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Abstract—ROS2 is a popular publish/subscribe based mid-
dleware that allows developers to build and deploy a wide-
variety of distributed robotics applications. Unfortunately, ROS2
offers applications poor control over how their data is con-
sumed downstream by other applications. Although decentralized
information-flow control (DIFC) offers a solution to this problem,
the decentralized and distributed architecture of ROS2 poses new
challenges to building a practical DIFC system for ROS2.

We present Picaros, a DIFC system tailored for ROS2. Picaros
adopts a novel approach to DIFC that casts and solves DIFC’s
access control problem in the framework of attribute-based
encryption (ABE). Picaros’s design embraces the unique nature of
the ROS2 platform and carefully avoids any centralized elements.
This paper presents the design and implementation of Picaros and
reports results from our experiments that use Picaros’s ABE-
based approach for DIFC with ROS2 applications.

I. Introduction

The Robot Operating System (version 2), or ROS2 [58], is a
popular middleware framework that is used by several robotics
platforms. ROS2 provides a convenient API that allows ap-
plications to execute and communicate over a collection of
robots. The popularity of ROS2 has led to an active developer
community and a thriving market for ROS2-based apps, with
many robotics vendors adopting a ROS2-based stack for their
offerings (e.g., Amazon Robomaker [29], iRobot [2]).

ROS2 uses publish/subscribe as the primary method of
communication. ROS2 applications publish or subscribe to
a set of topics, and messages in the system are tagged by
topic. Each application advertises the set of topics to which it
publishes or subscribes. ROS2 uses a decentralized approach
(building atop the Data Distribution Service, or DDS [23,
35, 60]) to identify publishers and subscribers that must be
matched up by topic name, and establishes a communication
channel between them. For example, a Camera application may
publish to a topic Image, to which the applications Navigator
and ObjectDetector subscribe. ROS2 sets up pairwise connec-
tions between Camera/Navigator and Camera/ObjectDetector
and the applications communicate directly.

Secure ROS2 (SROS2) [46, 62] extends ROS2 with basic
security features. With SROS2, each application provides a
manifest in which it declares the topics to which it publishes
or subscribes. SROS2 cryptographically binds applications and
their manifests, and during application startup, sandboxes the

application to only publish or subscribe to the topics advertised
in the manifest. SROS2 encrypts all application communi-
cation end-to-end using TLS, thereby providing confidential-
ity, integrity, and sender authentication for inter-application
message exchange. Because these security features are so
foundational, for the rest of this paper, we will assume the
presence of SROS2 as a default in the ROS2 stack.

Unfortunately, the security features of SROS2, while es-
sential, do not go far enough to provide applications fine-
grained control over how their data is used by downstream
applications. For example, when ObjectDetector consumes a
message tagged with the topic Image, it is free to publish this
image (or information about the image) under a different topic
name. ROS2 does not provide the data owner that publishes
to the topic Image (e.g., the Camera application) with any
primitives that allow it to exert downstream control over how
this data is used. This lack of downstream control can lead
to data exfiltration attacks that may not be acceptable to the
application that owned/created the data.

This problem has been extensively studied in the security
community, which has developed the theory [49–52] and
practical systems (e.g., [30, 40, 43, 44, 53, 74]) based on
decentralized information-flow control (DIFC) as a solution.
In a DIFC-based system, each data owner associates the data
objects they own/create with a label, which is a set of tags of
the data owner’s choosing. DIFC-enforcement controls how a
data object is consumed by checking that the label of a data
consumer has all the tags in the data object’s label.

This paper presents Picaros*, a DIFC system for ROS2.
Picaros leverages the novel insight that ROS2 application
authors already tag the messages an application publishes
with topics that are semantically associated with the content
of the message. Picaros bootstraps DIFC labels using ROS2
topics, thus both reducing additional developer effort needed
to specify DIFC labels and also ensuring that the DIFC labels
semantically reflect the type of data being protected.

A key design principle that we used in building Picaros
is to respect the distributed and decentralized nature of
ROS2. ROS2 is designed to support applications on distributed
robotics platforms. Distributed ROS2 applications execute on
a number of different hardware platforms, and implement
their end-to-end functionality using seamless communication
enabled by ROS2. To support such distributed applications and
allow them to scale, ROS2 consciously adopts decentralization,
and meticulously avoids any centralized elements in its design.
This is a key feature that differentiates ROS2 from its predeces-
sor, ROS1 [55, 57] as well as other popular publish/subscribe

*Picaros is Information-flow Control via ABE for ROS2.
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systems such as MQTT [32] that use a centralized broker. For
example, ROS2 eliminates a centralized matchmaking service
(the rosmaster [57]) by replacing it with DDS’s decentralized
discovery protocol. ROS2 is also dynamic in that it allows new
distributed applications to spawn up at any time and seamlessly
communicate with other applications running on the system.

Prior DIFC systems have focused on enforcing DIFC
policies atop a single host, with DIFC policy enforcement im-
plemented within the operating system (OS) (e.g., [30, 40, 74]),
application runtime (e.g., [19, 52]), or middleware [53]. In
a distributed setting, DIFC policies must be enforced on
applications running across a collection of machines. This
requires a policy enforcement infrastructure that spans these
machines, and a way to securely bind DIFC labels to the
data objects exchanged between the machines. Systems such
as Fabric [43, 44] address DIFC in a distributed setting, but re-
quire applications to be written in a customized language, with
the language runtime responsible for enforcing DIFC policies.
DStar [75] enforces DIFC policies on UNIX processes in a
distributed setting by running a DIFC-capable OS on each
machine (HiStar [74]). DStar uses a dedicated data exporter
process on each machine, which holds sole responsibility for
network access (i.e., it is the only entity that sends data objects
over the network) and for binding DIFC-labels to exported and
received data objects. Designing a DIFC system for ROS2
using a centralized data exporter per machine, which would
be common to all applications running on that machine, would
directly violate ROS2’s design philosophy of decentralization.

Picaros instead uses a novel approach that leverages
attribute-based encryption (ABE) [12] to bind DIFC labels
to data objects and enforce DIFC policies in a distributed
setting. In ABE, the cryptosystem associates a user’s decryp-
tion key with a set of attributes, e.g., represented as strings.
Ciphertexts in ABE are associated with an access structure
over these attributes, e.g., a Boolean expression over attributes.
The cryptosystem is set up so that the user can decrypt a
ciphertext only if the decryption key’s attributes pass through
the ciphertext’s access structure, e.g., if the corresponding
Boolean expression evaluates to True. We observe that the
features of ABE lend themselves well to enforcing DIFC. Data
objects can be encrypted with an access structure that encodes
access control rules using the DIFC label associated with that
object. Picaros is set up so that an application gets a decryption
key based upon the DIFC labels that it possesses. Thus, only
applications that have the labels to access a data object on a
traditional DIFC system will be able to successfully decrypt
and obtain clear-text access to that data object. We explain our
ABE encoding of DIFC in Section III.

Picaros’s use of ABE to enforce DIFC has two benefits:

� First, it offers a robust way to bind DIFC labels with
data objects for distributed settings. The sender of the data
object encrypts the object and uses the ABE access structure
to encode label comparison with the object’s DIFC label, thus
ensuring that neither the data object nor the label can be ma-
liciously modified during network transmission. Importantly,
senders perform this encoding themselves, thus eliminating the
need for a dedicated data exporter, as in DStar [75]. Receivers
get keys associated with their DIFC labels, ensuring that only
authorized readers can access the data object.

� Second, it provides a convenient way to implement DIFC
policy enforcement atop ROS2. DIFC policies can also be
enforced via sender-side access control, in which the publisher
checks the label of each potential recipient against that of
the message to determine whether that recipient can receive
the message within the confines of the DIFC label system.
Implementing this approach would require invasive changes
to the node discovery protocol in ROS2, with a trusted entity
that can vouch for the DIFC label of each potential recipient
(see Section II for details). Such an entity would have to
manage the DIFC label state of every participating application.
Having such an entity is against the decentralized ethos of
ROS2. Picaros’s approach of using ABE for DIFC enforcement
overcomes all these problems.

ABE lends itself to a fully decentralized implementation.
Early versions of ABE required a centralized master key
server [12], but subsequent refinements relaxed the need for
such a server under various settings (e.g., [16, 21, 22, 42]).
Picaros uses the Lewko-Waters fully collusion-resistant, de-
centralized multi-authority ABE [42] that elides the need
for a centralized master key server. This ABE protocol also
works in dynamic settings, allowing new participants to engage
immediately with other participants in the system, without
elaborate steps for setup. Picaros is thus decentralized and ro-
bust in a distributed setting and allows dynamism in application
participation, in keeping with ROS2’s design philosophy.

To our knowledge, Picaros is the first DIFC system pro-
posed for ROS2. We discuss how Picaros implements its ABE
based approach atop the ROS2 software stack in Section IV,
and experimental results with our Picaros-prototype applied to
various ROS2 benchmarks in Section V and VI. We close with
a discussion of related work in Section VII.

II. Background and Overview

In this section, we motivate the problem and our approach
using Figure 1 as an example. Along the way, we introduce
concepts relevant to ROS2 and DIFC. Figure 1 shows an
example of an application pipeline on a ROS2-based platform,
such as a drone or a robot. Each oval in the figure represents an
application, while arrows are labeled with ROS2 topic names,
showing publish/subscribe relationships between applications.
This application pipeline is inspired by similar real-world ones,
such as NVidia’s Isaac ROS pipelines [54].

A camera application (Camera in Figure 1) on the plat-
form captures raw images, and publishes them under the
topic ImageRaw,† to which FormatConvertor subscribes. In
turn, this application processes the image and publishes both
high-resolution and low-resolution formats of the image. The
DNNEncoder application starts an application pipeline that
uses images published under the ImgHiRes topic for navi-
gation, while those published under ImgLoRes are sent to a
Logger application which stores these in local storage for
later retrieval. Each application encodes business logic, and
uses ROS2’s API to communicate with other applications by
suitably publishing or subscribing to specific topics. ROS2 is
implemented as a shared library that each application links
against. Internally, ROS2 uses the Data-Distribution Service

†Throughout the paper, we use different font faces (as illustrated here) to
refer to: ROS2 Topics, Applications and DIFC labels.
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Figure 1: Running example of a ROS2 application pipeline.

(DDS) [35] for matchmaking applications based on topic name
and to facilitate communication between them. We assume
that all communication between applications is secured end-
to-end with TLS—SROS2 enhances ROS2 to provide this
feature. Robotics platforms are often distributed in nature, and
ROS2 facilitates easy communication across a collection of
ROS2 platforms. Figure 1 also illustrates this situation, wherein
Logger receives messages published by the FormatConvertor
application running on other ROS2 platforms as well.

Unfortunately, on publish/subscribe systems such as ROS2,
applications lose downstream control over their data. For
example, consider the Camera application, which may wish to
impose constraints over how the images that it produces are
consumed. While Camera is aware of “next hop” applications
such as FormatConvertor that consume its data, it cannot
control how this application publishes the data. Camera may
wish to enforce that the images published under the topic
ImgLoRes are suitably scrubbed to remove privacy-sensitive
content before they are consumed by Logger. It may not trust
FormatConvertor to perform such scrubbing, and may wish to
ensure that the images are scrubbed by an application that it
trusts (e.g., ImgScrubber in Figure 2). However, ROS2 (and
SROS2) do not provide any mechanisms for Camera to exert
such downstream control over its data.

Prior work has proposed system-wide mandatory access
control (MAC) mechanisms atop ROS2 to improve applica-
tions’ control over their data [5, 10]. These systems enforce
policies by analyzing the flow graph implied by the pub-
lish/subscribe relationship between applications, and allow or
deny certain applications from communicating with each other
at the system level. However, these systems work best only
when the set of all applications that will execute on the plat-
form is known a priori. Such a static approach is unfortunately
a poor fit for dynamic environments—ROS2 applications may
be installed and executed on the fly. Moreover, MAC policies
are generally expressed as system-wide policies, and set by a
system administrator. Individual applications do not have much
flexibility in deciding how their data is consumed.

A. DIFC to enforce control over data

DIFC [30, 40, 43, 44, 49–53, 74] overcomes many of
the limitations of traditional MAC-based systems by making
policy specification egalitarian. In a DIFC system, data objects
each have an associated DIFC label (henceforth, simply label),
which is a set of tags. Each application can include its own
tags in the label of data objects that it creates. Intuitively,

tags can be used to encode the provenance of a data object,
and therefore indicate the security level associated with that
data object. DIFC systems generally have separate labels for
secrecy and integrity, each with their own set of tags, but for
the purposes of this paper, we only focus on secrecy labels.
Applications on a DIFC system are also associated with labels.
The DIFC system ensures that the tags in the application’s
label are inherited and included in the label of data objects
that the application creates, with the exception of the tags that
the application itself creates. For such tags, the application
chooses which tags it wants to attach to the data object.

Considering the example in Figure 1, suppose that the
Camera application initially has a label LCam = ϕ (i.e., the
empty set without any tags), and that this application decides to
attach a tag Camera:ImageRaw to the label of its output (see also
Figure 2). The resulting data objects will have the label LImg =
{Camera:ImageRaw}. The main goal of DIFC systems is to use
labels to control how data flows within the system—the label
of a data consumer must include all of the tags in the label
of the data object that it consumes. Thus, for the application
FormatConvertor to consume the output of Camera, its label
LFC must satisfy LImg⊆LFC. We will henceforth refer to this
access control rule as the no-reads-up rule [11]. Dually, if
an application publishes data, then the data’s DIFC label will
inherit the tags of the publisher—the no-writes-down rule [11].

DIFC systems differ in how they deal with label mis-
matches that disallow flows according to the rule above.
In a DIFC system in which applications have immutable
labels, and LImg⊈LFC, the enforcement system simply prevents
FormatConvertor from reading objects with the label LImg. On
such systems, labels have to be initialized suitably to allow the
desired flows between applications.

Picaros supports mutable labels, in which an application
can read data after suitable modification of its label. For
example, suppose that the label LFC of FormatConvertor was
initially ϕ. To read data labeled LImg = {Camera:ImageRaw},
FormatConvertor will have to explicitly request data owners
whose tags are absent from its label. Prior DIFC systems
(e.g., Flume [40]) have enabled such mutable tags by us-
ing capability sets. In this approach, a data owner, such
as Camera, permits other downstream applications, such as
FormatConvertor, to consume its data by adding the tag
Camera:Image to FormatConvertor’s positive capability set.
The positive capability set consists of a set of tags that
FormatConvertor can add to its DIFC label; a similar negative
capability set allows removal of tags.

Picaros’s approach is largely similar, except that in Picaros,
a request from FormatConvertor to add a tag is triggered by
sending an explicit request to the tag owner (Camera owns
the tag Camera:ImageRaw) upon a no-reads-up rule violation.
Picaros uses ABE to implement DIFC, and capability sets
are implemented by suitably providing decryption keys (see
Section III). A successful request will result in the addition of
Camera:ImageRaw to LFC, following which it can read the data.

Like other DIFC systems, Picaros ensures that labels of
data objects published by FormatConvertor will inherit tags
that are in the application’s label, and thus the label of the
object published under the ROS2 topic ImgLoRes will also
include the tag Camera:ImageRaw. FormatConvertor can option-
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Boxes denote DIFC labels of corresponding data objects. In this example,
we assume that FormatConvertor does not attach any of its own tags
to the data it produces. We also elide showing application DIFC labels:
FormatConvertor, ImgScrubber and DNNEncoder all have the label
{Camera:ImageRaw}, thus allowing the flows shown.

Figure 2: Example from Figure 1 adapted for DIFC in Picaros.

ally choose to insert additional tags that it owns to the labels
of data objects that it publishes—e.g., it could add the tag
FormatConvertor:ImgLoRes to images published under the topic
ImgLoRes. With DIFC in force, Logger can consume the output
of FormatConvertor only if Logger’s label LLogger satisfies
LLogger⊆LFC. Logger can acquire tags in its label with the
explicit permission from the corresponding tag creators. Thus,
to consume FormatConvertor’s output, whose label includes
the tag Camera:ImageRaw, Logger will also require explicit
permission from Camera, thereby allowing Camera downstream
control over its data.

It is well-known that information-flow control systems
often become unusable due to the problem of label creep,
i.e., when data objects accumulate labels to the extent that they
become unusable (e.g., [53, 63]). DIFC offers declassification
as a method to bypass label creep. A declassifier is an
application that a data owner entrusts with the privileges to
remove some (or all) tags belonging to that data owner from
the DIFC label of data objects (i.e., negative capabilities [40]).
Removing tags from the data object’s label allows that data
object to be consumed by more applications. Figure 2 adapts
our running example with a declassifier and also shows the
DIFC labels of data objects, as implemented on Picaros. In
Figure 2, ImgScrubber is the application that Camera entrusts
with data declassification. Its business logic must include
functionality to satisfy Camera’s domain-specific privacy needs,
e.g., Camera may require ImgScrubber to pixelate people’s
faces or other identifiers in the image to very low resolution.
Camera may wish to ensure that downstream applications that
externalize data (e.g., Logger) cannot consume images before
they are processed by ImgScrubber. From the perspective of
the DIFC system, Camera endows only ImgScrubber with the
privileges to remove the Camera:ImageRaw tag from the image.
Any application that consumes data with the Camera:ImageRaw
(e.g., FormatConvertor and DNNEncoder) can only do so with
the explicit permission of Camera. Note that ImgScrubber’s
DIFC label LImgScrubber must still contain the tag Camera:Image
to allow it to read the output of Camera. However, as a
declassifier trusted by Camera, it is entasked with santizing
the data that it publishes and endowed (by Camera) with the
privilege of publishing data without the tag Camera:Image in
the DIFC label of the published data.

Observe from Figure 2 that Picaros allows declassifiers
such as ImgScrubber to both publish and subscribe to the same
ROS topic (ImgLoRes). This is an intentional design feature
in ROS2, and Picaros leverages it to enable enforcement of
DIFC policies without invasive changes to applications. An
alternative approach to ensure that Logger only consumes
scrubbed images would be to modify it to subscribe to a
new topic (say, ScrubbedImg) to which only ImgScrubber pub-
lishes. Indeed, such an approach has been suggested in prior
MAC systems [10]. However, implementing this approach
requires modifying Logger’s code to ensure that it subscribes
to ScrubbedImg instead of ImgLoRes, and that ImgScrubber
is the only application that publishes to ScrubbedImg. The
MAC system can ensure the latter properly only in a static
setting when the flow graph between applications is known a
priori. Although Logger continues to subscribe to ImgLoRes in
Figure 2, Picaros’s DIFC enforcement ensures that it cannot
directly consume the output of FormatConvertor. This is
because the label of FormatConvertor’s output will include
the tag Camera:ImageRaw, and Camera will not give Logger
permission to add this tag to LLogger. In contrast, the output
of ImgScrubber does not include Camera:ImageRaw, and can
thus be consumed by Logger.

B. Specifying DIFC policies

In a DIFC system, labels determine how data flows be-
tween applications. DIFC systems have historically relied on
application developers (or security administrators) to specify
how the application’s data must be labeled. This process is
cumbersome and has hampered wide deployment of DIFC.
The key difficulty is that a DIFC label of a data object must
meaningfully reflect the kind of data in that object, e.g., its
sensitivity level or a descriptive name that suggestive of the
type of information in the data object. We observe that ROS2
provides a unique opportunity sidestep this difficulty and ease
the label specification problem. In deciding the ROS2 topics to
which an application publishes, application developers already
invest the work needed to identify the kind of data produced
by an application.

Picaros leverages ROS2 topics to suggest default DIFC
labels for data objects. When an application such as Camera
publishes data to a topic such as ImageRaw, Picaros by default
attaches a label that includes a tag with the process identifier
of the application and the name of the topic. For simplicity
of exposition, in this paper, we will use the name of the
application instead of the process identifier in the tag, thus
resulting in the tag Camera:ImageRaw being included by default
in the label of corresponding data object.

While this is the default behavior in Picaros, applica-
tions can optionally choose not to attach any additional
tags to data objects they create, as we saw in Figure 2,
in which FormatConvertor chose not to attach any ad-
ditional tags to the data objects that it publishes. How-
ever, if it did choose not to override the default, data
that it publishes under the topic ImgLoRes will be labeled
{FormatConvertor:ImgLoRes, Camera:ImageRaw} (and an analo-
gous label {FormatConvertor:ImgHiRes, Camera:ImageRaw} for
data published under the topic ImgHiRes). Note that the tag
FormatConvertor:ImgHiRes is not attached to the data published
under the topic ImgLoRes. This labeling scheme has two
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benefits. First, it intuitively reflects the intent of the appli-
cation developer for the data created by FormatConvertor,
and ensures that the label remains consistent with the kind of
information in the data object. Second, it prevents unwanted
label creep—if the object published under ImgLoRes also had
the tag FormatConvertor:ImgHiRes, downstream applications
such as Logger will require that tag to be able to consume the
low-resolution image data. Although Logger could potentially
explicitly request FormatConvertor to endow it with the tag
FormatConvertor:ImgHiRes, doing so would unnecessarily give
Logger the privileges to also access high-resolution images,
whose label includes that tag.

C. Enforcing DIFC policies

The goals of the trusted computing base (TCB) that en-
forces policies in a DIFC system are to: (G1) bind labels
securely to entities such as data objects; and (G2) enforce
the no-reads-up rule, i.e., Ldata ⊆ Lreader and no-writes-down
rule, i.e.,Lpublisher ⊆ Ldata. The following difficulties make it
challenging to achieve these goals in a ROS2 system:

� Distributed and decentralized nature of ROS2 applications.
ROS2 applications that interact with each other can be spread
out over several physical devices. Most prior work on DIFC
has focused on non-distributed settings wherein a centralized
kernel, such as an operating system [30, 40, 74] or a language
runtime [43, 44, 49, 51, 52], forms the TCB that both stores the
labels associated with data objects (goal G1) and enforces no-
reads-up or no-writes-down (goal G2). However, a distributed
setting such as ROS2 requires the enforcement TCB to span
multiple physical devices. The main challenge in this case is
to ensure G1—when the DIFC system receives a data object
together with its label, it must have a way to ensure that the
label and the data object are securely bound to each other. That
is, it must not be possible for an attacker (e.g., a malicious
ROS2 application) to modify the label of the object by adding
or removing tags from the label.

DStar [75] applied DIFC to distributed systems, and ad-
dressed the challenge above using a trusted OS kernel on
each physical device, responsible for enforcing goal G2 on that
platform, and a trusted exporter process per physical device to
bind labels to objects before sending them to other platforms.
In DStar, exporter processes only talk to their counterpart on
the receiving physical devices, which would then bootstrap the
DIFC state of the newly-received data object on that device.
This establishes a way to securely bind labels to data objects,
thus achieving G1.

Unfortunately, this approach does not work on ROS2
without invasive changes that fundamentally alter the data path
of inter-application communication. After an initial discovery
phase to identify matching topics, ROS2 establishes a socket
connection, generally over UDP, between a pair of communi-
cating applications for direct communication (see Figure 3).
Introducing an exporter process would both break this com-
munication abstraction and introduce additional centralized
network elements in the data path (i.e., the exporter processes),
which violates the design philosophy of ROS2.
� Software architecture of ROS2. ROS2 (and the underlying
DDS) is a set of software packages implemented as shared li-

Figure 3: Inter-application communication in ROS2/DDS.

braries loaded into the application’s address space (Figure 3).‡
Data from the sender is marshaled and sent down the ROS2
software stack, through the socket connection, and to the
receiver, where the data is unmarshaled within the ROS2
software stack of the receiver and sent to the application.
A pair of applications may send messages under different
topics. However, on ROS2, the same socket/port number is
used by applications for all messages exchanged, regardless
of topic. As a result, aside from establishing the socket
connection between a pair of connecting applications, the
underlying operating system is largely opaque to details of
data exchanged. If the operating system were to enforce no-
reads-up (goal G2), this lack of visibility would cause it to label
the socket (and the receiving process) with a DIFC label that
includes all the tags associated with ROS topics transmitted on
that socket, in turn leading to label creep. It may be possible to
expose more details to the operating system, but this approach
would require extensive re-engineering of the entire ROS2
stack and/or applications.

An alternative would be to enhance the ROS2 software
stack itself with mechanisms to enforce access control policies.
However, this approach poses the question of which applica-
tion enforces the access control—the sender or the receiver?
Both approaches have serious shortcomings:

— Access control at the receiver: It is too late to enforce
access control at the receiver because the plaintext data will
already be in the receiving application’s address space, which
a malicious application could access via standard exploits.
This approach is also poorly suited to the dynamic nature of
ROS2 platforms. ROS2 allows applications to start at any time
and start publishing/subscribing to messages. Because of the
distributed nature of ROS2, an application that starts up on a
remote platform may subscribe to messages published under a
particular topic. To enforce access control, the publisher must
verify that the remote platform enforces receiver-side access
control. This is non-trivial to do without attestation hardware
on the remote platform, or a centralized trusted entity that can
attest the software stack running on the remote platform.

— Access control at the sender: If the sender is entrusted
with enforcing the access control rule, it must be able to
determine the label of the receiving application. In a distributed
setting, this would either require centralized state management

‡ROS2 does allow multiple applications to execute within a single process,
sharing an address space. However, we assume—and Picaros requires (see
Section IV)—that each application runs as a separate process.
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of DIFC labels or additional queries to a trusted agent on
the receiving platform, both of which are unpalatable options.
Moreover, such queries must happen each time data is trans-
mitted because the label of the receiver may have changed in
the interim since the last transmission to the same receiver. It
may also lead to time-of-check to time-of-use (TOCTTOU)
vulnerabilities if the receiver’s DIFC label changes in the
interim between the sender’s last query of its DIFC state and
arrival of the message at the receiver’s end.

Motivated by these problems, we sought a fresh approach
to DIFC enforcement in Picaros using ABE, as described next.

III. DIFC using ABE

We now provide background on attribute-based encryption
(ABE) and discuss how to implement DIFC atop ABE.

A. Background on Attribute-based Encryption

In a cryptosystem based on ABE (originally proposed by
Sahai and Waters [12, 61]), plaintext messages are encrypted
using an access structure (A) over a set of attributes. An
attribute is a string that describes some semantic property of
the message being encrypted. Intuitively, the access structure
A describes the combination of attributes under which the
message is encrypted. The ABE cryptosystem is designed such
that an entity can decrypt the message successfully only if it
possesses attributes that pass through the access structure A.

For example, suppose that a hospital wishes to use ABE
to protect patient data and ensure that the data is accessible
only to on-call doctors. The ABE cryptosystem in this case
can be defined over a set of attributes that includes Doctor
and OnDuty, and patient data is encrypted using the access
structure A=Doctor ∧ OnDuty, indicating that only doctors
currently on call are authorized to decrypt patient data. Any
entity that presents both the attributes Doctor and OnDuty can
obtain decryption keys to successfully decrypt the ciphertext.
An entity that has only one or none of these attributes will be
unable to decrypt patient data.

ABE cryptosystems have evolved over the years to support
a variety of expressive access structures under which the
plaintext can be encrypted. However, for the purposes of this
paper and for all our subsequent discussions, we will restrictA
to a simple Boolean conjunction, i.e., terms connected by AND
gates, as in the example above. This restricted version of the
access structure suffices to implement DIFC, and is supported
by all prior ABE-based cryptosystems.

The central challenge in designing an ABE cryptosystem is
to achieve collusion-resistance. That is, suppose that an entity
has only a subset of the attributes needed to decrypt a piece
of ciphertext (e.g., an entity has only the attribute Doctor).
Collusion resistance demands that it should not be able to
collude with other entities that have the remaining attributes
(e.g., an entity that has the attribute OnDuty) to be able to
decrypt the ciphertext. Early ABE-based cryptosystems used
a trusted centralized authority to generate decryption keys for
participants in the system. In centralized ABE schemes, the
trusted authority is assumed to know the set of attributes issued
to various users of the system. It is entrusted with the task
of issuing decryption keys to participants only after checking

that the attributes presented by the participant match (or are
a subset of) the attributes that are assigned to the participant.
The trusted authority then generates a decryption key that is
tailored to the set of attributes presented to it. Many ABE
cryptosystems proposed to date are implemented using variants
of bilinear pairings. We refer the reader to the original paper
(e.g., [12]) for details on the cryptographic constructions. We
mostly use ABE in a black-box fashion in this paper.

However, the need for a trusted central authority is a key
shortcoming of early ABE schemes. This central authority is
entrusted with a master key that could be used to produce
decryption keys for specific combinations of attributes. Initial
attempts were made to eliminate the need for such a central au-
thority by building multi-authority ABE schemes [15], which
distinguish between the notion of authorities and users. An
authority is any entity that “owns” an attribute, i.e., it can issue
keys to decrypt ciphertext that is associated with an access
structure A that has that attribute, while a user of the system is
a data consumer that contacts the relevant authorities to obtain
these decryption keys. Early multi-authority schemes [15, 16]
still required elaborate global coordination between the author-
ities, but Lewko and Waters [42] developed a fully decentral-
ized multi-authority ABE scheme that avoids the need for any
such global coordination after some initial setup. Most current
research in the area focuses on variants of such decentralized
multi-authority ABE schemes (e.g., [3, 21, 22, 59, 70]). Picaros
uses the original construction by Lewko and Waters [42].

Any user that participates in a decentralized multi-authority
cryptosystem can obtain the decryption keys by presenting its
attributes to the relevant authorities. Users can also encrypt
plaintext by defining access structures that use labels created
by authorities. Each user in this cryptosystem has a globally-
unique identifier (GID). The cryptosystem tailors decryption
keys by GID, i.e., a decryption key issued to one user will
not work for another user. This feature is the key idea that
allows the Lewko-Waters ABE scheme to achieve collusion
resistance—two users with different sets of attributes cannot
collude to combine their own keys to decrypt ciphertext that
each individual is not authorized to decrypt.

Note that in the setup described above, a user of the cryp-
tosystem is not necessarily an authority, i.e., while an authority
is one that defines an attribute, any user that is authorized
to present that attribute can participate in the system. The
idea is that data owners, who wish to define policies on how
they data is used, are authorities, while data consumers do
not necessarily have to be authorities, and can participate in
the system as long as they are assigned a GID. Thus, for
instance, in the example discussed earlier, the hospital would
be an authority because it defines the attributes Doctor and
OnDuty, and an access structure A over the ciphertext that
uses these attributes. However, doctors and other participants
in the system simply present the attributes that they have
been assigned, and can decrypt the ciphertext if their attributes
satisfy the access structure. Formally, the decentralized multi-
authority ABE scheme in Picaros has the following API:

1 GlobalSetup(λ)→GP. This API is called once with a
security parameter λ to decide the set of publicly-known,
global parameters GP of the system that are shared by all
participants of this ABE cryptosystem.
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2 AuthSetup(GP)→(PrivKα, PubKα). Each authority partic-
ipating in the system invokes this API during setup using the
global parameters GP, to output a keypair (PrivKα, PubKα)
corresponding to the attribute α that it owns. The authority
holds the key PrivKα privately, and publishes the key PubKα
as its public key. Note that we are using the identifier α to refer
to the attribute owned by this particular authority. It must not
be confused with the identity of the authority—as mentioned
above, each user (and thus authority) also has a globally-unique
identifier that will be used in a subsequent API.

The discussion above assumes that each authority owns
only one attribute (i.e., a single-attribute authority). We have
done this to simplify exposition and to keep the API descrip-
tion simple. Practical ABE systems do allow each authority
can own more than one attribute, e.g., as in the example
discussed above, in which the hospital owns the attributes
Doctor and OnDuty. In this case, authority would generate
one public/private key pair per attribute that they own. The
above AuthSetup API can still be used to simulate applications
that require more than one attribute—the application can
simply spawn multiple single-attribute authority threads, each
of which generates its own public/private key pair using a call
to AuthSetup. Thus, in the API call above, the keypair (PrivKα,
PubKα) is customized to the single ABE attribute α that this
authority owns.
3 Encrypt(M, GP, {PubKα}, A)→C. A user that wishes

to encrypt a plaintext message M must provide an access
structure A that determines the attributes (and their logical
combination) under which the message must be encrypted.
This user must also provide the set of public keys {PubKα}
of the corresponding attributes α that appear in the access
structure A. In the example above, the hospital is the authority
that owns both the attributes Doctor and OnDuty, so the
corresponding public key(s) must be provided when a user
encrypts any message using an access structure that uses either
one of these attributes.
4 Keygen(GID, GP, α, PrivKα)→K(α,GID). When a user with

the globally-unique identifier GID wishes to decrypt some
ciphertext, this operation proceeds in two phases: the key
generation phase (multiple calls by authorities to the Keygen
function) and the decryption phase (a call by the user to
Decrypt, below). In the key generation phase, the user contacts
each authority whose attribute α is used in the creation of
the ciphertext (i.e., α is used in the access structure A
used in the corresponding Encrypt API call). It presents its
global identifier GID to this authority, which then executes
the Keygen API together with its own private key PrivKα
(corresponding to the attribute α) to produce a decryption key
K(α,GID) tailored for this particular user and the attribute α.
5 Decrypt(C, GP, {K(α,GID)})→M. Once the user has ob-

tained the set of decryption keys {K(α,GID)} from all the relevant
authorities, he invokes this API on the ciphertext C. Note
the set of decryption keys {K(α,GID)} must be for the same
fixed identity GID. The decryption succeeds and produces the
plaintext if the set of attributes for which the user presented
decryption keys K(α,GID) clears the access structure A with
which the ciphertext was produced; else decryption fails.

We refer readers to the Appendix (and Lewko-Waters [42])
for details of the cryptographic constructions of these APIs.
Crucially, the system is fully decentralized except for the one-

time global setup that requires the global parameters to be
distributed to all participants and the establishment of globally-
unique identifiers for all users. Decrypt may require a user to
contact the relevant authorities to obtain the decryption key,
however, even this communication happens directly between
the user and the authorities without any centralized elements.

We now make several observations. First, note that by
customizing the decryption key K(α,GID) based on the globally-
unique identifier GID of the user requesting the decryption,
the ABE scheme ensures that the same decryption key is not
provided to two different users. This feature is a critical aspect
of the constructions in the Lewko-Waters ABE scheme and
is important in providing the collusion-resistance property of
the scheme. Second, the decryption key is customized to the
attribute α; thus, the same key cannot be used to decrypt a
message whose access structure uses a different attribute β.
Moreover, only the authority that owns the attribute α can
issue a decryption key for that attribute, customized to the
user GID requesting that decryption key. Third, the user needs
to obtain decryption keys from all relevant authorities whose
attributes are needed to pass through the access structure A.
In a conjunctive access structure such as used in Picaros, this
implies obtaining decryption keys from every authority whose
attribute appears in the conjunction. The user cannot decrypt
the ciphertext if he has decryption keys for only a subset of
the attributes needed to clear the access structure A.

B. Mapping DIFC to Decentralized Multi-Authority ABE

In this section, we describe how DIFC primitives can be
mapped to ABE. For this, consider a DIFC system in which a
data object D has a label LD, and a subject S (i.e., application
that produces or consumes data) has label LS. By the no-reads-
up rule, we have that LD⊆LS if S has to be able to read D.
Moreover, if S is not a trusted declassifier (e.g., ImgScrubber
from the example in Section II-A), then by the no-writes-down
rule, the DIFC label of any data object E published by S must
inherit all the tags from LS, i.e., LS⊆LE. This relationship is not
necessarily an equality because S could itself optionally add
any additional tags of its choosing to the label of E. However,
it cannot remove any tags that are in LS when it creates E.

To describe our ABE-based construction of DIFC, we spec-
ify how the entities in the DIFC system would be represented
in the ABE-based system:

� Every subject S in the DIFC system is considered as a user
in the ABE scheme, is assigned a globally-unique identifier,
and is associated with ABE attributes. The attributes of ABE
user S are exactly the set of tags that would appear in the DIFC
label LS. For example, both the Camera and FormatConvertor
applications from Figure 2 would be users in the ABE system
that have the attribute Camera:ImageRaw.
� A subject S in the DIFC system is considered an authority
(in the ABE sense) if it owns a tag, i.e., it is the first
application to add that tag to the DIFC labels of data objects
that it creates. In the example in Figure 2, Camera is an
authority because it owns the tag Camera:ImageRaw. However,
FormatConvertor is not an authority although by virtue of
having Camera:ImageRaw in LFC, it is capable of reading data
objects that have Camera:ImageRaw in their labels, and also
attaches this label to the data objects it publishes.
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� A data object D that has label LD in the DIFC system
would be represented encrypted with an access structure:

A =

i=n∧
i=1

TAGi,where LD = {TAG1, . . . , TAGn}

A is thus the Boolean conjunction of all the tags in LD
considered as attributes. With this construction, observe that
data objects with non-empty labels in the DIFC system will
always be encrypted in the ABE-based realization as they are
passed between subjects. This encryption-based construction
ensures that the DIFC label of the object is securely bound
to the object’s representation, and that it cannot be changed
even if the data object moves from one compute platform
to another in a distributed system—only a subject that has
the corresponding decryption keys will be able to successfully
decrypt and read the object.
� A subject S with the DIFC label LS can successfully read a
data object D with label LD⊆LS. This is because in the ABE
realization, the data object D will be represented encrypted
with an access structure A that has all the attributes in LD. S
will posses all the attributes that are used in the access structure
A, and can therefore successfully decryptD. To do so, it would
have to obtain decryption keys from the relevant authorities
that own the various tags in LD, which would run the KeyGen
function with the globally-unique identifier of the requesting
user (i.e., subject S) to produce the decryption key. Observe
that S would have to procure decryption keys only once and
cache them locally. For any subsequent data objects received
with the same label, S can simply reuse the corresponding
decryption keys directly on the data objects.

A subject that fails to obtain the relevant decryption keys
(because it has insufficient attributes) will not be able to
obtain clear-text access to the data object. Observe that unlike
traditional DIFC, in which the enforcement mechanism deter-
mines whether a data object must be released to a requesting
subject, in the ABE-based realization, the (encrypted) data
object is released to the subject. However, only subjects with
the required attributes will be able to procure the keys to
successfully decrypt the object.

In this paper, we do not consider support for delegation or
revocation, both of which have been studied in prior DIFC-
based systems (e.g., Pileus [64]). The original construction of
centralized authority ABE [12] provided explicit support for
delegation, but we have not explored this possibility in the
context of decentralized multi-authority ABE. Although we do
not explicitly support revocation, we note that authorities can
implement it by simply generating a fresh key-pair, encrypting
messages with the new encryption key and re-issuing the
corresponding decryption key only to users for whom access
privileges are not revoked.

C. Desiderata for ABE-based Realization of DIFC

Given the above construction, we now enlist the desiderata
for a secure realization of DIFC using this construction:

D1 The attributes of a subject S must be stored securely by
the system and must not be available for arbitrary modification
by S. This is because the attributes denote the DIFC label LS
of the subject. A subject must not be allowed to add to its set

of attributes because that would be tantamount to adding tags
to its DIFC label. If subjects were allowed to add tags to their
DIFC labels, they can arbitrarily increase their privileges to
circumvent the no-reads-up rule and read data objects that they
are not otherwise allowed to read. Likewise, a subject must not
be allowed to delete any of its existing attributes because in
a DIFC system data objects published by the subject inherit
the DIFC tags of the subject. If the subject were allowed to
arbitrarily delete tags, it can declassify and therefore leak data
objects. The ability to delete certain DIFC tags from the label
of an object must only be given to trusted declassifiers (such
as ImgScrubber in Figure 2).

D2 A subject S must encrypt data objects that it publishes
with an access structure A that is a conjunction of at least
all of the subject’s attributes. This requirement encodes the
fact that the DIFC label of any data object published by a
subject inherits all of the tags in the subject’s own DIFC label,
i.e., no-writes-down. If the subject in an ABE authority, it can
optionally choose to add its own new attributes to the access
structure A. Intuitively, this encodes the ability of a subject in
a DIFC system to place additional access restrictions on how
the data object can be consumed by downstream applications.

In Picaros, both requirements D1 and D2 are met by suitably
modifying the ROS2 software stack to provide a secure storage
area for attributes of applications, and by ensuring that the
logic that publishes messages encrypts each data object pub-
lished with all of the attributes of the publishing application.

D3 Every application participating in the system must have
an unforgeable identity. Note that ABE already requires each
entity to have a globally-unique identifier (GID) that is pre-
sented to authorities for the Keygen function. In a practical
DIFC system, care must be taken to ensure that the GID
presented to the authority indeed corresponds to that of the
user, i.e., the system must be able to detect and prevent
impersonation attacks in which one user impersonates a second
user by presenting the second user’s GID to the authority,
thereby obtaining decryption keys that only the second user
is authorized to receive.

Picaros achieves this goal by building upon the existing se-
curity primitives of the ROS2+SROS2 stack. It uses traditional
public-key infrastructure (PKI) as present in SROS2 to identify
users, i.e., as is typical in PKI, public keys represent users, and
cannot be forged as long as they are accompanied by digital
certificates from a certifying authority. SROS2 already assumes
the existence of such a public-key infrastructure (because it
uses TLS for inter-application communication), and Picaros
simply leverages the same infrastructure to achieve goal D3.

In Picaros, applications that are ABE authorities receive
requests from other applications to provide a decryption
key for each attribute α that they own. For example, the
Camera application will receive such a request for the attribute
Camera:ImageRaw from FormatConvertor the first time that
FormatConvertor receives a message published by Camera.
Because Picaros builds upon the ROS2 (enhanced with
SROS2), this request will be sent over TLS, which allows
Camera to verify the identity of the requesting application
(FormatConvertor) and use the corresponding GID when it
generates K(Camera:ImageRaw,GID).

D4 A secure channel is needed to communicate decryption
key K(α,GID) for an attribute α and user with global identifier
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GID to the user from the issuing authority. If a snooping
adversary were to get access to the key K(α,GID), it can
decrypt messages that are encrypted with the attribute α. As
an example, in Figure 2, if a malicious adversary were to
get access to the key K(Camera:ImageRaw,FC) issued by Camera to
FormatConvertor, the adversary could snoop on and decrypt
all messages with DIFC label {Camera:ImageRaw} (i.e., en-
crypted with PubKCamera:ImageRaw). Requirement D4 ensures that
decryption keys are received only by intended recipients. As
with criterion D3, Picaros achieves this goal by leveraging TLS
for all inter-application communication. We note that require-
ment D4 is orthogonal to the collusion resistance property that
Lewko-Waters ABE scheme offers. This property prevents a
decryption key for attribute α for one user (with identifier GID)
from being used together with the key K(β,GID′) for attribute β
for another user with a different identifier GID′, because the
Decrypt function requires decryption keys to all be issued to
the same GID. However, it does not prevent an eavesdropping
user with access to decryption keys issued to a single GID
from using those keys to decrypt messages encrypted with the
relevant attributes. Requirement D4 closes this gap.

D5 Finally, a practical DIFC system must support declas-
sification. Thus, the system must support a special class of
trusted applications that are allowed to decrypt a data object,
possibly sanitize the object (e.g., scrub the image in the
example of Figure 2), and republish the object with a subset of
the tags in its DIFC label. In an ABE-based implementation,
the system must allow the data object to be encrypted with
a different access structure A that only has a subset of the
declassifier’s own attributes, e.g., scrubbed images published
by ImgScrubber will be published with the access structure
A=True (or, equivalently, published in the clear). Picaros
includes support for trusted declassifiers.

IV. Implementation of Picaros

We have implemented Picaros atop ROS2 release 8 (Hum-
ble Hawksbill) with SROS2 patches applied, and eProsima’s
Fast-RTPS 1.6.0 implementation of DDS. Although ROS2 runs
atop various OSes, our prototype targets an Ubuntu 20.04 dis-
tribution running the Linux 5.11.0-46 kernel. Figure 4 shows
the overall architecture of Picaros, which builds on the ROS2
software stack. Practically, Picaros enforces DIFC policies at
the granularity of SROS2 enclaves [46, 71–73], which are
collections of ROS2 applications that share the same security
policy. However, for ease of exposition, it suffices to think of
each ROS2 application as an OS-level process, and Picaros as
enforcing DIFC policies at the granularity of individual pro-
cesses. A ROS2 application’s process address space consists
of the application’s business logic, as well as libraries from
the ROS2 software stack that are dynamically loaded into the
process address space. Picaros has three main components—
Picaros-rclcpp, Picaros-LKM and Picaros-verif.

Picaros’s Picaros-rclcpp component enhances rclcpp to
implement message access control using Lewko-Waters ABE
encryption and decryption of messages. Recall from Fig-
ure 3 that rclcpp is the library that provides ROS2’s API
to C++ applications.§ Picaros-rclcpp invokes Encrypt on
messages sent by the application and Decrypt on messages

§Picaros currently only supports rclcpp. We plan to add support for Python
applications by modifying rclpy in future work.

Hatched components indicate the new/modified components of the ROS2
software stack that are part of Picaros’s TCB. This picture also illus-
trates how the components interact to modify the DIFC label of the
application: Picaros-rclcpp forwards the response from the authority
to Picaros-verif (step 1), which verifies the request and informs
Picaros-LKM (step 2), which installs the encryption/decryption keys into
the state-save area of Picaros-rclcpp (step 3).

Figure 4: Components of Picaros on one participating node.

that the application receives over the publish/subscribe chan-
nel (Picaros-rclcpp currently only supports messages sent
via the rclcpp::SerializedMessage API). It uses mcl’s [48]
implementation of the BN-254 elliptic curve group with the
optimal Ate pairing function [8, 68] to implement the Lewko-
Waters ABE cryptographic primitives.

Keys used for encryption are based on an application’s
DIFC labels (i.e., attributes) and must therefore be stored
securely without possible modification by the application
(criterion D1 from Section III-C). Picaros achieves this goal
by relying on Picaros-LKM, a loadable kernel module that
securely stores artifacts related to the application’s DIFC
labels, i.e., encryption and decryption keys, in the kernel.
However, to ensure that encryption and decryption operations
can be implemented in user-space without entailing system
calls, Picaros caches these keys in a protected user-space state-
save area that Picaros-rclcpp allocates during application
startup. This state-save area is write- and read-protected from
application code by Picaros-LKM to ensure that the application
cannot directly modify/access the encryption/decryption keys.
However, Picaros-LKM sets up the area to be readable and
modifiable by Picaros-rclcpp, which executes in the same ad-
dress space as the application. Such support can be enabled on
modern platforms via memory domains, e.g., as implemented
in Intel memory protection keys (MPK) [38, 67] or ARM
memory domains [6, 17]. Picaros-LKM also securely stores
the application’s globally-unique identifier required by ABE,
satisfying criterion D3 from Section III-C.

The Encrypt code in Picaros-rclcpp reads and applies
all the encryption keys from this state-save area to encrypt
messages published by the application, thus satisfying criterion
D2 from Section III-C. It also attaches metadata to the cipher-
text that describes the access structure (A) used to encrypt
the message. When a message is received, Picaros-rclcpp
uses the metadata to locate the corresponding decryption keys
to use with the Decrypt code. This operation succeeds in
retrieving the plaintext only if the application has all the
required decryption keys. We detail how decryption keys are
obtained from authorities when we describe Picaros-verif.
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API function — Invoked by — Invoked when —
GlobalSetup(λ) Entity that bootstraps the DIFC system. Once during system bootstrap.
AuthSetup(GP) Each authority, i.e., owner of a DIFC tag. Once during setup of each authority.
Encrypt(M, GP, {PubKα}, A) Any user that wishes to or must attach tag α to messages

that it publishes. Invoked by Picaros-rclcpp of user.
Once per message packet that is to be
published with tag α in its DIFC label.

Keygen(GID, GP, α, PrivKα) By Picaros-rclcpp of authority that owns attribute α,
on behalf of user with identifier GID that wishes to obtain
their customized decryption key K(α,GID).

Once for each attribute α for each user GID.

Decrypt(C, GP, {K(α,GID)}) By Picaros-rclcpp of user with identifier GID that
wishes to decrypt ciphertext C.

Once for every message packet received
and to be consumed by the application.

Figure 5: Summary of how ABE APIs are invoked by various entities in the DIFC ecosystem.

If an application is an authority that owns an attribute,
it controls access to how other applications consume data
encrypted with that attribute, e.g., Camera owns the tag Cam-
era:ImageRaw in the example from Figure 2. Picaros-rclcpp
implements the AuthSetup API of the ABE scheme that is
executed when the application starts up, which generates the
corresponding public/private key pair(s) for the attribute(s)
that the authority owns. The Camera application would thus
generate PrivKCamera:ImageRaw and PubKCamera:ImageRaw.

When a downstream application such as FormatConvertor
first receives a message published by Camera, its DIFC label
prevents it from consuming the message. As discussed in Sec-
tion II-A, FormatConvertor explicitly requests Camera to allow
the tag Camera:ImageRaw to be added to its the DIFC label. In
Picaros’s ABE-based realization of DIFC, this corresponds to
FormatConvertor lacking the key to decrypt the message sent
by Camera. The Picaros-rclcpp code executing in the con-
text of FormatConvertor inspects the attributes in the access
structure A in the metadata of the ciphertext to determine if
there are any keys missing to decrypt the message. If missing,
it initiates a request to Camera to provide the decryption key
(in this case corresponding to the attribute Camera:ImageRaw),
together with the GID of FormatConvertor (obtained from
Picaros-LKM). This request is communicated over traditional
ROS2 channels (enhanced with SROS2), and is therefore TLS-
encrypted. The Camera application authenticates the identity
of the requestor (using traditional TLS mutual authentication)
and determines whether to allow FormatConvertor to modify
its DIFC label. Such determination is application-specific,
e.g., only Camera can decide which downstream users must
be able to read its data. Picaros-rclcpp implements KeyGen,
which the authority (i.e., Camera) uses if it decides to allow
the request to generate the corresponding K(Camera:ImageRaw,FC)
key. Camera sends this key to FormatConvertor over TLS, thus
satisfying criterion D4 from Section III-C.

On the requestor’s (FormatConvertor) side, the compo-
nent Picaros-rclcpp forwards the response received from
the authority to the Picaros-verif component of Picaros.
This workflow is illustrated using the arrows in Figure 4.
Picaros-verif is implemented as a user-space ROS2 server—
each physical hardware machine (e.g., a robot) that is part
of the distributed robotics platform executes a participat-
ing ROS2 application has one Picaros-verif component.
Picaros-verif authenticates the identity of the sender and the
digital signature on the message, thus ensuring that was sent
by the authority to which the request was sent (i.e., Camera
in this case). This response contains both the encryption key
PubKCamera:ImageRaw and the decryption key K(Camera:ImageRaw,FC).
Picaros-verif requests Picaros-LKM to add both the encryp-

tion and decryption keys into the set of attributes associated
with FormatConvertor. It does so by saving these keys to the
kernel and to the state-save area set up by Picaros-rclcpp
in FormatConvertor’s address space. The decryption key al-
lows FormatConvertor to decrypt messages sent by Camera,
while adding the encryption key is the DIFC equivalent of
adding the tag Camera:ImageRaw to FormatConvertor’s DIFC
label. The latter ensures that all outgoing messages from
FormatConvertor now have the DIFC tag Camera:Image.

Note that Picaros-verif is only invoked once per DIFC
tag—the first time that a process discovers that it lacks a
particular DIFC tag in its label sends a request to the authority
that owns that tag. If the request succeeds, and the requestor’s
DIFC labels are mutated (by adding the relevant ABE keys),
then no further requests are necessary. Picaros-verif does
not appear in the datapath of message exchange after this
initial setup, and we therefore do not consider it as a cen-
tralized element in the design of Picaros. Observe that (with
one exception) all the above support involves no changes
to the ROS2 application’s code, and happens transparently
within the components of Picaros. The only exception is
for authorities—when an authority receives a request by a
downstream application to add a tag to its DIFC label (or
become a declassifier), the application must include the code
to implement the domain-specific checks needed to determine
whether the request must be allowed.

Support for declassifiers in Picaros (criterion D5 from
Section III-C) largely mirrors the workflow that we de-
scribed above for modifying DIFC labels, with a few no-
table differences. When it first receives a message from
Camera, an application such as ImgScrubber sends a request
to Camera to modify its DIFC label. Each such request
also includes a Boolean parameter that determines whether
the application has also requested declassification privileges
(FormatConvertor sets this to False, while ImgScrubber sets
it to True). At this point, Camera must again use domain-
specific logic to determine if the request is to be permitted,
and if so, the response from Camera contains a similar Boolean
flag. Once the Picaros-verif component for ImgScrubber
verifies the request, it adds the corresponding decryption
key K(Camera:ImageRaw,ImgScrubber) to ImgScrubber, but omits the
encryption key PubKCamera:ImageRaw. This ensures that while
ImgScrubber can read messages from Camera to which it
subscribes, the messages published by ImgScrubber are not
encrypted by PubKCamera:ImageRaw. This is equivalent to re-
moving the DIFC tag Camera:ImageRaw from the output of
ImgScrubber, thus in effect declassifying the image.

When the whole system is bootstrapped for the first time,
all applications other than authorities have empty DIFC la-
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bels. As applications receive messages from authorities, they
send requests to add tags to their DIFC labels, i.e., en-
cryption/decryption keys corresponding to various attributes.
Figure 5 summarizes how the ABE API is invoked by various
components of Picaros to implement DIFC.

A. Trusted Code Base

As is the case with other DIFC systems, all the core
components that implement DIFC enforcement logic are part
of Picaros’s TCB. In this case, Picaros-rclcpp, Picaros-LKM,
Picaros-verif, the OS and all supporting libraries are in the
TCB. Note that even SROS2’s security guarantees require the
entire ROS2 stack (starting downward from rclcpp, to the OS)
to be part of the TCB, and Picaros is similar in that respect.

Picaros has both kernel-space and user-space components
in the TCB. We assume that a robotics platform employs stan-
dard hardware-based attestation methods at boot time to ensure
that the code of the OS kernel and Picaros-LKM have not been
tampered with. The kernel must provide standard process-level
isolation and protection mechanisms (e.g., data-execution pre-
vention) to protect Picaros-verif and Picaros-rclcpp from
several classes of runtime attacks. In particular, data-execution
prevention ensures that a malicious application cannot use
runtime exploits to execute new attacker-provided code in
place of the mechanisms in Picaros-rclcpp. As discussed
earlier, Picaros-rclcpp’s state-save area is allocated in the
address-space of the (untrusted, possibly malicious) applica-
tion. Picaros-LKM writes data structures storing encryption
and decryption keys to this state-save area, and these must
be readable by Picaros-rclcpp, but not by the application
code. This can be realized with hardware support in the form
of memory domains (either using Intel MPK [38, 67] or ARM
memory domains [6, 17]) to provide such support. Even if
such hardware support is lacking, read- and write-protection of
the state-save area can be implemented using binary rewriting
of the application’s executable code to enforce software-fault
isolation [69], which ensures that read and write operations
from the application’s code do not target the state-save area.

Although Picaros assumes that defenses such as data-
execution prevention and memory domains are in place, they
still admit certain attacks that we consider orthogonal to the
contributions of this paper. These include runtime exploits that
can subvert the integrity of the OS kernel and Picaros-LKM, or
memory-error attacks in the C++ application such as control-
flow hijacking and return-oriented exploits. Standard code-
hardening methods (e.g., control-flow integrity [1]) can be used
to increase the application’s and kernel’s robustness against
these attacks. Note that applications in ROS2 (with SROS2)
are also subject to the same threats, and that the security
guarantees provided by ROS2 can also be subverted using
these attacks. Picaros’s goal is simply to provide information-
flow control over and above the security features enabled by
SROS2, and therefore we consider these attacks out-of-scope.

B. Threat Analysis

We now discuss Picaros’s defenses against unauthorized
label modification and collusion attacks.

� Unauthorized DIFC label modification. An application that
is able to maliciously modify its DIFC label can read data

objects that it is not authorized to, by adding tags to its DIFC
label. It can similarly leak information by removing tags of
other authorities from its DIFC label, which then ensures that
the DIFC label of messages that it publishes lack this tag.

Picaros’s components prevent unauthorized modification
of ABE artifacts that denote DIFC labels. Any tag additions
to the DIFC label correspond to adding the encryption key
PubKα of the corresponding attribute α. These keys are pub-
licly available from the corresponding authorities. However,
in Picaros, any requests to add encryption keys must be
initiated by the corresponding authority. This request must flow
through Picaros-verif, which checks the authenticity of the
message’s source and its contents (using TLS), before invoking
Picaros-LKM to add this encryption key to the application’s
key store, both in the kernel and in the state-save area in
Picaros-rclcpp. Likewise, any requests to add decryption
keys such as K(α,GID) to the application’s keystore are also
authenticated by Picaros-verif to check the source of the
request. Any requests to delete of public keys (particularly
by declassifiers) are handled similarly, and must be approved
by an authority and verified by Picaros-verif. The untrusted
application itself does not have access to either the in-kernel
keystore or the isolated state-save area (protected by memory
domains), and therefore cannot add or delete keys without the
explicit approval of Picaros-verif.

� Collusion attacks. The Lewko-Waters ABE construction
prevents an important class of collusion attacks, in which one
user that has decryption keys for attribute α colludes with
another user that has decryption keys for attribute β to obtain
the ability to decrypt a message that has both attributes. It
prevents this attack by customizing decryption keys based
on the user’s globally-unique identifier (GID). In Picaros,
Picaros-rclcpp sends Keygen requests to the authority over
TLS, with the GID retrieved from Picaros-LKM. Authorities
verify that the source of this request (as determined by TLS)
matches the GID of the requestor, and only then send the
customized decryption key to Picaros-rclcpp, which is then
added to the requestor’s keystore via Picaros-verify.

While Lewko-Waters prevents attacks that involve com-
bining decryption keys with different GIDs, two users can
still collude in other ways to bypass DIFC. For example,
consider a malicious application BadFC that that also subscribes
to the ROS topic Camera:ImageRaw. Camera may wish to
share data only with FormatConvertor but not with BadFC,
and thus reject any requests from BadFC to add the tag
Camera:ImageRaw to its DIFC label. Practically, in Picaros, this
means that any attempts by BadFC to obtain the decryption
key K(Camera:ImageRaw,BadFC) will fail. However, FormatConvertor
can obtain the decryption key K(Camera:ImageRaw,FC) legitimately
from Camera, and collude with BadFC by simply this share
decryption key. This key does not have to be part of BadFC’s
keystore—indeed, Picaros-verif will reject any attempts by
BadFC to add this decryption key to the keystore because the
request will fail source authentication. Instead, because BadFC
has subscribed to the topic Camera:ImageRaw, it will continue
to receive (encrypted) messages published to this topic. BadFC
can log these messages and decrypt them offline with the key
K(Camera:ImageRaw,FC). The Decrypt function in the Lewko-Waters
ABE scheme only requires multiple decryption keys used in
the same request to share the same GID, which this (single)
decryption key trivially satisfies. Criterion D4 in our desiderata
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in Section III-C was motivated by this observation.
Picaros prevents such collusion attacks by read-protecting

decryption keys from untrusted application code. When Camera
sends K(Camera:ImageRaw,FC) to FormatConvertor, the key is stored
in Picaros-LKM’s keystore and cached in Picaros-rclcpp’s
state-save area, both of which are read-protected from the
business logic of the FormatConvertor application.

V. Evaluation

The primary goal of our evaluation was to understand
the performance of Picaros’s ABE-based implementation of
DIFC. Our implementation of Lewko-Waters ABE scheme
uses bilinear pairings (optimal Ate pairings) from the BN-254
elliptic curve group [8, 68]. Recall from the discussion in
Section III-A that both the Encrypt (and Decrypt) functions
take a set of keys, depending on the number of attributes to
encrypt (or decrypt) the message with. The implementation of
these functions in the Lewko-Waters scheme involves modu-
lar exponentiation operations. The number of exponentiation
operations is proportional to the number of keys used in the
operation, i.e., attributes associated with the message. This
in turn depends on the number of tags in the message’s
DIFC label. Our evaluation measures the cost of cryptographic
operations as a function of DIFC label size (Section V-A),
the latency of ABE-based DIFC in microbenchmark ROS2
pipelines (Section V-B), and end-to-end performance of Pi-
caros on ROS2 application benchmarks (Section V-C).

All measurements reported in this section use ROS2 bench-
marks in which data publishers continuously produce new
messages every 100 milliseconds (10Hz), that are sent to
subscribers. Each experiment consists of running a benchmark
for a duration of 60 seconds and collecting the relevant mea-
surements (e.g., encryption/decryption cost, latency or resource
consumption) observed during that run of the benchmark. Our
measurements are averaged over five such experiments.

We measured the performance of encryption/decryption
and application latency on a 8-core Intel Corei7-7700 CPU
(3.60GHz) with 32GB RAM, running Ubuntu 20.04 (Linux
kernel 5.11.0). By default, the ROS2/DDS stack do not guar-
antee that a message sent by a publisher will be received by a
subscriber. Rather, it exposes several QoS configuration param-
eters that can be tuned based on site-specific requirements. We
used the reliable QoS policy with queue depth of 10, which
we observed minimized message loss in our experiments.

A. Encryption and Decryption Performance

To reliably measure the performance of encryp-
tion/decryption, we created a two-node ROS2 application
pipeline, with one publisher and one subscriber. The publisher
is the authority that adds tags to the DIFC label of the
message it publishes (i.e., encrypts) based on the topic(s)
published, and the subscriber is given the required tags in its
DIFC label to allow it to successfully decrypt the message.

Figure 6 reports the results of our experiments. We mea-
sured the performance of encryption at the publisher and
decryption at the subscriber by varying the number of DIFC
tags in the label. We fixed the message size at 128-bytes for this
experiment; we also conducted this experiment with 8-byte and
2048-bytes, and the performance numbers (not reported here)

6(a) Encryption time 6(b) Decryption time
Figure 6: Performance of ABE encryption and decryption.

were comparable. The raw cost of encryption and decryption is
on the order of a few milliseconds, and increases linearly with
the number of tags in the DIFC label. This is because each ad-
ditional tag corresponds to additional modular exponentiation
operations with the corresponding encryption/decryption key.

B. Microbenchmark Latency

While Figure 6 reports the raw cost of ABE cryptographic
operations, it is also important to quantify the impact of these
operations on in terms of end-to-end latency. We measure
latency as the time elapsed between the publication of a
message at a source node (publisher) to its delivery at a sink
node (subscriber) in various ROS2 application pipelines. We
compare the latency of these pipelines running on Picaros
with their performance on an SROS2 platform, which is our
baseline. We conducted experiments with three pipelines:

1 Single-source single-sink. We consider a two-node applica-
tion pipeline with one node as the publisher (and authority),
while the second node is the subscriber (identical to the one
in Section V-A). We vary the number of topics to which the
authority publishes, which in turn impacts the number of tags
in its DIFC label. The message size is 128-bytes for all our
latency experiments.

Figure 7(a) shows the result of our latency measurements.
The latency observed on SROS2 varied between 250-300µs in
our experiments as we increased the number of topics to which
the authority publishes. On Picaros, the latency for the same
benchmark varies from 3ms to 59ms as the number of topics is
increased. We observed that the increase in latency is roughly
linearly proportional to the number of tags in the DIFC label,
a trend also illustrated in Figure 6. Note that the raw latency
jumps from a few hundred microseconds on SROS2 to tens
of milliseconds on Picaros. While we attribute this increase
in part to bilinear pairing operations of ABE, we also note
that the mcl library that we use for these operations is far less
mature and less optimized than the cryptographic operations
implemented in the TLS library used by SROS2.

2 N-node chain, single-authority. For this experiment, we
considered a straight-line topology with N nodes, as illustrated
in Figure 7(b). The first node in this chain is the sole authority
(shown as the shaded node)—it publishes to a single topic, and
the tag corresponding to this topic is added to the DIFC label
of the message it publishes. The other nodes simply forward
this message to the next node but republish it under their own
topics. That is, the node decrypts the message and re-encrypts
the message with a single key corresponding to that of the
authority’s topic/DIFC tag. However, intermediate nodes are
not authorities and do not add any further tags to the DIFC
label. The message reaches the last (sink) node with a single
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7(a) Single-source single-sink 7(b) N-node chain with single authority 7(c) N-node chain with N-1 authorities
Figure 7: Latency with single-node single-sink and N-node chain topologies.

tag in the DIFC label, and we measure the latency to receive
the message at the sink by varying N.

3 N-node chain, N-1 authorities. This experiment considers
a topology similar to the previous one, but each of the N − 1
nodes on the path to the sink node is also an authority, as
shown in Figure 7(c). Thus, as each intermediate node decrypts
republishes the message under its own topic, it adds its own
tag (one each) to the DIFC label of the message. The message
keeps accumulating tags in its DIFC label and reaches the sink
with N − 1 tags in its DIFC label.

Figure 7(b) and 7(c) report the results of these experiments.
The latency on SROS2 shows a roughly linear trend. In
Figure 7(b), the latency increases roughly linearly with N
because each node in the chain performs one decryption and
re-encryption operation. In contrast, the latency with increasing
values of N in Figure 7(c) mirrors the fact that the number of
ABE cryptographic operations increases quadratically with N.
This is because the message reaching the ith node has (i − 1)
tags. This message must be decrypted with (i − 1) keys, and
reencrypted with i keys, including that of the the ith node’s
own tag. This is DIFC’s default label creep behavior with N−1
authorities, and without declassifiers, and represents the “worst
case” application pipeline for Picaros.

C. End-to-end Benchmark Performance

To measure the end-to-end latency and resource consump-
tion (memory usage and power consumption) of Picaros on
real ROS2 applications, we use benchmarks from the iRobot
suite [2]. As before, we compare the performance against
the SROS2 platform as the baseline. iRobot has three ap-
plication pipelines—Cedar, Sierra Nevada, and Mont Blanc.
Sierra Nevada and Cedar are application pipelines with 10-
nodes, while Mont Blanc is a 20-node topology. The nodes are
connected in complex topologies with each node publishing
and subscribing to a number of topics. There are multiple paths
(including loops) from a data publisher to a consumer in these
topologies. Each node of the application pipeline runs as a
separate process on the underlying platform, and we run the
entire pipeline on a single hardware platform.

In each of Sierra Nevada and Cedar, we designate a single
node as the sole authority that adds a single tag to the DIFC
label of messages it publishes. For Mont Blanc, we repeat the
experiment with three configurations, in which there are one,
four and seven nodes that we designate as authorities, each
adding a single tag to the DIFC label of messages they publish.

Topology ↓ Path Latency (in milliseconds)
length SROS2 Picaros

Cedar 3 0.85 10.4
SierraNevada 3 0.94 13.6
Mont Blanc-1 5 1.34 61.3
Mont Blanc-4 5 1.34 115.0
Mont Blanc-7 5 1.34 316.9

Figure 8: Latency experiments with iRobot benchmarks.

Topology ↓ Memory usage (MBs) Power draw (mWatts)
SROS2 Picaros SROS2 Picaros

Cedar 1690.1 2525.1 (+49.4%) 4896.7 5437.0 (+11.0%)
SierraNevada 2163.1 2442.5 (+12.9%) 4881.0 5393.0 (+10.5%)
Mont Blanc-1 2529.3 4019.6 (+58.9%) 5056.1 5281.8 (+4.5%)
Mont Blanc-4 2529.3 4068.2 (+60.8%) 5056.1 5295.7 (+4.7%)
Mont Blanc-7 2529.3 4096.8 (+61.9%) 5056.1 5307.7 (+4.9%)

Figure 9: Resource consumption with iRobot benchmarks.

Because iRobot benchmarks have complex topologies that
often have multiple paths between two nodes, we measured
the latency for a single data packet to traverse from a des-
ignated source node to a sink node via the shortest path.
Figure 8 presents the results of our latency measurements; it
also shows the length of the shortest path from the source
to the sink. Note that in Mont Blanc-4 and Mont Blanc-7
multiple nodes are authorities, whereas in the others, there
is only one authority. Nevertheless, in all benchmarks, we
assume that the authority(ies) permit all subscribers to read
the data—thus intermediate nodes along a path also decrypt
and re-encrypt packets, as explained for the chain topologies
discussed earlier. We observe that the latency increases from
about a millisecond on SROS2 to a few tens/hundreds of
milliseconds on Picaros. This is expected due to the cost of
decrypting packets at intermediate nodes that subscribe to the
topic, and re-encrypt packets with the authority’s label. We
also observe (via various Mont Blanc configurations) that the
latency increases as the number of authorities increases. This
is because the intermediate nodes must decrypt/re-encrypt with
keys corresponding to every tag in a message’s DIFC label.

Figure 9 presents the results of the resource-consumption
experiments. For these experiments, we used an Nvidia Xavier
NX development board, that has a 6-core Nvidia Carmel
ARMv8.2 64-bit CPU and 8GB RAM. This board has built-
in power-measurement hardware that allows us to record the
power-draw on the system 5V rail. The memory utilization
overhead of Picaros over SROS2 varies from 12.9% for Sierra
Nevada to 61.9% for Mont Blanc-7, while the power-draw
overhead varies from 4.5% for Mont Blanc-1 to 11.0% for
Cedar. Observe that the SROS2 numbers for all three Mont
Blanc topologies are the same because the notion of authorities
only applies to Picaros.
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VI. Security Evaluation: A Case Study

We illustrate the end-to-end functionality of Picaros
using a real-life ROS2 application pipeline taken from
NVidia’s Isaac ROS platform demos (Figure 10). Here,
RealsenseCamera is a ROS2 node that publishes raw images
to the topic camera/color/image raw (aliased to T1 in the
figure) which are converted to tensors via a pair of applica-
tions (isaac ros dnn encoder and isaac ros tensor rt).
These tensors are published to the topic tensor sub, and used
by downstream ROS2 nodes. In particular:

� YoloV5DecoderNode performs object detection with the
detected object boundaries published to object detections, and
� VisualizationNode, which subscribes to both the topics
object detections and camera/color/image raw and publishes
an image overlaid with object boundaries under the topic
yolo5 processed image.

Now suppose that the owner of the RealsenseCamera
application wishes to exert control over which downstream ap-
plications have access to images (either in the raw or processed
form) derived from the RealsenseCamera. Without DIFC, it
is hard to exert such control, and downstream applications
such as the monitoring tool Foxglove, which subscribes to the
messages published by VisualizationNode, can obtain images
that RealsenseCamera produces.

With DIFC as implemented in Picaros, we designate
the RealsenseCamera application as an authority (depicted
as the shaded circle A in the figure). All messages
published by RealsenseCamera will have the DIFC label
{RealsenseCamera:camera/color/image raw}—we abbreviate this
label as {RscImg} for the rest of this discussion. Observe that
this DIFC label is automatically derived from the name of the
publishing application and topic name of the messages to be
protected. In Picaros, the task of attaching a DIFC label is
realized by encrypting the published messages with the key
PubKRscImg, and in Figure 10, this is depicted with a lock
icon on the outgoing message. RealsenseCamera must explic-
itly allow each downstream application (with unique global
identifier GID) to consume this message by decrypting it using
the key K(RscImg,GID) (shown with the key icons in Figure 10).
For this case study, we assume that RealsenseCamera grants
all intermediate applications (except FoxGlove) permissions to
consume messages labeled with {RscImg}. Every intermediate
application in the pipeline that reads messages with the label
{RscImg} also preserves this label in the message that it pub-
lishes, i.e., their outgoing messages must be encrypted with the
key PubKRscImg, shown again with the lock icon in Figure 10.

RealsenseCamera may wish to prevent network-facing
monitoring applications such as FoxGlove from access-
ing sensitive data contained the images. While it can
simply prevent access by refusing to generate the de-
cryption key K(RscImg,FoxGlove) for FoxGlove, this may pre-
clude some useful applications from functioning properly.
Thus, RealsenseCamera can designate a sanitizing app, in
this case Sanitizer, to suitably modify the image so
that all sensitive content is removed. Sanitizer subscribes
to the topic yolo5 processed image and RealsenseCamera
gives it the decryption key K(RscImg,Sanitizer) to process
the image and publish it under the same topic. How-

Legend: A : RealsenseCamera (Authority)

B : isaac ros dnn encoders
T1: camera/color/image raw C : isaac ros tensor rt
T2: tensor pub D : Yolov5DecoderNode
T3: tensor sub E : VisualizationNode
T4: object detections F : FoxGlove
T5: yolo5 processed image S : Sanitizer

Figure 10: Application pipeline used in the case study.

ever, Sanitizer publishes its output in the clear under the
topic yolo5 processed image. Observe that although FoxGlove
subscribes to this topic and receives messages from both
Sanitizer and VisualizationNode, only the sanitized mes-
sages from Sanitizer are cleartext images.

VII. RelatedWork

ROS Security. We provide general background on ROS secu-
rity, without specifically referring to ROS1 (ROS version 1)
or ROS2. Early studies on ROS security focused on the
ROS1 platform [47], but newer work generally targets the
ROS2 platform, as ROS1’s architecture has known scalability
issues and is now deprecated. ROS by itself does not provide
security, the community has proposed several techniques to add
security mechanisms. These efforts include adding mandatory
access control (MAC) policy enforcement to ROS [5, 10],
improving messaging secrecy and integrity [14, 28, 56, 66],
techniques to secure the underlying DDS layer (specific to
ROS2) [45, 73], and other methods to improve ROS application
security [25, 26, 37, 72]. SROS2 [27, 46, 62, 71] represents an
effort to upstream some of these methods to the ROS2 stack,
and is built primarily atop the API of DDS, with patches to
the ROS2 as well. It makes TLS standard for all application
communication and ensures that publish/subscribe messaging
adheres to advertised manifests, thereby eliminating several
common classes of attacks such as eavesdropping, message
spoofing and corruption. Recent work on model checking
SROS2 has uncovered security holes in SROS2 itself [24].

Picaros builds on the basic security guarantees provided
by ROS2/DDS enhanced with SROS2. While the bulk of prior
work on access control for ROS2 applications has focused
on providing MAC policy enforcement [4, 5, 10], the issue
of information-flow control and providing applications down-
stream control over their data remains open. To our knowledge,
Picaros is the first to address this problem using DIFC.

Decentralized Information-Flow Control. Information-flow
control dates back to the classic papers by Bell-LaPadula [11]
and Biba [13]. However, in these systems labels on subjects
and data objects were assigned centrally by a system admin-
istrator. DIFC, first introduced by Myers and Liskov [50],
makes label assignment egalitarian, allowing subjects to add
their own tags to the DIFC labels of data objects they own.
DIFC concepts have since been applied to several language-
based systems (e.g., [43, 44, 49, 51]), operating systems
(e.g., [30, 40, 74]), web services [18, 19] and mobile sys-
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tems [53]. All these systems assume that a developer or end-
user defines the DIFC labels for an application.

Most of these DIFC systems were tailored for individual
machines with a centralized policy-enforcing TCB, which
is either the language runtime, OS kernel, or middleware
that sits below the application. DStar [75] first generalized
DIFC to distributed systems, with each participating machine
running a HiStar [74] DIFC kernel and a dedicated process
to bind DIFC labels to data objects during export/import from
other machines. Picaros embraces decentralization as a central
design principle and avoids any centralized elements in its
design, and is the first DIFC system for ROS2. It also eases
DIFC label assignment for applications by deriving labels
using the ROS2 topics from the application’s manifest. To our
knowledge, Picaros is also unique in using ABE as the core
mechanism for DIFC policy enforcement.

Cryptographic Schemes for Information-Flow Control. Al-
though several cryptographic solutions, including ABE [12, 61]
and many variants (e.g., [9, 34, 41]), have been developed
for access control using attributes (including user identity),
Damgard et al. [20] were the first to develop cryptographic
support for information flow as classically defined by Bell-
LaPadula [11] and Biba [13]. The primary focus of Damgard
et al.’s work is to develop new cryptographic protocols for
various elements of information flow control, including de-
classification. This work was followed up by several oth-
ers [7, 33, 36, 39, 65] that improved upon their protocols,
including the work of Han et al. [36], who modeled the
problem of information-flow control using ABE primitives.

Picaros differs from these prior works in several ways.
First, Picaros focuses on DIFC, in which individual users
can define DIFC tags to add to the data objects they pro-
duce, whereas prior work considers traditional, Bell-LaPadula-
style centralized information-flow control. Second, Picaros
is tailored for the decentralized environment of ROS2 and
therefore uses decentralized multi-authority ABE as the core
cryptographic primitive. In contrast, the cryptographic primi-
tives developed in prior work, including the ABE-based work
of Han et al., use centralized elements in their solutions,
e.g., to model declassification using a centralized server called
a sanitizer. Last, while prior work has primarily focused on
developing new protocols, to our knowledge, Picaros is the
first practical implementation applied to enforce DIFC on a
real-world system, namely ROS2. Although subsequent work
has improved upon the Lewko-Waters ABE scheme in multiple
ways (e.g., [21, 22, 65]), the expressivity of the Lewko-Waters
scheme proved sufficient for Picaros.

VIII. Summary

As robotics platforms that use ROS2 gain in popularity,
there will be an increasing need to offer applications on
these platforms security primitives to safeguard their data.
To date, the focus of the ROS2 community has largely been
to provide message encryption, authentication and mandatory
access control. This paper argues that information-flow control
is an essential primitive for ROS2 platforms, and that methods
from prior DIFC systems cannot directly be used on ROS2.
It presents Picaros, which casts the DIFC problem within the
framework of ABE, and shows that this solution ideally suits
the decentralized and distributed nature of ROS2 platforms.
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Making information flow explicit in HiStar. In Symposium on
Operating Systems Design and Implementation, 2006.

[75] N. Zeldovich, S. Boyd-Wickizer, and D. Maziéres. Securing
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Appendix—ABE Implementation

In this section, we provide details on the implementation
of the Lewko-Waters ABE scheme adapted to our setting. Our
description follows the API of the ABE scheme as introduced
in Section III.

GlobalSetup(λ)→GP

The global setup function takes a security parameter and
outputs the global parameters: a prime p and a bilinear pairing
e : G1 × G2 → GT where G1,G2,GT are all cyclic groups of
prime order p. We use • to denote the multiplicative operator
on these groups. Recall that every non-identity element in
a cyclic group of prime-order is a generator. We randomly
choose generators g1 ∈ G1 and g2 ∈ G2. We also choose a
hash function H : GID → G1 which maps the globally-unique
identifiers GID used by the Lewko-Waters scheme to elements
in G1. Because the value H(GID) is an element of the group
G1, note that it can be expressed in terms of the generator of
the group as gΩ1 for some integer Ω.

The groups G1, G2, and GT must be chosen so that a
bilinear pairing exists. Prior work has defined such groups
and pairings over suitably-chosen elliptic curves [8, 68]. In
our implementation, the groups G1, G2, and GT , as well as the
bilinear pairing are defined using an elliptic curve—the BN-254
curve with optimal Ate pairings.

In more detail, the BN254 curve is defined as the solution
set over Fρ×Fρ of the curve E: y2=x3+b for specific values of

b and ρ. Note that Fρ is the base finite field with ρ elements
over which the curve is defined. The three groups G1, G2 and
GT are defined as follows:

� The group G1 is the cyclic subgroup of the elliptic curve
group itself (of the curve E).
� G2 is derived from the curve as a cyclic subgroup present
in a specific twisting isomorphism on E.
� GT is the (multiplicative) cyclic subgroup of a certain 12th

degree field extension of Fρ.

For detailed constructions of the groups G1, G2, GT and the
bilinear pairing, we refer the reader to the papers by Barreto
and Nehrig [8] and Vercauteren [68]. We only provide some
details above for completeness. Our implementation simply
uses the details of the BN254 curve directly as provided in mcl.

The specific values of b and ρ used for BN254 yield groups
G1, G2 and GT whose size is 0x2523648240000001ba344d80-
00000007ff9f800000000010a10000000000000d. For the hash
function H , we used the one implemented in the mcl li-
brary [48]. This hash function follows the specification defined
in the Internet Draft [31] and is specifically designed to have
its range map into the group elements in G1.

AuthSetup(GP, α)→{PrivKα,PubKα}

The AuthSetup function is invoked once by each authority
for each attribute α that it owns. The authority chooses private
parameters βα and yα ∈ Zp. It outputs PubKα = (e(g1, g2)βα ,
gyα

2 ) as the public key corresponding to the attribute α. It
privately stores PrivKα = (βα, yα) as the corresponding private
key. In the following discussion, we will use the following
notation to refer to the two components of the public key:
PubK(α,0) = e(g1, g2)βα and PubK(α,1) = gyα

2 .

Keygen(GID, GP, α, PrivKα)→K(α,GID)

This attribute-specific and user-specific key K(α,GID) is given
by gβα1 •H(GID)yα .

Encrypt(M, GP, {PubKα}, A)→C

The encryption algorithm takes in a message M ∈ GT ,
the global parameters, an access structure A over the set of
attributes and the set of public keys {PubKα} corresponding to
the attributes appearing in A. For the case where A is of the
form A =

∧n
i=1 αi, i.e.,a Boolean conjunction over n attributes,

let S be the set of corresponding public keys S = {PubKαi |

i ∈ {1, 2, · · · n}} with |S | = n.

Let K (n) be the following n × n matrix. We describe the
significance of this matrix in the Lewko-Waters construction
later in this section.

K (n) =



1 −1 0 0 · · · 0 0
0 1 −1 0 · · · 0 0
0 0 1 −1 · · · 0 0
0 0 0 1 · · · 0 0
...

...
0 0 0 0 · · · 1 −1
0 0 0 0 · · · 0 1
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The encryption algorithm chooses:

� A random σ ∈ Zp;
� A random vector v ∈ Zn

p with σ as its first entry. It uses
this vector v to compute λi = ⟨K

(n)
i , v⟩ (i.e., the inner product),

where K (n)
i is the ith row of K (n);

� A random vector w ∈ Zn
p with 0 as its first entry. It uses w

to compute wi = ⟨K
(n)
i ,w⟩, where K (n)

i is the ith row, as above.

� A random integer ri ∈ Zp for each row K (n)
i .

Observe that the matrix K (n) is constructed in such a way
that
∑n

i=1K
(n)
i = (1, 0, 0, · · · , 0)1×n. As a result, the following

two properties hold:
∑n

i=1 λi = σ and
∑n

i=1 wi = 0. Now define
the following terms:

� C0 = M • e(g1, g2)σ;
� C(1,i) = e(g1, g2)λi • PubKri

(αi,0) = e(g1, g2)λi • e(g1, g2)βαi ·ri ,
computed for each i ∈ {1, 2, · · · n} (i.e., for each row of the
matrix K (n));
� C(2,i) = gri

2 for each i ∈ {1, 2, · · · n}; and

� C(3,i) = gwi
2 · PubKri

(αi,1) = gwi
2 • g

yαi ·ri

2 = g
wi+yαi ·ri

2 for each i
∈ {1, 2, · · · n}.

The ciphertext computed by the Encrypt function is a tuple
with the 3n + 1 terms C = [C0, ∀n

i=1C(1,i), ∀n
i=1C(2,i) ∀

n
i=1C(3,i)]

described above.

Decrypt(C, GP, {K(α,GID)})→M

We assume the entity that invokes this function has all the
keys required. The decryptor first computes H(GID) and then
for each row i in K (n), computes the following values for i ∈
{1, 2, · · · n}:

C(1,i) • e(H(GID),C(3,i))
e(K(αi,GID),C(2,i))

We now claim:
C(1,i) • e(H(GID),C(3,i))

e(K(αi,GID),C(2,i))
= e(g1, g2)λi • e(H(GID), g2)wi

Proof: Recall that H(GID) = gΩ1 for some integer Ω, and C(3,i)

= g
wi+yαi .ri

2 . Thus,

e(H(GID),C(3,i)) = e(gΩ1 , g
wi+yαi ·ri

2 ) = e(g1, g2)Ω·wi+Ω·yαi ·ri

where the last equality follows due to the bilinearity property.
Similarly,

e(K(αi,GID),C(2,i)) = e(g
βαi
1 • (gΩ1 )yαi , gri

2 ) = e(g
βαi+Ω·yαi
1 , gri

2 )

Applying bilinearity, we get:

e(K(αi,GID),C(2,i)) = e(g1, g2)βαi ·ri+Ω·yαi .ri

Therefore we have:
C(1,i) • e(H(GID),C(3,i))

e(K(αi,GID),C(2,i))
=

C(1,i) • e(g1, g2)Ω·wi+Ω·yαi ·ri

e(g1, g2)βαi ·ri+Ω·yαi ·ri

= C(1,i) • e(g1, g2)Ω·wi−βαi ·ri

= e(g1, g2)λi • e(g1, g2)βαi ·ri • e(g1, g2)Ω·wi−βαi ·ri

= e(g1, g2)λi • e(g1, g2)Ω·wi = e(g1, g2)λi • e(gΩ1 , g2)wi

= e(g1, g2)λi • e(H(GID), g2)wi since H(GID) = gΩ1 ■

With this identity in hand, the decryptor computes the product
of all the terms

Πn
i=1

C(1,i) • e(H(GID),C(3,i))
e(K(αi,GID),C(2,i))

By the claim above this product is:

Πn
i=1e(g1, g2)λi • e(H(GID), g2)wi

= e(g1, g2)
∑n

i=1 λi • e(H(GID), g2)
∑n

i=1 wi

Using the observation that
∑n

i=1 λi = σ and
∑n

i=1 wi = 0, the
above term becomes e(g1, g2)σ. The plaintext is then obtained:

M =
C0

e(g1, g2)σ

As presented thus far, the construction of the ABE prim-
itives applies only for the special case where the access
structure is a conjunction of all the attributes. However, the
original Lewko-Waters construction [42] allows for more gen-
eral access structures than just conjunctions, namely, those that
can be represented by Linear Secret Sharing Scheme (LSSS)
access matrices. A LSSS access matrix is a l ×m matrix with
entries in Zp along with a mapping Ψ which maps the rows
of the matrix to the attributes. An attribute set S is authorized
under the access matrix if the row vector (1, 0, · · · , 0)1×m lies
in the span of the rows Ψ−1(S ) i.e., the set of all rows to
which the attributes in S are mapped. This a generalization of
the condition under which an attribute set satisfies a Boolean
circuit. The intuition behind this construction is that when a
user’s attribute set is authorized, they can create an appropriate
product so as to obtain the term e(g1, g2)σ. Note that the vectors
v and w are carefully chosen so that their first coordinate is σ
and 0, respectively.

Therefore to create a LSSS access matrix for a Boolean
gate comprising a simple conjunction of up to n attributes (as
is required in Picaros), we need to create a matrix for which
the row (1, 0, · · · , 0)1×m is in the span of all the n rows of the
matrix and not in the span of any proper subset of the rows.
The matrix K (n) is one such matrix that satisfies this require-
ment. Note that K (n) is not the only matrix satisfying this case.
But K (n) provides some useful computational benefits:

� In K (n), the appropriate linear combination to get the vector
(1, 0, · · · , 0)1×m is just the sum of all the rows, hence the
corresponding product requires no modular exponentiations
from the decryptor and is computationally faster.
� When the attribute set contains a single attribute (i.e., the
message is encrypted with the encryption key belonging to a
single attribute), the matrix contains a single element, while
λ1 and w1 are simply σ and 0, respectively.

A general algorithm to create such LSSS matrices for arbitrary
Boolean formulae is provided in the appendix of the Lewko-
Waters paper [42].

18


	Introduction
	Background and Overview
	DIFC to enforce control over data
	Specifying DIFC policies
	Enforcing DIFC policies

	DIFC using ABE
	Background on Attribute-based Encryption
	Mapping DIFC to Decentralized Multi-Authority ABE
	Desiderata for ABE-based Realization of DIFC

	Implementation of Picaros
	Trusted Code Base
	Threat Analysis

	Evaluation
	Encryption and Decryption Performance
	Microbenchmark Latency
	End-to-end Benchmark Performance

	Security Evaluation: A Case Study
	Related Work
	Summary

