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Research in computer security has historically advocated Design for Security, the principle that

security must be proactively integrated into the design of a system. While examples exist in the

research literature of systems that have been designed for security, there are few examples of such

systems deployed in the real world. Economic and practical considerations force developers to

abandon security and focus instead on functionality and performance, which are more tangible

than security. As a result, large bodies of legacy code often have inadequate security mechanisms.

Security mechanisms are added to legacy code on-demand using ad hoc and manual techniques,

and the resulting systems are often insecure.

This dissertation advocates the need for techniques to retrofit systems with security mecha-

nisms. In particular, it focuses on the problem of retrofitting legacy code with mechanisms for

authorization policy enforcement. It introduces a new formalism, called fingerprints, to represent

security-sensitive operations. Fingerprints are code templates that represent accesses to security-

critical resources, and denote key steps needed to perform operations on these resources. This

dissertation develops both fingerprint mining and fingerprint matching algorithms.

Fingerprint mining algorithms discover fingerprints of security-sensitive operations by ana-

lyzing source code. This dissertation presents two novel algorithms that use dynamic program

analysis and static program analysis, respectively, to mine fingerprints. The fingerprints so mined

are used by the fingerprint matching algorithm to statically locate security-sensitive operations.

Program transformation is then employed to statically modify source code by adding authorization

policy lookups at each location that performs a security-sensitive operation.



The techniques developed in this dissertation have been applied to three real-world systems.

These case studies demonstrate that techniques based upon program analysis and transformation

offer a principled and automated alternative to the ad hoc and manual techniques that are currently

used to retrofit legacy software with security mechanisms.
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Chapter 1

Introduction

This dissertation presents program analysis and transformation techniques to retrofit legacy

software with mechanisms for authorization policy enforcement. Using case studies with real-

world software systems, it demonstrates that these techniques offer a principled and automated

alternative to the ad hoc and manual techniques that are currently used to retrofit legacy software.

1.1 Motivation

Design for Security, the principle that security must be a key design consideration in the con-

struction of a secure system, has long been a mantra of the security community. Indeed, systems

such as Multics [CV65] and Hydra [WCC+74], which provided strong security guarantees, were

constructed with security as a principle design consideration.

While proactively designing for security will undoubtedly create more robust and secure sys-

tems, doing so is often difficult in practice because of two reasons.

First, because application functionality and performance are often more tangible features to a

customer, software producers focus on these aspects, with security typically being an afterthought.

Indeed, excluding the operating system, the number of applications that have been proactively de-

signed for security is far outnumbered by applications that are not. Some examples of software that

have proactively been designed for security include the Postfix mail program [Pos] and database

servers [Ora, SQL]. There are thus large bodies of legacy software with inadequate or non-existent

security mechanisms. It is impractical to require that these systems be redesigned and rebuilt for
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security. It is instead advisable toretrofit security mechanisms into these systems. However, be-

cause of the time and cost involved, even these security retrofits are currently undertaken only

rarely for large legacy systems. For example, it took almost two years to modify the Linux ker-

nel to add mechanisms that enforce mandatory access control (MAC) policies1. Similarly, the

privilege-separated version of OpenSSH required a new system architecture, and the addition of a

significant amount of new code [PFH03].

Second, even if a system is designed for security, additional security mechanisms may have to

be added in the future. For example, while the Linux kernel has historically had mechanisms to

enforce discretionary access control (DAC) policies, mechanisms to enforce MAC policies were

added only in 2002 [WCS+02]. Moreover, prior experience shows that even if a system is designed

for security, functional and performance enhancements that are added in the future may break

security assumptions, thus calling for a reevaluation of the system’s security. For example, Karger

and Schell [KS74] showed that modifications to improve the usability of Multics broke several of

its design assumptions, which resulted in potentially exploitable vulnerabilities.

These reasons motivate the need for retroactive techniques to secure software—automatic and

semi-automatic techniques to reason about security properties of legacy software, and retrofit it

with security mechanisms. Indeed, the need for such techniques has also been realized by others.

For example, the CCured tool [NCH+05, NMW02] automatically retrofits legacy C programs into

a type-safe variant by inserting runtime checks that enforce type safety. Similarly, the Privtrans

tool [BS04] semi-automatically refactors legacy C programs for privilege separation using program

partitioning.

1The Orange Book [TCS85] defines Mandatory access control as “a means of restricting access to objects based
on the sensitivity (as represented by a security label) of the information contained in the objects and the formal
authorization (i.e.,clearance) of subjects to access information of such sensitivity”. In contrast, Discretionary access
control (DAC) is defined as “a means of restricting access to objects based on the identity of subjects and/or groups
to which they belong. The controls are discretionary in the sense that a subject with a certain access permission is
capable of passing that permission (perhaps indirectly) on to any other subject”. Thus MAC denies users full control
over access to resources, including those that they create. In contrast, in DAC, ownership of a resource allows a
subject full control over access to the resource, including delegation of access rights to the resource. Examples of
MAC policies include the Bell-LaPadula policy [BL76] and the Biba policy [Bib77], while the Graham-Denning
model [GD72] is an example of a DAC policy. The specifics of MAC and DAC are not central to the techniques
developed in this dissertation and will not be presented in further detail. For a good overview of MAC and DAC, see
McLean [McL90].
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This dissertation continues this line of research into retroactive techniques to secure legacy

software, and focuses on the problem of retrofitting legacy software with mechanisms for autho-

rization policy enforcement.

1.2 Retrofitting authorization policy enforcement mechanisms

Software systems that manage shared resources must protect these resources from unauthorized

access. This is achieved by formulating and enforcing an appropriate authorization policy (also

called an access control policy). This policy specifies the set ofsecurity-sensitive operationsthat

a subject(typically a user of the system) can perform on anobject(typically a resource managed

by the system). For example, operating systems manage shared resources such as files, network

connections and memory, and typically enforce policies that determine how users of the system

can access these resources. A popular example of such a policy on UNIX-like systems allows only

theroot user to perform the operationWrite on the/etc/passwd file (the resource).

Authorization policies are typically enforced using a security mechanism called aReference

Monitor. Introduced by Anderson in 1972 [And72], a reference monitor is an entity that satisfies

three key properties.

1. Complete mediation. The reference monitor must be invoked at each access to a shared

resource,i.e., all security-sensitive operations performed on a shared resource must be me-

diated. Saltzer and Schroeder also call this property thePrinciple of Complete Media-

tion [SS75].

2. Tamper resistance.The reference monitor mechanism must be tamperproof,i.e.,an attacker

must not be able to circumvent the mechanism,e.g.,by rewriting the code of the reference

monitor, so that an access check is not performed (and the authorization policy not enforced)

before a shared resource is accessed.

3. Verifiability. The reference monitor must be a small-enough entity so as to allow for thor-

ough verification.
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A reference monitor thus mediates each security-sensitive operation on a shared resource, and

ensures that a subject is allowed to perform the operation on a resource only if it is allowed by the

authorization policy. This dissertation develops a suite of techniques to retrofit a reference monitor

into a legacy software system that lacks this security mechanism.

We consider two concrete examples to motivate the need to retrofit a reference monitor into

legacy code: (1) the integration of the Linux Security Modules (LSM) framework [WCS+02] to

the Linux operating system, and (2) the integration of a reference monitor with the X server [X11a].

While Linux has long had the ability to enforce DAC policies, the need was felt to extend these

mechanisms to enforce MAC policies. This was achieved using the Linux security modules (LSM)

framework [WCS+02], by retrofitting the Linux kernel. The creation of the LSM framework was

motivated by the proliferation of different Linux patches that aimed to improve the default Linux

access control mechanism through finer grained enforcement of MAC policies [Arg, GRS, RSB,

SEL, App, LID]. The LSM framework generalizes this work to define a reference monitor interface

for mediating all accesses to security-sensitive operations via loadable kernel modules in a policy-

independent way. While there were differences between these patches in scope, policy models, and

ancillary features, a single reference monitor interface can be defined that subsumes all approaches

since the goal of a reference monitor is complete mediation of all security-sensitive operations. The

development of the LSM framework from the multitude of Linux patches described above was a

manual process of collecting authorization decision points (i.e., calls to the reference monitor, or

hooks) from each patch and resolving inconsistencies between these choices.

The X server, like many other server applications, enables multiple X clients to access shared

resources (e.g.,windows, fonts) that it manages. However, the X server was historically developed

to promote cooperation between X clients, and security (e.g.,isolation) of X clients was not built

into the design of the server. In the absence of isolation within the X server, malicious clients can

compromise the integrity and privacy of other X clients handled by the X server—well-documented

instances of such attacks abound in the literature (e.g., [EP91, KSV03, Kle04, Wig96a]). For

example, in the X server, a malicious X client can easily compromise the privacy of other X clients

by snooping on their input, or by retrieving bitmaps of their windows [KSV03]. Similarly, it is
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easy to program a Trojan horse X client that registers with the X server to receive keystrokes sent

to other X clients connected to the X server (e.g.,the xkey application [Gia] does so in just 100

lines of C source code).

As was the case with Linux, several security mechanisms have been developed to secure the

X server (e.g.,the X security extension [Wig96b], and several solutions at the level of the X pro-

tocol [DRU05, Wig96a]). The goal of the X11/SELinux project [KSV03, Wal07] is to add a

reference monitor interface to the X server that can be used to enforce policies on how X clients

access resources managed by the X server. This reference monitor is designed to interface to the

security-enhanced Linux (SELinux) policy server [KSV03].

The central theme in both cases is toretrofit legacy software with a reference monitor. Other

recent efforts with similar objectives include retrofitting the Java Virtual Machine [Fle06], the IBM

Websphere software [HMS06, Shi07] and IBM DB2 [Shi07] with mechanisms to enforce SELinux

authorization policies. In addition to these examples, a tremendous amount of other legacy code ex-

ists that likely requires similar retrofitting, ranging from server applications (e.g.,middleware [JDB,

ODB], web servers [Apa, IIS], Samba [Sam], game systems [Pen], proxy and cache servers [SQU]),

to client applications that manage multiple information flows (e.g.,email clients [HAM06], browsers

and chat servers).

1.3 Current practice

In current practice, legacy software is manually retrofitted with a reference monitor. We illus-

trate the steps involved in this process using the example inFigure 1.1.

This example shows a fragment of code from an API functionRequestAPI of a hypothetical

server application. This API function accepts two arguments, aclient and atarget, and per-

forms security-sensitive operations on an internal resourceobj, that is derived fromtarget. This

is reminiscent of, for instance, a user requesting a security-sensitive operation (e.g.,Read, Write,

Append) on a file via a system call—much as the system call internally translates the file into

an inode before performing the operation on the actual data blocks representing the file, this API

function translatestarget into obj by calling the functionGetData. The lines with underlined
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comments must be retrofitted to ensure that security-sensitive operations are mediated by reference

monitor calls. Retrofitting proceeds in four steps, as discussed below.

101 / ∗ API f u n c t i o n t o p r o c e s s a r e q u e s t by c l i e n t on t a r g e t∗ /

102 void RequestAPI (client, target) {

103 s t r u c t object obj; / ∗ Denotes t h e r e s o u r c e t o p r o t e c t a c c e s s e s t o∗ /

104 Others x, y, z, subjlabel; / ∗ V a r i a b l e d e c l a r a t i o n s ∗ /

105 ...

106 subjlabel = GetSubjLabel (client); /∗∗ Find s u b j e c t l a b e l fo r c l i e n t ∗ /

107 obj = GetData(target); / ∗ Get ob j from t a r g e t ∗ /

108 obj.label = GetObjLabel (target); /∗∗ Find o b j e c t l a b e l fo r t a r g e t ∗ /

109 x = obj.innocuous; / ∗ Non−s e c u r i t y− s e n s i t i v e o p e r a t i o n on ob j∗ /

110 i f (AuthHook (subjlabel , obj.label)) { /∗∗ Reference monitor c a l l ∗ /

111 y = obj.secret; / ∗ S e c u r i t y− s e n s i t i v e o p e r a t i o n t o read s e c r e t d a t a∗ /

112 obj.integrity = z; / ∗ S e c u r i t y− s e n s i t i v e o p e r a t i o n t o w r i t e d a t a∗ /

113 }

114 re tu rn ;

115 }

201 / ∗ Two r e f e r e n c e mon i to r c a l l s ( CheckPo l i cy ) i n one a u t h o r i z a t i o n query∗ /

202 i n t AuthHook (sublabel, objlabel) {

203 QueryResults q1, q2; / ∗ V a r i a b l e d e c l a r a t i o n s ∗ /

204

205 q1 = CheckPolicy (sublabel, objlabel, SecrecyOp); /∗∗ Query fo r l i n e 111 ∗ /

206 q2 = CheckPolicy (sublabel, objlabel, IntegrityOp); /∗∗ Query fo r l i n e 112 ∗ /

207 re tu rn q1 && q2;

208 }

Figure 1.1 Retrofitting legacy software with a reference monitor interface. Lines with underlined
comments must be retrofitted.

1. Subject/Object identification and labeling. Each subject requesting a security-sensitive

operation and each object that may be affected by the security-sensitive operation must be

identified and labeled with a security identifier. Subjects and objects are represented in

the authorization policy using their labels, and the reference monitor uses these labels to

determine whether a requested operation is permitted.



7

In current practice, the subjects and objects that are affected by a security-sensitive operation

are determined manually. Their labels are bootstrapped using operating system support and

are typically bound to the variables representing the subject and object,e.g.,stored as a field

in the Cstruct representing the subject and object variables [KSV03, HMS06, HRJM07,

Fle06]. For example, the SELinux operating system [LS01a, McC04] maintains security

labels for each user and resource (e.g.,files, sockets) that it manages. Thus, the functions

shown in lines106and108, that fetch the subject and object label, respectively, rely on the

operating system to supply labels. In the example inFigure 1.1, the object label is stored in

the fieldlabel of struct object. Note that the application itself may create new objects,

in which case it must also label these objects appropriately. In current practice, the function

calls to determine subject and object labels (lines106and108) are placed manually.

2. Identifying security-sensitive operations.Lines109, 111and112show accesses to mem-

bers of the variableobj of typestruct object. In this example,struct object denotes

the type of a resource that is managed by the application. One or more of these accesses

may represent asecurity-sensitive operation. Intuitively, a security-sensitive operation is a

conceptual operation on a resource, such as a combination of structure-member accesses

(e.g.,a set of structure-member accesses), that achieves a high-level objective. For example,

a combination of accesses to the inode structure in the Linux kernel that performs a file read

will be classified as a security-sensitive operation.

Whether a combination of structure member accesses indeed represents a security-sensitive

operation or not is determined by site-specific security requirements. For this example, we

assume that the structure member accesses in lines111and112represent distinct security-

sensitive operations (namelySecrecyOp andIntegrityOp), while the structure member ac-

cess in line109is not representative of any security-sensitive operation.

In current practice, security-sensitive operations are determined manually. Typically, a team

of security analysts reasons about the kinds of security policies that must be enforced by the

software, and determines a set of resources and security-sensitive operations. For instance,
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the LSM project identified 504 distinct security-sensitive operations (such asFile Read,

File Write, Dir Mkdir, Dir Rmdir) on different resources, such as files, directories, sockets

and shared memory, that the Linux kernel (version 2.4.21) manages [LS01a, SVS01, Sma03].

Similarly, the X11/SELinux project identified 59 distinct security-sensitive operations (such

asWindow Create, Window Map) on resources such as windows, fonts and other resources

that the X server manages [KSV03].

It is important to note that security-sensitive operations are currently identified using ad

hoc reasoning,e.g.,by considering different security policies to be enforced, andnot by

analyzing source code. As a result, the relationship between the security-sensitive operations

so identified and the code that implements them isnot identified (i.e., the combination of

structure member accesses that represents a security-sensitive operation is not identified).

Thus, identifying where a security-sensitive operation happens in source code is currently a

manual and ad hoc process.

3. Placing authorization queries.Because the structure member access on line111represents

the security-sensitive operationSecrecyOp, it must be mediated by the reference monitor

call shown on line205 (in this case, the keywordSecrecyOp shown on line205 is a con-

stant that denotes a security-sensitive operation). Similarly, the structure member access on

line 112must be mediated by the reference monitor call on line206.

Both these objectives are achieved by calling the functionAuthHook on line 110 with the

subjectclient and objectobj that are involved in the security-sensitive operation. The

implementation ofAuthHook is provided as part of the retrofitting process. In this case,

the functionAuthHook consults the authorization policy (via theCheckPolicy function calls

on lines205 and206) to check that both the security-sensitive operationsSecrecyOp and

IntegrityOp are allowed. They are thus either performed together, or are not performed at

all. Finer-grained placement of authorization checks, that will allow individual checking of

permissions for each of these security-sensitive operations is also possible,e.g.,by placing

the function call on line205guarding line111, and the function call on line206guarding
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line 112, respectively. In this case, the programmer likely combined the checks for both

these security-sensitive operations because of one of three reasons:

• The site-specific policy demands that bothSecrecyOp andIntegrityOp be performed

together, or not at all. In this case, it can be argued that these security-sensitive op-

erations instead be combined into a single security-sensitive operation, calledSecre-

cyAndIntegrityOp, that is identified in code by a read of thesecret field and a write

of theintegrity field of a variable of typestruct object. The site-specific policy

must also be rewritten to express policies for this security-sensitive operation.

• SecrecyOp and IntegrityOp are performed together at several locations in code, and

the programmer combined the checks for these operations as an optimization (at the

cost of a conservative authorization check).

• This was unintended, and the programmer instead meant to check forSecrecyOp and

IntegrityOp separately.

In current practice, locating security-sensitive operations in source code, and placing autho-

rization queries to mediate them is a manual and ad hoc process.

4. Writing an authorization policy. The final component of the retrofitting process is to write

an appropriate authorization policy that satisfies site-specific security goals. Abstractly, an

authorization policy is a set of triples〈Subject-label, Object-label,Operation〉 that deter-

mines the set of security-sensitive operations that a subject with label Subject-label can per-

form on on an object with label Object-label. TheCheckPolicy function calls on lines205

and 206 consult the authorization policy and determine whether the requested operation

should be permitted (and return a non-zero value if permitted).

Because policies are determined by site-specific security goals, in current practice, they are

written and maintained manually. Several off-the-shelf tools, such as the Tresys SELinux

policy management toolkit [Trea, Treb], are now available to manage and interface with

authorization policies.
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As this example illustrates, retrofitting legacy code with a reference monitor is currently an ad

hoc, manual process. Thus, it is bothtime-consuminganderror-prone. For example, in spite of all

the prior work put into several security patches for the Linux kernel [Arg, GRS, RSB, SEL, App,

LID], it still took over two years to integrate the LSM framework into the mainline Linux kernel,

and a number of bugs (e.g.,showing violation of the Principle of Complete Mediation [SS75])

were found and fixed along the way [JEZ04, ZEJ02]. Similarly, despite an initial implementation

in 2003, the work of integrating a reference monitor interface into the X server is still ongoing. Part

of this is due to changes in developers and the challenges of implementing a trusted path for the

user (as outlined in several prior papers on secure windowing systems [BPWC90, Eps90, EMO+93,

EP91, MPR06]), but recent work is still addressing fundamental issues, such as subject/object

labeling and design of the query interface to the reference monitor [Wal07].

1.4 Contributions

This dissertation develops techniques to automate the hitherto ad hoc, manual process of

retrofitting legacy software with a reference monitor. The thesis that this dissertation supports

is the following:

Program analysis and transformation techniques offer a principled and automated

way to retrofit legacy software with mechanisms for authorization policy enforcement

This dissertation supports the above thesis by making the following contributions:

1. Fingerprints. It introduces a new formalism, calledfingerprints, to represent security-

sensitive operations. A fingerprint represents a security-sensitive operation using a set of

code patternsthat represent how a resource must be accessed to perform that operation.

Thus, a fingerprint implicitly embodies the relationship between a security-sensitive opera-

tion and the code that embodies this operation.

2. Fingerprint mining algorithms. It presents static and dynamic program analysis algorithms

to automatically mine fingerprints for security-sensitive operations. The dynamic program

analysis algorithm uses a noveltrace localization techniquethat uses side-effects to localize
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fingerprints in program traces. The static program analysis algorithm makes novel use of a

hierarchical clustering technique calledconcept analysisto mine fingerprints.

Fingerprint mining algorithms remove the manual burden associated with Step (2) of the

retrofitting process, discussed inSection 1.3.

3. Fingerprint matching algorithms. It presents afingerprint matching algorithmthat stati-

cally matches the fingerprint of a security-sensitive operation against source code and iden-

tifies all locations where the operation is performed. In conjunction with a program trans-

formation tool that places authorization queries, this algorithm automatically retrofits legacy

software with a reference monitor. It also presents heuristics to identify the subject and

object involved in a security-sensitive operation.

Fingerprint matching algorithms thus ameliorate the manual burden associated with Steps (1)

and (3) of the retrofitting process fromSection 1.3.

4. Case studies on real-word software.This dissertation presents case studies on three real-

world software systems—the ext2 file system from Linux, the X server, and the PennMUSH

multi-user dungeon [Pen]. The case studies on ext2 and X server directly compare the re-

sults of applying the algorithms developed in this dissertation against the results obtained by

manually retrofitting these systems (as was done in the LSM and the X11/SELinux projects,

respectively), while the case study on PennMUSH presents the applicability of these algo-

rithms on a system that has as yet not been manually retrofitted with a reference monitor.

Techniques to help with Step (4) fromSection 1.3, namely, writing authorization policies, are

a subject of several past and ongoing research projects, and not considered in this dissertation.

1.5 Structure of this dissertation

This dissertation is organized as follows.Chapter 2presents a high-level overview of our ap-

proach and states the assumptions underlying our work.Chapter 3introduces fingerprints.Chap-

ter 4 presents an algorithm to mine fingerprints from runtime execution traces of a program and
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shows its application to the X server.Chapter 5presents a static program analysis-based fingerprint

mining algorithm that overcomes several shortcomings of the dynamic program analysis-based al-

gorithm. It also presents the application of this algorithm to the ext2 file system, the X server

and PennMUSH.Chapter 6presents an algorithm to match fingerprints against source code and

place reference monitor checks.Chapter 7presents related research andChapter 8concludes with

directions for future work.

1.6 Bibliographic attributions

Most of the material presented in this dissertation has appeared in conference papers.

• Parts ofChapter 3andChapter 6appeared in Proceedings of the 12th ACM Conference on

Computer and Communications Security (Alexandria, Virginia, November 2005) [GJJ05] as

joint work with T. Jaeger and S. Jha. This paper introduced fingerprints, and presented an

algorithm to match fingerprints against source code.

• Parts ofChapter 2, Chapter 4andChapter 6appeared in Proceedings of the 27th IEEE Sym-

posium on Security and Privacy (Berkeley/Oakland, California, May 2006) [GJJ06] as joint

work with T. Jaeger and S. Jha. This paper presented a dynamic fingerprint mining algorithm

and applied it to the X server.

• Parts ofChapter 5appeared in Proceedings of the 27th International Conference on Software

Engineering (Minneapolis, Minnesota, May 2007) [GKJJ07] as joint work with D. King,

T. Jaeger and S. Jha. This paper presented a static fingerprint mining algorithm using concept

analysis and applied it to the ext2 file system, the X server, and PennMUSH.
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Chapter 2

Overview

This chapter discusses several assumptions upon which our approach is contingent, and presents

the formal definition of a reference monitor. It then presents a high-level overview of our approach

using the X server as an example. It shows how to retrofit the X server with mechanisms to enforce

authorization policies on the security-sensitive operations requested by an X client that connects

to the X server.

2.1 Goal

The main questions to be addressed when retrofitting a legacy server arewhat are the security-

sensitive operations to be mediated?, i.e., what are the primitive operations on critical server re-

sources, andwhere in the server’s source code are these operations performed?The idea is that

once these locations are identified, authorization policy lookups can be added to the server code

so as to completely mediate security-sensitive operations. The techniques developed in this dis-

sertation assist with (1) the identification of resource accesses that constitute security-sensitive

operations, (2) identification of locations in server code where these security-sensitive operations

are performed, and (3) instrumentation of these locations, such that the operation is performed only

if allowed by an authorization policy.

2.2 Assumptions

We assume the traditional client/server model, where the server manages resources on behalf of

its clients. Clients connect to the server to request operations to be performed on these resources.
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The server in turn must be equipped with mechanisms to mediate accesses to these resources and

ensure that the requested operations are allowed only if they conform to an authorization policy.

Our approach retrofits legacy servers with mechanisms for authorization policy enforcement. To

ensure that our approach can securely enforce authorization policies, we make several assumptions

about the server.

I: The server is not adversarial

We assume that the server itself is benign,i.e., it is not written with adversarial intent, and

does not actively try to defeat retroactive instrumentation. Thus, our approach assumes that the

server does not remove or modify instrumentation. One way to ensure that a malicious user has

not modified the server’s code to defeat retroactive instrumentation is to have the operating system

compare a hash of the server’s executable against a precomputed value as it loads the server for

execution. We also require that the server be non-self-modifying, to preclude the possibility that

instrumentation is modified at runtime. One way to enforce this property is to make code pages

write-protected.

II: The server can defend against control-hijacking exploits

Existing vulnerabilities, such as buffer-overflow vulnerabilities, could possibly be exploited by

a malicious user to bypass our instrumentation. Because we cannot hope to eliminate these vulnera-

bilities statically, we assume that the server is protected using techniques such as CCured [NMW02],

CFI [ABEL05] or other runtime execution monitoring and sandboxing techniques [FGH+04, FHSL96,

LRB+05, SBBD01, WD01], which terminate execution when the behavior of the server differs

from its expected behavior.

III: The server’s running environment cooperates

The environment that the server runs in must cooperate with it to enforce authorization policies,

and must not be malicious in intent. In particular, the server relies on the operating system to ensure

that the authorization policy (stored on the file system) is tamper-proof. Moreover, because clients



15

typically connect to the server via the operating system, the server relies on the operating system

for tasks such as authentication and providingsecurity-labels(e.g.,Top-Secret or Unclassified)

associated with the clients.

IV: The server mediates all client communication

We assume that clients cannot communicate directly with each other, and that their communi-

cation is mediated by the server or the operating system. If client communication is mediated by

the operating system, then the policy must be enforced by the operating system itself. Thus, we

restrict ourselves to the case where communication is mediated by the server. We also note that if

the clients communicate via the operating system, they cannot avail themselves of server-specific

security-sensitive operations, such as cut and paste in the case of the X server. Thus our goal is to

enforce authorization policies on server-specific security-sensitive operations requested by clients.

Finally, we assume that client-server communication is not altered by any intervening software

layers. For example, most commercial deployments of the X server are accompanied by awindow

manager, (e.g.,gnome or kde). Because the window manager controls how clients connect to the

X server, it can in theory, alter any information exchanged between the X server and its clients.

However, because window managers are few in number (unlike X clients), we assume that they can

be verified to satisfy the above assumption (though we have not done so). Further, the operating

system can ensure that only certified window managers are allowed to run with the X server.

2.3 A note about the trusted computing base

The trusted computing base (TCB) [TCS85] of a computer system is defined as the set of all

protection mechanisms, including hardware and software, that are needed to enforce a security

policy. Researchers have historically advocated that TCB should be as small as possible to ensure

that it is amenable to thorough verification and code audits. On most commercial systems, however,

the TCB typically includes the hardware as well as the entire operating system.

The assumptions inSection 2.2imply that in our approach the server to be retrofitted is also

included in the TCB. This, unfortunately, is a drawback of our approach. The main reason that
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the application must be included in the TCB is to ensure that instrumentation added to enforce

authorization policies is not bypassed. There are, however, several ways to reduce the size of the

TCB.

One way to remove the retrofitted server from the TCB is to ensure protection against common

vulnerabilities that can be exploited to bypass our instrumentation. While it would be unrealistic

to assume that the server is vulnerability-free, additional protection mechanisms,e.g.,CCured or

other sandboxing techniques, can ensure that the server is secure against most common control-

hijacking exploits. In this case, it suffices to ensure that the operating system is in the TCB. The

operating system bootstraps security by ensuring that the instrumentation inserted in the server

is not tampered with. Clients need not be trusted, and could be malicious. Client security in-

formation, in particular, a client’s security-label, is bootstrapped by the operating system during

client connection, and is stored within the server. Clients thus cannot tamper with their security

information after connection has been established.

Further reducing the size of the TCB is a topic for future investigation. For example, one

approach is to leverage hardware support in modern commodity processors [MPP+07] to create a

secure software stack via code attestation.

2.4 Basic tools

Our approach enforces authorization policies by retrofitting a server to ensure that security-

sensitive operations requested by clients are mediated and approved by an authorization policy.

The basic tools used to do so are a reference monitor and an enforcer [And72].

An authorization policy is defined as a set of triples〈sub, obj, op〉, where each triple denotes that

the subjectsubis allowed to perform a security-sensitive operationop on an objectobj. Subjects

and objects are often associated withsecurity-labels; for instance, all top-secret documents may

have the security-label Top-Secret. Authorization policies are often represented using the security-

labels of subjects and objects, rather than the subjects and objects themselves.

A reference monitor is defined as a quadruple〈Σ, S,U, R〉, and is parameterized by an autho-

rization policyA, where:
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• Σ is a set ofsecurity events, where each security event is a triple〈sub, obj, op〉;

• S is thestateof the reference monitor, and is a set storing current associations of security-

labels with subjects and objects;

• U: Σ × S × A → S is a state updatefunction, which denotes how subject and object

security-labels change in response to policy decisions;

• R: Σ × S ×A→ Bool is apolicy consulter, which returnsTrue if and only if a security event

is permitted by the reference monitor.

An enforcerobserves events inΣ generated in response to client requests, and passes them

on to the reference monitor. Any violations of the policy, will result inR returningFalse, fol-

lowing which the enforcer will take appropriate action. Enforcing authorization policies entails

implementing the enforcer and the reference monitor.

2.4.1 The enforcer

An implementation of the enforcer must satisfy two requirements:

1. It must monitor all security events generated in response to client requests. To do so, the

enforcer must be able to infer the security-sensitive operation requested, the security-label

of the subject that requests the operation (typically the client), and the object upon which the

operation is to be performed.

2. It must take preventive action if a security event results in authorization failure. The action

may be to terminate the client whose request resulted in the authorization failure. To do so,

the enforcer must be able to control the execution of clients of the server, or audit the failure

appropriately.

2.4.2 The reference monitor

An implementation of the reference monitor must ensure that the state of the reference monitor

and the authorization policy are tamper-proof. In addition, the state of the reference monitor must
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be updated appropriately in response to security events, usingU. ImplementingR entails looking

up the policy, and can be achieved using off-the-shelf policy management libraries, such as the

SELinux policy development toolkit [Trea, Treb].

2.5 Our approach

This section presents a high-level, informal overview of our approach, and describes how we

implement the enforcer and the reference monitor. Algorithm and system details omitted from this

section appear in subsequent chapters. We use a running example, the X server, to illustrate the

approach.

2.5.1 An example: Retrofitting the X server

The X server accepts connections from multiple X clients, and manages resources (e.g.,win-

dows, buffers) that it offers to these clients. Thus, it is important for the X server to enforce

authorization policies on its X clients. A manual effort to retrofit the X server with authorization

policy enforcement mechanisms was initiated by the NSA in early 2003 [KSV03], and a retrofitted

version of the X server was released in 2005 [Sma05b] (though work on this project is still ongoing,

as of March 2007 [Wal07]).

We demonstrate that our techniques can assist with, and potentially reduce the turnaround time

of efforts to retrofit legacy servers, such as the X server. Specifically, with our approach, we were

able to identify security-sensitive locations in the X server, and add reference monitoring code,

with a few hours of manual effort. We ran the retrofitted X server on a security-enhanced operating

system (SELinux [LS01a]), so that X clients have associatedsecurity-labels, such as Top-secret

and Unclassified. The retrofitted X server enforced mandatory authorization policies on security-

sensitive window operations requested by X clients based upon their security-labels.

Our approach proceeds in six steps, as shown inFigure 2.1.
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Figure 2.1 Steps involved in retrofitting a server for authorization policy enforcement.

2.5.2 Step 1: Find security-sensitive operations to be protected

The first step is to determine the security-sensitive operations to be protected. Typically, a

design team considers security requirements for the server, and determines security-sensitive op-

erations based upon these requirements. This approach was followed in the case of the LSM

framework [WCS+02] and the X server [KSV03], where security-sensitive operations were identi-

fied for kernel resources, and X server resources, respectively. The design team typically considers

a wide range of policies to be enforced by the server on resource accesses by clients. Because

security-sensitive operations are typically the granularity at which authorization policies are writ-

ten (a policyA is a set of triples of the form〈subi, obji, opi〉), the set of operations{opi} can be

identified.

For the material presented inChapter 4(dynamic fingerprint mining), we assume that a descrip-

tion of security-sensitive operations is available. For instance, in the X server case study presented

in Chapter 4, we used the set of security-sensitive operations that was identified manually by Kil-

patricket al.[KSV03]. This set of operations, 59 in number, considers security-sensitive operations

on several key X server resources, including theClient, Window, Font, Drawable, Input, and

xEvent data structures. Of these, 22 security-sensitive operations are for theWindow data struc-

ture, such asWindow Create, Window Map, andWindow Enumerate (we will denote security-

sensitive operations in this dissertation using suggestive names, like the ones above). However,

only an informal description of these security-sensitive operations is provided by Kilpatricket al.,
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and a precise code-level description of these operations is needed for enforcement. Step 2 mines

code-level descriptions of these operations; these code-level descriptions are calledfingerprints.

However, a description of security-sensitive operations may not always be available, as for

instance was the case with the PennMUSH [Pen] multi-user dungeon, one of the case studies con-

sidered in this dissertation. Indeed, it can be argued that identifying security-sensitive operations

requires understanding the source code of the server being protected, which is a time-consuming

exercise in itself. In such cases, the approach presented inChapter 5(static fingerprint mining) can

be used.

This approach bypasses the need for a description of security-sensitive operations by directly

analyzing the source code of the server and mining a set of resource accesses that describe how

the server responds to client requests. In our experience, these resource accesses were also useful

as code-level descriptions of security-sensitive operations (and are thus fingerprints themselves).

Chapter 5presents the details of a study where we correlated the fingerprints mined by the static

approach against manually-identified security-sensitive operations for the ext2 file system and the

X server. Thus, the static approach bypasses Step 1, and proceeds directly to Step 2.

2.5.3 Step 2: Find fingerprints of security-sensitive operations

The second step identifies fingerprints of security-sensitive operations. As described earlier,

each security-sensitive operation is characterized by the set of resource accesses that are unique to

the operation. These resource accesses are represented using code patterns (which are expressed as

abstract syntax trees, or ASTs), and are the fingerprint of the security-sensitive operation (a formal

definition of fingerprints appears inChapter 3). The dynamic and static approach differ in their

approach to fingerprint finding, as described next.

2.5.3.1 Dynamic fingerprint mining

The dynamic fingerprint mining approach assumes that a high-level description of security-

sensitive operations is available. The code patterns that are associated with each security-sensitive
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operation are not knowna priori, and the goal of the dynamic fingerprint mining algorithm is to

recover this association.

Two novel observations help us achieve this goal. The first observation is that security-sensitive

operations are typically associated with an observable change in the state of the system. For exam-

ple, the security-sensitive operationsWindow Create, Window Map andWindow Enumerate of

the X server are associated with opening, mapping, and enumerating child windows of an X client

window, respectively (the changes visible on the screen when these operations happen are the

observable changes associated with these operations). Thus, if we induce the server to perform

a security-sensitive operation, and trace the server as we do so, the code patterns that form the

fingerprint of the security-sensitive operationmustbe in the trace. For example, the function

CreateWindow, which is implemented in the X server, is responsible for allocating memory and

initializing a new window. We observed that creating a new window results in a call to this func-

tion. As a result, theCall CreateWindow was identified as a fingerprint forWindow Create.

Note that the high-level descriptions of security-sensitive operations that are input to the dynamic

mining algorithm are used to determine how security-sensitive operations can be induced in the

system.

However, program traces are typically long, and it is still challenging to identify the code

patterns that form the fingerprint of a security-sensitive operation from several thousand entries

in a program trace. Our second observation addresses this challenge—to identify the fingerprint

of a security-sensitive operation, it suffices to compare program traces that perform a security-

sensitive operation against those that do not. For example, displaying a visible X client window

(e.g.,xterm), which involves mapping the window on the screen, is associated withWindow Map;

closing and typing to anxtermwindow are not. Thus, to identify the code patterns that characterize

to Window Map, it suffices to compare the trace generated by opening anxterm window against

the trace generated by closing, or typing to the window. Similarly, closing a browser window is

associated with closing all child windows, which involvesWindow Enumerate, while typing to a

window is not.
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With these two observations, identifying fingerprints reduces to studying about 15 entries,

on average, in a program trace. Using this technique, we identified, for example, the finger-

prints of Window Create as Call CreateWindow; of Window Map as writes ofTrue to the

field mapped of a variable of typeWindow andMapNotify to the fieldtype of a variable de-

rived from typexEvent; and of Window Enumerate as ReadWindowPtr->firstChild and

ReadWindowPtr->nextSib andWindowPtr , 0, which are intuitively performed during linked-

list traversal. Note that code patterns are expressed at the granularity of reads and writes to indi-

vidual fields of data structures. We discuss the tracing infrastructure, and algorithms to compare

traces to identify fingerprints in more detail inChapter 4.

2.5.3.2 Static fingerprint mining

The static fingerprint mining approach overcomes three important limitations of the dynamic

approach. First, the dynamic approach requires ana priori description of security-sensitive opera-

tions. As described earlier, such descriptions may not always be available, as indeed was the case

with PennMUSH. Second, the dynamic approach requires that an expert induce these security-

sensitive operations and collect program traces; doing so may be tedious and error-prone. Third,

because dynamic analysis only explores the code paths exercised by the manually-chosen inputs

to the server, it will not examine the resource accesses in other portions of the server. As a result,

the set of fingerprints identified will not be complete.

The static approach directly addresses these shortcomings of the dynamic approach. In par-

ticular, it makes novel use of a hierarchical clustering technique called concept analysis [Wil82].

The static approach is based upon the observation that a client can access server resources only

via the server’s API. For example, X clients can only access X server resources via the X protocol,

which in turn invokes X server functions from a well-defined API. This approach identifies how

data structures representing resources (e.g.,Window, Font, xEvent) are accessed via the API. It

does so by distilling each statement of source code into a set of code patterns, and using concept

analysis to cluster these code patterns based upon the API functions that they are accessed from.

Each of these clusters is then output as a candidate fingerprint.
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In our experiments on three real-world systems, namely, the ext2 file system, a subset of the

X server, and PennMUSH, the static approach reduced the analysis of several thousand lines of

code to the analysis of under 115 candidate fingerprints with fewer than 4 code patterns each (on

average). For example, this approach reduced the analysis of PennMUSH, a server with 94,014

lines of C code, to the analysis of 38 candidate fingerprints, with an average of 1.42 code patterns

each. In the case of the ext2 file system and the X server, we were also able to correlate these can-

didate fingerprints with manually-identified security-sensitive operations (in the LSM project for

ext2, and in the X11/SELinux project for X server). For example, in the analysis of the X server,

one of the candidate fingerprints mined by the static approach was a write of the valueMapNotify

to the fieldtype of variable derived from typexEvent and the valueTrue to the fieldmapped

of a variable of typeWindow. This fingerprint denotes key resource accesses performed when

mapping a window to the screen, and is thus the fingerprint for the security-sensitive operation

Window Map. Recall that the same fingerprint was also identified forWindow Map by the dy-

namic approach.

The static approach addresses the shortcomings of the dynamic approach. Concept analysis

mines candidate fingerprints without the need for ana priori description of security-sensitive oper-

ations or the need to manually induce the server to perform security-sensitive operations. Further,

because static program analysis ensures better coverage than dynamic analysis, the static approach

can mine more fingerprints than the dynamic approach.

2.5.4 Step 3: Find all locations that are security-sensitive

The third step uses the fingerprints identified in Step 2 to statically identify all locations in the

server where code patterns that form the fingerprint of a security-sensitive operation occur. Each of

these locations is said to perform the operation. ConsiderFigure 2.2, which shows a snippet of code

from MapSubWindows, a function in the X server. It contains writes ofTrue to pWin->mapped,

andMapNotify to event.u.u.type, as well as a traversal of the children of the window pointer

pParent. Thus, a call to the functionMapSubWindows performs both the operationsWindow Map
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/ ∗ Imp lemen ta t i on o f t h e f u n c t i o n MapSubWindows i n t h eX server.

S e v e r a l l i n e s o f code i r r e l e v a n t t o t h i s example have been o m i t t e d∗ /

MapSubWindows (Window *pParent, Client *pClient) {

Window *pWin;

xEvent event;

...

pWin = pParent->firstChild;

f o r (; pWin; pWin = pWin->nextSib) {

pWin->mapped = TRUE;

...

event.u.u.type = MapNotify ;

...

}

...

}

Figure 2.2 X server function MapSubWindows

andWindow Enumerate. We use a static fingerprint matching algorithm, described inChapter 6,

to determine the set of security-sensitive operations performed by each function.

In addition to identifying the locations where security-sensitive operations occur, in this step

we also try to identify the subject and object associated with the operation. To do so, we identify

the variables corresponding to subject and object data types (such asClient andWindow) in scope.

In most cases, this heuristic is good enough to identify the subject and the object. InFigure 2.2, the

subject is the client requesting the operation (pClient), and the object forWindow Enumerate

is the window whose children are enumerated (pParent), and the object forWindow Map is the

variable denoting the child windows (pWin) that are mapped to the screen.

Step 2 and 3 together identify all locations where the server performs security-sensitive opera-

tions.
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2.5.5 Step 4: Instrument the server

Having identified all locations where security-sensitive operations are performed, the server

can be retrofitted by inserting calls to a reference monitor at these locations, to achieve complete

mediation. In particular, if we determine that a statementStmt is security-sensitive, and that it

generates the security event〈sub, obj, op〉, it is instrumented as shown below. Note that ifStmt is

a call to a functionfoo, the query can instead be placed in the function-body offoo.

i f (QueryRefmon (sub, obj, op) != TRUE) {

HandleFai lure ;

}

else {

Stmt ;

}

For example, because the functionMapSubWindows performs the security-sensitive operation

Window Enumerate (where children ofpParent are enumerated) calls toMapSubWindows are

protected as shown below.

i f (QueryRefmon (pClient, pParent, Window Enumerate ) != TRUE) {

HandleFai lure ;

}

else {

MapSubWindows (pParent,pClient);

}

The statementHandleFailure can be used by the server to take suitable action against the

offending client, either by terminating the client, or by auditing the failed request. Our approach

currently does not automate the generation of failure-handling code—this must be manually writ-

ten on a case-by-case basis. Developing an approach to gracefully handle failure in a principled

way is an important topic for future research.
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As mentioned earlier, authorization policies are expressed in terms of security-labels of subjects

and objects. Security-labels can be stored in a table within the reference monitor, or instead, with

data structures used by the server to represent subjects and objects. For example, in the X server,

extra fields can be added to theClient andWindow data structures to store security-labels. In

either case, because we pass pointers to both the subject and the object to the reference monitor

usingQueryRefmon, the reference monitor can look up the corresponding security-labels, and

consult the policy.

2.5.6 Step 5: Generate the reference monitor

This step generates code for theQueryRefmon function. We generate a template for this func-

tion, omitting two details that must be completed manually by a developer. First, the developer

must specify how the policy is to be consulted,i.e., he must implementR using an appropriate

policy management API (e.g.,[Trea, Treb]). Second, he must implement the state update function,

U, by specifying how the state of the reference monitor is to be updated.

For example, when a security-event〈pClient, pWin, Window Create〉 succeeds, correspond-

ing to creation of a new window, the security-label ofpWin, the newly-created window, must be

initialized appropriately. Similarly, a security-event that copies data frompWin1 to pWin2 may

entail updating the security-label ofpWin2 (e.g.,under the Chinese-Wall policy [BN89]). Because

security-labels are stored either as a table within the reference monitor or as fields of subject or

object data structures as described earlier, the developer must modify these data structures appro-

priately to update security-labels. This step is described in further detail inChapter 6.

Note that while Steps 2-4 are policy independent, Step 5 requires implementation ofR andU,

which depend on the specific policy to be enforced.

2.5.7 Step 6: Link the modified server and reference monitor

The last step involves linking the retrofitted server and the reference monitor code to create an

executable that can enforce authorization policies.



27

2.6 Discussion I: Security analysis

We now examine the security of our approach.

• The enforcer is implemented using instrumentation inserted in Step 4. Because the subject,

object, and operation are passed to the reference monitor, security-labels can be retrieved,

and the authorization policy consulted. If the requested operation is not permitted by the

policy, the instrumentation ensures that it will not be executed. Further, because the server

controls client connections, it can useHandleFailure to terminate the execution of mali-

cious clients.

• The reference monitor is part of the server’s address space, and is thus tamper-proof based

upon our assumptions inSection 2.2. Alternately, the reference monitor can run as a separate

process, and communicate with the server using IPC. The policy itself must be protected by

storing it on the file-system with permissions such that it can be modified only by a privileged

system user.

The security provided by our approach is thus contingent on whether calls to the reference mon-

itor are placed so as to satisfy the Principle of Complete Mediation. Because reference monitor

calls are placed by matching fingerprints, the security of our approach depends on the soundness

and completeness of the fingerprint mining algorithms (Chapter 4andChapter 5) and the finger-

print matching algorithm (Chapter 6).

A noteworthy feature of our approach is its modularity. In particular, alternative implemen-

tations of fingerprint mining algorithms (e.g.,using program slicing techniques [AH90, KR97,

ZG03]) and instrumentation (e.g.,using aspect weavers [AOS]) can be used in place of the algo-

rithms developed in this dissertation. Thus, our technique benefits directly from improved algo-

rithms for these tasks.
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2.7 Discussion II: Why retrofit the server?

A question that may arise based upon the discussion of the technique so far is: “Why does

the server itself have to be retrofitted to enforce authorization policies on its clients? In particu-

lar, why can’t existing policy enforcement mechanisms in a security-enhanced operating system

(e.g.,SELinux), upon which the server runs, be used to enforce these policies?”

The answer is that the server may provide channels of communication between clients that are

not readily visible to the operating system. For example, consider enforcing a policy in the X server

that disallows a cut operation from a Top-secret window followed by a paste operation into an

Unclassified window. Cut and paste are X server-specific channels for X client communication.

While these operations do have a kernel footprint, they are not as readily visible in the operating

system as they are within the X server, where they are primitive operations. It is not advisable

in such cases to use the operating system to enforce authorization policies, because it must be

modified to be made aware of kernel footprints of X server-specific operations, which introduces

application-specific code into the operating system. In addition, the X server must also be modified

to expose more information to the operating system, such as internal data structures that will be

affected by the requested operation. It has been argued that this is impractical [KSV03].
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Chapter 3

Fingerprints

This chapter introduces fingerprints—the representation used by our approach for security-

sensitive operations. As outlined inChapter 2, fingerprints are matched against source code to

locate security-sensitive operations and are thus central to our approach.

A server receives and processes client requests to access and modify the resources that it man-

ages. Each such client request may perform one or more security-sensitive operations on the

resource, each of which must be mediated by an authorization policy lookup. For example, an

X client’s request to map the child windows of a windowpParent using a call toMapSubWindows

(seeFigure 2.2) results in the security-sensitive operations of enumerating the children ofpParent

(denoted byWindow Enumerate) and that of mapping each of the child windows onto the screen

(denoted byWindow Map). Each such security-sensitive operation can have one or morefin-

gerprints, where each fingerprint denotes the resource accesses needed to perform that security-

sensitive operation.

3.1 Syntax

The syntax of a fingerprint of a security-sensitive operationOP is as defined inFigure 3.1.

A fingerprint is a rule, where the left-hand-side of the rule is the name of a security-sensitive

operation,OP, and the right hand side of the rule is a conjunction of one or morecode patterns

(also calledcode templates) or their negations.

A code pattern is aRead, Write or Call operation on a resource; the resource is represented in

the code pattern as an abstract syntax tree (AST). In this dissertation, we restrict ourselves to the
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F ::== OP :- (
n∧

i=1

Intra CPi) Subject toC

| OP :- (
n∧

i=1

Inter CPi) Subject toC

CP ::== C-P | ¬C-P

C ::== Same(C-Pi, C-P j)

| Different(C-Pi, C-P j)

C ::== C ∧ C | True

C-P ::== Write V To AST

| ReadAST

| Call AST

| CallWith AST (V, V, . . .)

| BR (AST, AST)

| BR (AST, V)

| UR (AST)

AST ::== (type-name->)+fieldname*

V ::== ⊥(unknown)| constant

| Binary Arithmetic Operator(V, V)

BR ::== , | ==

UR ::== Decrement| Increment

Figure 3.1 BNF grammar defining fingerprints. The symbolOP in the definition of F
denotes the name of a security-sensitive operation. Note that an abstract syntax tree (AST)
representing a resource access is represented using data types, denoting the data type of the

resource being accessed.

analysis of C source code, and assume that resources are represented as C structures (structs).

The ASTs in code patterns thus represent accesses to fields of data types representing resources. A

few simple extensions of the above operations are also included in the definition of a code pattern,

e.g., CallWith, which denotes aCall with constraints on actual parameters, and simple binary
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and unary relations, such as tests for equality and disequality, and the increment and decrement

operator.

We make the following observations on the syntax of fingerprints.

1. Resources are expressed in fingerprints using data types, rather than individual variable

names. This decision was motivated by two considerations.

First, specifying resources using data types makes a fingerprint easy to write. A security-

sensitive operation can simply be expressed in terms of the data types of the resources that

it manipulates. Each piece of code that matches this fingerprint (as described inChapter 6)

performs this fingerprint. Second, using data types for resources relieves the matching algo-

rithm from having to use precise alias information. The matching algorithm instead abstracts

each variable in the program to its data type before checking for a match. The matching al-

gorithm is thus conservative—it may return spurious matches (i.e., false positives), but will

never miss a piece of code that matches a fingerprint (i.e., false negatives). A false nega-

tive means that an authorization check is not placed where it should be, thus resulting in a

potentially exploitable security hole.

2. Even though resources are expressed in terms of data types, we have found that in some

cases further constraints on code patterns in a fingerprint improves the precision of match-

ing. The syntax of fingerprints allowsSameandDifferentconstraints that can be used to

restrict the code fragments that match a fingerprint. For example, in the fingerprint for

Window Enumerate shown below, theDifferent constraint mentions that the variable of

typeWindowPtr that matches the first code pattern must be different from the variable that

matches the second code pattern.

Window Enumerate :- ReadWindowPtr1->firstChild

∧ ReadWindowPtr2->nextSib

∧ WindowPtr , 0 Subject to

Different(WindowPtr1, WindowPtr2)
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Note, however, that to avoid false negatives, precise alias information must be used if such

constraints are used in fingerprints. For example,Same(WindowPtr1, WindowPtr2) is a

constraint that restrictsWindowPtr1 andWindowPtr2 to be the same,i.e.,point to the same

resource. Alias information is needed to resolve this constraint precisely.

3. Fingerprints can either be specified asintraproceduralor interprocedural(represented in

Figure 3.1using∧Intra and∧Inter, respectively). The matching algorithm described inChap-

ter 6 matches intraprocedural fingerprints against code contained in a procedure, while it

matches interprocedural fingerprints against code contained in all procedures in the program

being analyzed. In most cases in our experiments, however, we found that intraprocedural

fingerprints were sufficient to represent security-sensitive operations.

4. Finally, we note that temporal ordering information cannot be expressed using the syntax

of fingerprints shown inFigure 3.1. Thus, we cannot express fingerprints to represent the

rule “ReadWindowPtr->firstChild before readingWindowPtr->nextSib”. While the

simpler fingerprint language results in simpler, more intuitive fingerprint mining algorithms,

the inability to express temporal ordering information is a limitation, which can potentially

result in false positives in the output of the matching algorithm.

However, in our experiments (described inChapter 6), we found that the number of false

positives was manageable. For example, in our analysis of the X server, we found that one

source of false positives was theWindow Enumerate fingerprint. The fingerprint for this

security-sensitive operation only approximates linked-list traversal, and thus triggers spuri-

ous matches. In particular, out of 20 locations that were output by the matching algorithm

as performingWindow Enumerate, only 10 did.

Extending the fingerprint language to include temporal information is a topic for future work.

Existing tools, such as MOPS [CW02] and xgcc [HCXE02], already employ algorithms

to match such temporal patterns and our work can benefit directly from these tools. Note,

however, that mining temporal fingerprints requires designing more sophisticated algorithms

than those developed in this dissertation.
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3.2 Interpretation

The fingerprint of a security-sensitive operationOP represents the resource accesses needed

to perform that operation. Thus, the effect that a security-sensitive operation has on a resource is

defined by the resource accesses in its fingerprint.

Using the above interpretation, however, the fingerprint of a security-sensitive operationOP

must contain all the resource accesses needed to perform that operation on the resource. For ex-

ample, one fingerprint for the operationWindow Map of the X server, which represents mapping a

window onto the screen, isCall MapWindow, or alternatively, the set of statements that implements

MapWindow. Expressing fingerprints withall the resource accesses needed to perform an operation

is certainly acceptable, but makes the fingerprint ineffective in the presence of even minor changes

to the source code of the server.

As a result, we typically express fingerprints using only the set of resource accesses that suf-

fice to differentiate one security-sensitive operation from another. For example, we found that

the following fingerprint suffices to precisely identify all locations in the X server that perform

Window Map:

Window Map :- WriteTrue ToWindowPtr->mapped ∧

WriteMapNotify ToxEvent->union->type

The problem of expressing fingerprints at an appropriate granularity that precisely represents

security-sensitive operations is referred to by Erlingsson assecurity event synthesis[Erl04, Pages

73–82]. This is the subject of the next two chapters, which developminingalgorithms to extract

fingerprints by analyzing source code.
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Chapter 4

Mining Fingerprints using Dynamic Program Analysis

This chapter presents the use of dynamic program analysis to mine fingerprints of security-

sensitive operations. In particular, it presents a technique that makes novel use of tangible side-

effects to locate fingerprints in runtime execution traces of a program. It also presents an applica-

tion of this technique to mine fingerprints of security-sensitive operations for the X server.

4.1 Problem statement

Given a server program, and a description of the security-sensitive operations that clients can

request the server to perform, the technique presented in this chapter outputs fingerprints of these

security-sensitive operations.

This chapter thus assumes that the set of security-sensitive operations is knowna priori. The

description can be informal, and must describe the high-level intent of the security-sensitive op-

eration. For example, the document by Kilpatricket al. [KSV03] contains such descriptions for

59 security-sensitive operations on different resources managed by the X server, such asWindows,

Fonts andColors. This document describes, for instance, theWindow Map security-sensitive

operation as the action of mapping a window to the screen and theWindow Enumerate operation

as the action of listing child windows.

Because a fingerprint characterizes the resource accesses performed by a security-sensitive op-

eration, the technique presented here offers a way to formalize an informal description of security-

sensitive operations. This technique is motivated by current practice in retrofitting code, where the
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aforementioned informal descriptions are also used to locate where code performs these security-

sensitive operations (see, for example, [KSV03, Sections 5.2 and 5.3]).

4.2 Identifying fingerprints using analysis of program traces

How can informal descriptions of security-sensitive operations be converted into precise code-

level descriptions (i.e., fingerprints) of these operations? We present two novel observations that

enable us to do so.

Observation 1 (Tangible side-effects) Security-sensitive operations are typically associated with

observable change in the system state—these changes will be refered to astangible side-effects.

Tangible side-effects help us determine whether a server has performed a security-sensitive op-

eration. Thus, if we induce the server to perform a security-sensitive operation,i.e., the occurrence

of a tangible side-effect denotes that the operation is performed, then the resource accesses associ-

ated with that security-sensitive operationmustbe in the trace generated by the server. Thus, iden-

tifying fingerprints reduces to tracing the server as it performs a tangible side-effect, and recording

accesses to resources as it does so. Each trace records function calls, and reads and writes to re-

sources as well as the functions in which they were performed. In particular, each trace records

resource accesses using theWrite, ReadandCall code patterns, shown inFigure 3.1.

However, the program trace generated by the server, even in a controlled experiment to perform

a tangible side-effect, may be huge. For example, using our tracing infrastructure, the X server

generates a trace of length 10459 when the following experiment is performed: start the X server,

open anxterm, close thexterm, and close the X server (each of these is a tangible side-effect).

It is infeasible to identify succinct fingerprints of security-sensitive operations (e.g.,those ofWin-

dow Create andWindow Destroy) by studying this trace. Our second observation addresses this

problem.

Observation 2 (Comparing traces) The fingerprint of a security-sensitive operation can be local-

ized by comparing traces generated by server executions that perform a security-sensitive operation

against traces generated by executions that do not.



36

The key idea underlying this observation is that if an execution of the server does not perform

a security-sensitive operation, then the trace produced by the server will not contain a fingerprint

of that operation. For example, the traceTopen that opens an X client window on the X server will

contain the fingerprint ofWindow Create, but the traceTclose that closes a window will not. Thus,

Topen - Tclose, a shorter trace, still contains the fingerprint ofWindow Create. Continuing this

process with other traces that do not performWindow Create reduces the size of the trace to be

examined even further. In fact, for the X server we were able to reduce the size of the trace several-

fold using this technique (seeTable 4.1andTable 4.2), whittling down the search for fingerprints

to about 15 functions, on average.

A technical difficulty must be addressed before we compare traces. A tangible side-effect

may be associated with multiple security-sensitive operations, and all the security-sensitive op-

erations associated with it must be identified. For instance, when anxterm window is opened

on the X server, the security-sensitive operations include (amongst others) creating a window

(Window Create), mapping it to the screen (Window Map), and initializing several window at-

tributes (Window Setattr).

We manually identify the security-sensitive operations associated with each tangible side-

effect. Because the side-effects we consider aretangible, programmers typically have an intuitive

understanding of the operations involved in performing the side-effect. The trace generated by

the tangible side-effect is then assigned alabel with the set of security-sensitive operations that it

performs. It is important to note that tangible side-effects are not specific to the X server alone,

and are applicable to other servers as well. For example, in a database server, dropping or adding

a record, changing fields of records, and performing table joins are tangible side-effects. Because

labeling traces is a manual process, it is conceivable that they are not labeled correctly. However

we show empirically that fingerprints can be identified succinctly and precisely,in spite of errors

in labeling. Because each trace can be associated with multiple security-sensitive operations, we

formulateset equationsfor each operation in terms of the labels of our traces.
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Definition 4.1 (Set equation)Given setS, a setB ⊆S, and a collectionC={C1, C2, . . ., Cn} of

subsets ofS, a set equation forB is B=C j1*C j2* . . .*C jk, where eachC j i is an element, or the

complement of an element ofC, and ‘*’ is ∪ or∩.

To find a fingerprint for an operationOP, we do the following: LetS be the set of all security-

sensitive operations, andB = {OP}. Let Ci denote the label (i.e., the set of security sensitive

operations performed) of trace Ti, which is obtained when the server performs the tangible side-

effect seffi. Formulate a set equation forB in terms of Ci ’s, and apply thesame set-operations

on the set of code patterns in the corresponding Ti ’s. The resulting set of code patterns is the

fingerprint forOP.

For example, if T1 is a trace that performsOP andOP′, and T2 is a trace that performsOP′,

then C1 = {OP, OP′}, and C2 = {OP′}. Say T1 contains the set of code patterns{p1, p2}, and T2

contains the set of code patterns{p2}. Then to find the fingerprint ofOP, we let B = {OP}, and

observe thatB = C1 - C2. We perform thesameset-operations on the set of code patterns in T1

and T2 to obtain{p1}, which is then reported as the fingerprint ofOP. This process is formalized

in Algorithm 1.

Finding a set equation for a set B is equivalent to computing anexact coverfor this set. An

exact cover may not always exist; if one exists, it can be computed efficiently. However, because

each trace is manually labeled with the set of security-sensitive operations that it performs (using

tangible side-effects to aid reasoning), these labels may potentially be erroneous. We would thus

like to compute the smallest set equation for the set B.

Finding the smallest set equations is, in general, a hard problem. More precisely, define a

CNF set equation as a set equation expressed in conjunctive normal form, with ‘∩’ and ‘∪’ as the

conjunction and disjunction operators, respectively. Each disjunct in the equation is aclause. The

k-CNF SET EQUATION problem, which is equivalent to the problem of finding the smallest set

equations, can be shown to beNP-complete.

Definition 4.2 (k-CNF SET EQUATION) Given a setS, a setB ⊆ S, a collectionC of subsets of

S (as in Definition4.1), and an integerk, doesB have a CNF-set equation with at mostk clauses?
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Algorithm : F F(X, S, Seff)

Input : (i) X: Server to be retrofitted,

(ii) S: A set of security-sensitive operations{OP1, . . ., OPn}, and

(iii) Seff : A set of tangible side-effects{seff1, . . ., seffm}.

Output : FP1, . . ., FPn : Each FPi is the fingerprint of the security-sensitive operation

OPi.

X′ := X instrumented to perform tracing;1

foreach (tangible side-effectseffi ∈ Seff ) do2

Ti := Trace generated byX′ when induced to performseffi;3

label(Ti) := Set of operations (fromS) involved inseffi;4

foreach (OPi ∈ S) do5

SEi := Set-equation forOPi in terms oflabel(T1), . . ., label(Tm);6

CPseti := Set of code patterns in Ti;7

FPi := Result when the set operations in SEi are performed on CPset1, . . ., CPsetm;8

return FP1, . . ., FPn9

Algorithm 1 : Dynamic program analysis-based algorithm to mine fingerprints of security-

sensitive operations.

We currently use a simple brute-force algorithm to find set equations. This works for us,

because the number of sets we have to examine (which is the number of traces we gather) is

fortunately quite small (15 for the X server).

4.3 Implementation

We have implemented Algorithm1 in a prototype tool called A. We use a modified version of

gcc to compile the server. During compilation, instrumentation is inserted statically at statements

that read and write to fields of data structures denoting resources that we want to protect access to.

We log the field and the data structure that was read from, or written to, and the function name, file
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Window Create ✓ ✓ ✓ ✓

Window Destroy ✓ ✕ f n ✓ ✓ ✕ f n

Window Map ✓ ✓ ✓ ✓

Window Unmap ✓ ✕ f n ✓ ✓ ✕ f n

Window Chstack ✓ ✓ ✓ ✓ ✓

Window Getattr ✓ ✓ ✕ f p ✕ f p ✓

Window Setattr ✓ ✓ ✓ ✕ f p ✕ f n ✓

Window Move ✕ f n ✓ ✕ f n ✕ f n

Window Enumerate ✕ f n ✕ f n ✓ ✓ ✓ ✕ f n ✓ ✓

Window InputEvent ✓ ✓ ✓ ✓ ✓

Window DrawEvent ✓ ✓ ✓ ✓ ✕ f n ✓ ✓ ✓ ✓

Distinct
Functions 115 148 251 161 68 148 96 93 166

Table 4.1 Examples of labeled traces obtained from the X server. A “✓” entry in (row, column)
denotes that the trace represented bycolumnperforms the security-sensitive operation represented

by row. A “✕ f n” or a “✕ f p” entry denotes a mistake in manual labeling.

name, and the line number at which this occurs. We then induce the modified server to perform a

set of tangible side-effects, and proceed as in Algorithm1 to mine fingerprints.

We applied this to mine fingerprints of security-sensitive operations in the X server. In par-

ticular, we recorded reads and writes to fields of data structures such asClient, Window, Font,

Drawable, Input, andxEvent. Table 4.1shows the result of performing lines (1)-(4) of Al-

gorithm 1. Columns represent traces of 9 tangible side-effects, and rows represent 11 security-

sensitive operations on theWindow data structure. We manually labeled each trace with the

security-sensitive operations that it performs. These entries are marked inTable 4.1using✓ and



40

✕ f p. For example, opening anxterm on the X server includes creating a window (Window Create),

mapping it onto the screen (Window Map), placing it appropriately in the stack of windows that

X server maintains (Window Chstack), getting and setting its attributes (Window Getattr, Win-

dow Setattr), and drawing the contents of the window (Window DrawEvent). This trace of opera-

tions contains 115 calls to distinct functions in the X server, as shown in the last row ofTable 4.1.

Table 4.2andFigure 4.1show the result of performing lines (5)-(8) of Algorithm 1 with the

labeled traces obtained above. For each operation, the set equation used to obtain fingerprints

and the size of the resulting set are shown inTable 4.2, while the set of fingerprints is shown in

Figure 4.1. Note that each security-sensitive operation can have more than one fingerprint, as for

example, is the case withWindow Enumerate andWindow InputEvent.

Operation Set Equation |FP|

Window Create ∩(A, C, G) - D - H 9

Window Destroy ∩(B, D) - A 7

Window Map ∩(A, C, G) - D - H 9

Window Unmap ∩(B, D) - A 7

Window Chstack ∩(A, C, G, H, I) - D - E 6

Window Getattr ∩(A, C, I) - B - D - E - F 25

Window Setattr ∩(A, C, F, I) - B - D - E 15

Window Move F - A - B - D - E - G 38

Window Enumerate ∩(C, D, F, H, I) 21

Window InputEvent E - C 19

Window DrawEvent ∩(A, B, C, D, E, F, G, H, I) 12

Average value of|FP|: 15.3

Table 4.2 Set equations for security-sensitive operations computed using the annotations in
Table 4.1, and the sizes of the resulting sets.
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To find errors in manual labeling of traces, we did the following. After finding fingerprints of

security-sensitive operations, we checked each trace for the presence of these fingerprints. Pres-

ence of a fingerprint of a security-sensitive operation in a trace that is not labeled with that security-

sensitive operation shows an error in manual labeling; such entries are marked✕ f n in Table 4.1.

For example, we did not label the trace generated by opening a browser (htmlview) with Win-

dow Unmap. On the other hand, absence of fingerprints of a security-sensitive operation in a trace

that is labeled with the security-sensitive operation also shows an error in manual labeling; such

entries are marked✕ f p in Table 4.1. Thus for example, we did label the trace generated by moving

a window withWindow Getattr, whereas in fact, this operation is not performed when a window

is moved.

4.4 Evaluation of the dynamic fingerprint mining algorithm

We now evaluate the dynamic fingerprint mining algorithm, as implemented in A, by answer-

ing four questions.

4.4.1 How effective is A at locating fingerprints?

Raw traces generated by tangible-side effects have, on average, 53829 code patterns. However,

A abstracts each trace to the granularity of functions: it first identifies fingerprints at the function

level; if necessary, it delves into the code patterns exercised by the function. The number of

distinct functions called in each trace is shown in the last row ofTable 4.1. The third column of

Table 4.2shows, in terms of the number of functions, the size of FP, which is the result obtained

by computing the set equation for each security-sensitive operation, to determine fingerprints. A

was able to achieve about one order of magnitude reduction in terms of the number of distinct

functions to be examined for fingerprints.

We examined each of the functions in FP to determine if it is indeed a fingerprint. In most

cases, we found that for a security-sensitive operation, a single function in FP performs the oper-

ation. However, in some cases, multiple functions in FP seemed to perform the security-sensitive

operation. For example, bothCall MapWindow andCall MapSubWindow, which were present in
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Window Create :- Call CreateWindow

Window Destroy :- Call DeleteWindow

Window Map :- Write True ToWindow->mapped

∧WriteMapNotify ToxEvent->union->type

Window Unmap :- WriteUnmapNotify ToxEvent->union->type

Window Chstack :- Call MoveWindowInStack

Window Getattr :- Call GetWindowAttributes

Window Setattr :- Call ChangeWindowAttributes

Window Move Call ProcTranslateCoords

Window Enumerate :- ReadWindowPtr->firstChild

∧ ReadWindowPtr->nextSib

∧ WindowPtr,0

Window Enumerate :- ReadWindowPtr->lastChild

∧ ReadWindowPtr->prevSib

Window InputEvent :- Call CoreProcessPointerEvent

Window InputEvent :- Call CoreProcessKeyboardEvent

Window InputEvent :- Call xf86eqProcessInputEvents

Window DrawEvent :- Call DeliverEventsToWindow

Figure 4.1 Fingerprints obtained by analyzing set equations inFigure 4.1by applying
Algorithm 1 to the labeled traces fromTable 4.1.

FP, performedWindow Map. In such cases, we examined the execution traces of the server to

determine common code patterns exercised by the call to these functions. Doing so forWin-

dow Map reveals that the common code patterns inMapWindow andMapSubWindow are (Write

True toWindow->mapped ∧WriteMapNotify toxEvent->union->type). For security-sensitive

operations such asWindow InputEvent, where we did not find common code patterns exercised

by candidate functions from FP, we deemed each of these function calls to be fingerprints of the

operation.
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4.4.2 How precise are the fingerprints found?

For each of the fingerprints recovered by A for the X server, we manually verified that it is

indeed a fingerprint of the security-sensitive operation in question.

However, in general, A need not recover all fingerprints of a security-sensitive operation.

Because A employs dynamic program analysis, it can only capture the fingerprints of a security-

sensitive operation exercised by the runtime traces, and may missotherways to perform the opera-

tion. By collecting traces for a larger number of tangible side-effects, and verifying the fingerprints

collected by A against these traces, confidence can be increased in the precision of fingerprints

obtained by A.

4.4.3 How much effort is involved in manual labeling of traces?

In all, we collected 15 traces for different tangible side-effects exercising differentWindow-

related security-sensitive operations. It took us a few hours to manually label traces with security-

sensitive operations.

4.4.4 How effective is manual labeling of traces?

In most cases, it is easy to reason about the security-sensitive operations that are performed if

a tangible side-effect is induced. However, because this process is manual, we may miss security-

sensitive operations that may be performed (✕ f n entries inTable 4.1), or erroneously label a trace

with security-sensitive operations that are not actually performed (✕ f p entries). Our experience of

manually labeling traces for the X server shows that this process has an error rate of approximately

15%.

However, it must be noted that we were able to recover fingerprintsin spite of labeling errors. If

a security-sensitive operation is wrongly omitted from the labels of a trace that performs a tangible

side-effect associated with that operation (the✕ f n case), then because the same security-sensitive

operation often appears in the labels of other traces, a set equation can still be formulated for the

operation, and the fingerprint can be recovered. On the other hand, if a security-sensitive operation

is wrongly added to the labels of a trace (the✕ f p case), none of the functions in FP will perform
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the tangible side-effect. In this case, trace labels are refined, and the process is iterated until a

fingerprint is identified.

4.5 Limitations

While the technique presented in this chapter was motivated by the need to formalize descrip-

tions of security-sensitive operations, it has three limitations.

1. The technique relies on the availability of high-level descriptions of security-sensitive oper-

ations. While such descriptions are available for several Linux subsystems and the X server,

identifying security-sensitive operations is, in general, an ad hoc and manual exercise, and it

is not realistic to assume that such descriptions will be available for all servers.

2. The technique relies on tangible side-effects to determine whether a security-sensitive oper-

ation was performed during an execution of a server. This is problematic for two reasons.

First, it may not always be possible to identify tangible side-effects for a security-sensitive

operation. Indeed, in our experiments with the X server reported in this chapter, we faced

difficulties in identifying tangible side-effects for several security-sensitive operations.

Second, the technique relies on a human to manually perform controlled experiments on

the server, collect the runtime execution traces so generated, and reason about the security-

sensitive operations associated with each trace. The accuracy and effectiveness of the tech-

nique is thus dependent on how carefully the experiments were performed. For example,

the X server permits transparent windows, which can be mapped to the screen (thus induc-

ing Window Map). If such a transparent window is mapped to the screen during one of

the experiments, and the human fails to includeWindow Map in the label of the associated

execution trace, the technique will fail to compute a fingerprint forWindow Map.

3. Finally, because the technique uses dynamic program analysis, it cannot guarantee that all

fingerprints of a security-sensitive operation have been found,i.e., the technique is notcom-

plete, and can have false negatives. In particular, the number and quality of fingerprints
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mined by the technique directly relies on the code coverage of the manually-induced exper-

iments.

These limitations are fundamental, and prevented this technique from being applied to a wide

variety of servers. The static fingerprint mining technique presented in the next chapter directly

addresses these limitations of the dynamic mining technique.

4.6 Using the dyamic fingerprint mining tool

This section summarizes the steps that a security analyst must follow to find fingerprints using

the dynamic fingerprint mining tool.

• Design a set of experiments to induce security-sensitive operations in the server. Label each

experiment with the set of security-sensitive operations performed in that experiment.

• Instrument the server to log accesses to sensitive data structures, conduct the experiments

from the first step, and collect the traces emitted by the server.

• Compute set equations for each security-sensitive operation.

• Apply set equations to traces and obtain pruned sets of code-patterns.

• Manually examine and refine the pruned sets to identify fingerprints of security-sensitive

operations.

4.7 Summary of key ideas

To summarize, the key contributions of this chapter are:

• The use of dynamic program analysis to convert high-level, informal descriptions of security-

sensitive operations into fingerprints.

• The use of tangible side-effects as a means to determine whether an execution of a server

performs a security-sensitive operation.
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• An algorithm to localize fingerprints by comparing execution traces using set equations.

• An implementation of the above techniques in a prototype tool called A, and its evaluation

on the X server.
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Chapter 5

Mining Fingerprints using Static Program Analysis

This chapter develops a technique that uses static program analysis and a clustering technique,

called concept analysis [Wil82], to mine fingerprints of security-sensitive operations. This tech-

nique directly addresses the main shortcomings of the dynamic program analysis technique pre-

sented in the previous chapter. In particular, the technique mines fingerprints without the need

for ana priori description of security-sensitive operations. Further, because static program anal-

ysis ensures better coverage than dynamic analysis, the technique presented in this chapter can

mine more fingerprints than the technique in the previous chapter. This chapter also presents three

case studies, showing the application of this technique to mine fingerprints of security-sensitive

operations for the Linux ext2 file system, the X server, and PennMUSH, a multi-user dungeon.

5.1 Problem statement

Given a server program, and the data types of resources, accesses to which must be protected,

the technique presented in this chapter outputsbuilding blocksthat satisfy Property1 defined be-

low. These building blocks can be used to construct fingerprints1.

Property 1 (Happens together) A building block BB output by the technique presented in this

chapter is a set of code patternsBB= {pat1, . . ., patm} that satisfies the following property: if one

1For the rest of this chapter, we will relax the strict syntactic definition of a fingerprint (as inFigure 3.1), and refer
to a fingerprint as a set of code patterns instead. The interpretation of a fingerprint remains unchanged with this syntax:
the set of code patterns in a fingerprint represents all the resource accesses needed to perform the security-sensitive
operation represented by that fingerprint.
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of the code patternspati in BBappears in any valid execution trace of the server, thenall the code

patterns inBBappear in that trace.

Thus, the building blocks satisfying Property1 represent resource accesses that are always

performed together. Our hypothesis is that building blocks satisfying Property1 can be used to

construct fingerprints of security-sensitive operations. Intuitively, this is because such a set de-

notes the set of resource accesses that must be performed to achieve a high-level operation on

the resource (e.g.,an operation such asWindow Map or Window Enumerate). Indeed, in our

experiments with the Linux ext2 file system and the X server, we found that the building blocks

output by the technique were excellent indicators of security-sensitive operations identified man-

ually (and independently, in the LSM project [WCS+02] and the X11/SELinux project [KSV03],

respectively).

5.2 Identifying fingerprints using static program analysis and concept analysis

This section presents a high-level overview of our technique. Using a running example, it

demonstrates how a software engineer would use this technique to mine fingerprints of security-

sensitive operations. The entire process is depicted inTable 5.1.

5.2.1 Running example

We use a subset of ext2, a Linux file system, and one of the case studies inSection 5.5as our

running example. In particular, ext2 is responsible for laying out and interpreting disk blocks as

belonging to specific files or directories. It represents metadata information using several internal

data structures. This metadata is used to retrieve files and directories from raw disk blocks.

File systems on Linux are pluggable, and must thus export a standard API to the kernel. A

system call that manipulates files or directories ultimately resolves to one or more calls to this

API. The relevant file system functions then serve this request. Thus a file system is a server that

manages files and directories. For ext2, we considered 10 API functions related to manipulation
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of directories (e.g.,ext2 rmdir, ext2 mkdir andext2 readdir). We show how our technique

can identify security-sensitive operations that ext2 performs on directories.

B
Fingerprints of security

sensitive operationsA
Building
blocks

Constraints

Legacy server

Resource types

Step Description Techniques used

A Extraction of building blocks from source

code.

Static analysis and concept analysis.

B Refinement of building blocks. Application of constraints and interpreta-

tion of fingerprints.

Table 5.1 Steps to statically mine fingerprints of security-sensitive operations, and the techniques
used in each step. Static analysis is first used in conjunction with concept analysis to extract

building blocks. These building blocks are refined/composed to yield fingerprints.

5.2.2 Step A: From source code to building blocks

In the first step, we employ static source code analysis and identify different ways in which

ext2 accesses shared resources in response to client requests.

To do so, we must first identify resources, accesses to which must be authorized. As before,

we express the resources to be protected using their data types. For ext2, these resources include

internal data structures used to represent files and directories. These data structures are specified by

a domain expert, and for ext2 they are variables of typeinode, ext2 dirent, ext2 dir entry 2

andaddress space, each of which is a Cstruct.

We also assume that a client accesses server resources only via the server’s API. With ext2,

this is indeed the case, and as mentioned earlier ext2 exports a well-defined API to the kernel. The

inputs to our static analyzer are thus the source code of ext2, and two files, specifying, respectively,



50

the types of resource data structures, accesses to which must be authorized, and a set of API

functions.

The static analyzer identifies how these resource data structures are manipulated by the ext2

API. It does so by distilling each statement of ext2 source code into a (possibly empty) set of

code patterns. Code patterns are as defined inFigure 3.1, and includeReads, Writes andCalls.

For example, the C statementde->file type = 0, wherede is a variable of typeext2 dirent

is distilled toWrite 0 To ext2 dirent->file type. Note in particular that this transformation

ignores specific variable names and focuses instead on types of variables. As a result, we identify

generic resource manipulations but not the specific instance of the resource (e.g.,the instancede)

that they happen on.

Statements that do not manipulate resource data structures are ignored.Call code patterns

correspond to calls via unresolved function pointers. For each functionext2 api in the ext2 API,

the static analyzer then aggregates code patterns of all statements potentially reachable via a call to

ext2 api. Thus, at the end of this step each ext2 API functionext2 api is associated with a set

of code patternsCodePats(ext2 api). Intuitively, CodePats(ext2 api) denotes all possible ways

in whichext2 api can potentially manipulate tracked resources.

The next step is to find sets of code patterns that always appear together during server execution.

That is, if one code pattern from a set of code patterns appears in an execution of ext2, then all

the other code patterns from that set appear in that execution as well (i.e., a set of code patterns

satisfying Property1). Note that we can have sets{pat} with singleton code patterns as well,

denoting that no other code pattern always appears together with{pat}. Each set of such code

patterns denotes an idiomatic way in which a resource is manipulated by ext2, and potentially

indicates a security-sensitive operation. Each such set is called abuilding block.

We identify building blocks using concept analysis [Wil82], a well-known hierarchical clus-

tering technique. At a high-level (details are presented inSection 5.3), concept analysis identifies

building blocks, as well as the API functions whose code pattern sets contain these building blocks.
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For example, concept analysis inferred that the set of six code patterns shown inFigure 5.1

is a building block, and that it appears inCodePats(ext2 rename), CodePats(ext2 rmdir) and

CodePats(ext2 unlink).

(1) Readaddress space->host

(2) Readext2 dir entry 2->rec len

(3) Write0 Toext2 dir entry 2->inode

(4) Readinode->i mtime

(5) Readinode->u->ext2 inode info->i dir start lookup

(6) Write⊥ Toinode->u->ext2 inode info->i dir start lookup

Figure 5.1 One of the building blocks that concept analysis identifies for ext2.

For ext2, we identified 18 such building blocks, each denoting a unique way in which ext2

manipulates files and directories. While concept analysis is asymptotically inefficient—its com-

plexity is exponential in maxi(|CodePats(ext2 apii)|)—our experiments showed that it is efficient

in practice. In particular, our analysis completed in about 2 seconds for ext2, and in just over 310

seconds for the largest of our case studies.

5.2.3 Step B: Refining building blocks

In the second step, a domain expert (i) refines building blocks obtained from Step A and (ii) post

refinement, determines, for each fingerprint, whether it embodies a security-sensitive operation that

must be mediated by an authorization policy lookup.

Refinement of building blocks is necessary for two reasons.

• The first reason is because the code analysis employed in Step A is imprecise. As a result, a

set of code patterns that appears in the results of concept analysis may not satisfy Property1.

There are two ways in which precision is lost:
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1. The static analysis algorithm employed in Step A isflow-insensitive. A building block

may contain a pair of code patternspat1, pat2 that do not always appear together in all

executions of the server (thus violating Property1).

2. We ignore specific instances of resources that are manipulated and focus instead on

their types. Thus, a building block may contain manipulations of multiple, possibly

unrelated, resources.

We employprecision constraintsto identify such cases and enable refinement of each build-

ing block, separating the code patterns that it contains into several fingerprints. Intuitively,

a precision constraint is a rule that determines the set of code patterns that can be grouped

together in a fingerprint.

• The second reason why refinement is necessary is because a domain expert may deem that a

set of code patterns is irrelevant for the authorization policies to be enforced for the server, or

may wish to separate or group together a pair of code patterns in a fingerprint of a security-

sensitive operation. Suchdomain-specific constraintsfurther refine building blocks.

For example, consider the building block shown inFigure 5.1. Using the output of our static

analysis tool, we were able to determine that the code patterns (1)-(4) appear together in each

successful invocation of the ext2 functionext2 delete entry and that the code patterns (5) and

(6) appear together in each successful invocation of the functionext2 find entry. Each of

the three API functions,ext2 rename, ext2 rmdir andext2 unlink, that contain this building

block call both these functions. Bothext2 rmdir andext2 unlink call these functions on the

sameresource instance, namely the directory being removed (or unlinked). However, asFigure 5.2

shows, whileext2 rename calls both these functions on the instancesold dir andold dentry,2

it callsext2 find entry only on the instancesnew dir andnew dentrywhen a certain predicate

new inode is satisfied.
2The variableold de, which ext2 delete entry is invoked with on line18 is derived fromold dir and

old dentry.
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1 i n t ext2 rename (inode *old_dir, dentry *old_dentry ,

2 inode *new_dir, dentry *new_dentry) {

3 / ∗ D e c l a r a t i o n s o f o ldpage , newpage , o l d d e and newde ∗ /

4 new_inode = new_dentry ->d_inode;

5 ...

6 old_de = e x t 2 f i n d e n t r y (old_dir, old_dentry , &old_page);

7 i f (new_inode) {

8 ...

9 new_de = e x t 2 f i n d e n t r y (new_dir, new_dentry , &new_page);

10 ...

11 }

12 else {

13 ...

14 / ∗ No c a l l t o e x t 2 f i n d e n t r y i n t h i s b ranch ∗ /

15 ...

16 };

17 ...

18 e x t 2 d e l e t e e n t r y (old_de, old_page);

19 ...

20 }

Figure 5.2 Example showing the need for precision constraints.

Becauseext2 rename performs the resource manipulations corresponding to code patterns

(5) and (6) on additional resource instances as compared to the code patterns (1)-(4), code patterns

(1)-(4) and (5)-(6) likely represent different security-sensitive operations. Imposing the constraint

that code patterns on different resource instances must be part of separate fingerprints, the building

block shown inFigure 5.1is split into two parts, as shown inFigure 5.3. Additional examples of

the use of precision constraints appear inSection 5.4. Note that such constraints can potentially be

avoided with sophisticated program analyses, which we plan to explore in future work. However,

in our case studies we found that more than 50% of the building blocks did not require refinement.
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Thus our current approach provides a good tradeoff between precision of results and simplicity of

the code analysis algorithm.

Domain-specific constraints encode rules that are formulated by a domain-expert. In particular,

whether the resource manipulation embodied by a fingerprint is security-sensitive depends on the

set of policies that must be enforced on clients. For example, it may only be necessary to protect the

integrity of directories, and not their confidentiality. In this case, fingerprints that embody a write

operation on directories are security-sensitive, while fingerprints that embody a read operation are

not. Fingerprints expose possible operations on resources, and let an administrator decide whether

an operation is security-sensitive or not. For example, an analyst may decide that Fingerprint (2) in

Figure 5.3, which corresponds to a directory lookup, is not interesting for a specific set of policies

to be enforced.

Fingerprint (1)

(1) Readaddress space->host

(2) Readext2 dir entry 2->rec len

(3) Write0 Toext2 dir entry 2->inode

(4) Readinode->i mtime

Fingerprint (2)

(5) Readinode->u->ext2 inode info->i dir start lookup

(6) Write⊥ Toinode->u->ext2 inode info->i dir start lookup

Figure 5.3 Fingerprints obtained after refinement with precision constraints.

After refinement, the domain expert assigns semantics to each fingerprint, associating it with

a security-sensitive operation. For example, Fingerprint (1) inFigure 5.3embodies the directory re-

moval operation, while Fingerprint (2) embodies the lookup operation. The LSM project [WCS+02]

has identified a comprehensive set of security-sensitive operations for Linux by considering a wide

range of policies to be enforced, including security-sensitive operations on the file system. It turns

out that Fingerprint (1) embodies the LSM operationDir Remove Name, while Fingerprint (2)
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embodies the LSM operationDir Search. Thus, at the end of the second step, we have a set of

fingerprints, each of which is associated with a security-sensitive operation.

5.3 Extracting building blocks from code

This section discusses Step A in detail. We discuss the use of static analysis to identify resource

manipulations potentially performed by each API function, and concept analysis to find building

blocks.

5.3.1 Static analysis

Algorithm 2 describes the static code analysis that we have implemented (in CIL [NMRW02]).

Lines1-5 employ a simple flow-insensitive analysis to extract for each function a set of code pat-

terns describing how the function manipulates resource data structures. While this step sacrifices

precision, it simplifies the rest of the analysis by making the output amenable to concept analy-

sis. As described earlier, we recover some of the precision lost in this step by applying precision

constraints. While we intend to explore in future work how a flow-sensitive program analysis can

interact with concept analysis, we have found that our current implementation offers a reasonable

tradeoff between simplicity of analysis and precision of the results obtained. Lines6-9 compute

CodePats(apii), the set of resource accesses performed byapii, for each API functionapii of

the server by finding functions in the call-graph reachable fromapii. We resolve calls through

function pointers using a simple pointer analysis: each function pointer can resolve to any function

whose address is taken and whose type signature matches that of the function pointer. This anal-

ysis is conservative in the absence of type-casts, but may miss potential targets in the presence of

type-casts.

Recall thatCodePats(apii) is the set of resource accesses that a client can perform by invoking

API functionapii. However, we would like to identify resource accesses satisfying Property1,

i.e., we would like to identify setsBB = {pat1, . . ., patm} such that if one of the code patterns

pati∈BB appears in any valid execution trace of the server, thenall the patterns inBB appear in

that trace.
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Note that Property1 implies that each building blockBB is such that eitherFP ⊆ Code-

Pats(apii) or BB ∩ CodePats(apii) = ∅, for each API functionapii. As described below, we

use concept analysis to identify a set of building blocks. Each building block may then be used to

construct fingerprints.

Algorithm : E C-P(Server, API, RSC)

Input : (i) Server: source code of server,

(ii) API={api1, . . ., apin}: set of API functions of Server, and

(iii) RSC: data types of sensitive resources.

Output : CodePats(api1), . . ., CodePats(apin), for api1, . . ., apin ∈ API.

foreach (functionf in Server)do1

Summary(f) := ∅;2

foreach (statements∈ f that affects a data structure of type∈ RSC)do3

CP := Decomposition ofs into code patterns (see C-P in Figure 3.1);4

Summary(f) := Summary(f) ∪ CP;5

foreach (apii ∈ API) do6

CodePats(apii) := ∅;7

foreach (functionf reachable fromapii) do8

CodePats(apii) := CodePats(apii) ∪ Summary(f);9

return CodePats(api1), . . ., CodePats(apin)10

Algorithm 2 : Static analysis algorithm to extract resource manipulations.

5.3.2 Background on concept analysis

Concept analysis is a well-known hierarchical clustering technique that has found use in soft-

ware engineering (e.g.,for aspect mining [CMM+05, EKS03, TC04, TM04], to identify modular

structure in legacy code [LS97, Sif98, ST98, vDK99], to automatically convert non-object-oriented
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programs into object oriented ones [Sif98], and to debug automatically mined temporal specifica-

tions [AMBL03]). We give a brief overview of concept analysis and describe how we adapt it to

find building blocks.

The inputs to concept analysis are (i) a set ofinstances I, (ii) a set offeatures F, and (iii) a

binary relationR : I → F that associates instances with features. It produces aconcept latticeas

output. Intuitively, each node in the concept lattice pairs a set of instancesX with a set of features

Y, such thatY is the largest set of features in common toall of the instancesin X. Formally, each

node is a pair〈X, Y〉, whereX ∈ I andY ∈ F, such thatα(X)=Y andγ(Y)=X, whereα(X) =

{ f ∈ F|∀x ∈ X (x, f ) ∈ R}, andγ(Y) = {i ∈ I |∀y ∈ Y (i, y) ∈ R}. A node〈X, Y〉 appears as an

ancestor of a node〈P, Q〉 in the concept lattice ifP ⊂ X. In fact, this ordering also impliesY ⊂ Q.

This is because a smaller set of instances will share a larger set of features in common. Thus, the

root node shows the set of features common to all instances inI , while the leaf node shows the set

of instances that share all features inF.

Figure 5.4shows an example of a concept lattice, as applied to our problem. Each API function

api1, api2, api3 andapi4 is considered an instance, and each code patternpat1, pat2, pat3, pat4

is considered a feature. They are related byCodePats, which is obtained from static analysis,

depicted inFigure 5.4(a) as a table. Each node〈X, Y〉 is such thatall the code patterns inY appears

in eachCodePats(apii) for apii∈X. This lattice shows, for example, that (i) there are no code

patterns in common to all API functions (nodeA in the lattice), (ii) Bothpat1 andpat3 appear in

both CodePats(api2) andCodePats(api3), and these are the only such API functions (nodeD),

and that (iii) No API functions have all code patterns (nodeG).

5.3.3 Using concept analysis

We compute building blocks using Algorithm3. It first invokes concept analysis (line1) on the

set of API functions and the set of code patterns to obtain a concept lattice as shown inFigure 5.4.

It then finds building blocks, in lines2-9, by finding nodes in the lattice where new code patterns

are introduced. Each such node is marked, and the set of new code patterns introduced in that node

is considered as a building block.
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(a) The relation CodePats

CodePats pat1 pat2 pat3 pat4

api1 ✓ ✓

api2 ✓ ✓ ✓

api3 ✓ ✓ ✓

api4 ✓

(b) Concept lattice (c) Nodes in the concept lattice

B

D

E

G

F

C

A

*
*

*

*
A : 〈{api1, api2, api3, api4}, ∅〉

B : 〈{api1, api2, api3}, {pat1}〉

C : 〈{api3, api4}, {pat4}〉

D : 〈{api2, api3}, {pat1,pat3}〉

E : 〈{api1, api2}, {pat1, pat2}〉

F : 〈{api3}, {pat1, pat3, pat4}〉

G : 〈∅, {pat1, pat2, pat3, pat4}〉

Figure 5.4 Concept analysis example.

For the example inFigure 5.4, the nodesB, C, D, and E are marked because these nodes

introduce the code patternspat1, pat4, pat3 andpat2—i.e.,any node containing one of these patterns

musthave the corresponding node as an ancestor. Each of these code patterns is classified as a

building block.

Intuitively, Algorithm 3 works because each building blockBBsatisfiesBB⊆ CodePats(apii)

or BB∩ CodePats(apii) = ∅, for each API functionapii. Concept analysis ensures that the node

of the concept lattice in which a new code patternpati ∈ BB is introduced will introduceall of the

code patterns inBB. Line 9 identifies and marks nodes where a new code patternpat is introduced

into the lattice. Because of the property above, all the code patterns that appear in the same

building block aspat appear in that node. Note however, that code patterns in each building block
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may not satisfy Property1 (because static analysis was flow-insensitive). Thus the building blocks

computed by Algorithm3 must be refined (in Step B).

Algorithm : F B B(CodePats, API)

Input : (i) CodePats: The relation obtained from Algorithm2, and

(ii) API= {api1, . . ., apin}, set of API functions of the server.

Output : CFP1, . . ., CFPk, a set of building blocks.

Run concept analysis with the set of instancesI=API, the set of features1

F=
⋃

i∈[1..n]

CodePats(apii), and the relationR=CodePats;

count:= 1;2

foreach (node〈X, Y〉 in the concept lattice)do3

Let {〈Xj, Yj〉} be the set of parents of〈X, Y〉 in the concept lattice;4

Diff := Y -
⋃

j

Yj;
5

if (Diff , ∅) then6

CFPcount := Diff;7

count:= count+ 1;8

Mark the node〈X, Y〉;9

return CFP1, . . ., CFPcount/* Note: k is the value ofcountin this line.*/10

Algorithm 3 : Algorithm for finding building blocks.

The number of building blocks identified by Algorithm3 has an upper bound of| ∪i∈[1..n]

CodePats(apii)|. Note that while the concept lattice can be exponentially large in the number

of API functions (because asymptotically, it is a lattice on the power set of API functions), this up-

per bound places a restriction on the number of nodes that will be marked in line9 of Algorithm 3.

This is key, because these nodes introduce building blocks, and as discussed inSection 5.2, they

must be manually examined for refinement in Step B.

Several algorithms have been proposed in the literature to compute concept lattices. We chose

to implement the incremental algorithm by Godinet al.[GMA95, Algorithm 1] because it has been
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shown to work well in practice [AMBL03]. While this algorithm is asymptotically exponential—

its complexity isO(22p|I |), wherep is an upper bound on the number of features of any instance in

I—the algorithm scaled well in our case studies.

5.4 Refinement with constraints

As described inSection 5.2.2, building blocks obtained from concept analysis are imprecise

for two reasons. First, because of flow-insensitivity, a pair of code patternspat1 andpat2 that do

not satisfy Property1 may appear in the same building block. Second, the resource manipula-

tions in a building block may be associated with multiple, possibly unrelated resource instances.

Thus, building blocks must be refined using precision constraints. Domain-specific constraints can

additionally be applied to refine constraints with domain-specific requirements.

This section presents a unified framework to express constraints and refine building blocks

(Step B). Both precision constraints and domain-specific constraints can be expressed in this frame-

work.

As Figure 5.5shows, each constraint is either aSeparate(X, Y), an Ignore(X) or a Com-

bine(X, Y), whereX andY are sets of code patterns.Separate(X, Y) refines building blocks by

separating code pattern setsX andY into separate fingerprints.Ignore(X) refines building blocks

by discarding the code pattern setX from building blocks.Combine(X, Y), for which we have only

felt occasional need, combines code pattern setsX andY in two building blocks into a single fin-

gerprint, thus coarsening the results of concept analysis. For example, the constraintSeparate({1,

2, 3, 4}, {5, 6}) refines the building block inFigure 5.1to yield the fingerprints inFigure 5.3. We

now discuss precision and domain-specific constraints in this framework.

Precision constraints areSeparate(X, Y) constraints and as discussed inSection 5.2, they serve

two goals. The first goal is to refine building blocks based upon resource instances manipulated.

Separate({1, 2, 3, 4}, {5, 6}), the use of which was illustrated earlier, serves this goal. Formally,

each set of code patterns can be associated with one or more resource instances that it manipu-

lates. We use a constraintSeparate(X, Y)to separate code pattern setsX andY that manipulate

different sets of resource instances. For example, consider the code patterns (1)-(4) inFigure 5.1,
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C ::== Separate(PS, PS)

| Combine(PS, PS)

| Ignore(PS)

PS ::== Set of code patterns (see C-P in Figure 3.1)

Figure 5.5 BNF grammar for constraints.

that appear in the functionext2 delete entry, and the code patterns (5) and (6), that appear in

the functionext2 find entry. Because of the way these functions are invoked inext2 rename

(seeFigure 5.2), code patterns (5) and (6) are associated with the resource instancesold dir,

old dentry, new dir andnew dentry, while code patterns (1)-(4) are associated with resource

instancesold dir andold dentry. Because the code patterns (5) and (6) are applied to addi-

tional resource instances, they are separated out using the constraint above. We currently manually

identify resource instances associated with a set of code patterns. However, this can potentially be

automated using a program analysis that is sensitive to resource instances manipulated.

The second goal of precision constraints is to identify and remove imprecision introduced be-

cause of flow-insensitive program analysis. In particular, a pair of code patternspat1 andpat2 may

appear together in a building block, but may not appear together in all executions of the server.

In such cases, aSeparate(pat1, pat2) constraint separates these code patterns into different finger-

prints. For example, one of the building blocks that we obtained in the analysis of ext2 is shown

below; it appeared inCodePats(ext2 ioctl).

(1) Write⊥ Toinode->i flags

(2) Write⊥ Toinode->i generation

However,ext2 ioctl either performs the resource manipulation corresponding to code pat-

tern (1) or (2), but not both, in each execution, based upon the value of a flag that it is invoked

with. Thus, a constraintSeparate({1}, {2}) is used to refine the building block above.

Note that precision constraints are not necessary if more precise program analysis is employed.

Algorithm 2 currently lacks flow-sensitivity and data-flow information that can potentially avoid
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the imprecision reported above. However, in each of our case studies we needed precision con-

straints for no more than 50% of the building blocks mined—9/18 for ext2, 24/115 for X server, and

4/38 for PennMUSH. Thus, we believe that our current technique strikes a good balance between

simplicity and precision of building blocks.

Domain-specific constraints encode domain knowledge to further refine building blocks. A

domain specific constraint that we have found useful isIgnore(Pat), using which we can eliminate

certain code patterns that we deem irrelevant for security. For example, in the X server, which is

an event-based server, each request from an X client is converted into a one or more events that

are processed by the server. It may only be necessary to enforce an authorization policy governing

the set of events that an X client can request on a resource. In such cases, all code patterns except

those related to event-processing can be filtered out from fingerprints usingIgnoreconstraints.

The use ofCombineconstraints is relatively infrequent, and may be used if the building blocks

mined by concept analysis are at too fine a granularity. For example, in PennMUSH, we found

that 30 of the 38 building blocks contained only one code pattern. An administrator may wish to

write authorization policies at a higher level of granularity—where the fingerprint of each security-

sensitive operation contains multiple code patterns.Combineconstraints can be used to group

together code patterns to get such fingerprints.

Analysis Concept lattice Refinement

Benchmark LOC time (secs) # Nodes # Edges Number Size needed for

ext2 4,476 2.1 21 32 18 3.67 9 (50%)

X server/dix 30,096 58.1 329 978 115 3.76 24 (20.87%)

PennMUSH 94,014 318.9 127 301 38 1.42 4 (10.53%)

Table 5.2 Results for each of our case studies. The sixth column denotes the number of building
blocks mined, while the seventh column shows their average size, in terms of the number of code

patterns per building block. The table also shows the number of building blocks that had to be
refined with precision constraints.Figure 5.6, Figure 5.7andFigure 5.8depict the concept lattices

produced for each of these case studies.
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5.5 Evaluation of the static fingerprint mining algorithm

We conducted case studies on three complex systems, each of which has been in development

for several years. We used (i) the ext2 file system from Linux kernel distribution 2.4.21, (ii) a

subset of the X server (X11R6.8), and (iii) PennMUSH, an online game server (v1.8.1p9).

We evaluated our technique using four criteria.

• First, we measured the number and average size of building blocks extracted from source

code. Because an analyst must examine these building blocks to identify security-sensitive

operations, these metrics indicate the amount of manual effort needed to supplement our

technique. Note that without our technique, the analyst must examine theentirecode base

to find security-sensitive operations.

• Second, we measured the number of building blocks that had to be refined with constraints.

This metric shows the effect of imprecise static analysis and the effort needed to refine build-

ing blocks.

• Third, we evaluated the quality of fingerprints by manually interpreting the operation em-

bodied by each fingerprint.

• Last, for ext2 and the X server, we correlated the fingerprints extracted by our technique with

security-sensitive operations that were identified independently for these servers [KSV03,

WCS+02].

Table 5.2presents statistics on the time taken by the analysis and the size of concept lattices

produced. It also shows the number and size of building blocks and the number of building blocks

that needed refinement. As these results show, our analysis is effective at distilling several thousand

lines of code into concept lattices of manageable size. None of our benchmarks had more than 115

building blocks. These building blocks were, on average, smaller than 4 code patterns, and fewer

than 50% of these had to be refined manually. Identifying security-sensitive operations reduces

to refining and interpreting these building blocks, instead of having to analyze several thousand



64

lines of code, thus drastically cutting the manual effort required. In our case studies, this required

a few hours, with modest domain knowledge. AsTable 5.2also shows, our analysis is efficient in

practice, completing in just over 310 seconds even for PennMUSH, our largest benchmark (on a

1GHz AMD Athlon processor with 1GB RAM). Sections5.5.1-5.5.3present each case study in

detail, including our experience interpreting fingerprints and correlating these fingerprints against

independently identified security-sensitive operations.

5.5.1 The ext2 file system

Figure 5.6 Concept lattice for ext2. The shaded nodes represent those marked by Algorithm3,
and the concepts represented by these node contain building blocks. This concept lattice has 21

nodes and 32 edges. Algorithm3 identified 18 building blocks.

As discussed inSection 5.2, we focused on how directories are manipulated by the ext2 file

system. Concept analysis produced the concept lattice shown inFigure 5.6. The shaded nodes
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in this lattice depict 18 building blocks containing an average of 3.67 code patterns, of which we

had to refine 9 with precision constraints to obtain a total of 44 fingerprints. We then determined

the resource manipulation embodied by each fingerprint and tried to associate it with a security-

sensitive operation.Section 5.2presented two such examples. Two more examples are discussed

below.

1. The fingerprint{Write 0 To inode->i blocks, Write 4096 To inode->i blksize, Write

1 To inode->u->ext2 inode info->i new inode} appears inCodePats(ext2 create),

CodePats(ext2 mkdir), CodePats(ext2 mknod) andCodePats(ext2 symlink). The code

patterns in this fingerprint were all extracted from the function calledext2 new inode and

embody creation and initialization of a newinode.

2. The fingerprint{Write0 Toinode->i size} appears inCodePats(ext2 rmdir). This code

pattern embodies a key step in directory removal.

The LSM project has identified a set of 11 operations on directories. These operations are

used to write SELinux policies governing how processes can manipulate directories. We were

able to identify at least one fingerprint for each of these LSM operations from the fingerprints

that we mined. For example, the fingerprints presented inSection 5.2were for the LSM operations

Dir Remove Name andDir Search, while the examples above correspond to theFile Create3 and

Dir Rmdir operations, respectively.

5.5.2 The X11 server

The X server is a popular window-management server. X clients can connect to the X server,

which manages resources such as windows and fonts on behalf of these X clients. The X server

has historically lacked mechanisms to isolate X clients from each other, and has been the subject

of several attacks. Such attacks can be prevented with an authorization policy enforcement, which

determines the set of security-sensitive operations that an X client can perform on a resource.

Indeed, there have been several efforts to secure the X server [BPWC90, EMO+93, KSV03].

3Note that some LSM directory operations have theFile prefix.
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Figure 5.7 Concept lattice for the X server. This concept lattice has 329 nodes and 978 edges.
Algorithm 3 identified 115 building blocks in this concept lattice.

We focused on a subset of the X server, its main dispatch loop (calleddix) that contains code

to accept client requests and translate them to lower layers of the server. We focused on this subset

because it contains the bulk of code that processes client windows, represented by theWindow data

structure, the resource on which we wanted to identify security-sensitive operations. In addition to

Window, we also included thexEvent data structure, because the X server uses it extensively to

process client requests. The API that we used contains 274 functions that the X server exposes to

clients.

Concept analysis produced 115 building blocks with 3.76 code patterns, on average, of which

24 had to be refined with precision constraints. The interpretation of two of these fingerprints is

discussed below.
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1. {Write ⊥ To xEvent->u->mapRequest->window, Write 20 To xEvent->u->type} is a

fingerprint contained inCodePatsof 5 API functions, embodies an X client request to map a

Window on the screen, and potentially represents a security-sensitive operation.

2. The fingerprint{Write 0 To Window->mapped, Write 18 To xEvent->u->type}, contained

in CodePatsof 7 API functions embodies unmapping a visible X client window from the

screen, also a potential security-sensitive operation.

There have been efforts to secure the X server in the context of the X11/SELinux project, which

identified 22 operations on theWindow resource. As with ext2, we were able to identify at least one

fingerprint for each of these security-sensitive operations from those that we mined. For instance,

the fingerprints presented above correspond to theWindow Map andWindow Unmap operations

on aWindow, respectively.

The fingerprint mining technique presented inChapter 4identified fingerprints for 11 security-

sensitive operations on theWindow resource. However, because that technique is based upon

dynamic program analysis, it can only identify fingerprints along paths exercised by manually-

chosen test inputs to the X server. Further, that technique, as implemented in A, could automate

fingerprint-finding only up to the granularity of function calls; these were then manually refined

to the granularity of code patterns. Concept analysis not only identified the fingerprints mined by

A at the granularity of code patterns, but did so automatically.

5.5.3 The PennMUSH server

PennMUSH is an open-source online game server. Clients connecting to a PennMUSH server

assume the role of a virtual character, as in other popular massively-multiplayer online roleplaying

games. For this work, it suffices to think of PennMUSH as a collaborative database of objects that

clients can modify. Objects are shared resources, and an authorization policy must govern the set

of security-sensitive operations that a client can perform on each object.

Clients interact with PennMUSH by entering commands to a text server, which activates one

or more of 603 internal functions, which we used as the API of PennMUSH. Most of these API



68

Figure 5.8 Concept lattice for PennMUSH. This concept lattice has 127 nodes and 310 edges.
Algorithm 3 identified 38 building blocks in this concept lattice.

functions modify a database of objects. Thus, we tracked how the PennMUSH API manipulates

resources of typeobject. Concept analysis produced 38 building blocks. Most of them had

only one or two code patterns, so we only had to refine 4 of these building blocks using precision

constraints. Two of these fingerprints are discussed below.

1. The fingerprintWrite ⊥ To object->name potentially modifies an object name, and was

contained inCodePatsof 16 API functions, representing creation, destruction and modifi-

cation of objects. Unauthorized clients must be disallowed from changing the name of an

object, indicating that this is a fingerprint of a security-sensitive operation.
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2. The fingerprint{Write 8 To object->type, Write 0 To object->modification time,

Write 1118743 To object->warnings} appears inCodePats(cmd pcreate) and Code-

Pats(fun pcreate), both of which are API functions associated with creation of a “char-

acter” object.

Here, the number1118743 represents a flag that signifies that a character should be warned

about problems with theobjects that they own, and the number8 written to the fieldtype

indicates that the newly created object is a character. These code patterns represent neces-

sary steps in character creation in PennMUSH, and thus indicate that this is fingerprint of a

security-sensitive operation.

In PennMUSH, theobject data structure has just 18 fields, while the API contains 603 func-

tions. Each security-sensitive operation is performed at the granularity of accesses to just one or

two of the fields ofobject. This explains the smaller number and size of building blocks extracted

by concept analysis (as compared to X server).

While the security-sensitive operations that we extracted for PennMUSH can definitely form

the basis for writing policies, site-specific policies may be created by combining several security-

sensitive operations. For example, an administrator might decide that reading an object’s name

is as security-sensitive as determining the kind of object. He can then use the domain-specific

constraintCombine(Readobject->name, Readobject->type) to combine these code patterns

together into a single fingerprint that embodies this security-sensitive operation.

5.6 Limitations

An important limitation of the technique presented in this chapter is that it cannot guarantee

that all fingerprints have been mined. In particular, it isincompletefor unsafe languages such as

C, and can thus havefalse negatives, i.e., it can fail to identify a security-sensitive operation, as a

result of which insufficient authorization checks will be placed in the retrofitted server.

Two reasons contribute to this limitation, both of which are artifacts of an unsafe language such

as C:
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1. Pointer arithmetic can be used to read from/write to a Cstruct representing a resource

data structure. Because code patterns in fingerprints are expressed as ASTs denotingRead,

Write andCall operations on structure fields, our static analysis tool can potentially miss

accesses to fields, thus resulting in spurious fingerprints, or can completely miss fingerprints.

2. Direct writes to data structures are possible via functions such asmemcpy, which write to

untyped regions of memory. Thus, amemcpy can be used to write to the field of a data

structure, and this write will be missed by the static analysis presented in this chapter.

Further research is necessary to develop a provably complete approach to mine fingerprints for

servers written in unsafe languages. However, we conjecture that the technique presented in this

chapter is complete (i.e., will not miss fingerprints) for servers written in safe languages, such as

Java.

5.7 Static fingerprint mining versus dynamic fingerprint mining

As discussed earlier and demonstrated in our case studies, the static fingerprint mining tech-

nique has both better coverage than dynamic mining, and mines fingerprints without the need for

ana priori description of security-sensitive operations.

While this may seem to suggest that the static fingerprint mining technique subsumes the dy-

namic fingerprint mining technique, the dynamic technique can potentially be used to improve

the results of static fingerprint mining. Static analysis mines building blocks, which are manually

examined to identify security-sensitive operations. A description of these security-sensitive oper-

ations can then be used as input to the dynamic fingerprint mining technique. The fingerprints so

obtained can then be compared against the fingerprints obtained from the static technique. This

comparison can potentially be used to prune out false positives produced by the static fingerprint

mining technique. In future work, we plan to explore this application of dynamic fingerprint min-

ing to benefit static fingerprint mining.
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5.8 Using the static fingerprint mining tool

This section summarizes the steps that a security analyst must follow to find fingerprints and

security-sensitive operations using the static mining tool.

• Specify the API to the server and the data types used by the server to represent resources that

must be protected.

• Run the tool to obtain building blocks.

• Refine building blocks using constraints. Precision constraints refine building blocks by

accounting for imprecision introduced by flow-insensitive program analysis, while domain-

specific constraints further refine building blocks using domain knowledge.

• Manually examine building blocks, and interpret the security-sensitive operation performed

by the resource accesses contained in the building block. Building blocks may potentially

have to be combined during this process.

• Output security-sensitive operations. The building block (or combination of building blocks)

of each security-sensitive operation is output as the fingerprint of that security-sensitive op-

eration.

5.9 Summary of key ideas

To summarize, the key contributions of this chapter are:

• A fully static technique to mine fingerprints of security-sensitive operations.

The use of static analysis overcomes an important limitation of the dynamic analysis-based

technique presented inChapter 4, namely the ability to find fingerprints only along paths

exercised by manually chosen inputs to the server. Because static program analysis ensures

better coverage than dynamic analysis, the static technique can mine more fingerprints than

the dynamic technique.
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• A novel algorithm using concept analysis to automatically mine fingerprints of security-

sensitive operations.

To our knowledge, this is the first application of concept analysis to mine security proper-

ties of software. The use of concept analysis overcomes another limitation of the technique

in Chapter 4, namely the need for ana priori description of security-sensitive operations.

Concept analysis automatically mines building blocks without the need for ana priori de-

scription of security-sensitive operations. We were thus able to apply this technique to find

security-sensitive operations for PennMUSH, for which noa priori description of security-

sensitive operations was available.

• Case studies on three real-world servers of significant complexity.

In each case study, we were able to inspect the lattice and identify security-sensitive op-

erations with a few hours of manual effort and modest domain knowledge. Without our

approach, the entire code base must be examined to find such security-sensitive operations.
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Chapter 6

Using Fingerprints to Retrofit Legacy Code

This chapter presents a technique that uses fingerprints to statically retrofit legacy code with

reference monitor calls (also calledauthorization hooks). It also discusses techniques to synthesize

reference monitor code (if a reference monitor implementation is not available) and to analyze ref-

erence monitor code (if an implementation is available). The techniques presented in this chapter

have been applied to retrofit the X server, and enforce authorization policies on X client requests.

6.1 Problem statement

Given the source code of a server program and a set of fingerprints of security-sensitive op-

erations, the technique presented in this chapter statically identifies all locations that match these

fingerprints (and hence perform the corresponding security-sensitive operation).

The server must then be modified by inserting appropriate authorization checks at each location

where a security-sensitive operation is performed. This chapter presents a technique to retrofit the

server with calls to a reference monitor, and also describes the key steps involved in implementing

the reference monitor.

In some cases, the security analyst may decide to use an existing reference monitor with the

retrofitted server. This reference monitor may contain existing implementations of authoriza-

tion queries, where each authorization query may consult the policy to check whether one or

more security-sensitive operations is permitted. Such an implementation exists, for example, in

SELinux, and the problem in this case is to place calls to these authorization queries at appropriate

locations in the server (in the case of SELinux, the server is the Linux kernel). This chapter also
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presents an algorithm to analyze existing implementations of authorization queries to identify the

security-sensitive operations authorized by each query.

6.2 Identifying security-sensitive locations

We employ static pattern matching on the source code of the server to locate all occurrences of

fingerprints. Each location that matches a fingerprint is deemed to perform the security-sensitive

operation that it represents. Such locations are then instrumented with reference monitor calls. In

this respect, our approach bears close resemblance to aspect-oriented programming, where static

pattern matching is employed to matchpointcutsagainst source code to locatejoinpointsand weave

advice[AOS].

Our approach currently identifies security-sensitive locations at the granularity of function

calls. Each function that contains all the code patterns in a fingerprint (and satisfies the constraints

in the fingerprint) is said to match the fingerprint. The idea is that by mediating calls to functions

that contain these patterns, the corresponding security-sensitive operations are mediated as well.

This is done using a flow-insensitive, analysis, as described in Algorithm4.

Algorithm 4 is a simple intraprocedural analysis that first identifies the set of code patterns

that appear in the body of a function, and then checks to see if the code patterns contained in

the fingerprint of a security-sensitive operation appear in this set. If so, the function is marked

as performing the security-sensitive operation. Note that a fingerprint can contain a code pattern

of the form Call f: in this case, the functionf is marked as performing the security-sensitive

operation.

Recall fromFigure 3.1that a fingerprint can either beintraproceduralor interprocedural. In-

traprocedural fingerprints are matched as shown in Algorithm4, by considering the set of code

patterns contained in each function. Interprocedural fingerprints contain code patterns that may

appear in different functions, and the matching algorithm shown in Algorithm4 must thus be ex-

tended to match interprocedural fingerprints. This is achieved by a straightforward (and standard)

extension to Algorithm4. We first compute the set of code patterns contained in each function

intraprocedurally, as shown in Algorithm4. We then traverse the call-graph in reverse topological
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order, gathering the set of code patterns contained in each function. The interprocedural extension

is based upon the summary-based approach to interprocedural program analysis [SP81].

To match a fingerprint, we compare the code patterns contained in a fingerprint against the set

of code patterns gathered at each node in the call-graph. The node in the call-graph closest to

the leaf that contains all the code patterns in a fingerprint is marked as performing the security-

sensitive operation. While the fingerprints for the X server and PennMUSH were intraprocedural,

we encountered a few interprocedural fingerprints in the case of ext2.

Consider the functionMapSubWindows in the X server (shown inFigure 2.2). This function

maps all children of a given window (pParent in Figure 2.2) to the screen. Note that it contains

code patterns that constitute the fingerprint of bothWindow Enumerate andWindow Map. Thus,

Opset(MapSubWindows) = {Window Map, Window Enumerate}.

Constraints in fingerprints can be used to restrict matches. For example, the fingerprint for

Window Enumerate, shown below, constrains theWindowPtr variable used in the first code pat-

tern to be different from the variable in the secondWindowPtr variable. This is especially useful

for cases such as the one shown inFigure 2.2, where theparentwindow’s firstChild field is

read, followed by thenextSib field of child windows.

Window Enumerate :- ReadWindowPtr1->firstChild

∧ ReadWindowPtr2->nextSib

∧ WindowPtr , 0 Subject to

Different(WindowPtr1, WindowPtr2)

Figure 6.1andFigure 6.2illustrate how interprocedural matching of fingerprints proceeds using

the example of the ext2 file system.Figure 6.1shows interprocedural fingerprints for four security-

sensitive operations,Dir Write, Dir Rmdir, File Unlink and Dir Search; these security-sensitive

operations were identified in the LSM project [WCS+02].

Figure 6.2shows a portion of the call-graph of the ext2 file system, rooted at the node corre-

sponding to the functionext2 rmdir. Note that the functions shown in the call-graph (ext2 unlink,

ext2 dec count, etc.) can also be called by other functions in the kernel; these edges are not

shown inFigure 6.2. When a request is received to remove directorybar from directoryfoo,
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Algorithm : F S- L(X, S, FP)

Input : (i) X: Server to be retrofitted,

(ii) S: Set of security-sensitive operations{op1, . . ., opn}, and

(ii) FP: Set of fingerprints{fp1, . . ., fpn} of op1, . . ., opn, respectively.

Output : Opset:X→ 2S, where Opset(f ) denotes the set of security-sensitive operations

performed by a call tof , a function ofX.

foreach (function f in X) do1

Opset(f ) := φ;2

/* Preprocess function call code patterns*/;3

foreach (fingerprint fpi in FP) do4

fpseti := Set of code patterns in fpi;5

if (fpseti == {Call f1, . . ., Call fm}) then6

foreach ( f ∈ {f1, . . ., fm}) do7

Opset(f ) = Opset(f ) ∪ {opi};8

/* Process all the fingerprints*/;9

foreach (function f in X) do10

CP(f ) := Set of code patterns inf (as determined using the ASTs of statements inf );11

foreach (fingerprint fpi in FP) do12

if (fpseti ⊆ CP(f ) and all contraints specified in fpi are satisfied inf ) then13

Opset(f ) := Opset(f ) ∪ {opi};14

return Opset;15

Algorithm 4 : Finding functions that contain code patterns that appear in fingerprints.

ext2 rmdir checks to see thatbar is empty via a call toext2 rmdir empty (not shown inFig-

ure 6.2). It then callsext2 unlink, which modifies ext2-specific data structures and removes

the entry ofbar from the inode offoo. Finally, it callsext2 dec count to decrement the field

i nlink on the inodes of bothfoo andbar.
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Dir Write :- Write⊥ Toinode->i ctime

∧ Call address space ops->prepare write()

Dir Search :- Readinode->i mapping

File Unlink :- Decrement(inode->i nlink)

∧ ¬Write 0 Toinode->i size

Dir Rmdir :- Write 0 Toinode->i size

∧ Decrementinode->i nlink

Figure 6.1 Interprocedural fingerprints for four security-sensitive operations for the ext2 file
system

mapping = inode−>i_mapping

page−>mapping−>a_ops−>prepare_write()

inode−>i_size = 0

inode−>i_nlink−−

ext2_rmdir(inode,dentry) ext2_unlink(inode,dentry)

ext2_find_entry(inode,dentry,page)

ext2_delete_entry(inode,page)

ext2_get_page(inode)
ext2_dec_count(inode)

Figure 6.2 A portion of the call-graph of the ext2 file system, rooted at the functionext2 rmdir.
Code snippets relevant to the example are shown in boxes near the functions that they appear in.

Figure 6.3shows the results of matching the fingerprints shown inFigure 6.1interprocedurally

using the ext2 call-graph snippet shown inFigure 6.2. The results are self-explanatory. For ex-

ample, the matching algorithm infers thatext2 rmdir performs the security-sensitive operations

Dir Rmdir, Dir Search andDir Write. Note that in this case, matching is performed interprocedu-

rally, and the function in the call-graph, closest to the leaf, that contains all the code patterns in a

fingerprint is marked as performing the security-sensitive operation represented by that fingerprint.

In addition to fingerprint matching, we also employ a simple heuristic to help identify the

subject requesting the security-sensitive operation, and the object upon which the security-sensitive
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ext2 delete entry Dir Write

ext2 get page Dir Search

ext2 find entry Dir Search

ext2 dec count File Unlink

ext2 unlink File Unlink, Dir Write, Dir Search

ext2 rmdir Dir Rmdir, Dir Write, Dir Search

Figure 6.3 Results of matching the interprocedural fingerprints shown inFigure 6.1.

operation is performed. To do so, we identify variables of the relevant types that are in scope (some

domain knowledge may be required here). For example, in the X server, the subject is always the

client requesting the operation, which is a variable of theClient data type, and the object can

be identified based upon the kind of operation requested. For window operations, the object is

a variable of theWindow data type. This set is then manually inspected to recover the relevant

subject and object at each location.

6.3 Evaluation of the matching algorithm

We implemented Algorithm4 and its interprocedural variant as a plugin to CIL [NMRW02].

We evaluate its effectiveness on the X server in the following sections. In our experiments, we

used the fingerprints that were mined using the dynamic fingerprint mining algorithm, described

in Chapter 4.

6.3.1 How precise are the security-sensitive locations found?

Algorithm4precisely identifies the set of security-sensitive operations performed by each func-

tion, with one exception. It reports false positives for theWindow Enumerate operation,i.e., it

reports that certain functions perform this operation, whereas in fact, they do not. Out of 20 func-

tions reported as performingWindow Enumerate, only 10 actually do.
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We found that this was because of the inadequate expressive power of the code pattern lan-

guage. In particular, Algorithm4 matches functions that contain the code patternsWindowPtr ,

0, ReadWindowPtr->firstChild, andReadWindowPtr->nextSib, but do not perform linked-

list traversal. These false positives can be eliminated by enhancing the fingerprint language with

more constructs (in particular, loop constructs).

6.3.2 How easy is it to identify subjects and objects?

As mentioned earlier, we identify subjects and objects using variables of relevant data types in

scope. This simple heuristic is quite effective: out of 25 functions in the X server that were iden-

tified as performingWindow operations, the subject, of typeClient, and object, of typeWindow,

were available as formal parameters or derivable from formal parameters in 22 of them. In the re-

maining functions, specifically, those performingWindow InputEvent, the subject and object were

derived from global variables. Even in this case, however, manual inspection quickly reveals the

relevant global variables.

6.4 Synthesizing a reference monitor implementation

Locations identified as performing security-sensitive operations by Algorithm4 are then pro-

tected using instrumentation. Because we recover the complete description of security events

(i.e.,the subject, the object and the security-sensitive operation), adding instrumentation is straight-

forward, and calls to theQueryRefmon function (the reference monitor’s API function to place

an authorization query) are inserted as described inSection 2.5.5. If the function to be pro-

tected is implemented in the server itself and not within a library (e.g.,as is the case with all

the security-sensitive function calls in the ext2 file system, the X server, and PennMUSH), calls

to QueryRefmon can be placed within the function body itself. Because the same variables that

constitute the security-event are also passed toQueryRef,on (i.e., if 〈sub, obj, op〉 is the secu-

rity event, then the corresponding call isQueryRefmon(〈sub, obj, op〉)), and the data structures

used to represent subjects and objects are internal to the server, this approach avoids TOCTTOU

bugs [BD96] by construction.
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bool QueryRefmon (Client *sub, Window *obj, Operation OP) {

switch (OP) {

case Window Create :

rc = PolicyLookup (sub->label, NULL, Window Create );

i f (rc == ALLOW) {

obj->label = sub->label;

re tu rn TRUE ;

}

else {

re tu rn FALSE ;

}

case Window Map:

rc = PolicyLookup (sub->label, NULL, Window Map);

/ ∗ Rest o f t h e code t o hand le WindowMap ∗ /

...

/ ∗ More c a s e s t o hand le s e c u r i t y− s e n s i t i v e o p e r a t i o n s∗ /

}

}

Figure 6.4 Code fragment showing the implementation ofQueryRefmon for Window Create.

We also generate a template implementation of the authorization query function,QueryRefmon,

as shown inFigure 6.4(this example is for the X server). The developer is then faced with two

tasks:

1. Implementing the policy consulter: The developer must insert appropriate calls from a

policy management API of his choice into the template implementation ofQueryRefmon,

generated as shown inFigure 6.4. We impose no restrictions on the policy language, or

the policy management framework.Figure 6.4shows an example: it shows a snippet of

code generated. Subject and object labels are stored as fields (label) in the data structures

representing them. The statement in italics, a call to the functionPolicyLookup, must be
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changed by the developer, and substituted with a call from the API of a policy-management

framework of the developer’s choice.

Several off-the-shelf policy-management tools are now available, including the SELinux pol-

icy management toolkit [Trea], which manages policies written in the SELinux policy lan-

guage. If this tool is used, the relevant API call to replacePolicyLookup is avc has perm.

2. Implementing reference monitor state updates:The developer must update the state of

the reference monitor based upon the state update functionU. Note thatU depends on

the policy to be enforced; different policies may choose to update security-labels differently.

Functionality to determine how security-labels must change based upon whether an autho-

rization request succeeds or fails must ideally be provided by the policy-management tool

that is used (because how security-labels change is policy-dependent).

However, if this functionality is not available in the policy-management tool used, the devel-

oper must update the state of the reference monitor manually. The fragment of code in the

case forWindow Create in Figure 6.4shows a simple example ofU: When a new window

is created, its security-label is initialized with the security-label of the client that created it.

It is worth noting for this example that a pointer to the window is created only after memory

has been allocated for it (in theCreateWindow function of the X server). Thus we place the

call to QueryRefmon in CreateWindow just after the statement that allocates memory for

a window; if this call succeeds, the security-label of the window is initialized. Otherwise,

we free the memory that was allocated, and return aNULL window (i.e.,HandleFailure) is

implemented asreturn NULL;).

Finally, it remains to explain how we bootstrap security-labels in the server. As mentioned

earlier, we assume that the server runs on a machine with a security-enhanced operating system.

We use operating system support to bootstrap security-labels based upon how clients connect to

the server (as has been done by others [Sma05b]). For example, in an SELinux system, all socket

connections have associated security-labels, and servers can bootstrap security using these labels.
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For example, X clients connect to the X server using a socket. In this case, we can use the security-

label of the socket (obtained from the operating system) as the security-label of the X client. We

then propagate X client security-labels as they manipulate resources on the X server, as shown

in Figure 6.4, where the client’s security-label is used as the security-label for the newly-created

window.

6.5 Example: Retrofitting the X server to enforce authorization policies

We demonstrate how an X server retrofitted using the techniques presented thus far enforces

authorization policies on X clients. In our experiments, we ran the retrofitted X server on a machine

running SELinux/Fedora Core 4. Thus, we bootstrapped security-labels in the X server using

SELinux security-labels (i.e., a client gets the label of the socket it uses to connect to the server).

We describe two attacks that are possible using the unsecured X server, and describe corresponding

policies, which when enforced by the retrofitted X server prevent these attacks. In each case we

implemented the policy to be enforced within theQueryRefmon function itself.

6.5.1 Example I: Setting window properties

Attack. Several well-known attacks against the X server rely on the ability of an X client to

set properties of windows belonging to other X clients,e.g.,by changing their background or

content [KSV03].

Policy. Disallow an X client from changing properties of windows that it does not own.

Note that this policy is enforced more easily by the X server than by the operating system.

The operating system would have to understand several X server-specific details to enforce this

policy. X clients communicate with each other (via the X server) using the X protocol. To en-

force this policy, the operating system would have to interpret X protocol messages to determine

which messages change properties of windows, and which do not. On the other hand, this pol-

icy is easily enforced by the X server because setting window properties involves exercising the

Window Chprop security-sensitive operation.
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Enforcement. The call toQueryRefmon placed in theChangeProperty function of the X server

mediatesWindow Chprop. To enforce this policy, we check that the security-label of the subject

requesting the operation, and the security-label of the window whose properties are to be changed

are equal.

6.5.2 Example II: Secure cut-and-paste

Attack. Operating systems can ensure that a file belonging to a Top-secret user cannot be read

by an Unclassified user (the Bell-LaPadula policy [BL76]). However, if both the Top-secret and

Unclassified users havexterms open on an X server, then a cut operation from thexterm belonging

to the Top-secret user and a paste operation into thexterm of the Unclassified user violates the

Bell-LaPadula policy.

Policy. Ensure that a cut from a high-security X client window can only be pasted into X client

windows with equal or higher security. This is akin to the Bell-LaPadula policy [BL76].

Existing security mechanisms for the X server (namely, the X security extension [Wig96a])

cannot enforce this policy if there are more than two security-levels.

Enforcement. The cut and paste operations correspond to the security-sensitive operationWin-

dow Chselection of the X server. A identifies the fingerprints ofWindow Chselection as calls

to two functions,ProcSetSelectionOwner andProcConvertSelection in the X server. It

turns out that the former is responsible for the cut operation, and the latter for the paste operation.

Calls toQueryRefmon placed in these functions are used to mediate the cut and paste operations,

respectively.

We created three users on our machine with security-labels Top-secret, Confidential and Un-

classified, in decreasing order of security. The X clients created by these users inherit their security-

labels. We were able to successfully ensure that a cut operation from a high-security X client win-

dow (e.g.,Confidential) can only result in a paste into X client windows of equal or higher security

(e.g.,Top-secret or Confidential).
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6.6 Performance of the retrofitted X server

We measured the runtime overhead imposed by instrumentation by running a retrofitted X server

and an unmodified X server on 25x11perf [x11b] benchmarks. We ran the retrofitted X server

with a null policy, i.e., all authorization requests succeed, to measure performance overhead. We

measured performance overhead by comparing the number of operations per second (as computed

by thex11perf benchmark suite) in the retrofitted X server against the number of operations per

second in an unmodified X server. Overhead ranged from 0% to 18% across the benchmarks, with

an average overhead of 2%.

6.7 Analyzing a reference monitor implementation

In some cases, an implementation of the reference monitor may be available, and the security

analyst may only wish to determine locations where authorization queries to the reference monitor

must be placed. Indeed, we encountered this scenario in our analysis of the ext2 file system, where

we had a reference monitor implementation available (namely, that implemented in SELinux),

and wanted to determine where to place authorization queries. In such cases, the reference monitor

need not be synthesized, as described inSection 6.4. Instead, the reference monitor implementation

must be analyzed to determine the set of security-sensitive operations that are authorized by each

authorization query function that is exported by the reference monitor.

This section describes an algorithm that analyzes reference monitor implementations, and ex-

tracts, for each query function in the implementation, the set of security-sensitive operations au-

thorized by that query function, and the parameters with which the query must be invoked. We use

the ext2 file system and the SELinux reference monitor implementation as the running example in

our explanation of the algorithm.

ConsiderFigure 6.5, which shows a snippet of the implementation of the authorization query

selinux inode permission in the SELinux reference monitor implementation. This snippet

authorizes searching, writing to, or reading from an inode representing a directory, based upon the

value ofmask. The authorization is performed by the call toinode has perm, which authorizes



85

101 i n t se l inux inode permiss ion ( s t r u c t inode *inode, i n t mask) {

102 ...

103 i f (!mask) {

104 re tu rn 0;

105 }

106 re tu rn inode has perm (current, inode,

107 f i l e m a s k t o a v (inode->i_mode,mask), NULL);

108 }

201 s t a t i c i n l i n e access vec to r t f i l e m a s k t o a v ( i n t mode, i n t mask) {

202 access vec to r t av = 0;

203 i f ((mode & S IFMT) != S IFDIR) {

204 / ∗ F i l e − r e l a t e d s e c u r i t y− s e n s i t i v e o p e r a t i o n s∗ /

205 ...

206 }

207 else {

208 i f (mask & MAY EXEC)

209 av |= Dir_Search;

210 i f (mask & MAY WRITE)

211 av |= Dir_Write;

212 i f (mask & MAY READ)

213 av |= Dir_Read;

214 }

215 re tu rn av;

216 }

Figure 6.5 Code for the SELinux authorization queryselinux inode permission (borrowed
from the Linux-2.4.21 kernel).

a security-sensitive operation on an inode based upon theaccess vectorit is invoked with1. In

Figure 6.5, the access vector is obtained by a call tofile mask to av.

1Security-sensitive operations are represented in SELinux using bit-vectors, called access vectors. The macros
Dir Search, Dir Write andDir Read in Figure 6.5represent these bit-vectors
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Our analysis algorithm, described in Algorithm5 and Algorithm6, produces the output shown

below upon analyzing the code snippet shown inFigure 6.5.

〈(mask , 0) ∧ inode isdir ∧ (mask & MAY EXEC) ‖ Dir Search〉

〈(mask , 0) ∧ inode isdir ∧ (mask & MAY WRITE) ‖ Dir Write〉

〈(mask , 0) ∧ inode isdir ∧ (mask & MAY READ) ‖ Dir Read〉

where “inode isdir” denoteso(inode->i mode & S IFMT == S IFDIR).

Each line of the output is a tuple of the form〈predicate ‖ operation〉, where the predicate

only contains formal parameters of the authorization query. This tuple is interpreted as follows: if

the authorization query is invoked in a context such thatpredicate holds, then it checks that the

security-sensitive operationoperation is authorized. In this case, our analysis algorithm infers that

for inodes that represent directories (i.e.,the inodes with(inode->i mode & S IFMT == S IFDIR))

the hookselinux inode permission checks that the security-sensitive operationsDir Search,

Dir Write or Dir Read are authorized, based upon the value ofmask.

We now proceed to explain Algorithm5. For ease of explanation, assume that there is no

recursion; we explain how we deal with recursion later in the section. The analysis proceeds

by first constructing the call-graph of the reference monitor implementation. The call-graph is

processed in reverse topologically sorted order,i.e.,starting at the leaves, and proceeding upwards.

For each node in the call-graph, it produces a summary, and outputs summaries of authorization

queries, exported by the reference monitor.

Summary construction is described in Algorithm6. The summary of a functionf is a set of

pairs〈pred ‖ op〉, denoting the condition (pred) under which a security-sensitive operation (op) is

authorized byf . The analysis in Algorithm6 is flow- and context-sensitive. That is, it respects the

control-flow of each function, and precisely models call-return semantics.

Intuitively, summary construction for a functionf proceeds by propagating a predicatep

though the statements off . At any statement, the predicate denotes the condition under which

control-flow reaches the statement. The analysis begins at the first statement of the functionf

(denoted byEntrypoint( f )), with the predicate set totrue.
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Algorithm : A R-M(M, H)

Input : (i) M: Reference monitor containing source code of authorization query

functions,

(ii) H: A set containing the names of authorization queries exported by the

reference monitor.

Output : For eachh ∈ H, a set{〈predicate ‖ operation〉}, denoting the security-sensitive

operations authorized by each authorization query, and the conditions under

which they are authorized.

Construct the call-graphG of the reference monitorM1

L := List of vertices ofG, reverse topologically sorted2

foreach ( f ∈ L) do3

Summary( f ) := A F( f , Entrypoint( f ), true)4

foreach (h ∈ H) do5

OutputSummary(h)6

Algorithm 5 : Analyzing a reference monitor implementation to determine security-sensitive

operations authorized by each authorization query.

At anif-(q)-then-else statement, thetrue branch is analyzed with the predicatep ∧ q, and

the false branch is analyzed with the predicatep ∧ ¬q. For instance, the value ofp at line203in

Figure 6.5is true. Thus, lines207-214are analyzed withtrue ∧ (mode & S IFMT) == S IFDIR.

At Call g(a1,a2, . . . ,an), a call to the functiong, the summary ofg is specialized to the calling-

context. Note that because of the order in which functions are processed in Algorithm5, the

summary ofg is computed beforef is processed. The summary ofg is a set of tuples〈qi ‖ opi〉.

Because of the way summaries are computed, formal parameters ofg appear in the predicateqi.

To specialize the summary ofg, actual parametersa1, a2, . . ., an are substituted in place of formal

parameters inqi. The resulting predicateri is then combined withp, and the entry〈p ∧ ri ‖ opi〉 is

included in the summary off . Intuitively, g authorizes operationopi if the predicateqi is satisfied.

By substituting actual parameters in place of formal parameters, we determine whether the current
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call to g authorizes operationopi; i.e.,whether the predicateqi, specialized to the calling context,

is satisfiable. Because the call tog is reached inf under the conditionp, an operation is authorized

by g only if p ∧ ri is satisfiable.

For other statements, the analysis determines whether the statement potentially authorizes

an operationop. Determining whether a statement authorizes an operationop is specific to the

way security-sensitive operations are represented in the kernel module. For instance, in SELinux,

security-sensitive operations are denoted by bit-vectors, called access vectors and there is a one-

to-one mapping between access vectors and security-sensitive operations. Thus, for the SELinux

reference monitor we use the occurrence of an access vector (e.g.,reading its value) in a statement

to determine if the statement authorizes a security-sensitive operation.

Where possible, the predicatep is also updated appropriately based upon the action of statement

s. For instance, if the statement in question isj := i, and predicatep propagated to this statement

is (i == 3), then the predicatep is updated to(j == i) ∧ (i == 3). In cases where the effect of s on

p cannot be determined, the new value ofp is set toUnknown, a special value denoting that the

value ofp cannot be determined precisely.

For functions that have a formal parameter of typeaccess vector t, but do not refer to

any particular access vector (such asDir Read, Dir Write, or Dir Search), the analysis returns

{〈true ‖ λx.x〉} (not shown in Algorithm6), which says that the function potentially authorizes any

security-sensitive operation, based upon the access vector it is invoked with (the variablex in λx.x

denotes the access vector).

After processing a statements in f , the analysis continues by processing the control-flow-

successors ofs. The analysis terminates when all the statements reachable fromEntrypoint( f )

have been analyzed. To keep the analysis tractable, Algorithm6 analyzes loop bodies exactly once.

That is, it ignores back-edges of loops. As a result, loops are treated as conceptually equivalent to

if-then-else statements.

Finally, any local variables off appearing in predicatesp (for each〈p ‖ op〉 in the summary of

f ) are quantified-out. As a result, predicates appearing in the summary off only contain formal

parameters off .
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Algorithm : A F( f , s, p)

Input : (i) f : Function name,

(ii) s: Statement inf from which to start the analysis,

(iii) p: A Boolean predicate.

Output : A set{〈predicate ‖ operation〉}.

R := φ1

switch T-(s) do2

caseif (q) then Btrue else Bf alse3

R := A F( f , Entrypoint(Btrue), p ∧ q)4

∪ A F( f , Entrypoint(Bf alse), p ∧ ¬q)5

caseCall g(a1, a2, . . ., an)6

G := Summary(g)7

foreach (〈qi ‖ opi〉 ∈ G) do8

ri := qi specialized witha1, a2, . . ., an9

R := R∪ {〈(p ∧ ri) ‖ opi〉}10

R := R∪ A F( f , ControlFlowSucc( f , s), p)11

otherwise12

if (s authorizes security-sensitive operationop) then R := {〈p ‖ op〉}13

Updatep appropriately14

R := R∪ A F( f , ControlFlowSucc( f , s), p)15

foreach (〈p ‖ op〉 ∈ R) do16

Existentially quantify-out any local variables off appearing inp17

return R18

Algorithm 6 : Determining the security-sensitive operations authorized by each function, and

the conditions under which they are authorized.
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Algorithm 5 and Algorithm6 are, in effect, a simple implementation of a symbolic execution

engine [Kin76]. Of course, implementing a full-fledged symbolic execution engine for C is a

significant engineering exercise [GKS05, SMA05a]; our implementation is simplistic, and ignores

effects of aliasing (and is thus incomplete).

We illustrate Algorithm5usingFigure 6.5(A). For the functionfile mask to av, Algorithm6

returns the output shown below, wheremode isdir denotesmode & S IFMT == S IFDIR.

〈mode isdir ∧ (mask & MAY EXEC) ‖ Dir Search〉

〈mode isdir ∧ (mask & MAY WRITE) ‖ Dir Write〉

〈mode isdir ∧ (mask & MAY READ) ‖ Dir Read〉

Observe that the summary only contains formal parameters offile mask to av. When this

summary is specialized to the call on line107, formal parameters are replaced with the actual pa-

rameters (e.g.,mode byinode->i mode), thus specializing the summary to the call-site, producing

the output shown below, whereinode isdir denotesinode->i mode & S IFMT == S IFDIR.

〈inode isdir ∧ (mask & MAY EXEC) ‖ Dir Search〉

〈inode isdir ∧ (mask & MAY WRITE) ‖ Dir Write〉

〈inode isdir ∧ (mask & MAY READ) ‖ Dir Read〉

For inode has perm, Algorithm 6 returns{〈true ‖ λx.x〉}, which intuitively means that the

function authorizes a security-sensitive operation based upon the access vector (x) passed to it.

Thus, when this call toinode has perm is specialized to the call on line107, the summary ob-

tained is the same shown above. Because line107 in selinux inode permission is reached

when (mask , 0), this predicate is combined with predicates in the summary of the function

inode has perm to produce the result shown inFigure 6.5(B).

Recursion in the kernel module introduces strongly-connected components in its call-graph.

Note that Algorithm5 requires the call-graph to be a directed acyclic graph (DAG). To handle

recursion, we consider the functions in a strongly-connected component together. That is, we pro-

duce a consolidated summary for each strongly-connected component. Intuitively, this summary

is the set of security-sensitive operations (and the associated conditions) that could potentially be
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authorized ifany function in the strongly-connected component is called. Observe that handling

recursion also requires a small change to lines (7)-(11) of Algorithm 6. Because of recursion, the

summary of a functiong that is called by a functionf may no longer be available in line (7), in

which case we skip forward to line (11).

Precision of the analysis. Observe that Algorithm6 analyzes all reachable statements of each

function. Thus, if a functionf authorizes operationop, then〈q ‖ op〉 ∈ Summary( f ), for some

predicateq.

However, because of the approximations employed by Algorithm5 and Algorithm6 to keep

the analysis tractable, the predicateq may not accurately describe the condition under whichop is

authorized. In particular, because Algorithm6 ignores back-edges on loops, loop bodies are ana-

lyzed exactly once, and the predicates retrieved will be imprecise. Similarly, because Algorithm6

employs a heuristic to handle recursion, the predicates retrieved will be imprecise. These predi-

cates are used during hook placement to determine the arguments that the hook must be invoked

with. Thus, imprecision in the results of the analysis will mean manual intervention to determine

how hooks must be invoked.

In our experiments on the SELinux reference monitor, we found that the code of the reference

monitor was relative simple, and we were able to retrieve the conditions precisely in most cases.

For instance, there were no loops in any of the functions from the SELinux reference monitor that

we analyzed.

6.8 Using the matching tool

This section summarizes the steps that a security analyst must follow to use fingerprints to

locate where security-sensitive operations are performed by a server.

• Run Algorithm4, which identifies the security-sensitive operations performed by each func-

tion by matching fingerprints.
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• For each function and for each security-sensitive operation performed by that function, de-

termine the subject requesting the operation and the object affected by the operation.

• Run the transformation tool to insert authorization checks. If a reference monitor implemen-

tation is already available, use Algorithm5 and Algorithm6 to analyze the implementation

and determine the authorization check that must be inserted.

• For each authorization check, determine how to handle failed authorizations, and insert ap-

propriate failure-handling code.

6.9 Summary of key ideas

To summarize, the key contributions of this chapter are:

• A static pattern-matching algorithm to match fingerprints against server source code, and

locate security-sensitive operations. The pattern-matching algorithm works both intrapro-

cedurally and interprocedurally, to match intraprocedural and interprocedural fingerprints,

respectively.

• Techniques to synthesize a reference monitor implementation, in cases where an implemen-

tation is not available.

• Techniques to statically analyze a reference monitor implementation, and determine the

security-sensitive operations authorized by each authorization query function exported by

the reference monitor, when an implementation is available.
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Chapter 7

Related Work

Authorization policy enforcement is a topic of central interest to computer security, and has

received much attention over the last thirty five years. This chapter surveys related work in the

area.

7.1 Foundations of authorization

Authorization was first formalized by Lampson using the notion of an access control ma-

trix [Lam74]. Each column of the access control matrix corresponds to a system resource, and

each row corresponds to a system user. The matrix entry (sub, obj) denotes therights 1. (e.g.,

read, write, create, own) that system usersubhas on system resourceobj. Given a set of rules

to create, modify and delete entries in an access control matrix, it is natural to ask the following

safetyquestion: can a subjectsubever have a rightr on a resourceobj? This problem was shown

to be undecidable [HRU76].

While an access control matrix is an instantaneous description of the set of system resources

that a subject can access, there are historically two ways to administer such an access matrix: the

Discretionary Access Control (DAC) and the Mandatory Access Control (MAC) model [TCS85].

In the DAC model (e.g.,the Graham-Denning model [GD72]), the access rights that a user has on

system resources that he owns can bedelegatedto others,i.e., the access rights on resources that

he owns are at his discretion. In contrast, in the MAC model (e.g.,the Bell LaPadula model [BL76]

and the Biba model [Bib77]), access rights that a user has on system resources are decided by a

1The termrights is synonymous with the termsecurity-sensitive operationused in this document as well as with
the termpermissionthat is also used in the literature [GHRS05, JSZ03, Sma03]
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central authority, such as the system administrator, and cannot be changed at the discretion of the

user. MAC policies have historically been used only in military applications, while DAC has been

available on commercial operating systems, such as UNIX. However, recent developments, such as

SELinux [LS01a, LS01b], have enabled the deployment of MAC in commodity operating systems.

There are two popular ways to represent an access control matrix, namely,access control lists

(ACLs) andcapabilities. Access control lists typically associate each resource on the system with

the set of access rights that each subject has on the resource. In contrast, capabilities typically

associate each subject with the set of access rights that the subject has on system resources. Thus,

if we assume that each column of the access control matrix represents a system resource, and

each row corresponds to a subject, access control lists are obtained by reading off columns of the

matrix, while capabilities are obtained by reading off rows of the matrix. Most modern commercial

operating systems implement access control matrices as access control lists, while several historic

systems and research operating systems have used capabilities (the book by Levy [Lev84] gives

a good overview of historic systems that implemented capabilities; EROS is a modern research

operating system that implements capabilities [SSF99]).

7.2 Authorization policy enforcement systems

Reference monitors, introduced by Anderson in 1972 [And72], have historically been the stan-

dard mechanism for authorization policy enforcement. As explained inChapter 1, a reference

monitor must satisfy three properties, namely, Complete Mediation, Tamper Resistance, and Veri-

fiability. A reference monitor takes as input a description of the subject (e.g.,user ID), a description

of the object (e.g.,file name), and the security-sensitive operation requested. It consults an autho-

rization policy, and returns a Boolean, which determines whether the subject is allowed to perform

the requested security-sensitive operation on the object. An enforcement mechanism (e.g.,ap-

propriate runtime checks inserted in code) uses this Boolean value to ensure that the policy is

enforced.

Historically, reference monitors have been implemented in the operating system. The main

reason is because the operating system manages and mediates access to system resources. For
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example, most Linux distributions implement mechanisms to enforce DAC authorization policies

using ACLs (therwx bits associated with files are an example of ACLs). More recently, operating

systems are being augmented and restructured to enforce more powerful access control policies

(e.g.,MAC) and information flow policies. Security-enhanced Linux (SELinux) [LS01a, LS01b]

and the Asbestos operating system [EKV+05, KEF+05] are two examples of such efforts. Both

SELinux and Asbestos associatesecurity labelswith subjects and objects managed by the oper-

ating system. They enforce mandatory access control policies and track information flow using

these security labels. One of the main differences between SELinux and Asbestos is that SELinux

was constructed by augmented the Linux kernel, while Asbestos was designed afresh. Conse-

quently, Asbestos exports new interfaces (e.g.,a new system call interface), and applications must

be modified or redesigned to run on Asbestos. In contrast, legacy applications can be supported on

SELinux.

While an ideal location to implement a reference monitor that mediates access to system re-

sources, as argued inSection 2.7, the operating system may not be suitable to implement a ref-

erence monitor that mediates access to resources managed by applications (unless the operating

system is equipped with new primitives, as in Asbestos). There thus is an extensive body of re-

search on implementing reference monitors that enforce application-specific authorization policies.

For example, Java’s security mechanism [GE03] implements the reference monitor as an object of

typeAccessController. Calls to the functionAccessController.checkPermission() are

placed at appropriate locations in code. These calls consult an authorization policy, and determine

whether an access should be allowed.

Inlined reference monitors (IRM) are another approach to implement reference monitors [Erl04].

In the IRM approach, security policies are specified as security automata (and are thus safety prop-

erties). For example, a policy to protect confidential data managed by a server can be “disallow

send operations over the network after aread operation of sensitive data”. These policies are

enforced byinlining the security automaton into the application to be secured. The application is

rewritten by introducing new variables that track the state of the security automaton. These state

variables are then used to determine whether a security-sensitive operation (e.g.,asend or aread)
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should be allowed. IRMs have been used to implement a variety of security policies, including

Java stack inspection [ES00]. IRMs were implemented using the PoET/PSLang framework; the

framework allows specification of security policies written as security automata, and rewrites Java

bytecode to inline these security automata. Naccio [ET99], Polymer [BLW05], Ariel [PH99] and

the work by Grimm and Bershad [GB01] are projects similar to the PoET/PSLang framework, and

enforce safety policies by rewriting Java bytecode. However, each of these frameworks requires

the security analyst to provide a description of the code patterns that represent a security-sensitive

operation. These code patterns are used by the rewriting framework to identify locations that per-

form these security-sensitive operations. Erlingsson [Erl04, Pages 73–82] refers to the problem of

identifying these code patterns as thesecurity event synthesis problem. These code patterns are

akin to fingerprints, developed in this dissertation, and the fingerprint mining techniques presented

in Chapter 4andChapter 5address the security event synthesis problem.

7.3 Code retrofitting and refactoring systems

There are numerous tools, both prototypes and commercial, that augment and/or modify exist-

ing code. These tools can be broadly classified asstatic toolsor runtime tools, based upon whether

they modify code statically or at runtime. While these tools have been used for a variety of appli-

cations ranging from performance debugging to adding extra functionality to legacy applications,

this section discusses the application of these tools to application security.

Tools that statically modify code can be further sub-categorized based upon whether they mod-

ify binary executables or source code.

One of the first systems that augmented binary executables was the Informer execution pro-

filer [DG71], implemented in Berkeley SDS 940 time-sharing system. The primary purpose of

binary modification in this case was to gather and filter profiling events. However, instrumentation

could also be added to restrict memory accesses to profiler memory. This idea later appeared in

Software Fault Isolation (SFI) [WLAG93], where binary executables were statically modified to

restrict accesses to memory. While these systems implemented a fixed policy on memory accesses,

more general binary rewriting tools, such as ATOM [SE94] and its successors, Vulcan [ESV01]
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and Phoenix [Pho], allow arbitrary modification, and thus enforcement of arbitrary security poli-

cies (e.g.,specified as security automata). For example, Control-Flow Integrity [ABEL05] is a

sandboxing technique built on Vulcan that uses binary analysis and modification to restrict accept-

able control flows in an application, and thus restrict the effect of control-hijacking attacks. While

the tools described above work on machine code, several tools that work on Java bytecode have

also been proposed. These include the PoET/PSLang framework [Erl04] discussed earlier, and

the SOOT framework [soo], which provides intermediate representations and tools to analyze and

modify Java bytecode.

Among the tools that modify source code, CIL is a well-used framework [NMRW02] that

allows analysis and modification of C source code. CIL simplifies and distills C code into a few

constructs, which enables easy design and implementation of program analysis and transformation

tools. The algorithms that were discussed inChapter 5andChapter 6were implemented in CIL.

CIL has also been used for a variety of other code retrofitting and refactoring projects, including

CCured [NCH+05, NMW02], which analyzes and instruments C programs to enforce type safety,

as well as PrivTrans [BS04], which statically partitions C programs to enforce privilege separation.

While all the above tools statically modify code, tools such as Valgrind [NS07], Dyninst [dyn,

HMC94] and Dynamo [BDB00] allow arbitrary modification of code at runtime. These tools

have also been used for security,e.g.,to perform dynamic taint analysis [NS05] and for program

shepherding (a sandboxing technique) [KBA02].

7.4 Aspect-oriented programming

The approach to retrofitting legacy code presented in this dissertation follows the aspect-

oriented programming paradigm (AOP) [AOS, KLM +97]. An aspect is defined to be a concern,

such as security or error-handling, that crosscuts a program. In aspect-oriented programming lan-

guages, (e.g.,AspectJ [Aspb], AspectC++ [Aspa]) these concerns are developed independently,

as advice. An aspect-weaver merges advice with the program at certain joinpoints. Pointcuts are

often used to express a family of joinpoints (e.g.,using regular expressions). Thus, pointcuts are
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patterns that succinctly represent joinpoints. The aspect weaver matches these patterns with the

program to identify joinpoints.

Drawing parallels to the approach presented in this dissertation, each location in source code

where a reference monitor call must be inserted is a joinpoint. Because a fingerprint is a set of code

patterns that identifies multiple such locations, each fingerprint is a pointcut. The matching algo-

rithm and the associated program transformation implement compile-time aspect weaving, while

the body of the reference monitor that executes at runtime to consult an authorization policy serves

as the advice. Note that other projects, such as IRM [Erl04], Naccio [ET99] and Polymer [BLW05],

as well as our own prior work on Tahoe [GJJ05] follow the aspect-oriented programming paradigm.

A key problem in aspect-oriented programming is that of identifying joinpoints—this is known

as the problem ofaspect mining, and is an area of active current research. Concept analysis is

one approach that has been used both in conjunction with static analysis as well as with dynamic

analysis to mine aspects (Ceccatoet al.present a survey of such techniques [CMM+05]). For ex-

ample, concept analysis has been used on identifier names to statically find methods and classes

that implement similar functionality [TM04]. Dynamic analysis in conjunction with concept anal-

ysis has been used to find methods that implement a particular feature [EKS03, TC04]. The idea

here is to run an instrumented version of the program under different use-cases and label the traces

with these use cases. Each trace contains information about the methods executed. Traces are then

clustered using concept analysis to find crosscutting concerns, and thus identify aspects.

7.5 Authorization policy formulation and analysis

While this dissertation has focused on the problem of authorization policy enforcement, the

problem of formulating appropriate authorization policies to meet site-specific security goals, and

the problem of analyzing an existing policy to ensure that it meets site-specific security goals are

also important to ensure security.

Most prior work on authorization policy formulation has focused on formulating policies that

ensure that an application satisfies the Principle of Least Privilege,i.e., that an application has

access to all, and only, those resources that it needs to accomplish its task [SS75]. Systrace [Pro03]
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and Polgen [HGH+05] are two such tools. Both these tools run the program for which a policy is

to be written, and observe the set of resource accesses that it makes during a training phase. Audit

logs generated during the training phase are examined, and are appropriately converted into policy

statements. Note that this is also the intended usage of theaudit2allow tool from the SELinux

policy development toolkit [Treb].

Work on analyzing authorization policies focuses on ensuring that these policies conform to

site-specific security goals. For example, the Gokyo tool [JSZ03] analyzes SELinux authorization

policies to detect integrity violations. Guttmanet al. [GHRS05] present the use of LTL model

checking to analyze SELinux policies. Desirable safety properties are expressed as LTL formu-

lae. Appropriately expressed SELinux policies and LTL formulae are then fed to the SPIN model

checker [Hol03], which reports violations of these safety properties.

7.6 Other related work

This section presents related work in two areas, namely, root-cause analysis, where the tech-

niques developed are related to dynamic fingerprint mining, and X window system security, where

there is a rich body of work from the early nineties on securing the X server.

7.6.1 Root-cause analysis

Because fingerprints denote code patterns that embody security-sensitive operations, mining

fingerprints is akin to mining root-causes of security-sensitive operations. There is a rich body of

research on root-cause analysis techniques, developed primarily for debugging. Most existing root-

cause analysis techniques use “good” and “bad” traces to localize the root-cause of a bug [CZ05,

Lib04, Zel02]. The dynamic fingerprint mining technique presented inChapter 4is similar to these

techniques because it classifies program traces and uses this classification to find fingerprints of

security-sensitive operations. The primary difference between these techniques and the dynamic

fingerprint mining technique inChapter 4is that our technique uses a much richer set of labels for

runtime traces, namely an arbitrary set of security-sensitive operations, rather than just “good” or

“bad”. As a result, our technique uses the more general concept of set equations (rather than the
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traditionally-used trace differencing technique) to mine fingerprints. Another approach for trace

analysis (primarily for debugging) is dynamic slicing [AH90, KR97, ZG03]. Dynamic slicers

use data-flow analysis to work backwards from the effect of a vulnerability, such as a program

crash, to the cause of the vulnerability. An interesting avenue for future research will be to adapt

the dynamic fingerprint mining technique presented inChapter 4to use dynamic slicing to work

backwards from the effect of a security-sensitive operation (a tangible side-effect) to the fingerprint

of the operation.

7.6.2 X Window system security

There is a rich body of work on techniques to secure the X server. Because the X server was his-

torically developed to promote cooperation between X clients, security (e.g.,isolation) of X clients

was not built into the design of the server. The X protocol, which X clients use to communicate

with the X server, has well-documented security flaws, too [Wig96b]. Prior work to rectify this

situation has focused on identifying security requirements for the X server, and creating secure ver-

sions of the X server. Most of this work was carried out in the context of the Compartmented Mode

Workstation [BPWC90, EP91, Pic91], and the Trusted X projects [EMO+93, Eps90], which built

prototype windowing systems to meet the Trusted Computer System Evaluation Criteria. While

these efforts focus on retrofitting the X server, there is also work on building X server-like win-

dow systems, with security proactively designed into the system,e.g.,the Nitpicker secure GUI

system [FH05] and the EROS trusted window system [SVNC04]. McCuneet al. [MPR06] present

a system to specifically address the threat of malware that steal sensitive user input by exploiting

weaknesses in the X server by establishing a trusted channel between the input device and the

target application.

The X security extension [Wig96a] extends the X server by enabling it to enforce authorization

policies. It does so by placing reference monitor calls at appropriate locations in the X server,

as discussed in this dissertation. To the best of our knowledge, these calls were placed manually,

and thus the techniques presented in this dissertation could have assisted in that effort. However,

the X security extension is quite limited in the policies that it can enforce. It statically partitions
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clients into Trusted, and Untrusted, and only enforces policies on interactions between these two

classes of clients. Thus for example, if three clients, with security-labels Top-secret, Confidential,

and Unclassified connect to the X server simultaneously, the X security extension will group two

of them into the same category, and will not enforce policies on clients in the same category.

The techniques presented in this dissertation can retrofit the X server with mechanisms to enforce

arbitrary authorization policies.
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Chapter 8

Conclusions and Future Work

While it is ideal to proactively design software systems for security, economic and practical

considerations often preclude this in practice. This motivates the need for retroactive techniques to

analyze and transform legacy code for security.

This dissertation has presented techniques to analyze and retofit legacy code with mechanisms

for authorization policy enforcement. It introduced fingerprints, a low-level language to repre-

sent security-sensitive operations, and showed that fingerprints can be used to identify locations in

source code that must be guarded by reference monitor calls. A central contribution of this disser-

tation is a set of techniques based upon static and dynamic program analysis to mine fingerprints

by analyzing legacy code.

However, the work presented in this dissertation is not without its limitations, and there are

several directions in which to extend the work presented in this dissertation to overcome these

limitations.

1. Reducing the size of the TCB.As discussed inSection 2.3, a key shortcoming of the ap-

proach presented in this dissertation is that it increases the size of the TCB. In particular,

the legacy software system that is being retrofit is assumed to be benign. As a result, the

TCB must be extended to include the legacy software system. An interesting future direc-

tion will be to examine techniques to enforce authorization policies without increasing the

size of the TCB. One way to achieve this will be to redesign the operating system (which is

traditionally included in the TCB) to enforce application-level authorization policies. A key

challenge here will be to do so while remaining compatible with legacy applications.
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2. Achieving soundness and completeness.The fingerprint-based approach presented in this

dissertation is neithersoundnorcomplete. Consequently, it is not completely automatic and

requires manual intervention to prune false positives (which result because the approach is

not sound) and identify false negatives (which result because the approach is not complete).

The approach is not sound primarily because of the limited expressive power of the language

that is currently used to represent fingerprints. Two extensions to the language will greatly

improve its expressive power. First, the language must be extended to express temporal

relationships between code patterns,e.g.,using finite state automata to express fingerprints.

Second, the language must be extended to include data-flow information. Augmenting the

language with data-flow information will enable the expression of fine-grained information

that determines how resources are affected by a security-sensitive operation.

The approach lacks completeness for unsafe languages (such as C). As discussed inSec-

tion 5.6, this is a consequence of type-safety violations, such as those caused by pointer

aritmetic and direct writes to memory. One approach to achieving completeness is to add

extra runtime checks (á la CCured [NCH+05, NMW02]) to the retrofitted program to ensure

type safety. The resulting retrofitted system will contain checks that enforce type safety in

addition to those that enforce site-specific authorization policies.

3. Automating failure handling. An important issue that has been side-stepped by the ap-

proach presented in this dissertation is, “how to handle failed authorization policy checks?”

While the primary goal is to ensure that a security-sensitive operation is never performed

when an authorization policy check fails, an important secondary goal is to ensure that the

server notifies clients in such a way that the failed check is handled gracefully by the clients.

For example, failure to create a new window or copy from a window must not crash an

X client that requested this operation. In current work, we defer the task of implement-

ing failure handling code to a human. An interesting future direction will be to investigate

automated techniques to gracefully handle failure in a principled and automated way.
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4. Enforcing policies on unmodified binaries. The approach presented in this dissertation

modifies legacy (source) code by retrofitting it with authorization checks. An interesting

future direction will be to investigate techniques to enforce authorization policies on unmod-

ified binaries. Doing so will require constructing a runtime envionment that will enforce

authorization policies as code executes. Such a runtime environment will enable the enforce-

ment of authorization policies on commercial off-the-shelf servers that may not be amenable

to analysis and transformation.

The above directions provide fodder for much future research and experimentation.
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