
Retrofitting Legacy Code for
Authorization Policy Enforcement

Vinod Ganapathy
Ph.D. Thesis Defense

Thursday, July 12th, 2007

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 2

Principle of Design for Security

Historic example:
• MULTICS [Corbato et al. ‘65]

More recent examples:
• Operating systems
• Database servers

To create a secure system, design
it to be secure from the ground up

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 3

Relevance of the Principle today

Deadline-driven software development
• Design.Build.(Patch)* is here to stay

Diverse/Evolving security requirements
• MULTICS security study [Karger and Schell, ‘72]

Most deployed software is
not designed for security

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 4

Retrofitting legacy code

Need systematic techniques to
retrofit legacy code for security

Legacy
code

Retrofitted
code

INSECURE SECURE

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 5

Retrofitting legacy code

Enforcing type safety
• CCured [Necula et al. ’02]

Partitioning for privilege separation
• PrivTrans [Brumley and Song, ’04]

Enforcing authorization policies

Need systematic techniques to
retrofit legacy code for security

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 6

Resource manager

Enforcing authorization policies

Resource user

Operation request Response

Authorization policy‹Alice, /etc/passwd, File_Read›

Reference monitor

Allowed? YES/NO

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 7

Retrofitting for authorization
Mandatory access control for Linux
• Linux Security Modules [Wright et al.,’02]

• SELinux [Loscocco and Smalley,’01]

Secure windowing systems
• Trusted X, Compartmented-mode workstation,

X11/SELinux [Epstein et al.,’90][Berger et al.,’90][Kilpatrick et al.,’03]

Java Virtual Machine/SELinux [Fletcher,‘06]

IBM Websphere/SELinux [Hocking et al.,‘06]

Painstaking, manual procedure

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 8

Thesis statement

Program analysis and transformation techniques
offer a principled and automated way to

retrofit legacy code with reference monitors

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 9

Contributions

Fingerprints: A new representation for
security-sensitive operations
Two algorithms to mine fingerprints
Result: Reduced effort to retrofit legacy
code for authorization policy enforcement
• Manual effort needed reduces to a few hours
• Applied to X server, Linux kernel, PennMUSH

Analyses and transformations for
authorization policy enforcement

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 10

Outline
Motivation
Problem
• Example
• Retrofitting legacy code: Lifecycle

Solution

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 11

X server with multiple X clients

REMOTE

LOCAL

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 12

REMOTE

Malicious remote X client

LOCAL

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 13

REMOTE

Undesirable information flow

LOCAL

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 14

Desirable information flow

LOCAL

REMOTE

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 15

Other policies to enforce
Prevent unauthorized
• Copy and paste
• Modification of inputs meant for other clients
• Changes to window settings of other clients
• Retrieval of bitmaps: Screenshots

[Berger et al., ’90]
[Epstein et al., ‘90]

[Kilpatrick et al., ‘03]

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 16

X server

X server with authorization

X client

Operation request Response

Authorization policy

Reference monitor

Allowed? YES/NO

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 17

Outline
Motivation
Problem
• Example
• Retrofitting legacy code: Lifecycle

Solution

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 18

Retrofitting lifecycle
1. Identify security-sensitive operations
2. Locate where they are performed in code
3. Instrument these locations

Input_Event
Create
Destroy
Copy
Paste
Map

Security-sensitive
operations Source Code Policy checks

Can the client
receive this

Input_Event?

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 19

Problems

X11/SELinux ~ 2 years [Kilpatrick et al., ‘03]

Linux Security Modules ~ 2 years [Wright et al., ‘02]

Violation of complete mediation
Time-of-check to Time-of-use bugs [Zhang et al.,
‘02][Jaeger et al., ‘04]

Ad hoc

Manual

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 20

Our approach

Fingerprints: A new representation of
security-sensitive operations

Legacy code retrofitted using fingerprints
• Use of static and dynamic program analysis

Automated

Principled

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 21

Approach overview
Legacy code

Retrofitted code

Miner

Fingerprints

Matcher

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 22

Outline
Motivation
Problem
Solution
• Fingerprints [CCS’05]
• Dynamic fingerprint mining
• Static fingerprint mining

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 23

What are fingerprints?

Resource accesses that are unique to a
security-sensitive operation

Denote key steps needed to perform the
security-sensitive operation on a resource

Code-level signatures of
security-sensitive operations

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 24

Examples of fingerprints
Input_Event :-

Cmp xEvent->type == KeyPress

Input_Event
Create
Destroy
Copy
Paste
Map

Security-sensitive
operations Source Code

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 25

Examples of fingerprints
Input_Event :-

Cmp xEvent->type == KeyPress
Input_Event :-

Cmp xEvent->type == MouseMove
Map :-

Set Window->mapped to True &
Set xEvent->type to MapNotify

Enumerate :-
Read Window->firstChild &
Read Window->nextSib &
Cmp Window ≠ 0

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 26

MapSubWindows(Window *pParent, Client *pClient) {
Window *pWin;
…
// Run through linked list of child windows
pWin = pParent->firstChild; …
for (;pWin != 0; pWin=pWin->nextSib) {

...
// Code that maps each child window
...

}
}

Fingerprint matching
X server function MapSubWindows

Performs Enumerate

Enumerate :- Read Window->firstChild &
Read Window->nextSib &
Cmp Window ≠ 0

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 27

MapSubWindows(Window *pParent, Client *pClient) {
Window *pWin;
…
// Run through linked list of child windows
if CHECK(pClient,pParent,Enumerate) == ALLOWED {

pWin = pParent->firstChild; …
for (;pWin != 0; pWin=pWin->nextSib) {

...
// Code that maps each child window
...

}
} else { HANDLE_FAILURE }

}

Placing authorization checks
X server function MapSubWindows

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 28

Fingerprint matching
Currently employ simple pattern matching
More sophisticated matching possible
• Metacompilation [Engler et al., ‘01]

• MOPS [Chen and Wagner, ‘02]

Inserting authorization checks is akin to
static aspect-weaving [Kiczales et al., ’97]

Other aspect-weaving techniques possible
• Runtime aspect-weaving

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 29

Outline
Motivation
Problem
Solution
• Fingerprints
• Dynamic fingerprint mining [Oakland’06]
• Static fingerprint mining

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 30

Dynamic fingerprint mining

Input_Event
Create
Destroy
Copy
Paste
Map

Security-sensitive
operations Source Code

Output: Fingerprints
Input_Event :-

Cmp xEvent->type == KeyPress

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 31

Dynamic fingerprint mining
Security-sensitive operations [NSA’03]

Use this information to induce the program
to perform security-sensitive operations

Map window to consoleMap
Destroy existing windowDestroy
Create new windowCreate
Input to window from deviceInput_Event

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 32

Problem definition
S: Set of security-sensitive operations
D: Descriptions of operations in S
R: Set of resource accesses
• Read/Set/Cmp of Window/xEvent

Each s є S has a fingerprint
• A fingerprint is a subset of R
• Contains a resource access unique to s

Problem: Find fingerprints for each
security-sensitive operation in S using D

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 33

Traces contain fingerprints

Induce security-sensitive operation
• Typing to window will induce Input_Event

Fingerprint must be in runtime trace
• Cmp xEvent->type == KeyPress

Input_Event
Create
Destroy
Copy
Paste
Map

Security-sensitive
operations Source Code Runtime trace

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 34

Compare traces to localize

Localize fingerprint in trace
• Trace difference and intersection

Input_Event
Create
Destroy
Copy
Paste
Map

Security-sensitive
operations Source Code Runtime trace

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 35

Runtime traces
Trace the program and record reads/writes
to resource data structures
• Window and xEvent in our experiments

Example: from X server startup
(In function SetWindowtoDefaults)
Set Window->prevSib to 0
Set Window->firstChild to 0
Set Window->lastChild to 0
…

about 1400 such resource accesses

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 36

Using traces for fingerprinting
Obtain traces for each security-sensitive
operation
• Series of controlled tracing experiments

Examples
• Typing to keyboard generates Input_Event
• Creating new window generates Create
• Creating window also generates Map
• Closing existing window generates Destroy

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 37

Comparison with “diff” and “∩”

Input_Event

Unmap

Map

Destroy

Create

Switch
windows

Open
browser

Move
xterm

Close
xterm

Open
xterm

Annotation is a manual step

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 38

- Move xtermCreate = Open xterm ∩ Open browser

Comparison with “diff” and “∩”

Input_Event

Unmap

Map

Destroy

Create

Switch
windows

Open
browser

Move
xterm

Close
xterm

Open
xterm

Perform same set operations on resource accesses

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 39

Set equations
Each trace has a set of labels
• Open xterm: {Create, Map}
• Browser: {Create, Destroy, Map, Unmap}
• Move xterm: {Map, Input_Event}

Need set equation for {Create}
• Compute an exact cover for this set
• Open xterm ∩ Open browser – Move xterm

Perform the same set operations on the
set of resource accesses in each trace

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 40

Experimental methodology
Source code

Server with logging enabled

Raw traces

Relevant portions of traces

Pruned traces

gcc –-enable-logging

Run experiments and collect traces

Localize security-sensitive operation

Compare traces with “diff” and “∩”

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 41

Dynamic mining: Results
1,000,000

54,000

900

126

1

10

100

1,000

10,000

100,000

1,000,000

Source Code Raw Traces Relevant
Portions

Pruned
Traces

Si
ze

Each fingerprint localized to
within 126 resource accesses

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 42

1. Incomplete: False negatives
2. High-level description needed
3. Operations are manually induced

Limitations of dynamic mining

Input_Event
Create
Destroy
Copy
Paste
Map

Security-sensitive
operations Source Code Runtime trace

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 43

Outline
Motivation
Problem
Solution
• Fingerprints
• Dynamic fingerprint mining
• Static fingerprint mining [ICSE’07]

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 44

Static fingerprint mining

Input_Event
Create
Destroy
Copy
Paste
Map

Security-sensitive
operations Source Code

Output: Candidate Fingerprints
Cmp xEvent->type == KeyPress

Resources

• Window
• xEvent

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 45

Problem definition
R: Set of resource accesses
• Read/Set/Cmp of Window/xEvent

E: Set of entry points into the server
Goal: Find fingerprints using R and E

Not given an a priori description
of security-sensitive operations

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 46

Straw-man proposal I

Finest level of granularity
Cmp xEvent->type == KeyPress
Read Window->firstChild
Read Window->nextSib
Cmp Window ≠ 0

Each resource access
in R is a fingerprint

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 47

Problem with this proposal

Cmp xEvent->type == KeyPress
Read Window->firstChild
Read Window->nextSib
Cmp Window ≠ 0

Difficult to write and maintain
policies at this level of granularity

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 48

Straw-man proposal II

Coarsest level of granularity

Call MapSubWindows
Call MapWindow

Write policies allowing/disallowing the use
of an API call

Each API in E is a fingerprint

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 49

Problem with this proposal

Call MapSubWindows
• Enumerates child windows and maps them to

the screen
Call MapWindows
• Maps a window onto the screen

Does not reflect actual resource
accesses performed by API call

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 50

Our approach

Each API entry point implicitly defines a
set of resource accesses

Cluster resource accesses based upon the
API entry points that perform them

Cluster resource accesses
that always happen together

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 51

Static analysis
Extract resource accesses potentially
possible via each entry point
Example from the X server
• Entry point: MapSubWindows(…)
• Resource accesses:

Set xEvent->type To MapNotify
Set Window->mapped To True
Read Window->firstChild
Read Window->nextSib
Cmp Window ≠ 0

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 52

Resource accesses

Cmp xEvent->type==KeyPress

Cmp Window ≠ 0

Read Window->nextSib

Read Window->firstChild

Set Window->mapped To True

Set xEvent->type To MapNotify

Keyboard
Input

Map
Window

MapSub
Windows

270 API functions
430 distinct resource accesses

Identify candidate fingerprints by
clustering resource accesses

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 53

FeaturesInstances

Concept analysis

Cmp xEvent->type==KeyPress

Cmp Window ≠ 0

Read Window->nextSib

Read Window->firstChild

Set Window->mapped To True

Set xEvent->type To MapNotify

Keyboard
Input

Map
Window

MapSub
Windows

Comparison via
hierarchical clustering

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 54

A B C

1
2
3
4
5
6

Hierarchical clustering

Cmp xEvent->type==KeyPress

Cmp Window ≠ 0

Read Window->nextSib

Read Window->firstChild

Set Window->mapped To True

Set xEvent->type To MapNotify

Keyboard
Input

Map
Window

MapSub
Windows

{A,B,C}, Ф

{A,B}, {1,2}

{A}, {1,2,3,4,5}

{C}, {6}

Ф, {1,2,3,4,5,6}

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 55

{A}, {1,2,3,4,5}

A B C

1
2
3
4
5
6

Mining candidate fingerprints

Cmp xEvent->type==KeyPress

Cmp Window ≠ 0

Read Window->nextSib

Read Window->firstChild

Set Window->mapped To True

Set xEvent->type To MapNotify

Keyboard
Input

Map
Window

MapSub
Windows

{A,B,C}, Ф

{A,B}, {1,2}
{C}, {6}

Ф, {1,2,3,4,5,6}

Cand. Fing. 1

Cand. Fing. 2

Cand. Fing. 3

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 56

Static mining: Results

1.438
3.7115
3.718

94,014PennMUSH
30,096X Server/dix
4,476ext2

Avg. SizeCand. Fing.LOCBenchmark

1
10

100
1,000

10,000
100,000

ext2 X server PennMUSH

S
iz

e

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 57

X Server/dix
ext2

Benchmark

22
11

Manually identified
Security-sensitive ops

Candidate
fingerprints

Static mining: Results

115
18

Able to find at least one fingerprint
for each security-sensitive operation

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 58

Identified automatically in a few minutes
Interpretation takes just a few hours

Identified as part of
multi-year efforts

Static mining: Results

115
18

X Server/dix
ext2

Benchmark

22
11

Manually identified
Security-sensitive ops

Candidate
fingerprints

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 59

Associated 59 candidate fingerprints with
security-sensitive operations
Remaining are likely security-sensitive too

Static mining: Results

X Server/dix
ext2

Benchmark

22
11

Manually identified
Security-sensitive ops

Candidate
fingerprints

115
18

Read Window->DrawableRec->width &
Read Window->DrawableRec->height

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 60

Summary of contributions

Input_Event
Create
Destroy
Copy
Paste
Map

Can the client
receive this

Input_Event?

Fingerprints

MatchingMining

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 61

Lessons for the future

Modifications may break software
Modifying executables is challenging

Modifying legacy code is non-trivial

Low-overhead runtime system for policy
enforcement on unmodified code

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 62

Lessons for the future

Type-safety violations the main problem

Soundness/completeness
hard to achieve for C

Provable guarantees with
additional runtime checks?

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 63

Lessons for the future
Difficult to automate failure handling

Aspect-oriented solution?

Failure handling is a crosscutting-concern
Handling failure gracefully is the main
challenge

Checkpoint and rollback?

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 65

Errors in labeling traces (I)

INPUTEVENT

UNMAP

MAP

DESTROY

CREATE

Switch
windows

Open
browser

Move
xterm

Close
xterm

Open
xterm

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 66

Errors in labeling traces (I)

INPUTEVENT

UNMAP

MAP

DESTROY

CREATE

Switch
windows

Open
browser

Move
xterm

Close
xterm

Open
xterm

CREATE = Trace1 – Trace3

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 67

Errors in labeling traces (II)

INPUTEVENT

UNMAP

MAP

DESTROY

CREATE

Switch
windows

Open
browser

Move
xterm

Close
xterm

Open
xterm

Vinod Ganapathy Retrofitting Legacy Code for Authorization Policy Enforcement 68

Dealing with errors in labeling
Missing labels from traces:
• “∩” operation will not discard fingerprint
• “diff” operation may erroneously eliminate a

fingerprint
Extra labels on traces:
• May erroneously eliminate a fingerprint

Trial-and-error
• Relabel and recompute set-equations

Empirically: tolerance of about 15% errors

