rosetta
–  Infers mapping between Java2 Mobile Edition

graphics API and Android graphics API
•  Leverages a novel probabilistic inference

approach to identify likely API mappings

What are API mappings?

ICSE 2013 Inferring Likely Mappings Between APIs 14

Source API Target API

android.graphics.drawRect! CGGeometry.CGRectMake!

=
Similar?

API Mapping

Yes à API mapping

How to find API mappings?

ICSE 2013 Inferring Likely Mappings Between APIs 15

Source API Target API

•  Consider apps with similar functionality on
source and target platforms

•  Respective developers must have exercised
knowledge of source/target APIs

•  Idea: Harvest knowledge by tracing apps

An analogy: The Rosetta Stone

ICSE 2013

Ancient Egyptian Ancient Greek Egyptian

Inferring Likely Mappings Between APIs 16

•  Created circa 196BC
•  Found circa 1799AD
•  Has same decree in

3 different scripts

Known Unknown Known

Known

An analogy: The Rosetta Stone

ICSE 2013

Ancient Egyptian Ancient Greek Egyptian

Inferring Likely Mappings Between APIs 17

•  Created circa 196BC
•  Found circa 1799AD
•  Has same decree in

3 different scripts

Known Known

Rosetta of ICSE 2013

ICSE 2013 Inferring Likely Mappings Between APIs 18

Unfamiliar Familiar

Source API Target API

Graphics.setColor;!
Graphics.fillRect;!

…	

Paint.setStyle;!
Color.parseColor;!
Canvas.drawLine;!

…	

Traces under similar workloads

= A
pp

 c
or

pu
s

A
pp

 c
or

pu
s

Familiar

Rosetta of ICSE 2013

ICSE 2013 Inferring Likely Mappings Between APIs 19

Familiar

Source API Target API

Graphics.setColor;!
Graphics.fillRect;!

…	

Paint.setStyle;!
Color.parseColor;!
Canvas.drawLine;!

…	

= A
pp

 c
or

pu
s

A
pp

 c
or

pu
s

Why likely API mappings?
•  Rosetta analyzes runtime traces of similar

apps built for the source and target APIs
•  Trace analysis is heuristic

– Considers various artifacts of trace structure
•  The resulting API mappings are therefore

not provably semantically equivalent
•  Instead, we associate a probability with

each inferred API mapping
– Signifies likelihood of mapping being true

ICSE 2013 Inferring Likely Mappings Between APIs 20

Workflow of Rosetta

ICSE 2013

Execution trace
on workload 1

Execution trace
on workload 1

Inferring Likely Mappings Between APIs 21

PR = Probability of mapping

Source
method

Target
method

PR

setColor! setStyle! 0.60

setColor! parseColor! 0.45

App for
Source API

App for
Target API

STEP 1

Generate
execution

trace

STEP 2

Trace

analysis

STEP 3

Generate
execution

trace

STEP 2

Combining results from multiple apps

ICSE 2013

Mappings from App/Workload 1

Mappings from App/Workload N

………
………
………

Source
method

Target
method

PR

setColor! setStyle! 0.85

setColor! parseColor! 0.42

Final Set of Mappings

Inferring Likely Mappings Between APIs 22

Source
method

Target
method

PR

setColor! setStyle! 0.60

setColor! parseColor! 0.45

Source
method

Target
method

PR

setColor! setStyle! 0.90

setColor! parseColor! 0.40

Rosetta combines the mappings
inferred using multiple apps and
workloads pairs.
See paper for details of

Combining
Mappings

STEP 4

STEP 4

Find functionally similar app pairs for source
and target APIs (AppS, AppT)

 Collecting app pairs

ICSE 2013 Inferring Likely Mappings Between APIs 23

STEP 1

App pair Source Platform Target Platform
(ChessS, ChessT)

(TicTacToeS, TicTacToeT)

(MSweeperS, MSweeperT)

 Obtain trace pairs

ICSE 2013

TicTacToeS TicTacToeT

Source
trace 1

Target
trace 1

Inferring Likely Mappings Between APIs 24

Execute AppS and AppT on corresponding
platforms with similar workloads

STEP 2

Workload

(1) Open game

(2) Close game

Multiple traces for AppS, AppT

ICSE 2013 Inferring Likely Mappings Between APIs 25

Workload name Actions performed
1.  Basic

2.  Click on
square

3.  Click on text
menu

Step 1 Open TicTacToe game

Step 2 Close TicTacToe game

Step 1 Open TicTacToe game

Step 2 Click on a square

Step 3 Close TicTacToe game

Step 1 Open TicTacToe game
Step 2 Click on text menu option

Step 3 Close TicTacToe game

Controlled
Execution

Step 1 …

Step 2 …

Execution
trace

STEP 2

Used in the
following
example

•  Intuition: Traces under similar workloads will
contain API methods that map to each other

•  Analyze trace structure to infer these mappings
•  Our algorithm uses four attributes of trace

structure:
1.  Relative frequency of method calls
2.  Context of invoked methods
3.  Relative positions of method calls
4.  Method names

 Trace analysis

ICSE 2013 Inferring Likely Mappings Between APIs 26

STEP 3

Example of trace analysis

API methods or method sequences that
map to each other must appear with similar
relative frequency

ICSE 2013 Inferring Likely Mappings Between APIs 27

1. Graphics.setColor;!
2. Graphics.fillRect;!
3. Graphics.setColor;!
4. Graphics.fillRect;!
5. Graphics.fillRect;!
6. Graphics.fillRect;!
...

1. Paint.setStyle;!
2. Color.parseColor;!
3. Canvas.drawLine;!
4. Paint.setStyle;!
5. Color.parseColor;!
6. Canvas.drawLine;!
7. Canvas.drawLine;!
8. Canvas.drawLine;!
...

Source trace 1 Target trace 1

STEP 3

Example of trace analysis

ICSE 2013 Inferring Likely Mappings Between APIs 28

1. Graphics.setColor;!
2. Graphics.fillRect;!
3. Graphics.setColor;!
4. Graphics.fillRect;!
5. Graphics.fillRect;!
6. Graphics.fillRect;!
...

1. Paint.setStyle;!
2. Color.parseColor;!
3. Canvas.drawLine;!
4. Paint.setStyle;!
5. Color.parseColor;!
6. Canvas.drawLine;!
7. Canvas.drawLine;!
8. Canvas.drawLine;!
...

Source trace 1 Target trace 1

Source API
method

Raw
Count

Relative
 frequency

setColor! 2 0.33
fillRect! 4 0.67

Target API
method

Raw
Count

Relative
frequency

setStyle! 2 0.25
parseColor! 2 0.25
drawLine! 4 0.50

STEP 3

Example of trace analysis

ICSE 2013

Source
method

Target
method

Probability
of mapping

fillRect! setStyle!

fillRect! parseColor!

fillRect! drawLine!

setColor! setStyle!

setColor! parseColor!

setColor! drawLine!

Inferring Likely Mappings Between APIs 29

Source API
method

Raw
Count

Relative
 frequency

setColor! 2 0.33

fillRect! 4 0.67

Target API
method

Raw
Count

Relative
frequency

setStyle! 2 0.25

parseColor! 2 0.25

drawLine! 4 0.50

STEP 3

Can infer the following

?
?
?
?

Likely mappings, but
need more evidence

Large difference in
relative frequencies

Example of trace analysis

ICSE 2013

Source
method

Target
method

Probability
of mapping

fillRect! setStyle!

fillRect! parseColor!

fillRect! drawLine!

setColor! setStyle!

setColor! parseColor!

setColor! drawLine!

Inferring Likely Mappings Between APIs 30

STEP 3

?
?
?
? R

es
ul

ts
 fr

om
 fi

rs
t t

ra
ce

1. Graphics.setColor;!
2. Graphics.fillRect;!
...

1.   Canvas.drawLine;!
2.   Paint.setStyle;!
3. Color.parseColor;!
...

Source trace 2 Target trace 2

Using ordering of
method calls:

 implies

Example of trace analysis

ICSE 2013 Inferring Likely Mappings Between APIs 31

1. Graphics.setColor;!
2. Graphics.fillRect;!
...

1.   Canvas.drawLine;!
2.   Paint.setStyle;!
3. Color.parseColor;!
...

Source trace 2 Target trace 2

In fact, we can deduce that one of these holds:
Source
method

Target
method

Probability
of mapping

 fillRect! drawLine!

setColor! setStyle!

setColor! parseColor!

Source
method

Target
method

Probability
of mapping

 fillRect! drawLine!

setColor! setStyle!

setColor! parseColor!

STEP 3

•  This is an example of belief propagation
–  If setColor likely maps to setStyle, then
fillRect likely does not map to drawLine

– More traces will lead to more such deductions

•  We use factor graphs for belief propagation

Using belief propagation

ICSE 2013 Inferring Likely Mappings Between APIs 32

Source
method

Target
method

Probability
of mapping

 fillRect! drawLine!

setColor! setStyle!

setColor! parseColor!

Source
method

Target
method

Probability
of mapping

 fillRect! drawLine!

setColor! setStyle!

setColor! parseColor!

STEP 3

•  Combines multiple trace attributes using
factor graphs to infer likely mappings

•  Infers likely mappings between API method
sequences as well
– Does setColor map to setStyleàparseColor?

•  Associates numerical values with and
based upon likelihood of mapping

•  Detailed algorithm presented in the paper

Full trace analysis algorithm

ICSE 2013 Inferring Likely Mappings Between APIs 33

STEP 3

Output of Rosetta

ICSE 2013

Source API method Target API method Probability
Graphics.setColor Color.parseColor! 0.8

Graphics.setColor Paint.setStyle! 0.75

Graphics.setColor Canvas.drawLine! 0.43

Graphics.fillRect! Canvas.drawLine! 0.87

Graphics.fillRect! Color.parseColor! 0.62

Graphics.fillRect! Paint.setStyle! 0.45

Inferring Likely Mappings Between APIs 34

•  For each source API method, a ranked list of
target API methods that are likely mappings

•  Akin to a search engine for API mappings

The Rosetta prototype

•  Why JavaME and Android?
– Both platforms use the same source language for

app development
– Eased development of initial prototype
– But having the same source language is not a

fundamental requirement for Rosetta
•  Uses instrumentation to enable API tracing
•  Uses Bayes Net Toolbox for factor graphs

 ICSE 2013 Inferring Likely Mappings Between APIs 35

Source platform Target platform
JavaME Graphics API Android Graphics API

281 methods 3837 methods

Evaluation
•  Dataset consists of 21 app pairs for JavaME

and Android, mainly board games
– Controlled experiments easy with board games

•  Traced apps manually in similar ways, and
analyzed traces to infer API mappings

•  Evaluated validity of resulting API mappings
by consulting API documentation

ICSE 2013 Inferring Likely Mappings Between APIs 36

Examples of inferred API mappings

ICSE 2013 Inferring Likely Mappings Between APIs 37

JavaME graphics API
method

Android graphics API
method

Rank

Graphics.clipRect! Canvas.clipRect! 1

Graphics.drawChar! Paint.setColor;!
Canvas.drawText!

2

Alert.setString! TextView.setText! 4

Graphics.drawRect! Canvas.drawRect! 1

Graphics.drawRect! Canvas.drawLines! 7

Highlights of results

ICSE 2013 Inferring Likely Mappings Between APIs 38

Metric Count
1.  Distinct number of JavaME methods

observed in traces
80

2.  Total number of JavaME methods for
which valid Android API mapping was
found with rank ≤ 10

56
(70%)

3.  Total number of JavaME methods for
which valid Android API mapping was
found with rank = 1

32
(40%)

I’m Feeling Lucky

Distribution of first valid mapping

ICSE 2013 Inferring Likely Mappings Between APIs 39

Rank of first valid mapping

Number of
JavaME
methods

56 API mappings in top ten

32 top-ranked API mappings
I’m Feeling Lucky

More results in the paper
•  Rank distribution of all valid mappings, not

just the first valid one
•  Impact of various trace attributes to overall

ranking of inferred mappings
•  Cross-validation of the results of Rosetta

against an off-the-shelf JavaME to Android
translator

•  Runtime performance evaluation

ICSE 2013 Inferring Likely Mappings Between APIs 40

Conclusion
•  It is becoming increasingly important to

port apps to a variety of platforms
•  Key challenge: Different platforms use

different programming APIs
•  API mapping databases help, but they are

created manually by domain experts

ICSE 2013 Inferring Likely Mappings Between APIs 41

We presented a methodology to automate
the creation of API mapping databases

Thank You
Rosetta is part of the

MOSFETRU Project
Mobile Software Engineering Tools at Rutgers

Google MOSFET Project Rutgers for information

