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Abstract This paper addresses the problem of detecting plagiarized mobile apps.
Plagiarism is the practice of building mobile apps by reusing code from other apps
without the consent of the corresponding app developers. Recent studies on third-party
app markets have suggested that plagiarized apps are an important vehicle for malware
delivery on mobile phones. Malware authors repackage official versions of apps with
malicious functionality, and distribute them for free via these third-party app markets.
An effective technique to detect app plagiarism can therefore help identify malicious
apps. Code plagiarism has long been a problem and a number of code similarity
detectors have been developed over the years to detect plagiarism. In this paper we
show that obfuscation techniques can be used to easily defeat similarity detectors that
rely solely on statically scanning the code of an app. We propose a dynamic technique
to detect plagiarized apps that works by observing the interaction of an app with the
underlying mobile platform via its API invocations. We propose API birthmarks to
characterize unique app behaviors, and develop a robust plagiarism detection tool
using API birthmarks.
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1 Introduction

In recent years, smart phone app markets have witnessed explosive growth. Popular
app markets, such as those of Apple and Google, now have in excess of a million apps.
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With such large numbers, and an equally diverse and large developer community, mal-
practices in app development should come as no surprise. We focus on app plagiarism,
the practice of using another developer’s code, without permission or payment, to build
and deploy mobile apps.

Plagiarism has long been a problem in traditional software development. It espe-
cially affects developers who wish to protect intellectual property embedded in their
software. In response, the community has been actively researching techniques to
detect plagiarism (Baker 1995; Kontogiannis et al. 1995; Baxter et al. 1998; Krinke
2001; Kamiya et al. 2002; Ducasse et al. 2006; Liu et al. 2006). In the mobile app
space, plagiarism is of particular concern. Recent work has shown that plagiarized
apps divert advertising revenue as well as the user base from the developers of the
original apps (Gibler et al. 2013). More importantly, most mobile malware are repack-
aged (i.e., plagiarized) versions of otherwise benign mobile apps (Zhou and Jiang
2012). Malicious mobile apps are often distributed via third-party app stores, which
lure victims by promising free versions of apps that would otherwise require payment
on official app stores. The developers of these mobile apps typically obtain a copy of
the original app from the official app store, modify the app with their own malicious
functionality, and repackage and distribute it via these third-party app stores. The
malicious functionality may include displaying unwanted advertisements to victims,
monitoring the activities of victims, or even exfiltrating sensitive data to malicious
web sites (Felt et al. 2011; Zhou and Jiang 2012; Zhou et al. 2013).

The rise of mobile malware has also spurred the development of anti-malware
tools, a variety of which are available through official app markets. These tools use a
number of techniques to detect malware, the most common of which is to use simple
signature-based scanning to detect malicious apps. Signatures encode code or data
patterns seen in malicious apps but not in benign ones. Anti-malware tools scan a new
app upon download, and attempt to match them against their signature database. How-
ever, it has long been known in the security community that signature-based malware
detection tools can easily be evaded using simple transformations (Christodorescu
and Jha 2004). Such transformations include variable and function renaming and code
reordering, which alter the syntactic structure of the code, so that it no longer matches
the signatures used by anti-malware tools. Indeed, recent work has shown that most
commercially-available tools to detect mobile malware can easily be evaded using
simple transformations (Rastogi et al. 2013).

In response, there have been a number of efforts to develop techniques that detect
malicious mobile apps even in the presence of transformations, focusing primarily on
detecting plagiarized mobile apps (Zhou et al. 2012, 2013; Crussell et al. 2012; Hanna
et al. 2012. To date, these techniques have used static analysis and follow the same
basic recipe: Obtain and disassemble a suspect app, and use sophisticated similarily
detection algorithms to detect plagiarism. The similarity detection algorithms studied
in the literature have primarily been syntactic in nature, ranging from detecting code
clones (Hanna et al. 2012), using fuzzy hashing to detect similar code fragments (Zhou
et al. 2012), and using machine learning techniques to detect apps that share similar
syntactic features (Zhou et al. 2013).

In this paper, we take the position that such static approaches towards detecting
plagiarism that rely on syntactic features fundamentally fall short, and can easily be
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defeated using code obfuscation. We argue that a more robust app plagiarism detection
technique is needed, and present such an approach. Our main contributions are two-
fold:

(1) Obfuscation defeats syntactic similarity detection We show that the use of sim-
ple encryption techniques defeats previously-proposed similarity detection tools.
These tools rely on syntactic features of the code, and the use of encryption obfus-
cates these features, making it possible to easily evade detection by these tools.
Section 2 presents the results of this study, in which we also study the effectiveness
of several off-the-shelf obfuscation tools.

(2) API birthmarks provide robust plagiarism detection We develop a robust approach
for detecting mobile app similarity. Our approach was inspired by prior work
(Schuler et al. 2007) to create unique fingerprints of desktop programs. This
approach works by observing the execution of a mobile app—it is therefore
dynamic in nature—and recording its interactions with the underlying mobile
platform via the API that it exposes. The key idea is that an app can affect the
mobile device only by interacting with the platform via its API. Thus, similar apps
must interact with the platform in similar ways. We capture “similarity” via the
notion of API birthmarks, which are subsequences of API calls that are unique to a
particular app. In our experiments, we show that the API birthmarks of plagiarized
apps substantially resemble those of the original apps. Further, API birthmarks are
robust to code obfuscation and encryption because a running app must issue API
calls to interact with the platform, and these calls themselves cannot be obfuscated.
Thus, our approach provides a robust way to detect app plagiarism.

2 Obfuscating mobile apps

Obfuscating a mobile app is the process of transforming the original source code of
the app so that resulting code is hard for humans to interpret or read. App developers
obfuscate code for a number of reasons, such as to prevent easy interpretion of the
reverse-engineered code, or to protect the code from tampering by others. However,
obfuscation can also be used to disguise plagiarism, e.g., when a copyrighted app’s
source code is being reused without obtaining the appropriate permissions. By obfus-
cating the plagiarized app, the attacker reduces the probability of the new app being
identified as similar to the original app. As we will demonstrate, obfuscated apps can
easily evade a number of off-the-shelf code similarity detection tools.

2.1 Comparison of obfuscators

There are a number of commercial or free off-the-shelf code obfuscators. Some of
these obfuscators target only the traditional desktop software, e.g., DashO and Allatori,
while obfuscators such as ProGuard have been ported to work for Android apps as
well. These obfuscators use a number of algorithms to transform the original code:

e Name obfuscation This technique subtitutes randomly-chosen character sequences
in place of the original, human-readable names for a number of code artifacts. For
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Table 1 Comparison of different obfuscators in terms of their transformation capabilities

Obfuscators Transformations

Renaming Dead code removal Control flow obfuscation String encryption Code encryption

ProGuard Vv v

X X X
Allatori v v v v X
DashO v v v v X
Androcrypt x X X X v

The last row lists the transformations employed by Androcrypt, the obfuscator that we have built

example, the obfuscation may transform source code file names, line numbers,
field names, method names, argument names and variable names.

e Control flow obfuscation This technique changes the code of an app (either source
code or bytecode) to obscure the control-flow structure of the original app. For
example, the transformation may target selection and looping constructs and
replace them with goto statements. When such transformed code is analyzed using
a decompiler, it produces code that is difficult to read and understand. Direct jumps
may be replaced with indirect ones, which further complicates even basic decom-
pilation tasks, such as constructing a control-flow graph of the program.

e String encryption In this technique, string literals in the code are encrypted and
code to decrypt these strings is added to the source code. Examples of such string
literals include the text of error and exception messages, and the text of the labels
or other GUI components such as dialog boxes, buttons, and drop-down menus.

Table 1 shows the transformation techniques used by three off-the-shelf obfuscation
tools that can be applied to Android apps. Given the capabilities of these obfuscation
tools, we wanted to evaluate their effectiveness. One way to evaluate obfuscators is to
feed the original code and obfuscated code to a code similarity detection tool. Code
similarity detection tool would report low similarity for strongly obfuscated code,
whereas similarity would be high for weakly obfuscated code. Below we describe our
experiment.

We randomly chose ten Android apps from a repository of open-source Android
apps. The randomly selected apps and the sizes of the corresponding .apk files are
shown in the Table 2. We then applied ProGuard, Allatori and DashO to each of these
apps so as to obtain their obfuscated versions. To compare the original app with its
obfuscated counterpart, we used two different code similarity detectors: a popular
off-the-shelf tool called Androguard and a state-of-the-art code similarity detector,
Juxtapp (Hanna et al. 2012), that was developed in an academic setting.

We observed that the similarity scores reported by both the tools were almost the
same. For brevity, Table 3 presents the results of this experiment for Androguard (see
also the Appendix for experiments with more apps). Androguard reports a number
between 0 and 100 to report similarity: a pair of similar apps will receive a score
of 100, and a pair of apps with no similarity will get a score of 0. We converted
these numbers suitably to a range between 0 and 1. As Table 3 shows, off-the-shelf
obfuscators are somewhat effective at defeating Androguard’s similarity detection
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Table 2 Size statistics of apps
chosen for the experiment to
comque similarity measures Zxing 720kB
shown in Table 3

App’s name Size of .apk file

Connectbot 858kB
Stardroid 2188kB
OpenSudoku 211kB
Pedometer 46kB
Reddit 759kB
Amazed 15kB
The f | N " Wikinotes 119kB
size of the .apk file Mileage 366kB

Table 3 Results of similarity measure (between 0 and 1) reported by a popular similarity detection tool,
Androguard

App name ProGuard Allatori DashO Androcrypt
Zxing 0.61 0.93 0.56 0
Connectbot 0.60 0.76 0.57 0
Stardroid 0.53 0.82 0.54 0.51
OpenSudoku 0.83 0.82 0.59 0.01
Pedometer 0.84 0.67 0.52 0.03
Reddit 0.47 0.94 0.37 0
Amazed 0.44 0.89 0.75 0.1
Wikinotes 0.92 0.86 0.67 0.28
Photostream 0.77 0.92 0.64 0.03
Mileage 0.72 0.85 0.56 0.56

The Android app’s binary executable file. Each column corresponds to app pairs in which obfuscated apps
have been obtained by running the corresponding obfuscator

algorithm. Among the three obfuscators and ten apps that we tested, we found that
Allatori was the least effective at obfuscating apps. We repeated the same experiment
on a larger dataset of 50 apps downloaded randomly from the same repository and
found similar results, as shown in the Appendix.

2.2 Androcrypt: an encrypting obfuscator for Android apps

Given the results with the three off-the-shelf obfuscation tools, we asked whether it
was possible to build an obfuscator that would be even more effective at transforming
an app, so that tools such as Androguard would be rendered ineffective. Drawing on
the ideas used to create polymorphic and metamorphic malware (You and Yim 2010),
we built Androcrypt, an encrypting obfuscator for Android apps. Androcrypt takes a
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.apk file corresponding to an Android app as input, encrypts the app and packages it
as the payload for a new, obfuscated app.

In more detail, Androcrypt operates as follows. Every Android project consists of a
collection of files and directories, in which source code files, binary files and resource
files are organized into directories such as src, bin, res, assets etc. Typically, raw data
files are stored in the assets directory which then can be read as a byte-stream using
the android.content.res.AssetManager class in Android. AssetManager class provides
lower-level API to open and read the raw files. When supplied an input.apk file as input,
Androcrypt first creates an empty Android project with all the relevant directories. It
then uses the Java cryptography library (we used the AES/CBC/PKCS5Padding mode)
to encrypt the input .apk file, and places it in the assests directory. Androcrypt incor-
porates a new Activity class in the new Android project that first reads the encrypted
app stored in assets directory using AssetManager API and decrypts it using the Java
cryptography library. The Activity then dynamically loads the classes from the DEX
bytecode of the decrypted app using the dalvik.system.DexClassLoader class. Andro-
crypt replaces all the original source code files of the application that reside in src
directory with the single source file of the above Activity class. This Android app is
then packaged as an .apk file and distributed as the obfuscated app. When the app is
started, the first component that executes is the new Activity class, which decrypts the
original app and loads its classes.

While the steps described above suffice to obfuscate a majority of Android
apps, there are a few categories of apps that fail to start up when obfuscated this
way. Such apps contain classes inherited from either one of two Android classes:
android.content. ContentProvider or android.app.Application In Android, the Con-
tentProvider class manages the sharing of data between multiple apps, and is used by
apps that share data with other apps. For example, a texting app might use this class if it
shares data with the contacts list on the phone. Likewise, the Application class is used
by Android apps to store any global application state. An Android application using
any one of these two classes declares its use in its manifest file. When the Android
runtime system executes an Android app, it scans the manifest to determine whether
these classes are being used by the app, and first loads these classes before launching
the main Activity class.

Androcrypt packages the original app and includes the decryption functionality
in the main Activity class of the repackaged app, which must start first. As a result,
the obfuscator cannot extract the individual ContentProvider or Application classes,
thereby breaking the app’s functionality. For such apps, Androcrypt uses a hybrid
strategy: it obfuscates the ContentProvider and Application classes using ProGuard,
while using encryption on the rest of the .apk file.

The last column of Table 3 shows the results of obfuscating apps using Androcrypt.
We observe that majority of the apps had low similarity scores when Androcrypt was
used as compared to any of the three obfuscation tools. Two exceptions were Stardroid
and Mileage apps. These two apps used classes inherited from the ContentProvider and
Application classes; these classes were not encrypted, which explains why these apps
had a higher Androguard-similarity score than the other apps. Thus, Androcrypt’s
encryption-based approach to obfuscating Android apps is more effective than the
techniques used by ProGuard, Allatori and DashO.
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Table 4 Mean and median of the similarity measures (between 0 and 1) reported by Androguard for the
dataset of 53 apps

ProGuard Androcrypt
Mean 0.68 0.07
Median 0.72 0.02

Each column corresponds to app pairs in which obfuscated apps have been obtained by running the corre-
sponding obfuscator
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Fig. 1 Distribution of similarity measures reported by Androguard when two different obfuscators were
used. Box on left corresponds to using ProGuard as the obfuscator whereas box on right corresponds to use
of Androcrypt as obfuscator. The values used to draw the plots are taken from the columns labeled as (PG,
AG) and (AC, AG) in Appendix

We repeated the same experiment on a larger dataset of 53 apps. The complete
results are given in Appendix. For brevity, we report the mean and the median of the
scores in Table 4, and the box plots of the scores is shown in Fig. 1. As is evident
from the plot, the similarity measures reported by Androguard on app pairs in which
Androcrypt was used as the obfuscator dropped significantly as compared to the values
reported on the same app pairs when off-the-shelf obfuscator, ProGuard, was used.
The results demonstrate that simple encryption as used in Androcrypt can easily defeat
existing similarity detectors.

3 Methodology

3.1 API birthmark

There are many off-the-shelf program transformation tools available that can modify
the source code of the program without affecting the program’s functionality. As

discussed in Sect.2, obfuscators are capable of transforming the program so as to
evade a popular similarity detection tool for Android.
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More generally, a large majority of existing similarity detection tools that have been
proposed in the research literature (for Android) rely on simple static properties of the
program. Such static properties can be, for example, a unique hash of the executable
binary code (Zhou et al. 2012), a feature vector comprising the set of permissions
requested by the application and the set of API methods present in the source code
of the application (Zhou et al. 2013). An encrypting obfuscator such as Androcrypt
completely transforms the syntactic structure of the application, so that any attempt
to recover such static properties can be defeated by suitably encrypting the files of
the application. Such transformed programs can easily be passed off as the originals,
thereby allowing app plagiarism.

In this paper, we develop a robust approach that detects plagiarized mobile apps.
Our approach was inspired by an effective technique to uniquely identify desktop
programs by creating their software birthmarks (Tamada et al. 2004) dynamically.
Such a birthmark represents a unique fingerprint of the program that characterizes its
runtime behavior. Two programs that have the same birthmark are likely to implement
similar functionality, and are likely to have originated from the same source code.

In this approach, birthmarks are dynamic in nature and are computed by observing
the runtime behavior of the program. As long as there are no significant high-level
changes in the behavior of the original and the obfuscated program, the dynamic birth-
mark of both versions will be similar. Thus, dynamic birthmarks are more robust to
program transformation attacks and are more likely to be preserved during obfuscating
transformations.

Since a dynamic birthmark is determined by the runtime behavior of the program,
it is important that the birthmark captures program properties that constitute the core
functionality of the program. If the program’s functionality changes, the birthmark of
the resulting program must be distinct from that of the original version. However, minor
changes in the functionality of the program, as would be expected when an attacker
adds new functionality to a plagiarized program, must not cause large deviations in
the value of the birthmark.

A desktop program interacts with the environment in which it is run (i.e., operating
system) to meet the desired functionality. Similarly, an Android app must interact with
the Android and Java runtimes in order to achieve functional goals. These interactions
are in the form of the Android and Java API methods invoked by the app. We log
these method invocations and collect them in a trace when the app is executed. We
leverage prior work (Schuler et al. 2007) to define an API birthmark of the app over the
sequence of method invocations by the app. Any new functionality introduced into the
app (or old functionality deleted from the original) will likely introduce changes into
the sequences of API methods invoked by the app and hence will result in a different
birthmark (Table 5).

3.2 API birthmark algorithm
We now describe in more detail the birthmark-based approach for plagiarism detection.

Our approach works on a pair of Android apps, and uses birthmarks to compute a
similarity coefficient between 0 and 1 (as was the case with Androguard). As explained
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Table 5 Snippets from traces of executions of unmodified Android app and its obfuscated version

Trace Tracey, .
Activity.onCreate () Activity.onCreate()
Activity.setContentView () Activity.setContentView ()
Activity.findViewById() Activity.findviewById()
View.setVisibility () View.setVisibility ()
View.setOnClickListener () View.setOnClickListener ()

Activity.getWindow ()

Each trace snippet shows the method invoked, and the class in which the method is implemented. Android
class Activity is prefixed with android/app and the class View is prefixed with android/view.
For brevity, we are using abbreviated class names

in Sect. 2, we use Jaccard index to calculate the similarity coefficient. A value closer to
1 indicates high similarity in the observed behavior of apps where as a value closer to
0 signals low similarity in the observed behavior. Although we describe the approach
for Android apps, we hypothesize that it will be applicable to other mobile platforms
as well. In the description below, A is an unmodified Android app, and Aypfs is an
app that we suspect is an obfuscated variant of A.

3.2.1 Trace collection

The first step is to run both the apps A and A, sy independently, exercising as much
functionality as possible, and collect the execution traces. We then filter the trace so as
to retain only those method calls that are invoked on objects whose classes belong to
the Android API. We do this filtering because we are interested in observing only the
interaction between the app and the underlying Android API. Table 5 shows snippets
Trace4 and Tracey,, fs of two traces obtained by running A and A, Tespectively,
by using the Monkey tool as described in Sect.5.10 and filtering the corresponding
traces. We will use these snippets in our explanation below, although our approach
works on the entire trace.

3.2.2 Computing the similarity coefficient

In this step, we compute whether the two apps A and A,y are similar, using the two

traces Trace4 and Tracey,, . This step can be broken down into four sub-steps.

(1) Collecting object-level API method calls In an object-oriented language such as
Java, a trace of a program is a global sequence of API method calls invoked on
objects in the program. We split this global sequence into different object-level
sub-sequences. Each one of such sequences contains all the API method calls that
were invoked on a single object. Such a division avoids to a certain extent the effect
of reordering of method calls between different traces introduced by changes in
thread scheduling in multi-threaded programs (Schuler et al. 2007).
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Let us now turn to the sample trace snippets Trace, and Tracey,,,, to compute
object level API method calls. In these two snippets, we will assume that there is
only one object of each of the class types activity and view. In general, there
could be multiple objects of the same class type, and the sequence of function
calls will be collected for each of them individually, based on the object IDs. Let’s
use the class name itself as the object ID for further simplicity. We accumulate
the sequence of function calls invoked on each of the two objects individually.
Thus, we get two method sequences each from each of the two traces Trace 4 and
Tracey,,, - Each of the method calls is prefixed with the full class name such as
android/app/Activity and android/view/View in our actual calculation. We are
omitting the class name prefix here for brevity.

API method calls grouped together by objects in Trace 4

Activity.onCreate();
Activity.setContentView();
Activity.findviewById();
View.setVisibility();
View.setOnClickListener ()

API method calls grouped together by objects in Tracey s

Activity.onCreate();
Activity.setContentView();
Activity.findviewById();
Activity.getWindow ()
View.setVisibility();
View.setOnClickListener ()

(2) Generating k-length sequences The object-level API method call sequences are
long and hence are not easy to compare between different program runs. Schuler
et al. (2007) proposed the idea of chopping up these sequences using a sliding
window to generate a set of smaller method sequences, and we use this idea as
well. Let us assume that for the sample trace snippets Trace and Traceg,,,,
the length of sliding window is 2. So we can break up the object-level sequences
obtained in the above step into a set of sub-sequences, each of length 2 as shown
in the table below. From here on, we are omitting the class names which we use
in our actual computation.

2-length sequences from Trace 4

onCreate(); setContentView ()
setContentView(); findviewById()
setVisibility (); setOnClickListener ()
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2-length sequences from Trace, s

onCreate(); setContentView ()
setContentView(); findviewById()
findViewById(); getWindow ()
setVisibility (); setOnClickListener ()

(3) Calculating birthmarks Finally, we compute birthmark as the union of all 2-length
sequences of all objects. The following table shows the birthmarks computed
for the two apps A and Aprs. In this case, the union operation merely com-
bines the two sets of sequences without any deletions. But in general, the
union will result in deletions of common sequences present among the different
sets.

Birthmark B4 for the app A

onCreate (); setContentView ()
setContentView(); findViewById ()
setVisibility (); setOnClickListener ()

Birthmark B4 for the app Agp s

obf's

onCreate (); setContentView ()
setContentView(); findViewById()
findviewById(); getWindow ()
setVisibility (); setOnClickListener ()

(4) Computing similarity coefficient We use Jaccard index as a measure of similarity
between two apps. Given two birthmarks B4 and By, fs of two apps A and Ay s,
the similarity coefficient between two apps is therefore given by Jaccard index of

the two sets B4 and BA(,MS.

_ |BA N BAabfs
|BA @] BAnb_fs

Sim(A, Aobfs)

Thus, for our running example of the two apps, the similarity coefficient is equal
to:

3
Sim(A, Apprs) = i 0.75.

Once we have computed the similarity coefficient between two apps, we use a
threshold to decide whether the two given apps should be categorized as plagia-
rized. Explanation of how a threshold is chosen is given in Sect.5.3.
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Input: A trace T consisting of a sequence of (thread-id, method-signature, object-id) entries

Output: Birthmark B containing a set of sequences of function calls

Assign window-length = 4

Lpj = list of sequences, each of length window-length, of function calls invoked on a particular object 0bj
Copj = current sequence, whose length <= window-length, of function calls invoked on a particular object obj
le"Cohj = length of Cpp;

foreach entry (thread-id, method-signature, obj) in the trace do
| Add obj to the set of unique object-ids unig-objs

foreach obj in unig-objs do

Initialize the list L,p; to empty

Initialize current sequence Cyp; to empty

Initialize current sequence’s length [e"Cob/ to be zero

foreach entry (thread-id, method-signature, obj) in the trace do
Append method-signature to Cpp;
Increase value Ofle"Cob/ by 1

if lenc,, . == window-length then
Add the sequence Cyp; to the list Lp;
Decrease value of / enc,y,: by 1

Delete the first element from Cyp;
foreach obj in unig-objs do
L if lencabj > 0 then Add the sequence Ly; to the list Lp;

Initialize birthmark to empty set {}
foreach obj in unig-objs do
L birthmark = union of (birthmark, Lp;)

Algorithm 1: Computing Birthmark

Input: Birthmarks B and By sy of two apps, A and A,p s respectively
Output: A similarity coefficient between the two apps, A and Ap s
Calculate / = intersection of (B, Bypss)

Calculate U = union of (B, Bypss)

Numberofitemsinl

NumberofitemsinU

Algorithm 2: Calculating Similarity

Similarity score =

4 Implementation

Our implementation of the birthmark-based similarity detection approach consists of
two parts. The first part is the system that profiles applications and collects execution
traces and is described below. The second part is the implementation of the birthmark
algorithm described in the previous section, and we do not describe it in further detail
here.

The Android SDK ships with a default method profiling tool, which can be used to
collect execution traces of an application running either on an Android device or on
the Android emulator. We used this tool to collect run-time traces of apps executing
in the Android emulator. We worked with Android SDK 2.3.7 (Gingerbread). In this
section, we will describe the changes we made to the Android framework for trace
collection and filtering.

— Using default Android profiler Dalvik Debug Monitor Server (DDMS) is a debug-
ging tool provided in Android’s SDK that also offers the ability to trace apps.
Users can leverage DDMS to trace the execution of a running app as it performs
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arious activities using a simple user interface. The resulting file is a concatena-

tion of data in binary format and textual information about mappings between the

binary identifiers in the data and the corresponding method names. We wrote a C

program to parse the trace file and output the sequences of methods invoked in the

trace.
— Modifications to the profiling code We modified the source code of the default
profiler to make two changes to the trace generation:

(1) Tracing app-specific method calls The default profiler in Android profiles
all the method calls in the call hierarchy including those invoked by the
application as well as the methods executed by the underlying Android frame-
work and the Dalvik virtual machine. We are interested in logging only the
method calls invoked by the application. So we modified the source files of
the Android framework, so that the profiler logs a method call, only if the
return address of the calling function falls within the memory boundaries
at which the application is loaded. This ensures that the method call being
logged was invoked from within the application and does not include method
calls invoked outside from the application such as those made by the Android
APL

(2) Emitting object ID For calculating API birthmarks, we need the ID of the
object on which each method call is invoked during the application run, so
as to segregate API method calls based on the respective invoked objects.
Hence we modified the Android source so as to emit the object ID in each
record of the generated trace. We log the following fields in the final trace:
thread ID, method name, method arguments and return type, class name, object
ID.

— Trace filtering

There are three types of APIs that an Android application interacts with:

(1) Android framework API: Set of methods provided by the underlying Android
framework

(2) Java standard API: Set of methods provided by the standard Java language
implementation

(3) APIs that are part of the application package (including various advertisement
libraries)

During birthmark computation, we want to include only those method calls that

are indispensable to the Android application. Hence we decided to log the inter-

action of the application with the underlying Android framework. We decided
not to keep track of the interaction of the application with the libraries that come
as part of the application package (such as advertisement libraries). Such APIs
being internal to the application, are easy to replace with other equivalent APIs.

For example, consider a free mobile application that uses multiple advertisement

libraries to display advertisements to the users. An attacker can easily remove one

of these APIs and repackage the application, without changing the application’s
functionality. Also, one can easily change the methods’ names declared inside one
of these APIs. The discussion about exclusion of Java API methods is given later in

Sect.5.8.
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5 Evaluation
5.1 Goals

To evaluate the API birthmark algorithm, we need to answer the following question:
What are the essential characteristics of a birthmark of a mobile app?

A birthmark should be able to detect high similarity between identically behaving
copies of the same program, even if the source code of the two programs differs signif-
icantly (e.g., because of applying various program transformations). As a corollary, if
a large portion of the source code of two programs is the same, the birthmark should
detect them as copies. Additionally, when given two dissimilar programs as input, it
should be able to distinguish between them by giving low value of similarity. We con-
ducted different experiments to evaluate the API birthmark algorithm on these three
factors. We first present our evaluation setup which is followed by a description of
these experiments.

5.2 Evaluation setup

The very first step in our evaluation was creation of the required dataset of app pairs.
To assess the resilience of the birthmark against program transformations, we need a
dataset consisting of two types of apps, a corpus of apps that implement a variety of
functionalities, and the same apps, obfuscated using semantics-preserving transforma-
tions on the original apps. As explained in Sect.2, we designed our own obfuscator,
named Androcrypt, that would encrypt the app’s binary, store the decryption logic
as the first statement to be executed in the new app and thus produce an identically-
behaving obfuscated app. We collected a corpus of Android apps, and obfuscated them
using Androcrypt. We then ran the API birthmark algorithm on execution traces of
all possible (A, A/O;,fuscmed) pairs of apps from this dataset. Each pair consists of
an original app A and an app A/obfusw,gd obtained by obfuscating an original app
A'. Here, two cases are possible: either A" = Aie., A is the same app as A or
A # Ale., A is a different app than A. In the first case when we run the algorithm
on traces of (A, Aopfuscarea) types of pairs, consisting of an original app A and its
obfuscated counterpart Aopfuscared, We are testing the resilience of the API birthmark
against obfuscations. In the second case when pairs are of type (A, A,O;, fuscated) Where

/

A obfuscated 15 Obfuscated counterpart of an app A" which is different than A, we are
testing the ability of API birthmark to distinguish between distinct apps.

To compute the API birthmark of an original app A or its obfuscated counterpart
Aobfuscated, We need the corresponding runtime trace. Executing each app manually
is time consuming and would impede the detection of plagiarized apps in a large
collection (e.g., at app market scale), thereby limiting the scalability of the approach.
Therefore, we decided to automate the process of Android app execution. For running
Android apps without any manual intervention, we used a tool called Monkey that
drives the app automatically by generating input events such as clicks and touches,
as described in Sect.5.10. We then collected the execution trace using DDMS as
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explained in Sect.4. From our dataset of (A, A/(,bfuswted) pairs of original apps and
their obfuscated counterparts, the automatic execution succeeded for a total of 350
app pairs (downloaded randomly from Google’s official Android app market).

We divided our dataset into two, a smaller set of 50 apps was used as the training set
and the remaining apps formed an evaluation set. The training set was used to set the
threshold for the similarity measure. Using this threshold, we evaluated the birthmark
algorithm on the apps in the evaluation set. We also did a number of experiments on
this dataset such as verifying the credibility of the API birthmark.

All our experiments were done on Linux machine with Intel i5 quad-core 3.10GHz
processor, 8 GB RAM and running Ubuntu 12.04. On an average, it took 0.2 seconds
to filter two traces and run API birthmark algorithm on one pair of apps.

5.3 Choosing a threshold value

Prior to performing the experimental evaluation, we first need to set the threshold for
the similarity coefficient that is used to determine whether an app is plagiarized. As
described in Sect. 5.2, we used the smaller training set of 50 apps to set the threshold.
The 50 original apps and 50 obfuscated counterparts of these apps formed 50 x 50 (A,
Aobfuscared) app pairs. On every pair in this set, we ran the API birthmark algorithm.
We experimented with different values of threshold and calculated the number of
false positives and false negatives, as reported in Table 6. The total number of wrong
classifications is equal to the sum of false positives and false negatives, as shown in the
last column of Table 6. One could choose to minimize the number of false positives
alone or the number of false negatives alone. We chose to minimize the total number
of wrong classifications, and hence decided to set the threshold value to 0.5, which
gives the least number of wrong classifications as shown in the last column of Table 6.

We used this threshold to evaluate the API birthmark algorithm on the apps in the
evaluation set.

5.4 Setting the window size

Another parameter to be set for the API birthmark algorithm is the window size that
is nothing but the length of the API method sequences generated from the execution
traces during the API birthmark calculation, as explained in Sect.3.2.2. We used the
training set to experiment with different windows sizes and calculated the wrong
classifications done by the API birthmark algorithm. Table 7 shows the results.

These values show that choosing a smaller window size increases the number of
false positives, which implies that the similarity between different programs increases
where as a bigger window size leads to a rise in the number of false negatives, which
suggests that the similarity between identical programs decreases. We chose to set the
default window size to 3, so that the API birthmark algorithm can distinguish between
different programs (less false positives), at the same time not having an unacceptable
number of false negatives.

@ Springer



Autom Softw Eng

Table 6 Evaluation for
different values of threshold

Threshold  False negatives ~ False positives ~ False negatives+

false positives

0.2 2 87 89
0.3 5 46 51
0.4 13 9 22
0.5 16 2 18
0.6 18 2 20
0.7 21 0 21
T.able 7 E.Valuatlon for Window False False False negatives +
different window lengths . . .
length negatives positives false positives
1 3 28 31
2 6 17 23
3 16 2 18
4 18 2 20
300 1.0
0.9
250 b 0.8
a 0.7
2 200 4 )
= 0.6
2 150 0.5
= .
7 0.4
: .
3 100 0.3
o) .
50 0.2
0.1
(15 — 0.0
0 50 100 150 200 250 300

Original apps

Fig. 2 API birthmark results on pairwise comparisons for 300 apps (300 x 300 pairs). Diagonal shows the
result of comparing an app and its obfuscated counterpart. Non-diagonal shows comparisons between app
and obfuscated counterpart of a different app

5.5 Detecting obfuscated apps

We have 300 original apps and 300 obfuscated apps produced by using the encrypting
obfuscator described in Sect. 2. The total number of possible (A, Aopfuscarea) PAirs is
therefore 300 x 300. We run the API birthmark algorithm for every pair, thus producing
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Table 8 Evaluation of API
birthmark algorithm for the

results in Fig. 2 300 45 (15 %) 61(20.3 %)

Total apps False negatives False positives

a matrix of dimensions 300 x 300. The results are shown in Fig.2. A point on the
diagonal point corresponds to similarity measure between an app and the obfuscated
version of the same app, and therefore should have a value closer to 1. A non-diagonal
point corresponds to similarity measure between an app and the obfuscated version of
a different app, and should therefore have a value closer to 0.

We evaluated the similarity measures produced by the API birthmark by calcu-
lating the number of false positives and false negatives as shown in Table 8. The
number of false negatives is nothing but the number of apps, A, for which the simi-
larity coefficient produced by API birthmark for the pair (A, Aopfuscarea) is less than
the threshold and A,pfuscarea 1s the obfuscated counterpart of the same app as A
(we chose a threshold value of 0.30; we discuss the computation of this threshold in
Sect.5.3). The number of false positives is the number of apps, A, for which similarity
coefficient produced by API birthmark for the pair (A, Aopfuscarea) i greater than
the threshold and Aypfuscarea i the obfuscated counterpart of a different app than
A.

There are three cases in which the dynamic API birthmark reports a large similarity
coefficient between apps of a certain category in spite of the apps being distinct.

(1) Customized apps It is a common practice among app developers to release the
same app multiple times, each one built under different package name, such that
the core functionality of all packages is the same but the input configuration files
are different for each package. An example would be different packages of the
app, each one built to display the text in the app in a different language. Such
apps have identical source code and differ only in the resource files such as text
files or image files. As a result, the execution traces generated during execution
of two such apps are nearly identical. API birthmark algorithm therefore detects
high similarity between such apps. In our dataset, we found 16 apps in total that
fall under this category. An example of one app is given below. This app is a
puzzle game, released under three different packages, each one showing different
quiz questions, but having identical structure. The classification of packages of

App name Package name

How I Met Your Mother Trivia com.pbgames.q.himym
Gossip Girl Trivia com.pbgames.q.gg
Two and a Half Men Trivia com.pbgames.q.tahm

two such apps as similar by the API birthmark is indeed truthful. Therefore, we
removed such cases from the count of false positives. The table below gives the
number of false positives after this filtering.
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Total apps False negatives False positives

300 45 (15 %) 45 (15 %)

(2) Use of programming framework There are many programming frameworks such
as PhoneGap that let developers write apps using web technologies. These frame-
works interact with the underlying mobile operating system such as Android.
Hence apps developed using such frameworks exhibit acommon set of API method
sequences that are part of this interaction. On encountering this common set of
method sequences in the traces of such apps, API birthmark algorithm computes
high similarity between them. To prevent such apps from being detected as similar,
we can collect the set of such commonly found API method sequences and discard
them during API birthmark calculation.

(3) Use of common libraries Many Android apps use a common set of libraries, such
as Google’s advertisement library. Because of the interaction of the advertisement
library with Android, such apps also display a common API methods during their
execution. A similar approach as mentioned above can be used to filter out the com-
mon method sequences and thus prevent the classification of the apps as similar.

We believe that the above two filtering techniques would further reduce the number
of false positives observed.

5.6 Detecting identical apps

The goal of this experiment is to test the API birthmark’s ability to detect copies of
the same app. Since a birthmark of an app is its unique fingerprint, birthmarks of two
identical copies of the app (such copies have the same source code too) should be the
same. We executed each app twice, treating the resulting two traces as if generated by
identical copies of the same app. For each of the two executions of the app, we gave
the same seed value to the event generator of Monkey, thereby making sure that same
input event sequences are generated for both runs of the app. This is to simulate the
execution of two copies of the same app with the same user input.

We then ran the birthmark algorithm on the two traces of the same app, thereby
computing two birthmarks, and then calculated the similarity coefficient between them.
We repeated this procedure for every app in our dataset of 300 apps. The resultant
values of similarity coefficient are on the diagonal of Fig.3. The number of false
negatives for results in Fig. 3 is the number of apps which the API birthmark algorithm
failed to detect as similar, even though both the traces were generated from the same
app. We observed that the number of false negatives dropped to 12 as compared to
the experiment in Sect. 5.5 in which it was 45. This is an expected result, since we are
comparing two traces of the same app here as opposed to comparing an app and an
obfuscated app shown in Fig. 2.

5.7 Detecting distinct apps

As much as a birthmark should detect copies of apps, it is important that it should
be able to distinguish between two different programs by indicating a low value of
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Fig. 3 API birthmark results on pairwise comparisons for 300 apps (300 x 300 pairs). Diagonal shows the
result of comparing two traces of the same app. Non-diagonal shows comparisons between traces of two
different apps

similarity between them, thereby proving its credibility. We tested this aspect with our
dataset of 300 apps. We did a pairwise comparison for each pair (A, B) where A and
B are two apps from our dataset and A is different from B. The results are as shown
on non-diagonal points of Fig. 3.

The number of false positives is the number of apps for which the API birthmark
algorithm produced similarity coefficient above the threshold during comparison of
the app with at least one other app. We observed that the number of false positives
increased for this experiment as compared to the experiment described in Sect. 5.5. Itis
equal to 115, and this number reduced to 86 after filtering out the different customized
versions of the same app. The reasons behind this misclassification are same as those
explained earlier in Sect.5.5 such as presence of apps developed using a common
programming framework and apps using the same advertisement library. Additional
filtering techniques are needed to accommodate such apps.

5.8 Effect of inclusion of Java API methods

During the calculation of API birthmark, we are only observing the Android API
method invocations by the app. But an Android app makes use of Java API methods
as well. We wanted to evaluate the effect of including this usage of the Java API by the
app. Figure 4 shows the result of pairwise comparison of 300 apps and 300 obfuscated
counterparts of the apps, in which the collected traces have the Java API method calls
in addition to the Android API method calls.

Collecting the Java API methods makes the individual traces larger, which in turn
adds more items in the API birthmark calculation. As a result, the union of sets of
method sequences computed for calculating the Jaccard similarity becomes larger,
and hence it results in lower absolute value of similarity coefficient between two apps.
For example, the median value of similarity coefficient for an app and obfuscated
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Fig. 4 API birthmark results on pairwise comparisons for 300 apps (300 x 300 pairs), keeping the Java

API method call in the execution traces. Diagonal shows the result of comparing an app and its obfuscated
counterpart. Non-diagonal shows comparisons between app and obfuscated counterpart of a different app

counterpart of a distinct app is 0.03 without Java and it is 0.04 with Java (the lower
this value, the better it is). The median value of similarity coefficient for an app and
obfuscated counterpart of the same app is 0.73 without Java, and the same value is
0.67 with Java.

We therefore concluded that inclusion of Java API methods doesn’t have an absolute
effect on the birthmark computation. We decided not to include the Java API methods
in our birthmark computation, since it results in lower values similarity coefficient.

5.9 Experiments with ProGuard as obfuscator

In our experiments so far, we used Androcrypt as the obfuscator to produce the obfus-
cated counterparts of original apps. As shown in Sect.2, Androcrypt is the strongest
obfuscator that we know of and hence produces strong obfuscated code. The stronger
the obfuscation, the lower the similarity measures reported by any similarity detector.
As a corollary, the weaker the obfuscation, the higher the similarity measures. Hence,
if we use any other obfuscator which is weaker than Androcrypt, the scores reported
by our API birthmark technique should only get higher. To confirm this hypothesis,
we performed the following experiment. We took the same set of 53 apps shown in
the Appendix, and used off-the-shelf obfuscator—ProGuard—to obfuscate the apps.
We ran API birthmark technique on the pair of apps (A, Aopfuscarea) Where A is an
original app and A,pfuscareq 18 sSame app obfuscated using ProGuard. We then ran the
API birthmark on each pair of apps. The results are shown in the column labelled as
(PG, B) in Appendix. For comparison, we also give values reported by API birthmark
when Androcrypt was used instead of ProGuard in the column labelled as (AC, B)
in Appendix. We show box plot of the values in Fig.5. As the plot shows, when an
off-the-shelf obfuscator such as ProGuard is used, API birthmark performs at least as
good as or better, compared to the case when Androcrypt is used.
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Fig.5 Distribution of similarity measures reported by API Birthmark when two different obfuscators were
used. Box on left corresponds to using ProGuard as the obfuscator whereas box on right corresponds to use
of Androcrypt as obfuscator. The values used to draw the plots are taken from the columns labelled as (PG,
B) and (AC, B) in Appendix

5.10 Automated execution using Monkey

The API birthmark is a dynamic birthmark that requires run-time trace generated
during execution of the app. Since Android apps are interactive in nature, you need to
provide user inputs such as clicks, gestures and touch events to them on a continuous
basis during their run. During manual execution of the app, the user of the app provides
these inputs. But manual execution is time consuming and limits the number of apps
that one can experiment with. Therefore, we wanted to automate the execution of
Android apps.

In order to run the apps automatically, you need a tool that will generate events
automatically as opposed to manually supplying the events. We found that the Monkey
program shipped with Android SDK is one of the best tools available for such purposes.
The primary purpose of Monkey is to stress-test the app by simulating the generation of
various input events such as clicks and touches. But by using this automatic generation
of input events, you can automate the execution of an Android app. Monkey can be
configured to run with a number of command line options. For our setup, we used the
following options: the seed value of random number generator, total number of input
events to be generated and option to ignore the exceptions during app’s execution. For
a given app and a seed value, monkey generates a particular but random sequence of
events. We give the same seed value for execution of both, the original app and the
plagiarized app, so that the exact same operations are exercised while executing the
pair of apps using monkey.

Using Monkey, we succeeded in automatic execution and trace collection for 350
apps. Use of Monkey for more apps in our dataset failed due to a number of reasons.
The events supplied by Monkey may not be context-sensitive i.e., they may not be
relevant for the current execution state of the app, resulting into the app’s crash, thereby
producing no trace. Monkey does not give any preference to frequently occurring
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Fig. 6 API birthmark results on pairwise comparisons for 35 apps (35 x 35 pairs) with traces generated

manually. Diagonal shows the result of comparing an app and its obfuscated counterpart. Non-diagonal
shows comparisons between app and obfuscated counterpart of a different app

events over infrequent ones during the event generation. Moreover, it is hard to predict
the right fraction of Ul events and system events needed to run the app exhaustively, that
canbe given as input to Monkey. This results in poor coverage of the app’s functionality,
thereby leading to poor quality of the generated traces. The incomplete coverage of
the app’s functionality in traces directly affects the computation of the API birthmark.
We conducted an experiment to study the impact of using Monkey for the collection
of execution traces of Android apps. We chose 35 apps randomly from our dataset.
In addition to the traces that were generated earlier using Monkey for these apps,
we manually executed these apps by interacting with the app as a user and collected
another set of traces. Figures 6 and 7 shows the results of pairwise comparisons of
these apps and their obfuscated counterparts, with manually generated traces and
traces generated using Monkey, respectively. It is evident from the two graphs that the
API birthmark algorithm gives more accurate similarity coefficients when the traces
have been generated manually. We therefore believe that use of a more robust tool for
automated execution of Android apps would give better results. In future, we plan to
repeat our experiments using other tools available such as Dynodroid (Machiry et al.
2013) which has better coverage of the app’s functionality than Monkey. However,
there are trade-offs of choosing each of these tools e.g., Dynodroid suffers from a
performance penalty (Dynodroid is 5X slower than Monkey) and hence may not be
suitable for app execution at a large scale.

5.11 Attacks and limitations

Let us now look at the possible attacks on the API birthmark. An attacker can inject
random API method calls in the source code of the app and thus skew the API birth-
mark. Such API method call injection may be done by employing techniques used
in the creation of polymorphic viruses (You and Yim 2010). For this attack to be
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Fig. 7 API birthmark results on pairwise comparisons for 35 apps (35 x 35 pairs) with traces generated
automatically using Monkey, keeping the Java API method call in the execution traces. Diagonal shows the

result of comparing an app and its obfuscated counterpart. Non-diagonal shows comparisons between app
and obfuscated counterpart of a different app

effective, each newly added method call or the method calls added as a group should
produce zero side effects. Inferring the dummy methods from the API automatically is
a hard problem. The attacker will have to resort to manual techniques for finding such
API methods or method sequences. Indeed, if discovery of such methods or method
sequences is an easy task, we can generate them ourselves, and filter them out from the
dynamic traces, before running the API birthmark algorithm. Moreover, the attacker
will have to insert at least 30 percent new sequences (since similarity threshold is 0.3),
which leads to increased code size and additional runtime cost. In general, the attacks
on the API birthmark have cost overhead and involve manual work which offer less
incentives for the attacker to implement them.

First limitation of our approach is its scalability. In Sect.5.10, we explain the diffi-
culties faced in automating the execution of Android apps. Even the best tool among
all of the available ones, namely monkey, does not yield useful traces for a number of
available apps because of many reasons such as crashes in the middle of the execution
or generation of extremely short traces. Also, the encrypting obfuscator works only
partially on apps that contain certain classes such as ContentProvider, as described in
Sect. 2. These factors put a limit on the number of apps with which we can experiment.
Unless the automatic execution of Android apps becomes pratical for large datasets,
experimenting on them remains a subject of future work. One practical solution could
be to run the static analyses first on the larger dataset of apps which would narrow
down the suspected plagiarized apps. We can then run the API birthmark algorithm
on the smaller dataset.

Our setup includes automatic execution of apps by using the monkey program
shipped with Android SDK. The fact that we rely on monkey for generating input
events has two implications.
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1. Monkey generates a random sequence of input events corresponding to a seed
value. Greater the coverage of input events provided by monkey, better it is to
compute similarity using API birthmark algorithm. To increase the runtime test
coverage, better tools are needed for automatic testing of Android apps.

2. For a given seed value, monkey generates a stream of events such as clicks, touches
or gestures to stress test the app. We give the same seed value to both, the original
and the plagiarized app, so that the same sequence of events is generated while
executing them. However, if there are small Ul tweaks in the plagiarized app,
some of the generated events would be impossible to operate on the plagiarized
app. For example, if monkey has generated an event of type Send touch-event-
at-(x,y)=(1.0, 4.0), but the plagiarized app has moved the button to a different
location, then an attempt to execute this operation may lead to unexpected conse-
quences. Event generation in such cases may be accomplished by coupling monkey
with other powerful GUI automation approaches such as Sikuli Script (Yeh et al.
2009) which provides a mechanism to programmatically control GUI elements in
the automation scripts using their screenshots. Using Sikuli Scripts, one can use
screenshots of GUI elements in the testing tool rather using raw coordinates, thus
eliminating the scenarios where there are minor modifications in the GUL

6 Related work
6.1 Birthmark-based software theft detection

The technique of constructing software birthmarks was proposed earlier by other
researchers in the context of traditional desktop programs. To our knowledge, we are
the first to use software birthmarks on mobile applications. Software birthmarks can
be categorized into two classes, dynamic and static. Myles and Collberg introduced the
whole-program-path dynamic birthmark (Myles and Collberg 2004). Our approach of
using dynamic API birthmarks has been built upon the techniques proposed in Tamada
et al. (2004) and Schuler et al. (2007). Tamada et al. (2004) proposed a dynamic API
birthmark based on observations of the interaction of windows application with its
environment. Schuler et al. (2007) put forward an improved version of dynamic
API birthmark that is based on watching the program interaction at the level of objects
which results in shorter API sequences. These two projects were done in the context of
traditional desktop software (Windows applications and Java programs, respectively).
We have applied those ideas to the domain of mobile apps, particularly for the problem
of identifying plagiarized mobile apps.

A slightly different problem of assessment of similarity between two algorithms was
targeted in Zhang et al. (2012) where they used two dynamic value-based approaches,
namely N-version programming and annotation.

Among different bodies of work that use static birthmarks, G P 4 (Liu etal. 2006)
is a tool to detect plagiarism in software by mining program dependence graphs. A
birthmark for Java applications was developed by Lim et al. (2008) that identifies and
uses possible stack patterns that may be formed during program execution by analyzing
the Java bytecode statically. Use of opcode-level k-grams as software birthmarks was
done by Myles and Collberg (2005).
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6.2 Code clone detection

The problem of detecting clones in software code has been well studied. A survey
paper by Bellon et al. (2007) gives a good comparison and evaluation of various
clone detection tools for traditional software programs. Various techniques have been
explored to detect code clones that derive and use different type of information from
the code such as text and tokens (Higo et al. 2002), metric vectors (Kontogiannis
etal. 1995), abstract syntax trees (Baxter et al. 1998) and program dependency graphs
(Krinke 2001).

6.3 Detecting plagiarized mobile apps

The problem of identifying plagiarism in mobile apps has attracted a lot of attention
recently. Zhou et al. (2012), the idea was to generate a unique hash of the app from its
Dalvik bytecode by using a fuzzy hashing technique. Zhou et al. (2013), the authors use
a number of features of the application such as the android API methods, permissions
requested by the application etc. to construct a feature vector and then employ Jaccard
distance to define distance between two feature vectors. Crussell et al. (2012), the
approach is to first group together similar apps based on certain features and then
apply program-dependence-graph-based techniques to detect cloning.

To summarize, the proposed approaches employ different techniques such as fuzzy
hashing (Zhou et al. 2012), feature hashing (Hanna et al. 2012), program dependence
graph (PDG) (Crussell et al. 2012, 2013) and module decoupling (Zhou et al. 2013)
for computing unique fingerprint of the app. These techniques rely on extracting static
properties of the application by analyzing the application’s source code. These can
be defeated easily by code obfuscations. We are proposing an effective plagiarism
detection technique for mobile apps based on dynamic analysis which is resilient to
code obfuscations.

7 Summary

Code plagiarism is an important problem that plagues the mobile app development
community, and serves as a popular vehcile for the delivery of malicious apps.
Although the community has developed a number of code similarity metrics to combat
plagiarism, they rely on syntactic features of the code to operate.

We show that such syntactic similarity measures are broken, because they can easily
be evaded using simple obfuscations. We have developed arobust API birthmark-based
approach to detect code similarity. Experiments on a dataset of Android apps shows
that the birthmark-based approach is effective at detecting code plagiarism even with
obfuscated apps.

Acknowledgments This work is supported in part by NSF Grants 0952128, 1117711, 1420815, 1441724
and 1408803.

Appendix
See Table 9.
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Table 9 This appendix presents the similarity scores reported by two app similarity detectors, Androguard
and API Birthmark, when app and its obfuscated version are given as input

Category App/package name Appsize (in KB) (PG, AG) (AC,AG) (PG,B) (AC,B)
Development alogcat 40 0.76 0.03 1.00 0.68
Games chessclock 92 0.78 0.09 1.00 0.74
Games tictactoe 1963 0.24 0.01 0.93 0.57
Games solitaire 70 0.84 0.01 1.00 1.00
Games sokoban 109 0.82 0.07 1.00 0.88
Games kaesekaestchen 148 0.79 0.05 1.00 0.69
Games atomix 210 0.90 0.02 1.00 0.23
Games lexic 245 0.68 0.02 0.81 0.26
Games androc 539 0.79 0.01 1.00 0.17
Games games .memory 2080 0.68 0.03 0.90 0.25
Games bomber 455 0.80 0.11 1.00 0.67
Games blockinger 801 0.48 0.01 1.00 0.17
Games blokish 421 0.71 0.02 1.00 1.00
Games amazed 15 0.44 0.10 1.00 0.67
Games opensudoku 211 0.95 0.01 1.00 0.75
Internet blitzmail 280 0.22 0.00 1.00 1.00
Internet connectbot 858 0.72 0.00 1.00 0.70
Internet reddit 759 0.47 0.00 1.00 0.50
Multimedia binauralbeat 965 0.63 0.02 1.00 0.41
Multimedia avs234 162 0.79 0.02 1.00 1.00
Multimedia zooborns 39 0.75 0.05 1.00 0.41
Multimedia zxing 720 0.61 0.00 1.00 0.95
Multimedia photostream 134 0.77 0.03 0.99 0.61
Navigation pedometer 46 0.97 0.03 1.00 0.39
Navigation stardroid 2188 0.53 0.51 1.00 0.96
Office aarddict 1852 0.29 0.00 1.00 0.65
Office babycaretimer 457 0.23 0.01 1.00 0.46
Office calculator 77 0.66 0.01 0.99 0.56
Office coinflip 422 0.67 0.04 0.99 0.97
Office birthdroid 79 0.78 0.08 1.00 0.85
Office Keyer 82 0.65 0.04 1.00 0.40
Office TeaTimer 216 0.77 0.04 1.00 0.51
Office aGrep 54 0.88 0.04 1.00 1.00
Office simplydo 64 0.73 0.03 1.00 0.56
Office tipitaka 502 0.49 0.00 0.99 0.77
Office mileage 366 0.72 0.56 1.00 0.96
Office wikinotes 119 0.92 0.28 1.00 0.31

@ Springer



Autom Softw Eng

Table 9 continued

Category App/Package name Appsize (inKB) (PG, AG) (AC,AG) (PG,B) (AC,B)
SMS autoanswer 88 0.54 0.14 1.00 1.00
SMS autoawayy 112 0.69 0.03 1.00 1.00
Reading adsdroid 116 0.65 0.01 1.00 1.00
Reading andquote 38 0.88 0.06 1.00 0.24
Education antikythera 531 0.71 0.08 1.00 0.83
Education angulo 18 0.93 0.08 1.00 1.00
System airpushdetector 33 0.86 0.13 1.00 0.65
System autostarts 288 0.43 0.00 0.90 0.42
System appalarm.pro 121 0.80 0.01 1.00 0.22
System apptracker 140 0.57 0.02 0.94 0.46
System asglitemanager 339 0.71 0.01 1.00 0.23
System batterydog 21 0.73 0.38 1.00 1.00
System httpmon 74 0.80 0.01 1.00 1.00
System adbWireless 378 0.36 0.00 1.00 0.92
System androsens 21 0.91 0.21 1.00 0.54

The first column lists the category of the app. The second column gives the app package name. The last four
columns show results for different combinations of obfuscators and similarity detectors. The abbreviations
in the four columns stand for the following: (PG, AG): ProGuard as obfuscator, Androguard as similarity
detector. (AC, AG): Androcrypt as obfuscator, Androguard as similarity detector. (PG, B): ProGuard as
obfuscator, API Birthmark as similarity detector. (AC, B): Androcrypt as obfuscator, API Birthmark as
similarity detector
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