Security versus Energy Tradeoffs in Host-Based Mobile Malware Detection

Jeffrey Bickford *, H. Andrés Lagar-Cavilla #, Alexander Varshavsky #, Vinod Ganapathy *, and Liviu Iftode *

* Rutgers University # AT&T Labs – Research

Smart Phone Apps

Store personal and private information

Contacts

Email

Location

Banking

The Rise of Mobile Malware

Los Angeles Times | business

Is it time to start thinking about smart phone viruses?

Discovery News.

MALICIOUS SOFTWARE TURNS YOUR CELL PHONE AGAINST YOU

Smart phone malware could tap into your phone's microphone, GPS and even your battery.

NETWORKWORLD

Android rootkit is just a phone call away

Researchers at Trustwave will demonstrate an Android rootkit at Defcon next month

Mobisys 6/30/2011 2

2004

2006

2011

Traditional Malware Detection

- Periodically scan the attack target
 - System comprised of code and data
- Personal files, executables, databases, network activity

Mobile Detection Problem

- Typical machines can execute malware detection systems 24/7
- Mobile devices are limited by their <u>battery</u>
- Detection mechanisms in their current state lead to <u>high energy cost</u>
- Executing malware detection systems only when charging is not sufficient

Contributions

Explore the tradeoffs between security monitoring and energy consumption on mobile devices

- 1. Framework to quantify the security vs. energy tradeoffs on a mobile device
- 2. Create energy optimized versions of two security tools
- 3. Introduce a balanced security profile

How Do I Conserve Energy?

Security-Energy Tradeoff

Rootkits

Rootkits are sophisticated malware requiring complex detection algorithms

Demonstrated Attack

Conversation Snooping Attack

Rootkit stealthily hides from the user

[Bickford et al. HotMobile '10]

Rootkit Detection

OS must be monitored using a hypervisor

Hypervisor

Host Machine

- Detection tools run in trusted domain
- Mobile hypervisors soon
 - VMWare
 - OKL4 Microvisor (Evoke)
 - Samsung Xen on ARM

Experimental Setup

- Viliv S5
 - Intel Atom
 - 3G, WiFi, GPS, Bluetooth
- Xen Hypervisor
 - Evaluated the tradeoff using two existing rootkit detectors within trusted domain

- 3G and WiFi workload simulating user browsing
- Lmbench for a CPU intensive workload

Detecting Data-Driven Attacks

- Gibraltar [Baliga et al. IEEE TDSC '11]
 typifies the usual form of rootkit defense for kernel data attacks
 - Primarily pointer-based control flow
 - Scans data structures within the OS Kernel
- Scanning approach analogous to antivirus scans
- Original version monitored all data structures all of the time

Detecting Data-Driven Attacks

Problem – High Energy Cost

Tradeoffs for Data-Based Detectors

Frequency of Checks

Evaluating the Tradeoff

18

Attack Surface

```
while(1) {
    for all kernel data structures {
    for a subset of data structures {
        get current value
        check against invariant
    }
}
```

Evaluating the Tradeoff

Detecting Code-Driven Attacks

- Patagonix [Litty et al. USENIX Security '08]
 typifies most code integrity monitoring systems
- A different class of rootkits attack code
 - trojaned system utilities
 - kernel code modifications
- Can protect both kernel code and user space code
- Protects against a different set of attacks compared to Gibraltar

Detecting Code-Driven Attacks

Tradeoffs for Code-Based Detectors

Putting it Together

Cover 96% of Rootkits

Conclusion

- Mobile malware is a threat
- Security tools costly when energy constrained
- Developed a framework to quantify the tradeoff between energy efficiency and security
- Optimized two previously existing tools
- Generated a "balanced" security profile

Thank You!

Randomization

- Periodically scan
- Attackers will attempt to exploit the system while idle
 - Randomize the time the system is idle

Frequency of Checks

Cloud Offload Feasibility

