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Research in computer security has historically advocated Design for Security, the principle that
security must be proactively integrated into the design of a system. While examples exist in the
research literature of systems that have been designed for security, there are few examples of such
systems deployed in the real world. Economic and practical considerations force developers to
abandon security and focus instead on functionality and performance, which are more tangible
than security. As a result, large bodies of legacy code often have inadequate security mechanisms.
Security mechanisms are added to legacy code on-demand using ad hoc and manual techniques,
and the resulting systems are often insecure.

This dissertation advocates the need for techniques to retrofit systems with security mecha-
nisms. In particular, it focuses on the problem of retrofitting legacy code with mechanisms for
authorization policy enforcement. It introduces a new formalism, called fingerprints, to represent
security-sensitive operations. Fingerprints are code templates that represent accesses to security-
critical resources, and denote key steps needed to perform operations on these resources. This
dissertation develops both fingerprint mining and fingerprint matching algorithms.

Fingerprint mining algorithms discover fingerprints of security-sensitive operations by ana-
lyzing source code. This dissertation presents two novel algorithms that use dynamic program
analysis and static program analysis, respectively, to mine fingerprints. The fingerprints so mined
are used by the fingerprint matching algorithm to statically locate security-sensitive operations.
Program transformation is then employed to statically modify source code by adding authorization

policy lookups at each location that performs a security-sensitive operation.



The techniques developed in this dissertation have been applied to three real-world systems.
These case studies demonstrate that techniques based upon program analysis and transformation
offer a principled and automated alternative to the ad hoc and manual techniques that are currently

used to retrofit legacy software with security mechanisms.

Somesh Jha



ABSTRACT

Research in computer security has historically advocated Design for Security, the principle
that security must be proactively integrated into the design of a system. While examples exist in
the research literature of systems that have been designed for security, there are few examples of
such systems deployed in the real world. Economic and practical considerations force developers
to abandon security and focus instead on functionality and performance, which are more tangible
than security. As a result, large bodies of legacy code often have inadequate security mechanisms.
Security mechanisms are added to legacy code on-demand using ad hoc and manual techniques,
and the resulting systems are often insecure.

This dissertation advocates the need for techniques to retrofit systems with security mecha-
nisms. In particular, it focuses on the problem of retrofitting legacy code with mechanisms for
authorization policy enforcement. It introduces a new formalism, called fingerprints, to represent
security-sensitive operations. Fingerprints are code templates that represent accesses to security-
critical resources, and denote key steps needed to perform operations on these resources. This
dissertation develops both fingerprint mining and fingerprint matching algorithms.

Fingerprint mining algorithms discover fingerprints of security-sensitive operations by ana-
lyzing source code. This dissertation presents two novel algorithms that use dynamic program
analysis and static program analysis, respectively, to mine fingerprints. The fingerprints so mined
are used by the fingerprint matching algorithm to statically locate security-sensitive operations.
Program transformation is then employed to statically modify source code by adding authorization
policy lookups at each location that performs a security-sensitive operation.

The techniques developed in this dissertation have been applied to three real-world systems.

These case studies demonstrate that techniques based upon program analysis and transformation
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offer a principled and automated alternative to the ad hoc and manual techniques that are currently

used to retrofit legacy software with security mechanisms.



Chapter 1

Introduction

This dissertation presents program analysis and transformation techniques to retrofit legacy
software with mechanisms for authorization policy enforcement. Using case studies with real-
world software systems, it demonstrates that these technidtersaoprincipled and automated

alternative to the ad hoc and manual techniques that are currently used to retrofit legacy software.

1.1 Motivation

Design for Security, the principle that security must be a key design consideration in the con-
struction of a secure system, has long been a mantra of the security community. Indeed, systems
such as MulticsCV65] and Hydra WCC*74], which provided strong security guarantees, were
constructed with security as a principle design consideration.

While proactively designing for security will undoubtedly create more robust and secure sys-
tems, doing so is often filicult in practice because of two reasons.

First, because application functionality and performance are often more tangible features to a
customer, software producers focus on these aspects, with security typically being an afterthought.
Indeed, excluding the operating system, the number of applications that have been proactively de-
signed for security is far outnumbered by applications that are not. Some examples of software that
have proactively been designed for security include the Postfix mail progtaghdnd database
servers Ora, SQL]. There are thus large bodies of legacy software with inadequate or non-existent

security mechanisms. It is impractical to require that these systems be redesigned and rebuilt for



security. It is instead advisable tetrofit security mechanisms into these systems. However, be-
cause of the time and cost involved, even these security retrofits are currently undertaken only
rarely for large legacy systems. For example, it took almost two years to modify the Linux ker-
nel to add mechanisms that enforce mandatory access control (MAC) pdliciisnilarly, the
privilege-separated version of OpenSSH required a new system architecture, and the addition of a
significant amount of new cod®FHO03J.

Second, even if a system is designed for security, additional security mechanisms may have to
be added in the future. For example, while the Linux kernel has historically had mechanisms to
enforce discretionary access control (DAC) policies, mechanisms to enforce MAC policies were
added only in 2002fVCS"02]. Moreover, prior experience shows that even if a system is designed
for security, functional and performance enhancements that are added in the future may break
security assumptions, thus calling for a reevaluation of the system’s security. For example, Karger
and Schell KS74] showed that modifications to improve the usability of Multics broke several of
its design assumptions, which resulted in potentially exploitable vulnerabilities.

These reasons motivate the need for retroactive techniques to secure software—automatic and
semi-automatic techniques to reason about security properties of legacy software, and retrofit it
with security mechanisms. Indeed, the need for such techniques has also been realized by others.
For example, the CCured tod{CH*05, NMWO02] automatically retrofits legacy C programs into
a type-safe variant by inserting runtime checks that enforce type safety. Similarly, the Privtrans
tool [BS04 semi-automatically refactors legacy C programs for privilege separation using program

partitioning.

1The Orange BookTCS84 defines Mandatory access control as “a means of restricting access to objects based
on the sensitivity (as represented by a security label) of the information contained in the objects and the formal
authorizationice., clearance) of subjects to access information of such sensitivity”. In contrast, Discretionary access
control (DAC) is defined as “a means of restricting access to objects based on the identity of subjectgrangs
to which they belong. The controls are discretionary in the sense that a subject with a certain access permission is
capable of passing that permission (perhaps indirectly) on to any other subject”. Thus MAC denies users full control
over access to resources, including those that they create. In contrast, in DAC, ownership of a resource allows a
subject full control over access to the resource, including delegation of access rights to the resource. Examples of
MAC policies include the Bell-LaPadula policyB[[76] and the Biba policy Bib77], while the Graham-Denning
model [GD77 is an example of a DAC policy. The specifics of MAC and DAC are not central to the techniques
developed in this dissertation and will not be presented in further detail. For a good overview of MAC and DAC, see
McLean McL90Q].



This dissertation continues this line of research into retroactive technigues to secure legacy
software, and focuses on the problem of retrofitting legacy software with mechanisms for autho-

rization policy enforcement.

1.2 Retrofitting authorization policy enforcement mechanisms

Software systems that manage shared resources must protect these resources from unauthorized
access. This is achieved by formulating and enforcing an appropriate authorization policy (also
called an access control policy). This policy specifies the sseofirity-sensitive operatiortsat
asubject(typically a user of the system) can perform onduject(typically a resource managed
by the system). For example, operating systems manage shared resources such as files, network
connections and memory, and typically enforce policies that determine how users of the system
can access these resources. A popular example of such a policy on UNIX-like systems allows only
theroot user to perform the operatiofrite on the/etc/passwd file (the resource).

Authorization policies are typically enforced using a security mechanism calRefexence
Monitor. Introduced by Anderson in 19720hd77, a reference monitor is an entity that satisfies

three key properties.

1. Complete mediation. The reference monitor must be invoked at each access to a shared
resourcej.e., all security-sensitive operations performed on a shared resource must be me-
diated. Saltzer and Schroeder also call this propertyRthieciple of Complete Media-
tion [SS7].

2. Tamper resistance.The reference monitor mechanism must be tamperpregfan attacker
must not be able to circumvent the mechanisrg,,by rewriting the code of the reference
monitor, so that an access check is not performed (and the authorization policy not enforced)

before a shared resource is accessed.

3. Verifiability. The reference monitor must be a small-enough entity so as to allow for thor-

ough verification.



A reference monitor thus mediates each security-sensitive operation on a shared resource, and
ensures that a subject is allowed to perform the operation on a resource only if it is allowed by the
authorization policy. This dissertation develops a suite of techniques to retrofit a reference monitor
into a legacy software system that lacks this security mechanism.

We consider two concrete examples to motivate the need to retrofit a reference monitor into
legacy code: (1) the integration of the Linux Security Modules (LSM) framewdrE$ 02 to
the Linux operating system, and (2) the integration of a reference monitor with the X seivef.[

While Linux has long had the ability to enforce DAC policies, the need was felt to extend these
mechanisms to enforce MAC policies. This was achieved using the Linux security modules (LSM)
framework WCS'02], by retrofitting the Linux kernel. The creation of the LSM framework was
motivated by the proliferation of ffierent Linux patches that aimed to improve the default Linux
access control mechanism through finer grained enforcement of MAC poliigsGRS RSB,

SEL, App, LID]. The LSM framework generalizes this work to define a reference monitor interface

for mediating all accesses to security-sensitive operations via loadable kernel modules in a policy-
independent way. While there werdfdrences between these patches in scope, policy models, and
ancillary features, a single reference monitor interface can be defined that subsumes all approaches
since the goal of a reference monitor is complete mediation of all security-sensitive operations. The
development of the LSM framework from the multitude of Linux patches described above was a
manual process of collecting authorization decision poirgs, €alls to the reference monitor, or

hookg from each patch and resolving inconsistencies between these choices.

The X server, like many other server applications, enables multiple X clients to access shared
resourcesd.g.,windows, fonts) that it manages. However, the X server was historically developed
to promote cooperation between X clients, and secuety. (isolation) of X clients was not built
into the design of the server. In the absence of isolation within the X server, malicious clients can
compromise the integrity and privacy of other X clients handled by the X server—well-documented
instances of such attacks abound in the literaterg.([EP91 KSV03, Kle04, Wig964d). For
example, in the X server, a malicious X client can easily compromise the privacy of other X clients

by snooping on their input, or by retrieving bitmaps of their windoWSY03]. Similarly, it is



easy to program a Trojan horse X client that registers with the X server to receive keystrokes sent
to other X clients connected to the X serverq.,the xkey application®ia] does so in just 100
lines of C source code).

As was the case with Linux, several security mechanisms have been developed to secure the
X server g.g.,the X security extension/ig96l], and several solutions at the level of the X pro-
tocol [DRUO5 Wig964d). The goal of the X1ASELinux project KSV03, Wal07] is to add a
reference monitor interface to the X server that can be used to enforce policies on how X clients
access resources managed by the X server. This reference monitor is designed to interface to the
security-enhanced Linux (SELinux) policy serv&gVv03].

The central theme in both cases isé¢trofit legacy software with a reference monit@ther
recent &orts with similar objectives include retrofitting the Java Virtual Machifle(qd, the IBM
Websphere softwaréiMS06, Shi07 and IBM DB2 [Shi07 with mechanisms to enforce SELinux
authorization policies. In addition to these examples, a tremendous amount of other legacy code ex-
ists that likely requires similar retrofitting, ranging from server applicatiergs fmiddleware JDB,
ODB], web serversApa, 11S], Samba §anj, game systemgier], proxy and cache serverSQU),
to client applications that manage multiple information floe.gj(,email clients HAMOG6], browsers

and chat servers).

1.3 Current practice

In current practice, legacy software is manually retrofitted with a reference monitor. We illus-
trate the steps involved in this process using the examptegure 1.1

This example shows a fragment of code from an API funcRequestAPI of a hypothetical
server application. This API function accepts two argumentd,i&nt and atarget, and per-
forms security-sensitive operations on an internal rescabsgethat is derived frontarget. This
is reminiscent of, for instance, a user requesting a security-sensitive opesafgRé¢ad, Write,
Append) on a file via a system call—much as the system call internally translates the file into
an inode before performing the operation on the actual data blocks representing the file, this API

function translatesarget into obj by calling the functionGetData. The lines with underlined



comments must be retrofitted to ensure that security-sensitive operations are mediated by reference

monitor calls. Retrofitting proceeds in four steps, as discussed below.

101 | /« API function to process a request by client on target

102 | void RequestAPl (client, target) {

103 struct object obj; /+ Denotes the resource to protect accesses =0
104 Others x, y, z, subjlabel; /+ Variable declarationssx/
105

106 subjlabel = GetSubjLabel (client); /** Find subject label for client x/
107 obj = GetData(target); /= Get obj from target x/
108 obj.label = GetObjLabel (target); /** Find object label for target =/
109 x = obj.innocuous; /+ Non-security—sensitive operation on objx/
110 if (AuthHook (subjlabel, obj.label)) { /** Reference monitor call =/
111 y = obj.secret; /+ Security-sensitive operation to read secret datd
112 obj.integrity = z; /+ Security-sensitive operation to write data/
113 }

114 return ;

115 |}

201 | /+ Two reference monitor calls (CheckPolicy) in one authorization quedy

202 | int AuthHook (sublabel, objlabel) {

203 QueryResults ql, q2; /* Variable declarationssx/
204

205 gl = CheckPolicy (sublabel, objlabel, SecrecyOp); /x* Query for line 111 x/
206 g2 = CheckPolicy (sublabel, objlabel, IntegrityOp); /#*% Query for line 112 x/
207 return ql && q2;

208 |}

Figure 1.1 Retrofitting legacy software with a reference monitor interface. Lines with underlined
comments must be retrofitted.

1. Subject/Object identification and labeling. Each subject requesting a security-sensitive
operation and each object that may lgeeted by the security-sensitive operation must be
identified and labeled with a security identifier. Subjects and objects are represented in
the authorization policy using their labels, and the reference monitor uses these labels to

determine whether a requested operation is permitted.



In current practice, the subjects and objects that fieeted by a security-sensitive operation

are determined manually. Their labels are bootstrapped using operating system support and
are typically bound to the variables representing the subject and objgcstored as a field

in the Cstruct representing the subject and object variabkeS\Y03, HMS06, HRIMO7,

Fle0g. For example, the SELinux operating systeb$p1g McC04 maintains security

labels for each user and resoureey(,files, sockets) that it manages. Thus, the functions
shown in linesl06and 108 that fetch the subject and object label, respectively, rely on the
operating system to supply labels. In the examplEigure 1.1 the object label is stored in

the fieldlabel of struct object. Note that the application itself may create new objects,

in which case it must also label these objects appropriately. In current practice, the function

calls to determine subject and object labels (lih@6and108) are placed manually.

. ldentifying security-sensitive operations.Lines 109 111and112show accesses to mem-

bers of the variablebj of typestruct object. Inthis examplestruct object denotes

the type of a resource that is managed by the application. One or more of these accesses
may represent aecurity-sensitive operatiorintuitively, a security-sensitive operation is a
conceptual operation on a resource, such as a combination of structure-member accesses
(e.g.,a set of structure-member accesses), that achieves a high-level objective. For example,
a combination of accesses to the inode structure in the Linux kernel that performs a file read

will be classified as a security-sensitive operation.

Whether a combination of structure member accesses indeed represents a security-sensitive
operation or not is determined by site-specific security requirements. For this example, we
assume that the structure member accesses inlihtand112 represent distinct security-
sensitive operations (nameBecrecyOp andIntegrityOp), while the structure member ac-

cess in lin€l09is not representative of any security-sensitive operation.

In current practice, security-sensitive operations are determined manually. Typically, a team
of security analysts reasons about the kinds of security policies that must be enforced by the

software, and determines a set of resources and security-sensitive operations. For instance,



the LSM project identified 504 distinct security-sensitive operations (sudtil@afkead,
File_Write, Dir_Mkdir, Dir_Rmdir) on different resources, such as files, directories, sockets
and shared memory, that the Linux kernel (versighZ) managed[S013 SVS01 Sma03.
Similarly, the X1¥SELinux project identified 59 distinct security-sensitive operations (such
asWindow_Create, Window_Map) on resources such as windows, fonts and other resources
that the X server manages$Vvo03].

It is important to note that security-sensitive operations are currently identified using ad
hoc reasoninge.g., by considering dferent security policies to be enforced, amat by
analyzing source code. As aresult, the relationship between the security-sensitive operations
so identified and the code that implements themasidentified {.e., the combination of
structure member accesses that represents a security-sensitive operation is not identified).
Thus, identifying where a security-sensitive operation happens in source code is currently a

manual and ad hoc process.

. Placing authorization queries.Because the structure member access orllirigepresents

the security-sensitive operati®ecrecyOp, it must be mediated by the reference monitor

call shown on line205 (in this case, the keyworSlecrecyOp shown on line205is a con-

stant that denotes a security-sensitive operation). Similarly, the structure member access on

line 112must be mediated by the reference monitor call on %6é

Both these objectives are achieved by calling the funcéiothHook on line 110 with the
subjectclient and objectobj that are involved in the security-sensitive operation. The
implementation ofAuthHook is provided as part of the retrofitting process. In this case,
the functionAuthHook consults the authorization policy (via teckPolicy function calls

on lines205and206) to check that both the security-sensitive operati8asrecyOp and
IntegrityOp are allowed. They are thus either performed together, or are not performed at
all. Finer-grained placement of authorization checks, that will allow individual checking of
permissions for each of these security-sensitive operations is also poesibley placing

the function call on line205 guarding linel11, and the function call on lin206 guarding



line 112 respectively. In this case, the programmer likely combined the checks for both

these security-sensitive operations because of one of three reasons:

e The site-specific policy demands that b&écrecyOp andintegrityOp be performed
together, or not at all. In this case, it can be argued that these security-sensitive op-
erations instead be combined into a single security-sensitive operation, Sates
cyAndIntegrityOp, that is identified in code by a read of teecret field and a write
of theintegrity field of a variable of typatruct object. The site-specific policy

must also be rewritten to express policies for this security-sensitive operation.

e SecrecyOp andIntegrityOp are performed together at several locations in code, and
the programmer combined the checks for these operations as an optimization (at the

cost of a conservative authorization check).

e This was unintended, and the programmer instead meant to cheSkdarcyOp and

IntegrityOp separately.

In current practice, locating security-sensitive operations in source code, and placing autho-

rization queries to mediate them is a manual and ad hoc process.

. Writing an authorization policy. The final component of the retrofitting process is to write

an appropriate authorization policy that satisfies site-specific security goals. Abstractly, an
authorization policy is a set of triplgSubject-label, Object-labeQperation) that deter-

mines the set of security-sensitive operations that a subject with label Subject-label can per-
form on on an object with label Object-label. T@&eckPolicy function calls on line205

and 206 consult the authorization policy and determine whether the requested operation

should be permitted (and return a non-zero value if permitted).

Because policies are determined by site-specific security goals, in current practice, they are
written and maintained manually. Severdl-the-shelf tools, such as the Tresys SELinux
policy management toolkitTrea Trel], are now available to manage and interface with

authorization policies.
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As this example illustrates, retrofitting legacy code with a reference monitor is currently an ad
hoc, manual process. Thus, it is baéitne-consumingnderror-prone For example, in spite of all
the prior work put into several security patches for the Linux kerAey [ GRS RSB, SEL, App,
LID], it still took over two years to integrate the LSM framework into the mainline Linux kernel,
and a number of bugs(g.,showing violation of the Principle of Complete MediaticB879)
were found and fixed along the waygZ04 ZEJOJ. Similarly, despite an initial implementation
in 2003, the work of integrating a reference monitor interface into the X server is still ongoing. Part
of this is due to changes in developers and the challenges of implementing a trusted path for the
user (as outlined in several prior papers on secure windowing sysBfgC9oQ Eps90 EMO*93,
EP91 MPRO0Q), but recent work is still addressing fundamental issues, such as gobject

labeling and design of the query interface to the reference monitalQ[/].

1.4 Contributions

This dissertation develops techniques to automate the hitherto ad hoc, manual process of
retrofitting legacy software with a reference monitor. The thesis that this dissertation supports

is the following:

Program analysis and transformation techniques €fer a principled and automated

way to retrofit legacy software with mechanisms for authorization policy enforcemen

This dissertation supports the above thesis by making the following contributions:

1. Fingerprints. It introduces a new formalism, calleithgerprints to represent security-
sensitive operations. A fingerprint represents a security-sensitive operation using a set of
code patternghat represent how a resource must be accessed to perform that operation.
Thus, a fingerprint implicitly embodies the relationship between a security-sensitive opera-

tion and the code that embodies this operation.

2. Fingerprint mining algorithms. It presents static and dynamic program analysis algorithms
to automatically mine fingerprints for security-sensitive operations. The dynamic program

analysis algorithm uses a novedce localization techniquthat uses sidefects to localize
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fingerprints in program traces. The static program analysis algorithm makes novel use of a

hierarchical clustering technique calledncept analysito mine fingerprints.

Fingerprint mining algorithms remove the manual burden associated with Step (2) of the

retrofitting process, discussed$ection 1.3

3. Fingerprint matching algorithms. It presents dingerprint matching algorithnthat stati-
cally matches the fingerprint of a security-sensitive operation against source code and iden-
tifies all locations where the operation is performed. In conjunction with a program trans-
formation tool that places authorization queries, this algorithm automatically retrofits legacy
software with a reference monitor. It also presents heuristics to identify the subject and

object involved in a security-sensitive operation.

Fingerprint matching algorithms thus ameliorate the manual burden associated with Steps (1)

and (3) of the retrofitting process frogection 1.3

4. Case studies on real-word softwareThis dissertation presents case studies on three real-
world software systems—the ext2 file system from Linux, the X server, and the PennMUSH
multi-user dungeonHer]. The case studies on ext2 and X server directly compare the re-
sults of applying the algorithms developed in this dissertation against the results obtained by
manually retrofitting these systems (as was done in the LSM and th&KLhux projects,
respectively), while the case study on PennMUSH presents the applicability of these algo-

rithms on a system that has as yet not been manually retrofitted with a reference monitor.

Techniques to help with Step (4) froBection 1.3namely, writing authorization policies, are

a subject of several past and ongoing research projects, and not considered in this dissertation.

1.5 Structure of this dissertation

This dissertation is organized as followShapter 2presents a high-level overview of our ap-
proach and states the assumptions underlying our wohlapter 3ntroduces fingerprintsChap-

ter 4 presents an algorithm to mine fingerprints from runtime execution traces of a program and
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shows its application to the X servé&hapter Jresents a static program analysis-based fingerprint
mining algorithm that overcomes several shortcomings of the dynamic program analysis-based al-
gorithm. It also presents the application of this algorithm to the ext2 file system, the X server
and PennMUSHChapter 6presents an algorithm to match fingerprints against source code and
place reference monitor checkShapter 7fresents related research alaapter &oncludes with

directions for future work.

1.6 Bibliographic attributions
Most of the material presented in this dissertation has appeared in conference papers.

e Parts ofChapter 3andChapter Gappeared in Proceedings of théM&CM Conference on
Computer and Communications Security (Alexandria, Virginia, November 2@GR)J% as
joint work with T. Jaeger and S. Jha. This paper introduced fingerprints, and presented an

algorithm to match fingerprints against source code.

e Parts ofChapter 2Chapter 4andChapter Gappeared in Proceedings of thé"™@EEE Sym-
posium on Security and Privacy (Berkel®gakland, California, May 2006Y4JJ06 as joint
work with T. Jaeger and S. Jha. This paper presented a dynamic fingerprint mining algorithm

and applied it to the X server.

¢ Parts ofChapter Sappeared in Proceedings of thé"iternational Conference on Software
Engineering (Minneapolis, Minnesota, May 2008KJJ0T as joint work with D. King,
T. Jaeger and S. Jha. This paper presented a static fingerprint mining algorithm using concept

analysis and applied it to the ext2 file system, the X server, and PennMUSH.
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Chapter 2

Overview

This chapter discusses several assumptions upon which our approach is contingent, and presents
the formal definition of a reference monitor. It then presents a high-level overview of our approach
using the X server as an example. It shows how to retrofit the X server with mechanisms to enforce
authorization policies on the security-sensitive operations requested by an X client that connects

to the X server.

2.1 Goal

The main questions to be addressed when retrofitting a legacy servenarare the security-
sensitive operations to be mediated®., what are the primitive operations on critical server re-
sources, andvhere in the server’s source code are these operations perfornibd?dea is that
once these locations are identified, authorization policy lookups can be added to the server code
SO as to completely mediate security-sensitive operations. The techniques developed in this dis-
sertation assist with (1) the identification of resource accesses that constitute security-sensitive
operations, (2) identification of locations in server code where these security-sensitive operations
are performed, and (3) instrumentation of these locations, such that the operation is performed only

if allowed by an authorization policy.

2.2 Assumptions

We assume the traditional cligs¢rver model, where the server manages resources on behalf of

its clients. Clients connect to the server to request operations to be performed on these resources.
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The server in turn must be equipped with mechanisms to mediate accesses to these resources and
ensure that the requested operations are allowed only if they conform to an authorization policy.
Our approach retrofits legacy servers with mechanisms for authorization policy enforcement. To
ensure that our approach can securely enforce authorization policies, we make several assumptions

about the server.

I: The server is not adversarial

We assume that the server itself is beniga,, it is not written with adversarial intent, and
does not actively try to defeat retroactive instrumentation. Thus, our approach assumes that the
server does not remove or modify instrumentation. One way to ensure that a malicious user has
not modified the server’s code to defeat retroactive instrumentation is to have the operating system
compare a hash of the server’s executable against a precomputed value as it loads the server for
execution. We also require that the server be non-self-modifying, to preclude the possibility that
instrumentation is modified at runtime. One way to enforce this property is to make code pages

write-protected.

II: The server can defend against control-hijacking exploits

Existing vulnerabilities, such as thar-overflow vulnerabilities, could possibly be exploited by
a malicious user to bypass our instrumentation. Because we cannot hope to eliminate these vulnera-
bilities statically, we assume that the server is protected using techniques such as CIGANLL],
CFI[ABELOS5] or other runtime execution monitoring and sandboxing technidge@sif 04, FHSL96G
LRB*05, SBBDO01, WDO01], which terminate execution when the behavior of the servierdi

from its expected behavior.

[ll: The server’s running environment cooperates

The environment that the server runs in must cooperate with it to enforce authorization policies,
and must not be malicious inintent. In particular, the server relies on the operating system to ensure

that the authorization policy (stored on the file system) is tamper-proof. Moreover, because clients
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typically connect to the server via the operating system, the server relies on the operating system
for tasks such as authentication and providasgurity-labelse.g., Top-Secret or Unclassified)

associated with the clients.

IV: The server mediates all client communication

We assume that clients cannot communicate directly with each other, and that their communi-
cation is mediated by the server or the operating system. If client communication is mediated by
the operating system, then the policy must be enforced by the operating system itself. Thus, we
restrict ourselves to the case where communication is mediated by the server. We also note that if
the clients communicate via the operating system, they cannot avail themselves of server-specific
security-sensitive operations, such as cut and paste in the case of the X server. Thus our goal is to
enforce authorization policies on server-specific security-sensitive operations requested by clients.

Finally, we assume that client-server communication is not altered by any intervening software
layers. For example, most commercial deployments of the X server are accompaniathopa
manager (e.g.,gnome or kde). Because the window manager controls how clients connect to the
X server, it can in theory, alter any information exchanged between the X server and its clients.
However, because window managers are few in number (unlike X clients), we assume that they can
be verified to satisfy the above assumption (though we have not done so). Further, the operating

system can ensure that only certified window managers are allowed to run with the X server.

2.3 A note about the trusted computing base

The trusted computing base (TCB)J@S89 of a computer system is defined as the set of all
protection mechanisms, including hardware and software, that are needed to enforce a security
policy. Researchers have historically advocated that TCB should be as small as possible to ensure
that it is amenable to thorough verification and code audits. On most commercial systems, however,
the TCB typically includes the hardware as well as the entire operating system.

The assumptions iSection 2.2mply that in our approach the server to be retrofitted is also

included in the TCB. This, unfortunately, is a drawback of our approach. The main reason that
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the application must be included in the TCB is to ensure that instrumentation added to enforce
authorization policies is not bypassed. There are, however, several ways to reduce the size of the
TCB.

One way to remove the retrofitted server from the TCB is to ensure protection against common
vulnerabilities that can be exploited to bypass our instrumentation. While it would be unrealistic
to assume that the server is vulnerability-free, additional protection mechamgm€&Cured or
other sandboxing techniques, can ensure that the server is secure against most common control-
hijacking exploits. In this case, it fiices to ensure that the operating system is in the TCB. The
operating system bootstraps security by ensuring that the instrumentation inserted in the server
is not tampered with. Clients need not be trusted, and could be malicious. Client security in-
formation, in particular, a client’'s security-label, is bootstrapped by the operating system during
client connection, and is stored within the server. Clients thus cannot tamper with their security
information after connection has been established.

Further reducing the size of the TCB is a topic for future investigation. For example, one
approach is to leverage hardware support in modern commodity procelssePs(7] to create a

secure software stack via code attestation.

2.4 Basic tools

Our approach enforces authorization policies by retrofitting a server to ensure that security-
sensitive operations requested by clients are mediated and approved by an authorization policy.
The basic tools used to do so are a reference monitor and an enfancétd.

An authorization policy is defined as a set of trip{esh obj, op), where each triple denotes that
the subjecsubis allowed to perform a security-sensitive operatigon an objecbbj. Subjects
and objects are often associated wstturity-labelsfor instance, all top-secret documents may
have the security-label Top-Secret. Authorization policies are often represented using the security-
labels of subjects and objects, rather than the subjects and objects themselves.

A reference monitor is defined as a quadru@eS, U, R), and is parameterized by an autho-

rization policyA, where:
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¥ is a set ofsecurity eventsvhere each security event is a trigkal obj, op);

S is thestateof the reference monitor, and is a set storing current associations of security-

labels with subjects and objects;

U. 2 xS x A — Sis astate updatdunction, which denotes how subject and object

security-labels change in response to policy decisions;

R: X x S x A — Bool is apolicy consulteywhich returnsirue if and only if a security event

is permitted by the reference monitor.

An enforcerobserves events iB generated in response to client requests, and passes them
on to the reference monitor. Any violations of the policy, will resultRrreturningFalse, fol-
lowing which the enforcer will take appropriate action. Enforcing authorization policies entails

implementing the enforcer and the reference monitor.

2.4.1 The enforcer
An implementation of the enforcer must satisfy two requirements:

1. It must monitor all security events generated in response to client requests. To do so, the
enforcer must be able to infer the security-sensitive operation requested, the security-label
of the subject that requests the operation (typically the client), and the object upon which the

operation is to be performed.

2. It must take preventive action if a security event results in authorization failure. The action
may be to terminate the client whose request resulted in the authorization failure. To do so,
the enforcer must be able to control the execution of clients of the server, or audit the failure

appropriately.

2.4.2 The reference monitor

An implementation of the reference monitor must ensure that the state of the reference monitor

and the authorization policy are tamper-proof. In addition, the state of the reference monitor must
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be updated appropriately in response to security events, @singplementingR entails looking
up the policy, and can be achieved usirffftbe-shelf policy management libraries, such as the

SELinux policy development toolkifTfrea Trel.

2.5 Our approach

This section presents a high-level, informal overview of our approach, and describes how we
implement the enforcer and the reference monitor. Algorithm and system details omitted from this
section appear in subsequent chapters. We use a running example, the X server, to illustrate the

approach.

2.5.1 An example: Retrofitting the X server

The X server accepts connections from multiple X clients, and manages resaig-esig-
dows, bufers) that it dfers to these clients. Thus, it is important for the X server to enforce
authorization policies on its X clients. A manudfaat to retrofit the X server with authorization
policy enforcement mechanisms was initiated by the NSA in early 208%D3], and a retrofitted
version of the X server was released in 208505k (though work on this project is still ongoing,
as of March 2007\|val07)).

We demonstrate that our technigues can assist with, and potentially reduce the turnaround time
of efforts to retrofit legacy servers, such as the X server. Specifically, with our approach, we were
able to identify security-sensitive locations in the X server, and add reference monitoring code,
with a few hours of manualffort. We ran the retrofitted X server on a security-enhanced operating
system (SELinux[S019), so that X clients have associatedcurity-labelssuch as Top-secret
and Unclassified. The retrofitted X server enforced mandatory authorization policies on security-
sensitive window operations requested by X clients based upon their security-labels.

Our approach proceeds in six steps, as showsidgare 2.1
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Figure 2.1 Steps involved in retrofitting a server for authorization policy enforcement.

2.5.2 Step 1: Find security-sensitive operations to be protected

The first step is to determine the security-sensitive operations to be protected. Typically, a
design team considers security requirements for the server, and determines security-sensitive op-
erations based upon these requirements. This approach was followed in the case of the LSM
framework WCS'02] and the X server{SV03], where security-sensitive operations were identi-
fied for kernel resources, and X server resources, respectively. The design team typically considers
a wide range of policies to be enforced by the server on resource accesses by clients. Because
security-sensitive operations are typically the granularity at which authorization policies are writ-
ten (a policyA is a set of triples of the fornisuly, obj, op)), the set of operation®p} can be
identified.

For the material presented@hapter 4dynamic fingerprint mining), we assume that a descrip-
tion of security-sensitive operations is available. For instance, in the X server case study presented
in Chapter 4we used the set of security-sensitive operations that was identified manually by Kil-
patricket al.[KSVO03]. This set of operations, 59 in number, considers security-sensitive operations
on several key X server resources, including@héent, Window, Font, Drawable, Input, and
xEvent data structures. Of these, 22 security-sensitive operations are féitldew data struc-
ture, such asVindow_Create, Window_Map, andWindow_Enumerate (we will denote security-
sensitive operations in this dissertation using suggestive hames, like the ones above). However,

only an informal description of these security-sensitive operations is provided by Kilpatradk



20

and a precise code-level description of these operations is needed for enforcement. Step 2 mines
code-level descriptions of these operations; these code-level descriptions ardngdgatints

However, a description of security-sensitive operations may not always be available, as for
instance was the case with the PennMU$®d] multi-user dungeon, one of the case studies con-
sidered in this dissertation. Indeed, it can be argued that identifying security-sensitive operations
requires understanding the source code of the server being protected, which is a time-consuming
exercise in itself. In such cases, the approach presentéddpter Fstatic fingerprint mining) can
be used.

This approach bypasses the need for a description of security-sensitive operations by directly
analyzing the source code of the server and mining a set of resource accesses that describe how
the server responds to client requests. In our experience, these resource accesses were also useful
as code-level descriptions of security-sensitive operations (and are thus fingerprints themselves).
Chapter Spresents the details of a study where we correlated the fingerprints mined by the static
approach against manually-identified security-sensitive operations for the ext2 file system and the

X server. Thus, the static approach bypasses Step 1, and proceeds directly to Step 2.

2.5.3 Step 2: Find fingerprints of security-sensitive operations

The second step identifies fingerprints of security-sensitive operations. As described earlier,
each security-sensitive operation is characterized by the set of resource accesses that are unique to
the operation. These resource accesses are represented using code patterns (which are expressed as
abstract syntax trees, or ASTs), and are the fingerprint of the security-sensitive operation (a formal
definition of fingerprints appears i@hapter 3. The dynamic and static approachfdr in their

approach to fingerprint finding, as described next.

2.5.3.1 Dynamic fingerprint mining

The dynamic fingerprint mining approach assumes that a high-level description of security-

sensitive operations is available. The code patterns that are associated with each security-sensitive
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operation are not knowa priori, and the goal of the dynamic fingerprint mining algorithm is to
recover this association.

Two novel observations help us achieve this goal. The first observation is that security-sensitive
operations are typically associated with an observable change in the state of the system. For exam-
ple, the security-sensitive operationsndow_Create, Window_Map andWindow_Enumerate of
the X server are associated with opening, mapping, and enumerating child windows of an X client
window, respectively (the changes visible on the screen when these operations happen are the
observable changes associated with these operations). Thus, if we induce the server to perform
a security-sensitive operation, and trace the server as we do so, the code patterns that form the
fingerprint of the security-sensitive operatiotustbe in the trace. For example, the function
CreateWindow, which is implemented in the X server, is responsible for allocating memory and
initializing a new window. We observed that creating a new window results in a call to this func-
tion. As a result, theCall CreateWindow was identified as a fingerprint faindow_Create.

Note that the high-level descriptions of security-sensitive operations that are input to the dynamic
mining algorithm are used to determine how security-sensitive operations can be induced in the
system.

However, program traces are typically long, and it is still challenging to identify the code
patterns that form the fingerprint of a security-sensitive operation from several thousand entries
in a program trace. Our second observation addresses this challenge—to identify the fingerprint
of a security-sensitive operation, itfiges to compare program traces that perform a security-
sensitive operation against those that do not. For example, displaying a visible X client window
(e.g.,xterm), which involves mapping the window on the screen, is associatedMattiow_Map;
closing and typing to arnterm window are not. Thus, to identify the code patterns that characterize
to Window_Map, it suffices to compare the trace generated by openingtanm window against
the trace generated by closing, or typing to the window. Similarly, closing a browser window is
associated with closing all child windows, which involw&éndow_Enumerate, while typing to a

window is not.



22

With these two observations, identifying fingerprints reduces to studying about 15 entries,
on average, in a program trace. Using this technique, we identified, for example, the finger-
prints of Window_Create as Call CreateWindow; of Window_Map as writes of True to the
field mapped of a variable of typeiindow andMapNotify to the fieldtype of a variable de-
rived from typexEvent; and of Window_Enumerate as ReadWindowPtr->firstChild and
ReadiindowPtr->nextSib andWindowPtr # 0, which are intuitively performed during linked-
list traversal. Note that code patterns are expressed at the granularity of reads and writes to indi-
vidual fields of data structures. We discuss the tracing infrastructure, and algorithms to compare

traces to identify fingerprints in more detail@hapter 4

2.5.3.2 Static fingerprint mining

The static fingerprint mining approach overcomes three important limitations of the dynamic
approach. First, the dynamic approach requirea priori description of security-sensitive opera-
tions. As described earlier, such descriptions may not always be available, as indeed was the case
with PennMUSH. Second, the dynamic approach requires that an expert induce these security-
sensitive operations and collect program traces; doing so may be tedious and error-prone. Third,
because dynamic analysis only explores the code paths exercised by the manually-chosen inputs
to the server, it will not examine the resource accesses in other portions of the server. As a result,
the set of fingerprints identified will not be complete.

The static approach directly addresses these shortcomings of the dynamic approach. In par-
ticular, it makes novel use of a hierarchical clustering technique called concept an@i8i] [
The static approach is based upon the observation that a client can access server resources only
via the server’s API. For example, X clients can only access X server resources via the X protocol,
which in turn invokes X server functions from a well-defined API. This approach identifies how
data structures representing resoureeg.(Window, Font, xEvent) are accessed via the API. It
does so by distilling each statement of source code into a set of code patterns, and using concept
analysis to cluster these code patterns based upon the API functions that they are accessed from.

Each of these clusters is then output as a candidate fingerprint.
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In our experiments on three real-world systems, namely, the ext2 file system, a subset of the
X server, and PennMUSH, the static approach reduced the analysis of several thousand lines of
code to the analysis of under 115 candidate fingerprints with fewer than 4 code patterns each (on
average). For example, this approach reduced the analysis of PennMUSH, a server, @ith 94
lines of C code, to the analysis of 38 candidate fingerprints, with an averagé2oédde patterns
each. In the case of the ext2 file system and the X server, we were also able to correlate these can-
didate fingerprints with manually-identified security-sensitive operations (in the LSM project for
ext2, and in the X1/BELinux project for X server). For example, in the analysis of the X server,
one of the candidate fingerprints mined by the static approach was a write of thélapNee i fy
to the fieldtype of variable derived from typ@Event and the valu€'rue to the fieldmapped
of a variable of typdiindow. This fingerprint denotes key resource accesses performed when
mapping a window to the screen, and is thus the fingerprint for the security-sensitive operation
Window_Map. Recall that the same fingerprint was also identifiedvitndow_Map by the dy-
namic approach.

The static approach addresses the shortcomings of the dynamic approach. Concept analysis
mines candidate fingerprints without the need foagamiori description of security-sensitive oper-
ations or the need to manually induce the server to perform security-sensitive operations. Further,
because static program analysis ensures better coverage than dynamic analysis, the static approach

can mine more fingerprints than the dynamic approach.

2.5.4 Step 3: Find all locations that are security-sensitive

The third step uses the fingerprints identified in Step 2 to statically identify all locations in the
server where code patterns that form the fingerprint of a security-sensitive operation occur. Each of
these locations is said to perform the operation. Considgmre 2.2 which shows a snippet of code
from MapSubWindows, a function in the X server. It contains writes Bfue to pWin->mapped,
andMapNotify to event.u.u.type, as well as a traversal of the children of the window pointer

pParent. Thus, a call to the functioapSubWindows performs both the operatioigindow_Map



/*

Implementation of the function MapSubWindows in th& server.

Several lines of code irrelevant to this example have been omitt€d

MapSubWindows (Window *pParent, Client *pClient) {

Window *pWin;

xEvent event;

pWin = pParent->firstChild;
for (; pWin; pWin = pWin->nextSib) {
pWin->mapped = TRUE;

event.u.u.type = MapNotify ;

Figure 2.2 X server function MapSubWindows
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andWindow_Enumerate. We use a static fingerprint matching algorithm, describedhapter 6

to determine the set of security-sensitive operations performed by each function.

In addition to identifying the locations where security-sensitive operations occur, in this step

we also try to identify the subject and object associated with the operation. To do so, we identify

the variables corresponding to subject and object data types (sGtherst andiWindow) in scope.

In most cases, this heuristic is good enough to identify the subject and the objecjuia 2.2 the

subject is the client requesting the operatip@l(ient), and the object fowindow_Enumerate

is the window whose children are enumeratpBlafrent), and the object fowwindow_Map is the

variable denoting the child windowgi{in) that are mapped to the screen.

Step 2 and 3 together identify all locations where the server performs security-sensitive opera-

tions.
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2.5.5 Step 4: Instrument the server

Having identified all locations where security-sensitive operations are performed, the server
can be retrofitted by inserting calls to a reference monitor at these locations, to achieve complete
mediation. In particular, if we determine that a statenfamit is security-sensitive, and that it
generates the security evesth obj, op), it is instrumented as shown below. Note thatit is

a call to a functionfoo, the query can instead be placed in the function-bodfoof

if (QueryRefmon (sub, obj, op) != TRUE) {
HandleFailure ;

}

else {

Stmt ;

For example, because the functiapSubWindows performs the security-sensitive operation

Window_Enumerate (where children ofpParent are enumerated) calls apSubWindows are

protected as shown below.

if (QueryRefmon (pClient, pParent, Window _Enumerate ) != TRUE) {
HandleFailure ;

}
else {

MapSubWindows (pParent,pClient);

The statemenfiandleFailure can be used by the server to take suitable action against the
offending client, either by terminating the client, or by auditing the failed request. Our approach
currently does not automate the generation of failure-handling code—this must be manually writ-
ten on a case-by-case basis. Developing an approach to gracefully handle failure in a principled

way is an important topic for future research.
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As mentioned earlier, authorization policies are expressed in terms of security-labels of subjects
and objects. Security-labels can be stored in a table within the reference monitor, or instead, with
data structures used by the server to represent subjects and objects. For example, in the X server,
extra fields can be added to th@ient andWindow data structures to store security-labels. In
either case, because we pass pointers to both the subject and the object to the reference monitor
using QueryRefmon, the reference monitor can look up the corresponding security-labels, and

consult the policy.

2.5.6 Step 5: Generate the reference monitor

This step generates code for theeryRefmon function. We generate a template for this func-
tion, omitting two details that must be completed manually by a developer. First, the developer
must specify how the policy is to be consulte@,., he must implemenR using an appropriate
policy management APE(g.,[Treg Trel]). Second, he must implement the state update function,
U, by specifying how the state of the reference monitor is to be updated.

For example, when a security-evéptClient, pWin, Window_Create) succeeds, correspond-
ing to creation of a new window, the security-labelpfin, the newly-created window, must be
initialized appropriately. Similarly, a security-event that copies data fp@itim; to pWin, may
entail updating the security-label pWin, (e.g.,under the Chinese-Wall policyBN89]). Because
security-labels are stored either as a table within the reference monitor or as fields of subject or
object data structures as described earlier, the developer must modify these data structures appro-
priately to update security-labels. This step is described in further de@ihapter 6

Note that while Steps 2-4 are policy independent, Step 5 requires implementaRandfi{,

which depend on the specific policy to be enforced.

2.5.7 Step 6: Link the modified server and reference monitor

The last step involves linking the retrofitted server and the reference monitor code to create an

executable that can enforce authorization policies.
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2.6 Discussion I: Security analysis

We now examine the security of our approach.

e The enforceris implemented using instrumentation inserted in Step 4. Because the subject,
object, and operation are passed to the reference monitor, security-labels can be retrieved,
and the authorization policy consulted. If the requested operation is not permitted by the
policy, the instrumentation ensures that it will not be executed. Further, because the server
controls client connections, it can uBendleFailure to terminate the execution of mali-

cious clients.

e The reference monitoris part of the server’s address space, and is thus tamper-proof based
upon our assumptions Bection 2.2 Alternately, the reference monitor can run as a separate
process, and communicate with the server using IPC. The policy itself must be protected by
storing it on the file-system with permissions such that it can be modified only by a privileged

system user.

The security provided by our approach is thus contingent on whether calls to the reference mon-
itor are placed so as to satisfy the Principle of Complete Mediation. Because reference monitor
calls are placed by matching fingerprints, the security of our approach depends on the soundness
and completeness of the fingerprint mining algorithi@sgpter 4and Chapter % and the finger-
print matching algorithm@hapter §.

A noteworthy feature of our approach is its modularity. In particular, alternative implemen-
tations of fingerprint mining algorithmse(g., using program slicing techniquesH90, KR97,

ZG03) and instrumentationg(g.,using aspect weaveraS]) can be used in place of the algo-
rithms developed in this dissertation. Thus, our technique benefits directly from improved algo-

rithms for these tasks.
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2.7 Discussion II: Why retrofit the server?

A question that may arise based upon the discussion of the technique so far is: “Why does
the server itself have to be retrofitted to enforce authorization policies on its clients? In particu-
lar, why can’t existing policy enforcement mechanisms in a security-enhanced operating system
(e.g.,SELinux), upon which the server runs, be used to enforce these policies?”

The answer is that the server may provide channels of communication between clients that are
not readily visible to the operating system. For example, consider enforcing a policy in the X server
that disallows a cut operation from a Top-secret window followed by a paste operation into an
Unclassified window. Cut and paste are X server-specific channels for X client communication.
While these operations do have a kernel footprint, they are not as readily visible in the operating
system as they are within the X server, where they are primitive operations. It is not advisable
in such cases to use the operating system to enforce authorization policies, because it must be
modified to be made aware of kernel footprints of X server-specific operations, which introduces
application-specific code into the operating system. In addition, the X server must also be modified
to expose more information to the operating system, such as internal data structures that will be

affected by the requested operation. It has been argued that this is impraCBvalJ].
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Chapter 3
Fingerprints

This chapter introduces fingerprints—the representation used by our approach for security-
sensitive operations. As outlined @hapter 2 fingerprints are matched against source code to
locate security-sensitive operations and are thus central to our approach.

A server receives and processes client requests to access and modify the resources that it man-
ages. Each such client request may perform one or more security-sensitive operations on the
resource, each of which must be mediated by an authorization policy lookup. For example, an
X client’s request to map the child windows of a windpRarent using a call tdMapSubWindows
(seeFigure 2.3 results in the security-sensitive operations of enumerating the childgaeént
(denoted bywindow_Enumerate) and that of mapping each of the child windows onto the screen
(denoted bywindow_Map). Each such security-sensitive operation can have one or firere
gerprints where each fingerprint denotes the resource accesses needed to perform that security-

sensitive operation.

3.1 Syntax

The syntax of a fingerprint of a security-sensitive operatidhis as defined irFigure 3.1
A fingerprint is a rule, where the left-hand-side of the rule is the name of a security-sensitive
operation,0OP, and the right hand side of the rule is a conjunction of one or mode patterns
(also calleccode templatesor their negations.

A code pattern is &ead Write or Call operation on a resource; the resource is represented in

the code pattern as an abstract syntax tree (AST). In this dissertation, we restrict ourselves to the



30

n
FINGERPRINT ::== OP :-( Amtra CPR) Subject taConbiTioNs

i=1
n
| OP :- (/\mter CPR) Subject taConbiTioNs
i=1
CP :== Cobg-ParterN | =CoDE-PATTERN

ConprTion  :== Sam¢Cope-PatTERN;, CoDE-PATTERN;)

| Differen{Copg-PaTTERN;, CODE-PATTERN;)

Conprtions :== ConbrtioN A ConbprTiONS | True
Cope-Parterny  ::==Write VaLue TOAST
| ReadAST
| Call AST

| CallWith AST (VALUE, VALUE, ...)
| BINaRYRELATION (AST, AST)
| BINaARYRELATION (AST, VALUE)
| UNarRYRELATION (AST)
AST == (type-name>)+fieldnam§

VALUE == 1(unknown)| constant

| Binary Arithmetic OperatofVALUE, VALUE)
BINARYRELATION == #|==

UNarRYRELATION == Decrement Increment

Figure 3.1 BNF grammar defining fingerprints. The symbBlin the definition of FNGERPRINT
denotes the name of a security-sensitive operation. Note that an abstract syntax tree (AST)
representing a resource access is represented using data types, denoting the data type of the

resource being accessed.

analysis of C source code, and assume that resources are represented as C siuetures)(
The ASTs in code patterns thus represent accesses to fields of data types representing resources. A
few simple extensions of the above operations are also included in the definition of a code pattern,

e.g., Callwith which denotes &all with constraints on actual parameters, and simple binary
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and unary relations, such as tests for equality and disequality, and the increment and decrement
operator.

We make the following observations on the syntax of fingerprints.

1. Resources are expressed in fingerprints using data types, rather than individual variable

names. This decision was motivated by two considerations.

First, specifying resources using data types makes a fingerprint easy to write. A security-
sensitive operation can simply be expressed in terms of the data types of the resources that
it manipulates. Each piece of code that matches this fingerprint (as descriGedpter ¢
performs this fingerprint. Second, using data types for resources relieves the matching algo-
rithm from having to use precise alias information. The matching algorithm instead abstracts
each variable in the program to its data type before checking for a match. The matching al-
gorithm is thus conservative—it may return spurious matches false positives), but will

never miss a piece of code that matches a fingerprmt false negatives). A false nega-

tive means that an authorization check is not placed where it should be, thus resulting in a

potentially exploitable security hole.

2. Even though resources are expressed in terms of data types, we have found that in some
cases further constraints on code patterns in a fingerprint improves the precision of match-
ing. The syntax of fingerprints allonSameand Differentconstraints that can be used to
restrict the code fragments that match a fingerprint. For example, in the fingerprint for
Window_Enumerate shown below, theDifferent constraint mentions that the variable of
type WindowPtr that matches the first code pattern must dEedent from the variable that

matches the second code pattern.

Window_Enumerate :- ReadWindowPtri->firstChild
A ReadWindowPtr,->nextSib

A WindowPtr # 0 Subjectto

Differen{WindowPtr;, WindowPtr;)
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Note, however, that to avoid false negatives, precise alias information must be used if such
constraints are used in fingerprints. For exam@améiindowPtr;, WindowPtr,) is a
constraint that restrictéindowPtr; andWindowPtr; to be the sama,e., point to the same

resource. Alias information is needed to resolve this constraint precisely.

. Fingerprints can either be specified iaraprocedural or interprocedural(represented in
Figure 3.1usingAnra @and A neer, respectively). The matching algorithm describe®€imap-

ter 6 matches intraprocedural fingerprints against code contained in a procedure, while it
matches interprocedural fingerprints against code contained in all procedures in the program
being analyzed. In most cases in our experiments, however, we found that intraprocedural

fingerprints were dticient to represent security-sensitive operations.

. Finally, we note that temporal ordering information cannot be expressed using the syntax
of fingerprints shown irFigure 3.1 Thus, we cannot express fingerprints to represent the
rule “ReadWindowPtr->firstChild before readingilindowPtr->nextSib”. While the
simpler fingerprint language results in simpler, more intuitive fingerprint mining algorithms,
the inability to express temporal ordering information is a limitation, which can potentially

result in false positives in the output of the matching algorithm.

However, in our experiments (describedGhapter §, we found that the number of false
positives was manageable. For example, in our analysis of the X server, we found that one
source of false positives was théindow_Enumerate fingerprint. The fingerprint for this
security-sensitive operation only approximates linked-list traversal, and thus triggers spuri-
ous matches. In particular, out of 20 locations that were output by the matching algorithm

as performingVindow_Enumerate, only 10 did.

Extending the fingerprint language to include temporal information is a topic for future work.
Existing tools, such as MOPXW0Z and xgcc [HCXEOQZ, already employ algorithms

to match such temporal patterns and our work can benefit directly from these tools. Note,
however, that mining temporal fingerprints requires designing more sophisticated algorithms

than those developed in this dissertation.
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3.2 Interpretation

The fingerprint of a security-sensitive operatioR represents the resource accesses needed
to perform that operation. Thus, th&ext that a security-sensitive operation has on a resource is
defined by the resource accesses in its fingerprint.

Using the above interpretation, however, the fingerprint of a security-sensitive oped&tion
must contain all the resource accesses needed to perform that operation on the resource. For ex-
ample, one fingerprint for the operatigvindow_Map of the X server, which represents mapping a
window onto the screen, {Sall MapWindow, or alternatively, the set of statements that implements
MapWindow. Expressing fingerprints withll the resource accesses needed to perform an operation
is certainly acceptable, but makes the fingerprinffewtive in the presence of even minor changes
to the source code of the server.

As a result, we typically express fingerprints using only the set of resource accesses that suf-
fice to diferentiate one security-sensitive operation from another. For example, we found that
the following fingerprint stlices to precisely identify all locations in the X server that perform

Window_Map:

Window_Map :- Write True ToWindowPtr->mapped A

Write MapNotify ToxEvent->union->type

The problem of expressing fingerprints at an appropriate granularity that precisely represents
security-sensitive operations is referred to by Erlingssoseasrity event synthedigrl04, Pages
73-82]. This is the subject of the next two chapters, which develiming algorithms to extract

fingerprints by analyzing source code.
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Chapter 4
Mining Fingerprints using Dynamic Program Analysis

This chapter presents the use of dynamic program analysis to mine fingerprints of security-
sensitive operations. In particular, it presents a technique that makes novel use of tangible side-
effects to locate fingerprints in runtime execution traces of a program. It also presents an applica-

tion of this technique to mine fingerprints of security-sensitive operations for the X server.

4.1 Problem statement

Given a server program, and a description of the security-sensitive operations that clients can
request the server to perform, the technique presented in this chapter outputs fingerprints of these
security-sensitive operations.

This chapter thus assumes that the set of security-sensitive operations is&mpoiwri. The
description can be informal, and must describe the high-level intent of the security-sensitive op-
eration. For example, the document by Kilpatrigkal. [KSVO03] contains such descriptions for
59 security-sensitive operations ortfdrent resources managed by the X server, sudtimdows,

Fonts andColors. This document describes, for instance, Wiedow_Map security-sensitive
operation as the action of mapping a window to the screen andittdow_Enumerate operation
as the action of listing child windows.

Because a fingerprint characterizes the resource accesses performed by a security-sensitive op-
eration, the technique presented hefers a way to formalize an informal description of security-

sensitive operations. This technique is motivated by current practice in retrofitting code, where the



35

aforementioned informal descriptions are also used to locate where code performs these security-

sensitive operations (see, for examplkeSy03, Sections 5.2 and 5.3]).

4.2 ldentifying fingerprints using analysis of program traces

How can informal descriptions of security-sensitive operations be converted into precise code-
level descriptionsi(e., fingerprints) of these operations? We present two novel observations that

enable us to do so.

Observation 1 (Tangible side-fects) Security-sensitive operations are typically associated with

observable change in the system state—these changes will be referddrgibke side-gects

Tangible side-fects help us determine whether a server has performed a security-sensitive op-
eration. Thus, if we induce the server to perform a security-sensitive operiatiotihe occurrence
of a tangible side4f€ect denotes that the operation is performed, then the resource accesses associ-
ated with that security-sensitive operatimnistbe in the trace generated by the server. Thus, iden-
tifying fingerprints reduces to tracing the server as it performs a tangible Sle;@and recording
accesses to resources as it does so. Each trace records function calls, and reads and writes to re-
sources as well as the functions in which they were performed. In particular, each trace records
resource accesses using Weite, ReadandCall code patterns, shown Figure 3.1

However, the program trace generated by the server, even in a controlled experiment to perform
a tangible side4gect, may be huge. For example, using our tracing infrastructure, the X server
generates a trace of length 10459 when the following experiment is performed: start the X server,
open anxterm, close thexterm, and close the X server (each of these is a tangible gtéete
It is infeasible to identify succinct fingerprints of security-sensitive operatiemns,(hose ofwin-
dow_Create andWindow_Destroy) by studying this trace. Our second observation addresses this

problem.

Observation 2 (Comparing traces) The fingerprint of a security-sensitive operation can be local-
ized by comparing traces generated by server executions that perform a security-sensitive operation

against traces generated by executions that do not.



36

The key idea underlying this observation is that if an execution of the server does not perform
a security-sensitive operation, then the trace produced by the server will not contain a fingerprint
of that operation. For example, the trakgen that opens an X client window on the X server will
contain the fingerprint oWindow_Create, but the tracd .,sethat closes a window will not. Thus,

Topen - Teiose @ shorter trace, still contains the fingerprint\Window_Create. Continuing this
process with other traces that do not perfafindow_Create reduces the size of the trace to be
examined even further. In fact, for the X server we were able to reduce the size of the trace several-
fold using this technique (séable 4.1andTable 4.3, whittling down the search for fingerprints

to about 15 functions, on average.

A technical dificulty must be addressed before we compare traces. A tangible fEede-e
may be associated with multiple security-sensitive operations, and all the security-sensitive op-
erations associated with it must be identified. For instance, whetterm window is opened
on the X server, the security-sensitive operations include (amongst others) creating a window
(Window_Create), mapping it to the scree\(indow_Map), and initializing several window at-
tributes Window_Setattr).

We manually identify the security-sensitive operations associated with each tangible side-
effect. Because the sidéfects we consider atangible programmers typically have an intuitive
understanding of the operations involved in performing the sitkee The trace generated by
the tangible sideféect is then assignedlabel with the set of security-sensitive operations that it
performs. It is important to note that tangible sideeets are not specific to the X server alone,
and are applicable to other servers as well. For example, in a database server, dropping or adding
a record, changing fields of records, and performing table joins are tangibleffedeseBecause
labeling traces is a manual process, it is conceivable that they are not labeled correctly. However
we show empirically that fingerprints can be identified succinctly and precisedpite of errors
in labeling Because each trace can be associated with multiple security-sensitive operations, we

formulateset equation$or each operation in terms of the labels of our traces.
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Definition 4.1 (Set equation) Given setS, a setB CS, and a collectiorC={C,, C,, ..., C,} of
subsets ofS, a set equation foB is B=C;,*C;,*.. .*C;,, where eaclC; is an element, or the

Jk?

complement of an element ¢f and *" is U or .

To find a fingerprint for an operatiddP, we do the following: LeS be the set of all security-
sensitive operations, anl = {OP}. Let G denote the labeli.g., the set of security sensitive
operations performed) of trace, Which is obtained when the server performs the tangible side-
effectsgf;. Formulate a set equation f@ in terms of G's, and apply thesame set-operations
on the set of code patterns in the correspondifig. TThe resulting set of code patterns is the
fingerprint forOP.

For example, if T is a trace that perform@P andOP’, and T; is a trace that performoP’,
then G = {OP, OP’}, and G = {OP’}. Say T, contains the set of code patterys, p.}, and T,
contains the set of code patterfis}. Then to find the fingerprint o®P, we letB = {OP}, and
observe thaB = C; - C,. We perform thesameset-operations on the set of code patterns;in T
and T; to obtain{p;}, which is then reported as the fingerprint@P. This process is formalized
in Algorithm 1.

Finding a set equation for a set B is equivalent to computingxatt covelfor this set. An
exact cover may not always exist; if one exists, it can be computexkeatly. However, because
each trace is manually labeled with the set of security-sensitive operations that it performs (using
tangible side-fects to aid reasoning), these labels may potentially be erroneous. We would thus
like to compute the smallest set equation for the set B.

Finding the smallest set equations is, in general, a hard problem. More precisely, define a
CNF set equation as a set equation expressed in conjunctive normal forminatind ‘U’ as the
conjunction and disjunction operators, respectively. Each disjunct in the equaticlaissa The
k-CNF SET EQUATION problem, which is equivalent to the problem of finding the smallest set

equations, can be shown to N@-complete.

Definition 4.2 (k-CNF SET EQUATION) Given a sef5, asetB C S, a collectionC of subsets of

S (as in Definitior4.1), and an integek, doesB have a CNF-set equation with at méstlauses?
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Algorithm : Fino_FinGerprRINT(X, S, Sef)
Input . (i) X: Server to be retrofitted,
(i) S: A set of security-sensitive operatiofGP;, ..., OP,}, and
(i) S¢f: A set of tangible sideféects{sgfi, ..., S&fm}.
Output : FP, ..., FR,: Each FPRis the fingerprint of the security-sensitive operation
OP;.
1 X’ := X instrumented to perform tracing;
2 foreach (tangible side-Bectsdfi € S¢gf) do
3 T; := Trace generated by’ when induced to perforrsgf;;

4 label(T;) := Set of operations (fror®) involved insgf;;

—h

5 foreach (OP; € S) do
6 SE := Set-equation foOP; in terms oflabelT,), .. ., label(Ty);
7 CPset:= Set of code patterns in;;T

8 FR := Result when the set operations in; 3lte performed on CPset. ., CPset;

9 return FP, ..., FP,
Algorithm 1: Dynamic program analysis-based algorithm to mine fingerprints of security-

sensitive operations.

We currently use a simple brute-force algorithm to find set equations. This works for us,
because the number of sets we have to examine (which is the number of traces we gather) is

fortunately quite small (15 for the X server).

4.3 Implementation

We have implemented Algorithin a prototype tool called &. We use a modified version of
gcc to compile the server. During compilation, instrumentation is inserted statically at statements
that read and write to fields of data structures denoting resources that we want to protect access to.

We log the field and the data structure that was read from, or written to, and the function name, file
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Trace name A B C D E F mG H I
Side-dfect 5| 08|92 g2 éé <2 ég
ch|lgp|l28|03|® S8
Security-senslitive Operation gg g; é’_é éé §§ é% Eig §§ gé
Window_Create H H U [
Window_Destroy O | O | O O | O¢y
Window_Map U U l W
Window_Unmap O | O¢ | O O | O¢y
Window_Chstack U U U [ [
Window_Getattr O O Ufp | Utp
Window_Setattr O | O¢p | On
Window_Move Utn 0 O¢n | O¢n
Window_Enumerate Ufn | Oen | O 0 O | Q¢
Window_InputEvent U U U
Window_DrawEvent 0 [l 0 O | Q¢ | O O
Distinct
Functions 115|148 | 251|161 | 68 | 148 | 96 | 93 | 166

Table 4.1 Examples of labeled traces obtained from the X serverl”A&htry in (row, column
denotes that the trace representeadtymnperforms the security-sensitive operation represented
by row. A*“O¢," or a “Os,” entry denotes a mistake in manual labeling.

name, and the line number at which this occurs. We then induce the modified server to perform a
set of tangible sideftects, and proceed as in Algorithbio mine fingerprints.

We applied this to mine fingerprints of security-sensitive operations in the X server. In par-
ticular, we recorded reads and writes to fields of data structures suthi ast, Window, Font,
Drawable, Input, andxEvent. Table 4.1shows the result of performing line4){(4) of Al-
gorithm 1. Columns represent traces of 9 tangible siffeats, and rows represent 11 security-
sensitive operations on thHéindow data structure. We manually labeled each trace with the

security-sensitive operations that it performs. These entries are marRadla4.1usingd and
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O+p. For example, opening arterm on the X server includes creating a windowigdow_Create),
mapping it onto the scree{indow_Map), placing it appropriately in the stack of windows that
X server maintainsWindow_Chstack), getting and setting its attributeg/{ndow_Getattr, Win-
dow_Setattr), and drawing the contents of the windowi6dow_DrawEvent). This trace of opera-
tions contains 115 calls to distinct functions in the X server, as shown in the last roablef 4.1

Table 4.2andFigure 4.1show the result of performing line$)¢(8) of Algorithm 1 with the
labeled traces obtained above. For each operation, the set equation used to obtain fingerprints
and the size of the resulting set are showamble 4.2 while the set of fingerprints is shown in
Figure 4.1 Note that each security-sensitive operation can have more than one fingerprint, as for

example, is the case witindow_Enumerate andWindow_InputEvent.

Operation Set Equation |FP]
Window_Create NA,C,G)-D-H 9
Window_Destroy N(B, D) - A 7
Window_Map NA,C,G)-D-H 9
Window_Unmap N(B, D) - A 7
Window_Chstack NA,C, G H D)-D-E 6
Window_Getattr NA,C,I)-B-D-E-F 25
Window_Setattr NA,C,FI)-B-D-E 15
Window_Move F-A-B-D-E-G 38
Window_Enumerate | N(C, D, F, H, I) 21
Window_InputEvent | E-C 19
Window_DrawEvent | N(A,B,C,D, E,F, G, H, )| 12

Average value of|[FP:  15.3

Table 4.2 Set equations for security-sensitive operations computed using the annotations in
Table 4.1 and the sizes of the resulting sets.
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To find errors in manual labeling of traces, we did the following. After finding fingerprints of
security-sensitive operations, we checked each trace for the presence of these fingerprints. Pres-
ence of a fingerprint of a security-sensitive operation in a trace that is not labeled with that security-
sensitive operation shows an error in manual labeling; such entries are miagkedTable 4.1
For example, we did not label the trace generated by opening a brawsériew) with Win-
dow_Unmap. On the other hand, absence of fingerprints of a security-sensitive operation in a trace
that is labeled with the security-sensitive operation also shows an error in manual labeling; such
entries are marked ¢, in Table 4.1 Thus for example, we did label the trace generated by moving
a window withWindow_Getattr, whereas in fact, this operation is not performed when a window

is moved.

4.4 Evaluation of the dynamic fingerprint mining algorithm

We now evaluate the dynamic fingerprint mining algorithm, as implementedirbf answer-

ing four questions.

4.4.1 How dfective is Ap at locating fingerprints?

Raw traces generated by tangible-sifte@s have, on average, 53829 code patterns. However,
Aip abstracts each trace to the granularity of functions: it first identifies fingerprints at the function
level; if necessary, it delves into the code patterns exercised by the function. The number of
distinct functions called in each trace is shown in the last roWadfle 4.1 The third column of
Table 4.2shows, in terms of the number of functions, the size of FP, which is the result obtained
by computing the set equation for each security-sensitive operation, to determine fingerpnints. A
was able to achieve about one order of magnitude reduction in terms of the number of distinct
functions to be examined for fingerprints.

We examined each of the functions in FP to determine if it is indeed a fingerprint. In most
cases, we found that for a security-sensitive operation, a single function in FP performs the oper-
ation. However, in some cases, multiple functions in FP seemed to perform the security-sensitive

operation. For example, botball MapWindow and Call MapSubWindow, which were present in
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Window_Create :- Call CreateWindow

Window_Destroy :- Call DeleteWindow

Window_Map :- Write True ToWindow->mapped

A Write MapNotify ToxEvent->union->type

Window_Unmap :- Write UnmapNotify To xEvent->union->type

Window_Chstack :- Call MovellindowInStack

Window_Getattr :- Call GetWindowAttributes

Window_Setattr ;- Call ChangeWindowAttributes

Window_Move Call ProcTranslateCoords

Window_Enumerate ;- ReadWindowPtr->firstChild
A ReadiiindowPtr->nextSib
A WindowPtr#0

Window_Enumerate ;- ReadiWindowPtr->lastChild

A ReadWindowPtr->prevSib

Window_InputEvent ;- Call CoreProcessPointerEvent

Window_InputEvent :- Call CoreProcessKeyboardEvent

Window_InputEvent :

Call xf86eqProcessInputEvents

Window_DrawEvent ;- Call DeliverEventsToWindow

Figure 4.1 Fingerprints obtained by analyzing set equatiofgguare 4.1by applying
Algorithm 1 to the labeled traces froffable 4.1

FP, performedVindow_Map. In such cases, we examined the execution traces of the server to
determine common code patterns exercised by the call to these functions. DoingWam{for
dow_Map reveals that the common code pattern¥apWindow andMapSubWindow are {Nrite

True toWindow->mapped A WriteMapNotify to xEvent->union->type). For security-sensitive
operations such a#/indow_InputEvent, where we did not find common code patterns exercised
by candidate functions from FP, we deemed each of these function calls to be fingerprints of the

operation.
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4.4.2 How precise are the fingerprints found?

For each of the fingerprints recovered by Aor the X server, we manually verified that it is
indeed a fingerprint of the security-sensitive operation in question.

However, in general, A& need not recover all fingerprints of a security-sensitive operation.
Because & employs dynamic program analysis, it can only capture the fingerprints of a security-
sensitive operation exercised by the runtime traces, and maythissyays to perform the opera-
tion. By collecting traces for a larger number of tangible siffeats, and verifying the fingerprints
collected by Ab against these traces, confidence can be increased in the precision of fingerprints

obtained by Ab.

4.4.3 How much dfort is involved in manual labeling of traces?

In all, we collected 15 traces for ftierent tangible sideffects exercising dierentWindow-
related security-sensitive operations. It took us a few hours to manually label traces with security-

sensitive operations.

4.4.4 How dfective is manual labeling of traces?

In most cases, it is easy to reason about the security-sensitive operations that are performed if
a tangible sidefect is induced. However, because this process is manual, we may miss security-
sensitive operations that may be performed,(entries inTable 4.), or erroneously label a trace
with security-sensitive operations that are not actually perforriigg €ntries). Our experience of
manually labeling traces for the X server shows that this process has an error rate of approximately
15%.

However, it must be noted that we were able to recover fingerpnisisite of labeling errorsif
a security-sensitive operation is wrongly omitted from the labels of a trace that performs a tangible
side-dfect associated with that operation (thg, case), then because the same security-sensitive
operation often appears in the labels of other traces, a set equation can still be formulated for the
operation, and the fingerprint can be recovered. On the other hand, if a security-sensitive operation

is wrongly added to the labels of a trace (thig, case), none of the functions in FP will perform
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the tangible side{ect. In this case, trace labels are refined, and the process is iterated until a

fingerprint is identified.

45 Limitations

While the technique presented in this chapter was motivated by the need to formalize descrip-

tions of security-sensitive operations, it has three limitations.

1. The technique relies on the availability of high-level descriptions of security-sensitive oper-
ations. While such descriptions are available for several Linux subsystems and the X server,
identifying security-sensitive operations is, in general, an ad hoc and manual exercise, and it

is not realistic to assume that such descriptions will be available for all servers.

2. The technique relies on tangible sideets to determine whether a security-sensitive oper-

ation was performed during an execution of a server. This is problematic for two reasons.

First, it may not always be possible to identify tangible sifteets for a security-sensitive
operation. Indeed, in our experiments with the X server reported in this chapter, we faced

difficulties in identifying tangible sideffects for several security-sensitive operations.

Second, the technique relies on a human to manually perform controlled experiments on
the server, collect the runtime execution traces so generated, and reason about the security-
sensitive operations associated with each trace. The accuracytaaiiveness of the tech-

nique is thus dependent on how carefully the experiments were performed. For example,
the X server permits transparent windows, which can be mapped to the screen (thus induc-
ing Window_Map). If such a transparent window is mapped to the screen during one of
the experiments, and the human fails to incld@dow_Map in the label of the associated

execution trace, the technique will fail to compute a fingerprintfmdow_Map.

3. Finally, because the technique uses dynamic program analysis, it cannot guarantee that all
fingerprints of a security-sensitive operation have been foumgthe technique is natom-

plete and can have false negatives. In particular, the number and quality of fingerprints
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mined by the technique directly relies on the code coverage of the manually-induced exper-

iments.

These limitations are fundamental, and prevented this technique from being applied to a wide
variety of servers. The static fingerprint mining technique presented in the next chapter directly

addresses these limitations of the dynamic mining technique.
4.6 Using the dyamic fingerprint mining tool

This section summarizes the steps that a security analyst must follow to find fingerprints using

the dynamic fingerprint mining tool.

e Design a set of experiments to induce security-sensitive operations in the server. Label each

experiment with the set of security-sensitive operations performed in that experiment.

¢ Instrument the server to log accesses to sensitive data structures, conduct the experiments

from the first step, and collect the traces emitted by the server.
e Compute set equations for each security-sensitive operation.
e Apply set equations to traces and obtain pruned sets of code-patterns.

e Manually examine and refine the pruned sets to identify fingerprints of security-sensitive

operations.

4.7 Summary of key ideas
To summarize, the key contributions of this chapter are:

e The use of dynamic program analysis to convert high-level, informal descriptions of security-

sensitive operations into fingerprints.

e The use of tangible sideffects as a means to determine whether an execution of a server

performs a security-sensitive operation.
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e An algorithm to localize fingerprints by comparing execution traces using set equations.

¢ An implementation of the above techniques in a prototype tool callegdaid its evaluation

on the X server.
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Chapter 5
Mining Fingerprints using Static Program Analysis

This chapter develops a technique that uses static program analysis and a clustering technique,
called concept analysis\il82], to mine fingerprints of security-sensitive operations. This tech-
nique directly addresses the main shortcomings of the dynamic program analysis technique pre-
sented in the previous chapter. In particular, the technique mines fingerprints without the need
for ana priori description of security-sensitive operations. Further, because static program anal-
ysis ensures better coverage than dynamic analysis, the technique presented in this chapter can
mine more fingerprints than the technique in the previous chapter. This chapter also presents three
case studies, showing the application of this technique to mine fingerprints of security-sensitive

operations for the Linux ext2 file system, the X server, and PennMUSH, a multi-user dungeon.

5.1 Problem statement

Given a server program, and the data types of resources, accesses to which must be protected,
the technique presented in this chapter outpuikling blocksthat satisfy Properti defined be-

low. These building blocks can be used to construct fingerptints

Property 1 (Happens together) A building block BB output by the technique presented in this

chapter is a set of code pattef®B = {pat,, ..., pat,} that satisfies the following property: if one

1For the rest of this chapter, we will relax the strict syntactic definition of a fingerprint (gigime 3.), and refer
to a fingerprint as a set of code patterns instead. The interpretation of a fingerprint remains unchanged with this syntax:
the set of code patterns in a fingerprint represents all the resource accesses needed to perform the security-sensitive
operation represented by that fingerprint.
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of the code patterngat in BB appears in any valid execution trace of the server, #ikethe code

patterns inrBB appear in that trace.

Thus, the building blocks satisfying Propertyrepresent resource accesses that are always
performed together. Our hypothesis is that building blocks satisfying Properay be used to
construct fingerprints of security-sensitive operations. Intuitively, this is because such a set de-
notes the set of resource accesses that must be performed to achieve a high-level operation on
the resourced.g.,an operation such a#/indow_Map or Window_Enumerate). Indeed, in our
experiments with the Linux ext2 file system and the X server, we found that the building blocks
output by the technique were excellent indicators of security-sensitive operations identified man-
ually (and independently, in the LSM projea/[CS"02] and the X11SELinux project KSV03],

respectively).

5.2 Identifying fingerprints using static program analysis and concept analysis

This section presents a high-level overview of our technique. Using a running example, it
demonstrates how a software engineer would use this technique to mine fingerprints of security-

sensitive operations. The entire process is depictddlite 5.1

5.2.1 Running example

We use a subset of ext2, a Linux file system, and one of the case studestian 5.5as our
running example. In particular, ext2 is responsible for laying out and interpreting disk blocks as
belonging to specific files or directories. It represents metadata information using several internal
data structures. This metadata is used to retrieve files and directories from raw disk blocks.

File systems on Linux are pluggable, and must thus export a standard API to the kernel. A
system call that manipulates files or directories ultimately resolves to one or more calls to this
API. The relevant file system functions then serve this request. Thus a file system is a server that

manages files and directories. For ext2, we considered 10 API functions related to manipulation
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of directories €.9.,ext2_rmdir, ext2 mkdir andext2_readdir). We show how our technique

can identify security-sensitive operations that ext2 performs on directories.

Resour ce types Constraints

Building

Legacy server——» A — = blocks B | Fingerprints of security

sensitive operations

Step Description Techniques used

A | Extraction of building blocks from sourceStatic analysis and concept analysis.

code.

B | Refinement of building blocks. Application of constraints and interpreta-

tion of fingerprints.

Table 5.1 Steps to statically mine fingerprints of security-sensitive operations, and the techniques
used in each step. Static analysis is first used in conjunction with concept analysis to extract
building blocks. These building blocks are refiyjmamposed to yield fingerprints.

5.2.2 Step A: From source code to building blocks

In the first step, we employ static source code analysis and idenfigrelt ways in which
ext2 accesses shared resources in response to client requests.

To do so, we must first identify resources, accesses to which must be authorized. As before,
we express the resources to be protected using their data types. For ext2, these resources include
internal data structures used to represent files and directories. These data structures are specified by
a domain expert, and for ext2 they are variables of tifpsle, ext2_dirent, ext2_dir_entry_2
andaddress_space, each of which is a Gtruct.

We also assume that a client accesses server resources only via the server’'s API. With ext2,
this is indeed the case, and as mentioned earlier ext2 exports a well-defined API to the kernel. The

inputs to our static analyzer are thus the source code of ext2, and two files, specifying, respectively,
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the types of resource data structures, accesses to which must be authorized, and a set of API
functions.

The static analyzer identifies how these resource data structures are manipulated by the ext2
API. It does so by distilling each statement of ext2 source code into a (possibly empty) set of
code patterns. Code patterns are as defindélgare 3.1 and includeReads, Writes andCalls.

For example, the C statemaid->file type = 0, wherede is a variable of typext2 dirent

is distilled toWrite ® To ext2_dirent->file type. Note in particular that this transformation
ignores specific variable names and focuses instead on types of variables. As a result, we identify
generic resource manipulations but not the specific instance of the resewg¢thé instancele)

that they happen on.

Statements that do not manipulate resource data structures are igricaibccode patterns
correspond to calls via unresolved function pointers. For each funetio?Lapi in the ext2 API,
the static analyzer then aggregates code patterns of all statements potentially reachable via a call to
ext2_api. Thus, at the end of this step each ext2 API functamn2_api is associated with a set
of code pattern€odePatéxt2_api). Intuitively, CodePatéext2_api) denotes all possible ways
in whichext2_api can potentially manipulate tracked resources.

The next step is to find sets of code patterns that always appear together during server execution.
That is, if one code pattern from a set of code patterns appears in an execution of ext2, then all
the other code patterns from that set appear in that execution as.@gk (Set of code patterns
satisfying Propertyl). Note that we can have sefgat} with singleton code patterns as well,
denoting that no other code pattern always appears togethefpath Each set of such code
patterns denotes an idiomatic way in which a resource is manipulated by ext2, and potentially
indicates a security-sensitive operation. Each such set is caliediding block

We identify building blocks using concept analyswi[82], a well-known hierarchical clus-
tering technique. At a high-level (details are presenteSantion 5.3, concept analysis identifies

building blocks, as well as the API functions whose code pattern sets contain these building blocks.
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For example, concept analysis inferred that the set of six code patterns shéiguia 5.1
is a building block, and that it appears @odePatéext2_rename), CodePatéext2 _rmdir) and
CodePatéext2_unlink).

(1) Readaddress_space->host

(2) Readext2 dir_entry 2->rec_len

(3) Write® Toext2 dir entry 2->inode

(4) Readinode->i mtime

(5) Readinode->u->ext2_inode_info->i dir_start_lookup

(6) Write L Toinode->u->ext2 inode_info->i dir_start_lookup

Figure 5.1 One of the building blocks that concept analysis identifies for ext2.

For ext2, we identified 18 such building blocks, each denoting a unique way in which ext2
manipulates files and directories. While concept analysis is asymptoticafficieet—its com-
plexity is exponential in magCodePatéext2_api;)|)—our experiments showed that it ifieient
in practice. In particular, our analysis completed in about 2 seconds for ext2, and in just over 310

seconds for the largest of our case studies.

5.2.3 Step B: Refining building blocks

In the second step, a domain expert (i) refines building blocks obtained from Step A and (ii) post
refinement, determines, for each fingerprint, whether it embodies a security-sensitive operation that
must be mediated by an authorization policy lookup.

Refinement of building blocks is necessary for two reasons.

e The first reason is because the code analysis employed in Step A is imprecise. As a result, a
set of code patterns that appears in the results of concept analysis may not satisfy Rroperty

There are two ways in which precision is lost:
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1. The static analysis algorithm employed in Step Alasv-insensitive A building block
may contain a pair of code patterpat;, pat, that do not always appear together in all

executions of the server (thus violating Propélty

2. We ignore specific instances of resources that are manipulated and focus instead on
their types. Thus, a building block may contain manipulations of multiple, possibly

unrelated, resources.

We employprecision constraintso identify such cases and enable refinement of each build-
ing block, separating the code patterns that it contains into several fingerprints. Intuitively,
a precision constraint is a rule that determines the set of code patterns that can be grouped

together in a fingerprint.

e The second reason why refinement is necessary is because a domain expert may deem that a
set of code patterns is irrelevant for the authorization policies to be enforced for the server, or
may wish to separate or group together a pair of code patterns in a fingerprint of a security-

sensitive operation. Suaomain-specific constrainfarther refine building blocks.

For example, consider the building block showrFigure 5.1 Using the output of our static
analysis tool, we were able to determine that the code patterns (1)-(4) appear together in each
successful invocation of the ext2 functiert2 delete_entry and that the code patterns (5) and
(6) appear together in each successful invocation of the funetta? _find entry. Each of
the three API functionsxt2_rename, ext2_rmdir andext2_unlink, that contain this building
block call both these functions. Bo#xt2 rmdir andext2 unlink call these functions on the
sameresource instance, namely the directory being removed (or unlinked). Howergguas 5.2
shows, whileext2_rename calls both these functions on the instanc®é_dir andold_dentry,?
it callsext2_find_entry only on the instancesew_dir andnew_dentry when a certain predicate

new_inode is satisfied.

2The variableold_de, which ext2_delete_entry is invoked with on linel8 is derived fromold_dir and
old_dentry.
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1|int ext2 _rename (inode *old_dir, dentry *old_dentry,

2 inode *new_dir, dentry *new_dentry) {

3 /+ Declarations of oldpage, newpage, oldde and newde =/
4 new_inode = new_dentry->d_inode;

5

6 old_de = ext2_find _entry (old_dir, old_dentry, &old_page);
7 if (new_inode) {

8

9 new_de = ext2 _find _entry (new_dir, new_dentry, &new_page);
10

11 }

12 else {

13

14 /* No call to ext2find_entry in this branch=x/

15

16 3

17

18 ext2 _delete _entry (old_de, old_page);

19

20 |}

Figure 5.2 Example showing the need for precision constraints.

Becauseext2_rename performs the resource manipulations corresponding to code patterns
(5) and (6) on additional resource instances as compared to the code patterns (1)-(4), code patterns
(2)-(4) and (5)-(6) likely representfiiérent security-sensitive operations. Imposing the constraint
that code patterns onfierent resource instances must be part of separate fingerprints, the building
block shown inFigure 5.1is split into two parts, as shown fFigure 5.3 Additional examples of
the use of precision constraints appeaséecttion 5.4 Note that such constraints can potentially be
avoided with sophisticated program analyses, which we plan to explore in future work. However,

in our case studies we found that more than 50% of the building blocks did not require refinement.
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Thus our current approach provides a good trédeetween precision of results and simplicity of
the code analysis algorithm.

Domain-specific constraints encode rules that are formulated by a domain-expert. In particular,
whether the resource manipulation embodied by a fingerprint is security-sensitive depends on the
set of policies that must be enforced on clients. For example, it may only be necessary to protect the
integrity of directories, and not their confidentiality. In this case, fingerprints that embody a write
operation on directories are security-sensitive, while fingerprints that embody a read operation are
not. Fingerprints expose possible operations on resources, and let an administrator decide whether
an operation is security-sensitive or not. For example, an analyst may decide that Fingerprint (2) in
Figure 5.3 which corresponds to a directory lookup, is not interesting for a specific set of policies

to be enforced.

Fingerprint (1)

(1) Readaddress_space->host

(2) Readext2_dir_entry 2->rec_len
(3) Write® Toext2 dir entry 2->inode

(4) Readinode->i mtime

Fingerprint (2)

(5) Readinode->u->ext2_inode_info->i_dir_start_lookup

(6) Write L Toinode->u->ext2_inode _info->i dir_start_lookup

Figure 5.3 Fingerprints obtained after refinement with precision constraints.

After refinement, the domain expert assigns semantics to each fingerprint, associating it with
a security-sensitive operation. For example, Fingerprint (E)dnre 5.3ambodies the directory re-
moval operation, while Fingerprint (2) embodies the lookup operation. The LSM proy&cs{02]
has identified a comprehensive set of security-sensitive operations for Linux by considering a wide
range of policies to be enforced, including security-sensitive operations on the file system. It turns

out that Fingerprint (1) embodies the LSM operatin Remove_Name, while Fingerprint (2)
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embodies the LSM operatiddir_Search. Thus, at the end of the second step, we have a set of

fingerprints, each of which is associated with a security-sensitive operation.

5.3 Extracting building blocks from code

This section discusses Step A in detail. We discuss the use of static analysis to identify resource
manipulations potentially performed by each API function, and concept analysis to find building

blocks.

5.3.1 Static analysis

Algorithm 2 describes the static code analysis that we have implemented (ifNGIRV02)).
Lines 1-5 employ a simple flow-insensitive analysis to extract for each function a set of code pat-
terns describing how the function manipulates resource data structures. While this step sacrifices
precision, it simplifies the rest of the analysis by making the output amenable to concept analy-
sis. As described earlier, we recover some of the precision lost in this step by applying precision
constraints. While we intend to explore in future work how a flow-sensitive program analysis can
interact with concept analysis, we have found that our current implementdtens a reasonable
tradedt between simplicity of analysis and precision of the results obtained. Bifesompute
CodePat6api;), the set of resource accesses performedgay, for each API functiorapi; of
the server by finding functions in the call-graph reachable fami. We resolve calls through
function pointers using a simple pointer analysis: each function pointer can resolve to any function
whose address is taken and whose type signature matches that of the function pointer. This anal-
ysis is conservative in the absence of type-casts, but may miss potential targets in the presence of
type-casts.

Recall thatCodePat&api;) is the set of resource accesses that a client can perform by invoking
API function api;. However, we would like to identify resource accesses satisfying Property
i.e., we would like to identify set8B = {pat,, ..., pat,} such that if one of the code patterns
pateBB appears in any valid execution trace of the server, @ilethe patterns irBB appear in

that trace.
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Note that Propertyl implies that each building blocBB is such that eitheFP C Code-
Patqapi;) or BB n CodePat&pi;) = 0, for each API functiomapij. As described below, we
use concept analysis to identify a set of building blocks. Each building block may then be used to

construct fingerprints.

Algorithm : Extract_Copg-Parterns(Server, APIl, RSC)
Input . (i) Server: source code of server,
(i) APl={apiy, ..., apin}: set of API functions of Server, and
(iif) RSC: data types of sensitive resources.
Output : CodePat&pi,), ..., CodePat&api,), for apiy, ..., api, € APL.
1 foreach (function £ in Server)do
2 Summarygf) := 0;
3 foreach (statemens € £ that dfects a data structure of tygeRSC)do

4 CP = Decomposition okinto code patterns (seeo€e-Partern in Figure 3.);
5 Summary€) := Summaryf) U CP;
6 foreach (apij € API) do

7 CodePat&pi;) := 0;
8 foreach (function £ reachable fronapi;) do
9 L CodePat&api;) := CodePat&api;) U Summaryf);

10 return CodePat&pi,), ..., CodePat&pi,)
Algorithm 2 : Static analysis algorithm to extract resource manipulations.

5.3.2 Background on concept analysis

Concept analysis is a well-known hierarchical clustering technique that has found use in soft-
ware engineeringe(g.,for aspect miningCMM*05, EKS03 TC04, TMO04], to identify modular

structure in legacy codé& 597, Sif98, ST98 vDK99], to automatically convert non-object-oriented
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programs into object oriented on&sifP8], and to debug automatically mined temporal specifica-
tions [AMBLO3]). We give a brief overview of concept analysis and describe how we adapt it to
find building blocks.

The inputs to concept analysis are (i) a setnsttances | (ii) a set offeatures F and (iii) a
binary relationR: | — F that associates instances with features. It producesieept latticeas
output. Intuitively, each node in the concept lattice pairs a set of instafiagth a set of features
Y, such thaty is the largest set of features in commoratbof the instances X. Formally, each
node is a paikX, Y), whereX € | andY e F, such thair(X)=Y andy(Y)=X, wherea(X) =
{f e Fl¥x e X (%, f) e R}, andy(Y) ={i e I[Vy € Y (i, y) € R}. A node(X, Y) appears as an
ancestor of a nodé, Q) in the concept lattice iP c X. In fact, this ordering also implies c Q.

This is because a smaller set of instances will share a larger set of features in common. Thus, the
root node shows the set of features common to all instandesuhile the leaf node shows the set
of instances that share all featureg=in

Figure 5.4shows an example of a concept lattice, as applied to our problem. Each API function
apii, api,, apisz andapi, is considered an instance, and each code pat&tinpat, pat, paty
is considered a feature. They are relateddndePats which is obtained from static analysis,
depicted inFigure 5.4a) as a table. Each nogl¥, Y) is such thaall the code patterns ivi appears
in eachCodePat&pi;) for apijeX. This lattice shows, for example, that (i) there are no code
patterns in common to all API functions (noden the lattice), (ii) Bothpat; andpat; appear in
both CodePatéapi,) and CodePatépis), and these are the only such API functions (n&je

and that (iii) No API functions have all code patterns (n@&Je

5.3.3 Using concept analysis

We compute building blocks using Algorith# It first invokes concept analysis (liri¢ on the
set of API functions and the set of code patterns to obtain a concept lattice as sHeguran5.4
It then finds building blocks, in line2-9, by finding nodes in the lattice where new code patterns
are introduced. Each such node is marked, and the set of new code patterns introduced in that node

is considered as a building block.
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(a) The relation CodePats
CodePats pat; | pat | patz | pak
api; O O
api, O O
apis O 0 0
apig 0
(b) Concept lattice (c) Nodes in the concept lattice
A A: ({apiy, api,, apis, apia}, 0)
B*/ \ C’; B: ({apii, api,, apis}, {pat})
\ C: (lapis, apia}, {pat})
D* D: (fapiz, apis}, {pat.patk})
\ E: (fapiy, apip}, {pat, pak})
E\\ J F F: ((apis), (pat, pat, pa))
G G: (0, {pat, pak, pai, pau})

Figure 5.4 Concept analysis example.

For the example irFigure 5.4 the nodesB, C, D, andE are marked because these nodes
introduce the code patterpat;, pat, pat andpat—i.e.,any node containing one of these patterns
musthave the corresponding node as an ancestor. Each of these code patterns is classified as a
building block.

Intuitively, Algorithm 3 works because each building bloBIB satisfiesBB € CodePatéapi,;)
or BBn CodePaté&pi;) = 0, for each API functiorapi;. Concept analysis ensures that the node
of the concept lattice in which a new code pattpat € BB is introduced will introduceall of the
code patterns iBB. Line 9 identifies and marks nodes where a new code paptatis introduced
into the lattice. Because of the property above, all the code patterns that appear in the same

building block agpatappear in that node. Note however, that code patterns in each building block
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may not satisfy Property (because static analysis was flow-insensitive). Thus the building blocks

computed by Algorithn8 must be refined (in Step B).

Algorithm : Fino_BuiLbing_Brocks(CodePatsAPI)
Input . (i) CodePatsThe relation obtained from Algorithr, and
(i) APl = {apiy, ..., apin}, set of API functions of the server.
Output :CFPy,..., CFPy, aset of building blocks.
1 Run concept analysis with the set of instanteaPlI, the set of features
F= U CodePat&api;), and the relatioiR=CodePats

ie[L..n]

2 count:=1;
3 foreach (node(X, Y) in the concept latticejlo
4 Let {(Xj, Yj)} be the set of parents ¢K, Y) in the concept lattice;
Diff := Y - _]V;;
i

6 if (Diff # 0) then

7 Cchount .: Dlﬂ:,
8 count:= count+ 1;
9 Mark the nodg X, Y);

10 return CFPy, ..., CFP.un /* Note: k is the value otountin this line. */

Algorithm 3: Algorithm for finding building blocks.

The number of building blocks identified by Algorith@ has an upper bound ¢fUic1
CodePat&pi;)|. Note that while the concept lattice can be exponentially large in the number
of API functions (because asymptotically, it is a lattice on the power set of API functions), this up-
per bound places a restriction on the number of nodes that will be marked Bhdinglgorithm 3.

This is key, because these nodes introduce building blocks, and as discuSsadiam 5.2 they
must be manually examined for refinement in Step B.
Several algorithms have been proposed in the literature to compute concept lattices. We chose

to implement the incremental algorithm by Goeiral.[GMA95, Algorithm 1] because it has been
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shown to work well in practiceAMBLO03]. While this algorithm is asymptotically exponential—
its complexity isO(22P|1), wherep is an upper bound on the number of features of any instance in

|—the algorithm scaled well in our case studies.

5.4 Refinement with constraints

As described irSection 5.2.2building blocks obtained from concept analysis are imprecise
for two reasons. First, because of flow-insensitivity, a pair of code patpathsndpat, that do
not satisfy Propertyl may appear in the same building block. Second, the resource manipula-
tions in a building block may be associated with multiple, possibly unrelated resource instances.
Thus, building blocks must be refined using precision constraints. Domain-specific constraints can
additionally be applied to refine constraints with domain-specific requirements.

This section presents a unified framework to express constraints and refine building blocks
(Step B). Both precision constraints and domain-specific constraints can be expressed in this frame-
work.

As Figure 5.5shows, each constraint is eitherSgparatéX, Y), anlgnorg(X) or a Com-
bing(X, Y), whereX andY are sets of code patternSeparatéX, Y) refines building blocks by
separating code pattern s&¢sandY into separate fingerprintdgnore(X) refines building blocks
by discarding the code pattern sétrom building blocks.CombinéX, Y), for which we have only
felt occasional need, combines code pattern XetadY in two building blocks into a single fin-
gerprint, thus coarsening the results of concept analysis. For example, the coSspairaté{1,

2, 3, 4, {5, 6)) refines the building block ifrigure 5.1to yield the fingerprints ifrigure 5.3 We
now discuss precision and domain-specific constraints in this framework.

Precision constraints aBeparaté€X, Y) constraints and as discussediaction 5.2they serve
two goals. The first goal is to refine building blocks based upon resource instances manipulated.
Separat€(l, 2, 3, 4, {5, 6}), the use of which was illustrated earlier, serves this goal. Formally,
each set of code patterns can be associated with one or more resource instances that it manipu-
lates. We use a constraiBeparate(X, Y)o separate code pattern set@ndY that manipulate

different sets of resource instances. For example, consider the code patterns (BEigdjarb.1
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ConsTRAINT ::== SeparatgParSer, ParSET)
| Combing(ParSet, ParSer)
| Ignore (ParSeT)

PsrSEr  :== Set of code patterns (seefe-Partern in Figure 3.)

Figure 5.5 BNF grammar for constraints.

that appear in the functioext2_delete_entry, and the code patterns (5) and (6), that appear in
the functionext2_find entry. Because of the way these functions are invokeekit2_rename
(seeFigure 5.2, code patterns (5) and (6) are associated with the resource inst@htesr,
old dentry, new_ dir andnew_dentry, while code patterns (1)-(4) are associated with resource
instancesnld_dir andold_dentry. Because the code patterns (5) and (6) are applied to addi-
tional resource instances, they are separated out using the constraint above. We currently manually
identify resource instances associated with a set of code patterns. However, this can potentially be
automated using a program analysis that is sensitive to resource instances manipulated.

The second goal of precision constraints is to identify and remove imprecision introduced be-
cause of flow-insensitive program analysis. In particular, a pair of code pap@trendpat, may
appear together in a building block, but may not appear together in all executions of the server.
In such cases, Separat@at;, pat,) constraint separates these code patterns itfiterdnt finger-
prints. For example, one of the building blocks that we obtained in the analysis of ext2 is shown

below; it appeared i€odePatéxt2 ioctl).

(1) Write L Toinode->i_flags

(2) Write L Toinode->i_generation

However,ext2_ioctl either performs the resource manipulation corresponding to code pat-
tern (1) or (2), but not both, in each execution, based upon the value of a flag that it is invoked
with. Thus, a constrairfseparat§{1}, {2}) is used to refine the building block above.

Note that precision constraints are not necessary if more precise program analysis is employed.

Algorithm 2 currently lacks flow-sensitivity and data-flow information that can potentially avoid
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the imprecision reported above. However, in each of our case studies we needed precision con-
straints for no more than 50% of the building blocks mineg38Jor ext2, 24115 for X server, and

4/38 for PennMUSH. Thus, we believe that our current technique strikes a good balance between
simplicity and precision of building blocks.

Domain-specific constraints encode domain knowledge to further refine building blocks. A
domain specific constraint that we have found usefidgi®re(Pat), using which we can eliminate
certain code patterns that we deem irrelevant for security. For example, in the X server, which is
an event-based server, each request from an X client is converted into a one or more events that
are processed by the server. It may only be necessary to enforce an authorization policy governing
the set of events that an X client can request on a resource. In such cases, all code patterns except
those related to event-processing can be filtered out from fingerprintslgsioge constraints.

The use ofCombineconstraints is relatively infrequent, and may be used if the building blocks
mined by concept analysis are at too fine a granularity. For example, in PennMUSH, we found
that 30 of the 38 building blocks contained only one code pattern. An administrator may wish to
write authorization policies at a higher level of granularity—where the fingerprint of each security-
sensitive operation contains multiple code patter@®mbineconstraints can be used to group

together code patterns to get such fingerprints.

Analysis Concept lattice Refinement
Benchmark | LOC | time (secs)| # Nodes| # Edges| Number | Size| needed for
ext2 4,476 21 21 32 18 367 9 (50%)
X servefdix | 30,096 581 329 978 115 3.76 | 24 (2087%)
PennMUSH | 94,014 3189 127 301 38 142 | 4 (1053%)

Table 5.2 Results for each of our case studies. The sixth column denotes the number of building
blocks mined, while the seventh column shows their average size, in terms of the number of code
patterns per building block. The table also shows the number of building blocks that had to be
refined with precision constraintBigure 5.6 Figure 5.7andFigure 5.8depict the concept lattices

produced for each of these case studies.
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5.5 Evaluation of the static fingerprint mining algorithm

We conducted case studies on three complex systems, each of which has been in development
for several years. We used (i) the ext2 file system from Linux kernel distributé@12 (ii) a
subset of the X server (X11R®, and (iii) PennMUSH, an online game servet.8.1p9).

We evaluated our technique using four criteria.

e First, we measured the number and average size of building blocks extracted from source
code. Because an analyst must examine these building blocks to identify security-sensitive
operations, these metrics indicate the amount of maniiiaiteneeded to supplement our
technique. Note that without our technique, the analyst must examirentlie code base

to find security-sensitive operations.

e Second, we measured the number of building blocks that had to be refined with constraints.
This metric shows theffect of imprecise static analysis and tl#oe needed to refine build-

ing blocks.

e Third, we evaluated the quality of fingerprints by manually interpreting the operation em-

bodied by each fingerprint.

e Last, for ext2 and the X server, we correlated the fingerprints extracted by our technique with
security-sensitive operations that were identified independently for these se¢#r63,

WCS02.

Table 5.2presents statistics on the time taken by the analysis and the size of concept lattices
produced. It also shows the number and size of building blocks and the number of building blocks
that needed refinement. As these results show, our analyfiective at distilling several thousand
lines of code into concept lattices of manageable size. None of our benchmarks had more than 115
building blocks. These building blocks were, on average, smaller than 4 code patterns, and fewer
than 50% of these had to be refined manually. ldentifying security-sensitive operations reduces

to refining and interpreting these building blocks, instead of having to analyze several thousand
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lines of code, thus drastically cutting the manu@bd required. In our case studies, this required

a few hours, with modest domain knowledge. Peble 5.2also shows, our analysis iffieient in
practice, completing in just over 310 seconds even for PennMUSH, our largest benchmark (on a
1GHz AMD Athlon processor with 1GB RAM). Sectioris5.1-5.5.3present each case study in
detail, including our experience interpreting fingerprints and correlating these fingerprints against

independently identified security-sensitive operations.

5.5.1 The ext2 file system
I
/\/ N
/ O\
L J\ N
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/\

|

Figure 5.6 Concept lattice for ext2. The shaded nodes represent those marked by Al§orithm
and the concepts represented by these node contain building blocks. This concept lattice has 21
nodes and 32 edges. AlgorithiBndentified 18 building blocks.

As discussed irsection 5.2 we focused on how directories are manipulated by the ext2 file

system. Concept analysis produced the concept lattice showigime 5.6 The shaded nodes
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in this lattice depict 18 building blocks containing an average.67 8ode patterns, of which we

had to refine 9 with precision constraints to obtain a total of 44 fingerprints. We then determined

the resource manipulation embodied by each fingerprint and tried to associate it with a security-
sensitive operationSection 5.2resented two such examples. Two more examples are discussed

below.

1. The fingerprint{Write ® To inode->i blocks, Write 4096 To inode->i_blksize, Write
1 To inode->u->ext2_inode_info->i new_inode} appears irCodePatéext2_create),
CodePattext2 mkdir), CodePattext2 mknod) andCodePatéext2_symlink). The code
patterns in this fingerprint were all extracted from the function cadlet? new_inode and

embody creation and initialization of a newode.

2. The fingerprinfWrite ® To inode->i_size} appears irCodePatéxt2_rmdir). This code

pattern embodies a key step in directory removal.

The LSM project has identified a set of 11 operations on directories. These operations are
used to write SELinux policies governing how processes can manipulate directories. We were
able to identify at least one fingerprint for each of these LSM operations from the fingerprints
that we mined. For example, the fingerprints present&eution 5.2vere for the LSM operations
Dir_Remove_Name andDir_Search, while the examples above correspond toRhe_Create® and

Dir_Rmdir operations, respectively.

5.5.2 The X11 server

The X server is a popular window-management server. X clients can connect to the X server,
which manages resources such as windows and fonts on behalf of these X clients. The X server
has historically lacked mechanisms to isolate X clients from each other, and has been the subject
of several attacks. Such attacks can be prevented with an authorization policy enforcement, which
determines the set of security-sensitive operations that an X client can perform on a resource.

Indeed, there have been severféibas to secure the X serva8PWC9Q EMO*93, KSV03].

3Note that some LSM directory operations haveFile_ prefix.
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Figure 5.7 Concept lattice for the X server. This concept lattice has 329 nodes and 978 edges.
Algorithm 3identified 115 building blocks in this concept lattice.

We focused on a subset of the X server, its main dispatch loop (ciilkedhat contains code
to accept client requests and translate them to lower layers of the server. We focused on this subset
because it contains the bulk of code that processes client windows, representetdindtwdata
structure, the resource on which we wanted to identify security-sensitive operations. In addition to
Window, we also included theEvent data structure, because the X server uses it extensively to
process client requests. The API that we used contains 274 functions that the X server exposes to
clients.

Concept analysis produced 115 building blocks wiff63code patterns, on average, of which
24 had to be refined with precision constraints. The interpretation of two of these fingerprints is

discussed below.
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1. {Write L To xEvent->u->mapRequest->window, Write 20 To xEvent->u->type} is a
fingerprint contained i€odePat®f 5 API functions, embodies an X client request to map a

Window on the screen, and potentially represents a security-sensitive operation.

2. The fingerprinfWrite ® To Window->mapped, Write 18 To xEvent->u->type}, contained
in CodePatsof 7 API functions embodies unmapping a visible X client window from the

screen, also a potential security-sensitive operation.

There have beerflerts to secure the X server in the context of the )SHLinux project, which
identified 22 operations on thidndow resource. As with ext2, we were able to identify at least one
fingerprint for each of these security-sensitive operations from those that we mined. For instance,
the fingerprints presented above correspond toAthrelow_Map andWindow_Unmap operations
on aWindow, respectively.

The fingerprint mining technique presenteddhapter 4dentified fingerprints for 11 security-
sensitive operations on théindow resource. However, because that technique is based upon
dynamic program analysis, it can only identify fingerprints along paths exercised by manually-
chosen test inputs to the X server. Further, that technique, as implemented codd automate
fingerprint-finding only up to the granularity of function calls; these were then manually refined
to the granularity of code patterns. Concept analysis not only identified the fingerprints mined by

Ap at the granularity of code patterns, but did so automatically.

55.3 The PennMUSH server

PennMUSH is an open-source online game server. Clients connecting to a PennMUSH server
assume the role of a virtual character, as in other popular massively-multiplayer online roleplaying
games. For this work, it stices to think of PennMUSH as a collaborative database of objects that
clients can modify. Objects are shared resources, and an authorization policy must govern the set
of security-sensitive operations that a client can perform on each object.

Clients interact with PennMUSH by entering commands to a text server, which activates one

or more of 603 internal functions, which we used as the API of PennMUSH. Most of these API
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Figure 5.8 Concept lattice for PennMUSH. This concept lattice has 127 nodes and 310 edges.
Algorithm 3 identified 38 building blocks in this concept lattice.

functions modify a database of objects. Thus, we tracked how the PennMUSH API manipulates
resources of typebject. Concept analysis produced 38 building blocks. Most of them had
only one or two code patterns, so we only had to refine 4 of these building blocks using precision

constraints. Two of these fingerprints are discussed below.

1. The fingerprintWrite L To object->name potentially modifies an object name, and was
contained inCodePatsof 16 API functions, representing creation, destruction and modifi-
cation of objects. Unauthorized clients must be disallowed from changing the name of an

object, indicating that this is a fingerprint of a security-sensitive operation.
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2. The fingerprint{Write 8 To object->type, Write ® To object->modification_time,
Write 1118743 To object->warnings} appears inCodePatécmd pcreate) and Code-
Patqfun pcreate), both of which are API functions associated with creation of a “char-

acter” object.

Here, the numbet118743 represents a flag that signifies that a character should be warned
about problems with thebjects that they own, and the numb&kvritten to the fieldtype

indicates that the newly created object is a character. These code patterns represent neces-
sary steps in character creation in PennMUSH, and thus indicate that this is fingerprint of a

security-sensitive operation.

In PennMUSH, thebject data structure has just 18 fields, while the API contains 603 func-
tions. Each security-sensitive operation is performed at the granularity of accesses to just one or
two of the fields ofobject. This explains the smaller number and size of building blocks extracted
by concept analysis (as compared to X server).

While the security-sensitive operations that we extracted for PennMUSH can definitely form
the basis for writing policies, site-specific policies may be created by combining several security-
sensitive operations. For example, an administrator might decide that reading an object’'s name
is as security-sensitive as determining the kind of object. He can then use the domain-specific
constraintCombinéReadobject->name, Readobject->type) to combine these code patterns

together into a single fingerprint that embodies this security-sensitive operation.

5.6 Limitations

An important limitation of the technique presented in this chapter is that it cannot guarantee
that all fingerprints have been mined. In particular, iinsompletefor unsafe languages such as
C, and can thus havalse negatives.e., it can fail to identify a security-sensitive operation, as a
result of which insfficient authorization checks will be placed in the retrofitted server.

Two reasons contribute to this limitation, both of which are artifacts of an unsafe language such

as C:
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1. Pointer arithmetic can be used to read frgmrite to a Cstruct representing a resource
data structure. Because code patterns in fingerprints are expressed as ASTs daeding
Write and Call operations on structure fields, our static analysis tool can potentially miss

accesses to fields, thus resulting in spurious fingerprints, or can completely miss fingerprints.

2. Direct writes to data structures are possible via functions sucheagpy, which write to
untyped regions of memory. Thus,mamcpy can be used to write to the field of a data

structure, and this write will be missed by the static analysis presented in this chapter.

Further research is necessary to develop a provably complete approach to mine fingerprints for
servers written in unsafe languages. However, we conjecture that the technique presented in this
chapter is completd.€., will not miss fingerprints) for servers written in safe languages, such as

Java.
5.7 Static fingerprint mining versus dynamic fingerprint mining

As discussed earlier and demonstrated in our case studies, the static fingerprint mining tech-
nique has both better coverage than dynamic mining, and mines fingerprints without the need for
ana priori description of security-sensitive operations.

While this may seem to suggest that the static fingerprint mining technique subsumes the dy-
namic fingerprint mining technique, the dynamic technique can potentially be used to improve
the results of static fingerprint mining. Static analysis mines building blocks, which are manually
examined to identify security-sensitive operations. A description of these security-sensitive oper-
ations can then be used as input to the dynamic fingerprint mining technique. The fingerprints so
obtained can then be compared against the fingerprints obtained from the static technique. This
comparison can potentially be used to prune out false positives produced by the static fingerprint
mining technique. In future work, we plan to explore this application of dynamic fingerprint min-

ing to benefit static fingerprint mining.
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5.8 Using the static fingerprint mining tool

This section summarizes the steps that a security analyst must follow to find fingerprints and

security-sensitive operations using the static mining tool.

Specify the API to the server and the data types used by the server to represent resources that

must be protected.
¢ Run the tool to obtain building blocks.

¢ Refine building blocks using constraints. Precision constraints refine building blocks by
accounting for imprecision introduced by flow-insensitive program analysis, while domain-

specific constraints further refine building blocks using domain knowledge.

e Manually examine building blocks, and interpret the security-sensitive operation performed
by the resource accesses contained in the building block. Building blocks may potentially

have to be combined during this process.

e Output security-sensitive operations. The building block (or combination of building blocks)
of each security-sensitive operation is output as the fingerprint of that security-sensitive op-

eration.

5.9 Summary of key ideas
To summarize, the key contributions of this chapter are:

o A fully static technique to mine fingerprints of security-sensitive operations.

The use of static analysis overcomes an important limitation of the dynamic analysis-based
technique presented @hapter 4 namely the ability to find fingerprints only along paths
exercised by manually chosen inputs to the server. Because static program analysis ensures
better coverage than dynamic analysis, the static technique can mine more fingerprints than

the dynamic technique.
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e A novel algorithm using concept analysis to automatically mine fingerprints of security-

sensitive operations.

To our knowledge, this is the first application of concept analysis to mine security proper-
ties of software. The use of concept analysis overcomes another limitation of the technique
in Chapter 4 namely the need for aa priori description of security-sensitive operations.
Concept analysis automatically mines building blocks without the need fargiori de-
scription of security-sensitive operations. We were thus able to apply this technique to find
security-sensitive operations for PennMUSH, for whichanariori description of security-

sensitive operations was available.

e Case studies on three real-world servers of significant complexity.

In each case study, we were able to inspect the lattice and identify security-sensitive op-
erations with a few hours of manuaffert and modest domain knowledge. Without our

approach, the entire code base must be examined to find such security-sensitive operations.
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Chapter 6

Using Fingerprints to Retrofit Legacy Code

This chapter presents a technique that uses fingerprints to statically retrofit legacy code with
reference monitor calls (also calladthorization hooKs It also discusses techniques to synthesize
reference monitor code (if a reference monitor implementation is not available) and to analyze ref-
erence monitor code (if an implementation is available). The techniques presented in this chapter

have been applied to retrofit the X server, and enforce authorization policies on X client requests.

6.1 Problem statement

Given the source code of a server program and a set of fingerprints of security-sensitive op-
erations, the technique presented in this chapter statically identifies all locations that match these
fingerprints (and hence perform the corresponding security-sensitive operation).

The server must then be modified by inserting appropriate authorization checks at each location
where a security-sensitive operation is performed. This chapter presents a technique to retrofit the
server with calls to a reference monitor, and also describes the key steps involved in implementing
the reference monitor.

In some cases, the security analyst may decide to use an existing reference monitor with the
retrofitted server. This reference monitor may contain existing implementations of authoriza-
tion queries, where each authorization query may consult the policy to check whether one or
more security-sensitive operations is permitted. Such an implementation exists, for example, in
SELinux, and the problem in this case is to place calls to these authorization queries at appropriate

locations in the server (in the case of SELinux, the server is the Linux kernel). This chapter also
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presents an algorithm to analyze existing implementations of authorization queries to identify the

security-sensitive operations authorized by each query.

6.2 ldentifying security-sensitive locations

We employ static pattern matching on the source code of the server to locate all occurrences of
fingerprints. Each location that matches a fingerprint is deemed to perform the security-sensitive
operation that it represents. Such locations are then instrumented with reference monitor calls. In
this respect, our approach bears close resemblance to aspect-oriented programming, where static
pattern matching is employed to magmbintcutsagainst source code to locg@npointsand weave
advice[AOS).

Our approach currently identifies security-sensitive locations at the granularity of function
calls. Each function that contains all the code patterns in a fingerprint (and satisfies the constraints
in the fingerprint) is said to match the fingerprint. The idea is that by mediating calls to functions
that contain these patterns, the corresponding security-sensitive operations are mediated as well.
This is done using a flow-insensitive, analysis, as described in Algodthm

Algorithm 4 is a simple intraprocedural analysis that first identifies the set of code patterns
that appear in the body of a function, and then checks to see if the code patterns contained in
the fingerprint of a security-sensitive operation appear in this set. If so, the function is marked
as performing the security-sensitive operation. Note that a fingerprint can contain a code pattern
of the form Call £: in this case, the functiod is marked as performing the security-sensitive
operation.

Recall fromFigure 3.1that a fingerprint can either betraproceduralor interprocedural In-
traprocedural fingerprints are matched as shown in Algoridhioy considering the set of code
patterns contained in each function. Interprocedural fingerprints contain code patterns that may
appear in dierent functions, and the matching algorithm shown in Algorithmust thus be ex-
tended to match interprocedural fingerprints. This is achieved by a straightforward (and standard)
extension to Algorithn¥. We first compute the set of code patterns contained in each function

intraprocedurally, as shown in Algorithhh We then traverse the call-graph in reverse topological
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order, gathering the set of code patterns contained in each function. The interprocedural extension
is based upon the summary-based approach to interprocedural program agégdis [

To match a fingerprint, we compare the code patterns contained in a fingerprint against the set
of code patterns gathered at each node in the call-graph. The node in the call-graph closest to
the leaf that contains all the code patterns in a fingerprint is marked as performing the security-
sensitive operation. While the fingerprints for the X server and PennMUSH were intraprocedural,
we encountered a few interprocedural fingerprints in the case of ext2.

Consider the functioMapSubWindows in the X server (shown ifrigure 2.3. This function
maps all children of a given windovpParent in Figure 2.2 to the screen. Note that it contains
code patterns that constitute the fingerprint of bdihdow_Enumerate andWindow_Map. Thus,
OpsetflapSubWindows) = {Window_Map, Window_Enumerate}.

Constraints in fingerprints can be used to restrict matches. For example, the fingerprint for
Window_Enumerate, shown below, constrains thiindowPtr variable used in the first code pat-
tern to be diferent from the variable in the secoWilndowPtr variable. This is especially useful
for cases such as the one showrfigure 2.2 where theparentwindow’s firstChild field is

read, followed by th@extSib field of child windows.

Window_Enumerate ;- ReadWindowPtri->firstChild
A ReadWindowPtr,->nextSib

A WindowPtr # O Subjectto

Differen{WindowPtr;, WindowPtr;)

Figure 6.landFigure 6.2llustrate how interprocedural matching of fingerprints proceeds using
the example of the ext2 file systeffigure 6.1shows interprocedural fingerprints for four security-
sensitive operationdir_ Write, Dir_ Rmdir, File_Unlink and Dir_Search; these security-sensitive
operations were identified in the LSM proje@V{CS"02)].

Figure 6.2shows a portion of the call-graph of the ext2 file system, rooted at the node corre-
sponding to the functioaxt2_rmdir. Note that the functions shown in the call-grapR{2_unlink,
ext2_dec_count, etc.) can also be called by other functions in the kernel; these edges are not

shown inFigure 6.2 When a request is received to remove direciosy from directory foo,
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Algorithm : FiNnp_SecurITY-SENSITIVE_L ocATIONS(X, S, FP)
Input . (i) X: Server to be retrofitted,
(i) S: Set of security-sensitive operatioftgy, . . ., opn}, and
(i) FP: Set of fingerprintgfpa, ..., fpn} of opy, .. ., opn, respectively.
Output  : Opset:X — 25, where Opsefi() denotes the set of security-sensitive operatigns
performed by a call td, a function ofX.

1 foreach (function f in X) do
| Opsetf) := ¢

/* Preprocess function call code patterrfg’;

N

w

N

foreach (fingerprint fp in #¥) do

5 fpset := Set of code patterns infp

6 if (fpset == {Call f4, ..., Call £,}) then
7 foreach(f € {f4, ..., £,}) do

; | Opset() = Opset() U opi);

9 /* Process all the fingerprints‘/;

10 foreach (function f in X) do

11 CP(f) := Set of code patterns ih (as determined using the ASTs of statementg)in
12 foreach (fingerprint fg in %) do

13 if (fpset € CP(f) and all contraints specified injfare satisfied irf) then

14 L Opset(f) := Opsetf) U {opi};

15 return Opset;

Algorithm 4 : Finding functions that contain code patterns that appear in fingerprints.

ext2_rmdir checks to see thdar is empty via a call text2_rmdir_empty (not shown inFig-
ure 6.9. It then callsext2 unlink, which modifies ext2-specific data structures and removes
the entry ofbar from the inode offoo. Finally, it callsext2_dec_count to decrement the field

i nlink on the inodes of botlioo andbar.
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Dir_Write :- Write L Toinode->i_ctime
A Call address_space_ops->prepare_write()
Dir_Search :- Readinode->i_mapping
File_Unlink :- Decremen{inode->i nlink)
A =Write 0 To inode->i_size
Dir Rmdir :- WriteO Toinode->i_size
A Decrementinode->i_nlink

Figure 6.1 Interprocedural fingerprints for four security-sensitive operations for the ext2 file
system

‘ page—>mapping—>a_ops—>prepare_write() ‘
ext2_delete_entry(inode,page)

inode—>i_size = 0 | e

ext2_rmdir(inode,dentry) —— ext2_unlink(inode,dentry)

\
ext2_find_entry(inode,dentry,page)

ext2_dec_count(inode) .
inode—>i_nlink— | ext2_get_page(inode)
‘mapping = inode—>i_mapping ‘

Figure 6.2 A portion of the call-graph of the ext2 file system, rooted at the funetioh rmdir.
Code snippets relevant to the example are shown in boxes near the functions that they appear in.

Figure 6.3shows the results of matching the fingerprints showigure 6.linterprocedurally
using the ext2 call-graph snippet shownHigure 6.2 The results are self-explanatory. For ex-
ample, the matching algorithm infers thatt2_rmdir performs the security-sensitive operations
Dir_Rmdir, Dir_Search andDir_Write. Note that in this case, matching is performed interprocedu-
rally, and the function in the call-graph, closest to the leaf, that contains all the code patterns in a
fingerprint is marked as performing the security-sensitive operation represented by that fingerprint.
In addition to fingerprint matching, we also employ a simple heuristic to help identify the

subject requesting the security-sensitive operation, and the object upon which the security-sensitive
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ext2_delete_entry | Dir_Write

ext2_get_page | Dir_Search

ext2_find_entry | Dir_Search

ext2_dec_count | File_Unlink

ext2_unlink | File_Unlink, Dir_Write, Dir_Search

ext2_rmdir | Dir_Rmdir, Dir_Write, Dir_Search

Figure 6.3 Results of matching the interprocedural fingerprints showigure 6.1

operation is performed. To do so, we identify variables of the relevant types that are in scope (some
domain knowledge may be required here). For example, in the X server, the subject is always the
client requesting the operation, which is a variable of ¢héent data type, and the object can

be identified based upon the kind of operation requested. For window operations, the object is
a variable of thaiindow data type. This set is then manually inspected to recover the relevant

subject and object at each location.

6.3 Evaluation of the matching algorithm

We implemented Algorithnd and its interprocedural variant as a plugin to CNNIMRWO02)].
We evaluate its fectiveness on the X server in the following sections. In our experiments, we
used the fingerprints that were mined using the dynamic fingerprint mining algorithm, described

in Chapter 4

6.3.1 How precise are the security-sensitive locations found?

Algorithm 4 precisely identifies the set of security-sensitive operations performed by each func-
tion, with one exception. It reports false positives for Wendow_Enumerate operation,i.e., it
reports that certain functions perform this operation, whereas in fact, they do not. Out of 20 func-

tions reported as performingindow_Enumerate, only 10 actually do.
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We found that this was because of the inadequate expressive power of the code pattern lan-
guage. In particular, Algorithm matches functions that contain the code patt@inglowPtr #
0, ReadiiindowPtr->firstChild, andReadWindowPtr->nextSib, but do not perform linked-
list traversal. These false positives can be eliminated by enhancing the fingerprint language with

more constructs (in particular, loop constructs).

6.3.2 How easy is it to identify subjects and objects?

As mentioned earlier, we identify subjects and objects using variables of relevant data types in
scope. This simple heuristic is quitéfective: out of 25 functions in the X server that were iden-
tified as performingiindow operations, the subject, of ty@d@ient, and object, of typ@&indow,
were available as formal parameters or derivable from formal parameters in 22 of them. In the re-
maining functions, specifically, those performmindow_InputEvent, the subject and object were
derived from global variables. Even in this case, however, manual inspection quickly reveals the

relevant global variables.

6.4 Synthesizing a reference monitor implementation

Locations identified as performing security-sensitive operations by Algodtlane then pro-
tected using instrumentation. Because we recover the complete description of security events
(i.e.,the subject, the object and the security-sensitive operation), adding instrumentation is straight-
forward, and calls to th@ueryRefmon function (the reference monitor's API function to place
an authorization query) are inserted as describe8edntion 2.5.5 If the function to be pro-
tected is implemented in the server itself and not within a librang.(as is the case with all
the security-sensitive function calls in the ext2 file system, the X server, and PennMUSH), calls
to QueryRefmon can be placed within the function body itself. Because the same variables that
constitute the security-event are also passeQuteryRef,on (i.e., if (sub obj, op) is the secu-
rity event, then the corresponding calldaeryRefmon({suly obj, op))), and the data structures
used to represent subjects and objects are internal to the server, this approach avoids TOCTTOU

bugs BD96] by construction.
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bool QueryRefmon (Client *sub, Window *obj, Operation OP) {
switch (0OP) {
case Window _Create :
rc = PolicyLookup (sub->label, NULL, Window _Create);
if (rc == ALLOW) {
obj->label = sub->label;
return TRUE ;

}
else {

return FALSE ;
}

case Window _Map:
rc = PolicyLookup (sub->label, NULL, Window _Map);
/+* Rest of the code to handle WindaoMap =/

/+ More cases to handle securitysensitive operationssx/

Figure 6.4 Code fragment showing the implementatioQuaryRefmon for Window_Create.

We also generate a template implementation of the authorization query furiztearyRe fmon,
as shown inFigure 6.4(this example is for the X server). The developer is then faced with two

tasks:

1. Implementing the policy consulter: The developer must insert appropriate calls from a
policy management API of his choice into the template implementatidjuefyRe fmon,
generated as shown Figure 6.4 We impose no restrictions on the policy language, or
the policy management frameworlEigure 6.4shows an example: it shows a snippet of
code generated. Subject and object labels are stored as fielstsl§ in the data structures

representing them. The statement in italics, a call to the fun®sdni cyLookup, must be
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changed by the developer, and substituted with a call from the API of a policy-management

framework of the developer’s choice.

Several @f-the-shelf policy-management tools are now available, including the SELinux pol-
icy management toolkitTred, which manages policies written in the SELinux policy lan-

guage. If this tool is used, the relevant API call to replRegicyLookup is avc_has_perm.

2. Implementing reference monitor state updates:The developer must update the state of
the reference monitor based upon the state update funéfiomNote thatZ{ depends on
the policy to be enforced; fierent policies may choose to update security-labélerdintly.
Functionality to determine how security-labels must change based upon whether an autho-
rization request succeeds or fails must ideally be provided by the policy-management tool

that is used (because how security-labels change is policy-dependent).

However, if this functionality is not available in the policy-management tool used, the devel-
oper must update the state of the reference monitor manually. The fragment of code in the
case folwindow_Create in Figure 6.4shows a simple example @{: When a new window

is created, its security-label is initialized with the security-label of the client that created it.

It is worth noting for this example that a pointer to the window is created only after memory
has been allocated for it (in tl@reateWindow function of the X server). Thus we place the
call to QueryRefmon in CreateWindow just after the statement that allocates memory for
a window; if this call succeeds, the security-label of the window is initialized. Otherwise,
we free the memory that was allocated, and retu¥dld. window (.e.,HandleFailure) is

implemented ageturn NULL;).

Finally, it remains to explain how we bootstrap security-labels in the server. As mentioned
earlier, we assume that the server runs on a machine with a security-enhanced operating system.
We use operating system support to bootstrap security-labels based upon how clients connect to
the server (as has been done by oth8red05l). For example, in an SELinux system, all socket

connections have associated security-labels, and servers can bootstrap security using these labels.



82

For example, X clients connect to the X server using a socket. In this case, we can use the security-
label of the socket (obtained from the operating system) as the security-label of the X client. We
then propagate X client security-labels as they manipulate resources on the X server, as shown
in Figure 6.4 where the client’s security-label is used as the security-label for the newly-created

window.

6.5 Example: Retrofitting the X server to enforce authorization policies

We demonstrate how an X server retrofitted using the techniques presented thus far enforces
authorization policies on X clients. In our experiments, we ran the retrofitted X server on a machine
running SELinuyFedora Core 4. Thus, we bootstrapped security-labels in the X server using
SELinux security-labelsi.g., a client gets the label of the socket it uses to connect to the server).
We describe two attacks that are possible using the unsecured X server, and describe corresponding
policies, which when enforced by the retrofitted X server prevent these attacks. In each case we

implemented the policy to be enforced within theryRe fmon function itself.

6.5.1 Example I: Setting window properties

Attack. Several well-known attacks against the X server rely on the ability of an X client to
set properties of windows belonging to other X clierdsy., by changing their background or
content KSVO03].

Policy. Disallow an X client from changing properties of windows that it does not own

Note that this policy is enforced more easily by the X server than by the operating system.
The operating system would have to understand several X server-specific details to enforce this
policy. X clients communicate with each other (via the X server) using the X protocol. To en-
force this policy, the operating system would have to interpret X protocol messages to determine
which messages change properties of windows, and which do not. On the other hand, this pol-
icy is easily enforced by the X server because setting window properties involves exercising the

Window_Chprop security-sensitive operation.
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Enforcement. The call toQueryRefmon placed in th&€hangeProperty function of the X server
mediatesVindow_Chprop. To enforce this policy, we check that the security-label of the subject
requesting the operation, and the security-label of the window whose properties are to be changed

are equal.

6.5.2 Example II: Secure cut-and-paste

Attack. Operating systems can ensure that a file belonging to a Top-secret user cannot be read
by an Unclassified user (the Bell-LaPadula poliBL}Y6]). However, if both the Top-secret and
Unclassified users hawaerms open on an X server, then a cut operation fromxttwerm belonging

to the Top-secret user and a paste operation intaxtleem of the Unclassified user violates the

Bell-LaPadula policy.

Policy. Ensure that a cut from a high-security X client window can only be pasted into X client
windows with equal or higher securityhis is akin to the Bell-LaPadula polici3[76].
Existing security mechanisms for the X server (namely, the X security extenaimy®6d)

cannot enforce this policy if there are more than two security-levels.

Enforcement. The cut and paste operations correspond to the security-sensitive op&vation
dow_Chselection of the X server. Ao identifies the fingerprints ofvVindow_Chselection as calls

to two functions,ProcSetSelectionOwner andProcConvertSelection in the X server. It

turns out that the former is responsible for the cut operation, and the latter for the paste operation.
Calls toQueryRefmon placed in these functions are used to mediate the cut and paste operations,
respectively.

We created three users on our machine with security-labels Top-secret, Confidential and Un-
classified, in decreasing order of security. The X clients created by these users inherit their security-
labels. We were able to successfully ensure that a cut operation from a high-security X client win-
dow (e.g.,Confidential) can only result in a paste into X client windows of equal or higher security

(e.g.,Top-secret or Confidential).
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6.6 Performance of the retrofitted X server

We measured the runtime overhead imposed by instrumentation by running a retrofitted X server
and an unmodified X server on 28 1perf [x11H benchmarks. We ran the retrofitted X server
with a null policy,i.e., all authorization requests succeed, to measure performance overhead. We
measured performance overhead by comparing the number of operations per second (as computed
by thex11perf benchmark suite) in the retrofitted X server against the number of operations per
second in an unmodified X server. Overhead ranged from 0% to 18% across the benchmarks, with

an average overhead of 2%.

6.7 Analyzing a reference monitor implementation

In some cases, an implementation of the reference monitor may be available, and the security
analyst may only wish to determine locations where authorization queries to the reference monitor
must be placed. Indeed, we encountered this scenario in our analysis of the ext2 file system, where
we had a reference monitor implementation available (namely, that implemented in SELinux),
and wanted to determine where to place authorization queries. In such cases, the reference monitor
need not be synthesized, as describegidntion 6.4 Instead, the reference monitor implementation
must be analyzed to determine the set of security-sensitive operations that are authorized by each
authorization query function that is exported by the reference monitor.

This section describes an algorithm that analyzes reference monitor implementations, and ex-
tracts, for each query function in the implementation, the set of security-sensitive operations au-
thorized by that query function, and the parameters with which the query must be invoked. We use
the ext2 file system and the SELinux reference monitor implementation as the running example in
our explanation of the algorithm.

ConsiderFigure 6.5 which shows a snippet of the implementation of the authorization query
selinux_inode permission in the SELinux reference monitor implementation. This snippet
authorizes searching, writing to, or reading from an inode representing a directory, based upon the

value ofmask. The authorization is performed by the callimode _has perm, which authorizes
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101 | int selinux _inode _permission (struct inode *inode, int mask) {
102
103 if ('mask) {

104 return 0;

105 }

106 return inode _has_perm (current, inode,

107 file _mask _to_av (inode->i_mode ,mask), NULL);
108 |}

201 | static inline access _vector _.t file _-mask _to_av (int mode, int mask) {

202 access _vector _t av = 0;

203 if ((mode & S_IFMT) != S_IFDIR) {
204 /+ File—-related security-sensitive operationss/
205

206 }

207 else {

208 if (mask & MAY_EXEC)

209 av |= Dir_Search;

210 if (mask & MAY_WRITE)

211 av |= Dir_Write;

212 if (mask & MAY_READ)

213 av |= Dir_Read;

214 }

215 return av;

216 |}

Figure 6.5 Code for the SELinux authorization queey inux_inode_permission (borrowed
from the Linux-2.4.21 kernel).

a security-sensitive operation on an inode based upoadbess vectoit is invoked with?. In

Figure 6.5 the access vector is obtained by a calfid e mask_to_av.

1Security-sensitive operations are represented in SELinux using bit-vectors, called access vectors. The macros
Dir_Search, Dir_Write andDir_Read in Figure 6.5represent these bit-vectors
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Our analysis algorithm, described in Algoritiand Algorithm6, produces the output shown

below upon analyzing the code snippet showRigure 6.5

((mask # 0) A inode_isdir A (mask & MAY_EXEC) || Dir_Search)
((mask # 0) A inode_isdir A (mask & MAY_WRITE) || Dir_Write)
((mask # 0) A inode_isdir A (mask & MAY_READ) || Dir_Read)
where ‘inode_isdir” denoteso(inode->i_mode & S_IFMT == S_IFDIR).

Each line of the output is a tuple of the for¢predicate || operation), where the predicate
only contains formal parameters of the authorization query. This tuple is interpreted as follows: if
the authorization query is invoked in a context such giratlicate holds, then it checks that the
security-sensitive operatiaperation is authorized. In this case, our analysis algorithm infers that
for inodes that represent directorie®(, the inodes witl{inode->i_mode & S_IFMT == S_IFDIR))
the hookselinux_inode_permission checks that the security-sensitive operatibisSearch,
Dir_Write or Dir_Read are authorized, based upon the valuama$k.

We now proceed to explain Algorithf. For ease of explanation, assume that there is no
recursion; we explain how we deal with recursion later in the section. The analysis proceeds
by first constructing the call-graph of the reference monitor implementation. The call-graph is
processed in reverse topologically sorted order,starting at the leaves, and proceeding upwards.
For each node in the call-graph, it produces a summary, and outputs summaries of authorization
gueries, exported by the reference monitor.

Summary construction is described in Algoritlin The summary of a functiof is a set of
pairs(pred || op), denoting the conditionpfed) under which a security-sensitive operatiop)is
authorized byf. The analysis in Algorithn® is flow- and context-sensitive. That is, it respects the
control-flow of each function, and precisely models call-return semantics.

Intuitively, summary construction for a functioh proceeds by propagating a predicate
though the statements df At any statement, the predicate denotes the condition under which
control-flow reaches the statement. The analysis begins at the first statement of the féinction

(denoted byEntrypoint(f)), with the predicate set tioue.
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Algorithm : ANaLyze_REeFereNcE-MoniTor(M, H)
Input . (i) M: Reference monitor containing source code of authorization query
functions,
(i) H: A set containing the names of authorization queries exported by the
reference monitor.
Output : For eachh € H, a set{{predicate || operation)}, denoting the security-sensitive

operations authorized by each authorization query, and the conditions und

1%
=

which they are authorized.
1 Construct the call-grap@ of the reference monitavl
2 L := List of vertices ofG, reverse topologically sorted
3 foreach(f € L) do
4 L Summary(f) := AnarLyze_Function(f, Entrypoint(f), true)

5 foreach (h € H) do
6 tOutputSummary(h)

Algorithm 5: Analyzing a reference monitor implementation to determine security-sensitive

operations authorized by each authorization query.

Atanif-(q)-then-else statement, theue branch is analyzed with the predicate. g, and
thefalse branch is analyzed with the predicate\ —q. For instance, the value g@fat line203in
Figure 6.5is true. Thus, lines207-214 are analyzed witlrue A (mode & S_IFMT) == S_IFDIR.
At Call g(a;, a,...,a,), a call to the functiorgy, the summary of is specialized to the calling-
context. Note that because of the order in which functions are processed in Algérittira
summary ofg is computed beford is processed. The summary @fs a set of tuplegq; || op;).
Because of the way summaries are computed, formal parametgrappfear in the predicatg.
To specialize the summary gf actual parameteis, ay, .. ., &, are substituted in place of formal
parameters i;. The resulting predicate is then combined witlp, and the entryp A r; || op;) is
included in the summary df. Intuitively, g authorizes operatioop; if the predicatey; is satisfied.

By substituting actual parameters in place of formal parameters, we determine whether the current
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call to g authorizes operatioop;; i.e., whether the predicatg, specialized to the calling context,
is satisfiable. Because the callgas reached irf under the conditiop, an operation is authorized
by g only if p A r; is satisfiable.

For other statements, the analysis determines whether the statement potentially authorizes
an operatiorop. Determining whether a statement authorizes an operapas specific to the
way security-sensitive operations are represented in the kernel module. For instance, in SELinux,
security-sensitive operations are denoted by bit-vectors, called access vectors and there is a one-
to-one mapping between access vectors and security-sensitive operations. Thus, for the SELinux
reference monitor we use the occurrence of an access veajoréading its value) in a statement
to determine if the statement authorizes a security-sensitive operation.

Where possible, the predicaiés also updated appropriately based upon the action of statement
s. For instance, if the statement in question is= i, and predicate propagated to this statement
is (i == 3), then the predicatp is updated tdj == i) A (i == 3). In cases where thefect of s on
p cannot be determined, the new valuepof set toUnknown, a special value denoting that the
value ofp cannot be determined precisely.

For functions that have a formal parameter of typeess_vector_t, but do not refer to
any particular access vector (such@is Read, Dir_Write, or Dir_Search), the analysis returns
{(true || Ax.x)} (not shown in Algorithnt), which says that the function potentially authorizes any
security-sensitive operation, based upon the access vector it is invoked with (the vairabiex
denotes the access vector).

After processing a statemeastin f, the analysis continues by processing the control-flow-
successors 0. The analysis terminates when all the statements reachableEntypoint(f)
have been analyzed. To keep the analysis tractable, Algo6igmmalyzes loop bodies exactly once.
That is, it ignores back-edges of loops. As a result, loops are treated as conceptually equivalent to
if-then-else statements.

Finally, any local variables of appearing in predicatgs(for each(p || op) in the summary of
f) are quantified-out. As a result, predicates appearing in the summadrpmf contain formal

parameters of.
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Algorithm : AnaLyze_Function(f, s, p)
Input . (i) f: Function name,
(i) s Statement inf from which to start the analysis,
(iif) p: A Boolean predicate.
Output  : A set{(predicate || operation)}.
1 R:=¢
2 switch Type-or(S) do

3 caseif (q) then Byye else Bigse

4 R := AnaLyze_Function(f, Entrypoint(Byue), P A Q)

5 U AnaLyze_Function(f, Entrypoint(Bsase), P A —Q)

6 caseCall g(as, ay, ..., an)

7 G := Summary(Q)

8 foreach ({q; || opi) € G) do

9 ri ;= qi specialized withay, ay, .. ., a,

10 R:=RUK(p Arn)llop)}

11 R := RU AnaLyze_Function( f, ControlFlowSucc(f, s), p)

12 otherwise

13 if (sauthorizes security-sensitive operatmp) then R := {{(p || op)}
14 Updatep appropriately

15 R := RU AnaLyze_Function(f, ControlFlowSucc(f, s), p)

16 foreach ({p || op) € R) do

17 Existentially quantify-out any local variables bfappearing imp

18 return R

Algorithm 6 : Determining the security-sensitive operations authorized by each function, and

the conditions under which they are authorized.
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Algorithm 5 and Algorithm6 are, in dfect, a simple implementation of a symbolic execution
engine Kin76]. Of course, implementing a full-fledged symbolic execution engine for C is a
significant engineering exercis€ KS05 SMA054; our implementation is simplistic, and ignores
effects of aliasing (and is thus incomplete).

We illustrate Algorithnb usingFigure 6.%A). For the functionfile mask_to_av, Algorithm6

returns the output shown below, whenede _isdir denotesnode & S_IFMT == S_IFDIR.

(mode_isdir A (mask & MAY_EXEC) || Dir_Search)
(mode_isdir A (mask & MAY_WRITE) || Dir_Write)
(mode_isdir A (mask & MAY_READ) || Dir_Read)

Observe that the summary only contains formal parametefs bd mask to_av. When this
summary is specialized to the call on lih@7, formal parameters are replaced with the actual pa-
rameters (e.gmode by inode->i_mode), thus specializing the summary to the call-site, producing

the output shown below, wheneode _isdir denotesnode->i_mode & S_IFMT == S_IFDIR.

(inode_isdir A (mask & MAY_EXEC) || Dir_Search)
(inode_isdir A (mask & MAY _WRITE) || Dir_Write)

(inode_isdir A (mask & MAY_READ) || Dir_Read)

For inode_has_perm, Algorithm 6 returns{(true || Ax.x)}, which intuitively means that the
function authorizes a security-sensitive operation based upon the access x¥pg@ssed to it.

Thus, when this call tdnode_has_perm is specialized to the call on linE07, the summary ob-
tained is the same shown above. Because liDigin selinux_inode_permission is reached
when nask # 0), this predicate is combined with predicates in the summary of the function
inode has perm to produce the result shown kiigure 6.§B).

Recursion in the kernel module introduces strongly-connected components in its call-graph.
Note that Algorithm5 requires the call-graph to be a directed acyclic graph (DAG). To handle
recursion, we consider the functions in a strongly-connected component together. That is, we pro-
duce a consolidated summary for each strongly-connected component. Intuitively, this summary

is the set of security-sensitive operations (and the associated conditions) that could potentially be
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authorized ifany function in the strongly-connected component is called. Observe that handling
recursion also requires a small change to lir@g1{1) of Algorithm 6. Because of recursion, the
summary of a functiory that is called by a functiod may no longer be available in ling)( in

which case we skip forward to lind Q).

Precision of the analysis. Observe that Algorithn® analyzes all reachable statements of each
function. Thus, if a functionf authorizes operatioap, then{(q || op) € Summary(f), for some
predicatey.

However, because of the approximations employed by Algorhand Algorithm6 to keep
the analysis tractable, the predicgtmay not accurately describe the condition under wioicls
authorized. In particular, because Algorittthignores back-edges on loops, loop bodies are ana-
lyzed exactly once, and the predicates retrieved will be imprecise. Similarly, because Algerithm
employs a heuristic to handle recursion, the predicates retrieved will be imprecise. These predi-
cates are used during hook placement to determine the arguments that the hook must be invoked
with. Thus, imprecision in the results of the analysis will mean manual intervention to determine
how hooks must be invoked.

In our experiments on the SELinux reference monitor, we found that the code of the reference
monitor was relative simple, and we were able to retrieve the conditions precisely in most cases.
For instance, there were no loops in any of the functions from the SELinux reference monitor that

we analyzed.

6.8 Using the matching tool

This section summarizes the steps that a security analyst must follow to use fingerprints to

locate where security-sensitive operations are performed by a server.

e Run Algorithm4, which identifies the security-sensitive operations performed by each func-

tion by matching fingerprints.
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e For each function and for each security-sensitive operation performed by that function, de-

termine the subject requesting the operation and the olffectted by the operation.

¢ Run the transformation tool to insert authorization checks. If a reference monitor implemen-
tation is already available, use AlgorithBrand Algorithm6 to analyze the implementation

and determine the authorization check that must be inserted.

e For each authorization check, determine how to handle failed authorizations, and insert ap-

propriate failure-handling code.

6.9 Summary of key ideas
To summarize, the key contributions of this chapter are:

e A static pattern-matching algorithm to match fingerprints against server source code, and
locate security-sensitive operations. The pattern-matching algorithm works both intrapro-
cedurally and interprocedurally, to match intraprocedural and interprocedural fingerprints,

respectively.

e Techniques to synthesize a reference monitor implementation, in cases where an implemen-

tation is not available.

e Techniques to statically analyze a reference monitor implementation, and determine the
security-sensitive operations authorized by each authorization query function exported by

the reference monitor, when an implementation is available.
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Chapter 7

Related Work

Authorization policy enforcement is a topic of central interest to computer security, and has
received much attention over the last thirty five years. This chapter surveys related work in the

area.

7.1 Foundations of authorization

Authorization was first formalized by Lampson using the notion of an access control ma-
trix [Lam74. Each column of the access control matrix corresponds to a system resource, and
each row corresponds to a system user. The matrix estly ¢bj) denotes theights . (e.g.,
read, write, create, own) that system usabhas on system resourodj. Given a set of rules
to create, modify and delete entries in an access control matrix, it is natural to ask the following
safetyquestion: can a subjestibever have a right on a resourcebj? This problem was shown
to be undecidableHRU7q.

While an access control matrix is an instantaneous description of the set of system resources
that a subject can access, there are historically two ways to administer such an access matrix: the
Discretionary Access Control (DAC) and the Mandatory Access Control (MAC) mads$8].

In the DAC model é.g.,the Graham-Denning modebP72), the access rights that a user has on
system resources that he owns cardblegatedo others,.e., the access rights on resources that
he owns are at his discretion. In contrast, in the MAC moeg.(the Bell LaPadula modeBL76]

and the Biba modelHib77]), access rights that a user has on system resources are decided by a

1The termrights is synonymous with the tersecurity-sensitive operatiamsed in this document as well as with
the termpermissiorthat is also used in the literatur&éHRS05 JSZ03 Sma03
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central authority, such as the system administrator, and cannot be changed at the discretion of the
user. MAC policies have historically been used only in military applications, while DAC has been
available on commercial operating systems, such as UNIX. However, recent developments, such as
SELinux [LS01g3 LS01H, have enabled the deployment of MAC in commodity operating systems.
There are two popular ways to represent an access control matrix, nacedgs control lists
(ACLs) andcapabilities Access control lists typically associate each resource on the system with
the set of access rights that each subject has on the resource. In contrast, capabilities typically
associate each subject with the set of access rights that the subject has on system resources. Thus,
if we assume that each column of the access control matrix represents a system resource, and
each row corresponds to a subject, access control lists are obtained by reédigrans of the
matrix, while capabilities are obtained by readirfjrows of the matrix. Most modern commercial
operating systems implement access control matrices as access control lists, while several historic
systems and research operating systems have used capabilities (the book blyavdd gives
a good overview of historic systems that implemented capabilities; EROS is a modern research

operating system that implements capabilit®SF99).

7.2 Authorization policy enforcement systems

Reference monitors, introduced by Anderson in 195i2d72), have historically been the stan-
dard mechanism for authorization policy enforcement. As explaingdhiapter 1 a reference
monitor must satisfy three properties, namely, Complete Mediation, Tamper Resistance, and Veri-
fiability. A reference monitor takes as input a description of the subgegt,(ser ID), a description
of the object €.g.,file name), and the security-sensitive operation requested. It consults an autho-
rization policy, and returns a Boolean, which determines whether the subject is allowed to perform
the requested security-sensitive operation on the object. An enforcement mecheugsap{
propriate runtime checks inserted in code) uses this Boolean value to ensure that the policy is
enforced.

Historically, reference monitors have been implemented in the operating system. The main

reason is because the operating system manages and mediates access to system resources. For
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example, most Linux distributions implement mechanisms to enforce DAC authorization policies
using ACLs (therwx bits associated with files are an example of ACLs). More recently, operating
systems are being augmented and restructured to enforce more powerful access control policies
(e.g.,MAC) and information flow policies. Security-enhanced Linux (SELinux3(013 LS014

and the Asbestos operating systeBKV 05, KEF*05] are two examples of suchferts. Both
SELinux and Asbestos associaecurity labelswith subjects and objects managed by the oper-
ating system. They enforce mandatory access control policies and track information flow using
these security labels. One of the maiffeliences between SELinux and Asbestos is that SELinux
was constructed by augmented the Linux kernel, while Asbestos was designed afresh. Conse-
guently, Asbestos exports new interfaceg(,a new system call interface), and applications must

be modified or redesigned to run on Asbestos. In contrast, legacy applications can be supported on
SELinux.

While an ideal location to implement a reference monitor that mediates access to system re-
sources, as argued Bection 2.7 the operating system may not be suitable to implement a ref-
erence monitor that mediates access to resources managed by applications (unless the operating
system is equipped with new primitives, as in Asbestos). There thus is an extensive body of re-
search on implementing reference monitors that enforce application-specific authorization policies.
For example, Java’s security mechanisaitD3 implements the reference monitor as an object of
type AccessController. Calls to the functiomAiccessController.checkPermission() are
placed at appropriate locations in code. These calls consult an authorization policy, and determine
whether an access should be allowed.

Inlined reference monitors (IRM) are another approach to implement reference moaitod. |
In the IRM approach, security policies are specified as security automata (and are thus safety prop-
erties). For example, a policy to protect confidential data managed by a server can be “disallow
send operations over the network afterraad operation of sensitive data”. These policies are
enforced byinlining the security automaton into the application to be secured. The application is
rewritten by introducing new variables that track the state of the security automaton. These state

variables are then used to determine whether a security-sensitive opeeagicendend or aread)
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should be allowed. IRMs have been used to implement a variety of security policies, including
Java stack inspectiorE50Q. IRMs were implemented using the PofPELang framework; the
framework allows specification of security policies written as security automata, and rewrites Java
bytecode to inline these security automata. NacgEitq9, Polymer BLWO05], Ariel [PH99 and

the work by Grimm and BershaB01] are projects similar to the PoEFSLang framework, and
enforce safety policies by rewriting Java bytecode. However, each of these frameworks requires
the security analyst to provide a description of the code patterns that represent a security-sensitive
operation. These code patterns are used by the rewriting framework to identify locations that per-
form these security-sensitive operations. ErlingssmOg, Pages 73—-82] refers to the problem of
identifying these code patterns as #exurity event synthesis problemhese code patterns are

akin to fingerprints, developed in this dissertation, and the fingerprint mining techniques presented

in Chapter /andChapter 5address the security event synthesis problem.

7.3 Code retrofitting and refactoring systems

There are numerous tools, both prototypes and commercial, that augmgntrandify exist-
ing code. These tools can be broadly classifiestatic toolsor runtime tools based upon whether
they modify code statically or at runtime. While these tools have been used for a variety of appli-
cations ranging from performance debugging to adding extra functionality to legacy applications,
this section discusses the application of these tools to application security.

Tools that statically modify code can be further sub-categorized based upon whether they mod-
ify binary executables or source code.

One of the first systems that augmented binary executables was the Informer execution pro-
filer [DG71], implemented in Berkeley SDS 940 time-sharing system. The primary purpose of
binary modification in this case was to gather and filter profiling events. However, instrumentation
could also be added to restrict memory accesses to profiler memory. This idea later appeared in
Software Fault Isolation (SFIMJLAG93], where binary executables were statically modified to
restrict accesses to memory. While these systems implemented a fixed policy on memory accesses,

more general binary rewriting tools, such as ATOSEP4 and its successors, Vulcae$Vv0]
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and PhoenixiPhd, allow arbitrary modification, and thus enforcement of arbitrary security poli-
cies €.g.,specified as security automata). For example, Control-Flow InteghBEL05] is a
sandboxing technique built on Vulcan that uses binary analysis and modification to restrict accept-
able control flows in an application, and thus restrict thiect of control-hijacking attacks. While
the tools described above work on machine code, several tools that work on Java bytecode have
also been proposed. These include the RBSLang frameworkHrl04] discussed earlier, and
the SOOT frameworkgod, which provides intermediate representations and tools to analyze and
modify Java bytecode.
Among the tools that modify source code, CIL is a well-used framewbidRW02] that
allows analysis and modification of C source code. CIL simplifies and distills C code into a few
constructs, which enables easy design and implementation of program analysis and transformation
tools. The algorithms that were discusseimapter Sand Chapter 6vere implemented in CIL.
CIL has also been used for a variety of other code retrofitting and refactoring projects, including
CCured NCH*05, NMWO02], which analyzes and instruments C programs to enforce type safety,
as well as PrivTrandgS04, which statically partitions C programs to enforce privilege separation.
While all the above tools statically modify code, tools such as Valgiit&iJ/, Dyninst [dyn,
HMC94] and Dynamo BDBOQ] allow arbitrary modification of code at runtime. These tools
have also been used for securigyg.,to perform dynamic taint analysi®l505 and for program

shepherding (a sandboxing techniqueBA02].

7.4 Aspect-oriented programming

The approach to retrofitting legacy code presented in this dissertation follows the aspect-
oriented programming paradigm (AORQS, KLM *97]. An aspect is defined to be a concern,
such as security or error-handling, that crosscuts a program. In aspect-oriented programming lan-
guages, €.9.,Aspect] Asplb], AspectG-+ [Aspd) these concerns are developed independently,
as advice. An aspect-weaver merges advice with the program at certain joinpoints. Pointcuts are

often used to express a family of joinpoingsd.,using regular expressions). Thus, pointcuts are
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patterns that succinctly represent joinpoints. The aspect weaver matches these patterns with the
program to identify joinpoints.

Drawing parallels to the approach presented in this dissertation, each location in source code
where a reference monitor call must be inserted is a joinpoint. Because a fingerprint is a set of code
patterns that identifies multiple such locations, each fingerprint is a pointcut. The matching algo-
rithm and the associated program transformation implement compile-time aspect weaving, while
the body of the reference monitor that executes at runtime to consult an authorization policy serves
as the advice. Note that other projects, such as IRNDH], Naccio [ET99 and Polymer BLWO05],
as well as our own prior work on Taho8JJ0%follow the aspect-oriented programming paradigm.

A key problem in aspect-oriented programming is that of identifying joinpoints—this is known
as the problem oéspect miningand is an area of active current research. Concept analysis is
one approach that has been used both in conjunction with static analysis as well as with dynamic
analysis to mine aspects (Ceccatal. present a survey of such techniqu€M*05]). For ex-
ample, concept analysis has been used on identifier names to statically find methods and classes
that implement similar functionalityM04]. Dynamic analysis in conjunction with concept anal-
ysis has been used to find methods that implement a particular feB&I&R TCO04. The idea
here is to run an instrumented version of the program undkardnt use-cases and label the traces
with these use cases. Each trace contains information about the methods executed. Traces are then

clustered using concept analysis to find crosscutting concerns, and thus identify aspects.

7.5 Authorization policy formulation and analysis

While this dissertation has focused on the problem of authorization policy enforcement, the
problem of formulating appropriate authorization policies to meet site-specific security goals, and
the problem of analyzing an existing policy to ensure that it meets site-specific security goals are
also important to ensure security.

Most prior work on authorization policy formulation has focused on formulating policies that
ensure that an application satisfies the Principle of Least Privilegethat an application has

access to all, and only, those resources that it needs to accomplish itS$4k Bystrace Pro03
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and PolgenfiGH"05] are two such tools. Both these tools run the program for which a policy is

to be written, and observe the set of resource accesses that it makes during a training phase. Audit
logs generated during the training phase are examined, and are appropriately converted into policy
statements. Note that this is also the intended usage aiuidhiet 2allow tool from the SELinux

policy development toolkitTreh.

Work on analyzing authorization policies focuses on ensuring that these policies conform to
site-specific security goals. For example, the Gokyo td8]03 analyzes SELinux authorization
policies to detect integrity violations. Guttma al. [GHRSO0J present the use of LTL model
checking to analyze SELinux policies. Desirable safety properties are expressed as LTL formu-
lae. Appropriately expressed SELinux policies and LTL formulae are then fed to the SPIN model

checker Hol03], which reports violations of these safety properties.

7.6 Other related work

This section presents related work in two areas, namely, root-cause analysis, where the tech-
niques developed are related to dynamic fingerprint mining, and X window system security, where

there is a rich body of work from the early nineties on securing the X server.

7.6.1 Root-cause analysis

Because fingerprints denote code patterns that embody security-sensitive operations, mining
fingerprints is akin to mining root-causes of security-sensitive operations. There is a rich body of
research on root-cause analysis techniques, developed primarily for debugging. Most existing root-
cause analysis techniques use “good” and “bad” traces to localize the root-cause ofc¥Zbag [
Lib04, Zel0Z. The dynamic fingerprint mining technique presente@Ivapter 4s similar to these
techniques because it classifies program traces and uses this classification to find fingerprints of
security-sensitive operations. The primarffelience between these techniques and the dynamic
fingerprint mining technique i€hapter 4s that our technique uses a much richer set of labels for
runtime traces, namely an arbitrary set of security-sensitive operations, rather than just “good” or

“bad”. As a result, our technique uses the more general concept of set equations (rather than the
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traditionally-used trace fferencing technique) to mine fingerprints. Another approach for trace
analysis (primarily for debugging) is dynamic slicingH90, KR97, ZG03. Dynamic slicers

use data-flow analysis to work backwards from tiiea of a vulnerability, such as a program
crash, to the cause of the vulnerability. An interesting avenue for future research will be to adapt
the dynamic fingerprint mining technique presente€imapter 4to use dynamic slicing to work
backwards from theftect of a security-sensitive operation (a tangible sifieet) to the fingerprint

of the operation.

7.6.2 X Window system security

There is a rich body of work on techniques to secure the X server. Because the X server was his-
torically developed to promote cooperation between X clients, secergyiéolation) of X clients
was not built into the design of the server. The X protocol, which X clients use to communicate
with the X server, has well-documented security flaws, ¥igP6lk. Prior work to rectify this
situation has focused on identifying security requirements for the X server, and creating secure ver-
sions of the X server. Most of this work was carried out in the context of the Compartmented Mode
Workstation BPWC9Q EP91, Pic9]], and the Trusted X project&EMO*93, Eps9(, which built
prototype windowing systems to meet the Trusted Computer System Evaluation Criteria. While
these #orts focus on retrofitting the X server, there is also work on building X server-like win-
dow systems, with security proactively designed into the syseeg,the Nitpicker secure GUI
system FHO5 and the EROS trusted window systeBMNCO04. McCuneet al.[MPRO0O] present
a system to specifically address the threat of malware that steal sensitive user input by exploiting
weaknesses in the X server by establishing a trusted channel between the input device and the
target application.

The X security extensiofig964 extends the X server by enabling it to enforce authorization
policies. It does so by placing reference monitor calls at appropriate locations in the X server,
as discussed in this dissertation. To the best of our knowledge, these calls were placed manually,
and thus the techniques presented in this dissertation could have assisted ffothaHewever,

the X security extension is quite limited in the policies that it can enforce. It statically partitions
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clients into Trusted, and Untrusted, and only enforces policies on interactions between these two
classes of clients. Thus for example, if three clients, with security-labels Top-secret, Confidential,
and Unclassified connect to the X server simultaneously, the X security extension will group two
of them into the same category, and will not enforce policies on clients in the same category.
The techniques presented in this dissertation can retrofit the X server with mechanisms to enforce

arbitrary authorization policies.
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Chapter 8

Conclusions and Future Work

While it is ideal to proactively design software systems for security, economic and practical
considerations often preclude this in practice. This motivates the need for retroactive techniques to
analyze and transform legacy code for security.

This dissertation has presented techniques to analyze and retofit legacy code with mechanisms
for authorization policy enforcement. It introduced fingerprints, a low-level language to repre-
sent security-sensitive operations, and showed that fingerprints can be used to identify locations in
source code that must be guarded by reference monitor calls. A central contribution of this disser-
tation is a set of techniques based upon static and dynamic program analysis to mine fingerprints
by analyzing legacy code.

However, the work presented in this dissertation is not without its limitations, and there are
several directions in which to extend the work presented in this dissertation to overcome these

limitations.

1. Reducing the size of the TCBAs discussed irsection 2.3a key shortcoming of the ap-
proach presented in this dissertation is that it increases the size of the TCB. In particular,
the legacy software system that is being retrofit is assumed to be benign. As a result, the
TCB must be extended to include the legacy software system. An interesting future direc-
tion will be to examine techniques to enforce authorization policies without increasing the
size of the TCB. One way to achieve this will be to redesign the operating system (which is
traditionally included in the TCB) to enforce application-level authorization policies. A key

challenge here will be to do so while remaining compatible with legacy applications.
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2. Achieving soundness and completenes$he fingerprint-based approach presented in this
dissertation is neithesoundnor complete Consequently, it is not completely automatic and
requires manual intervention to prune false positives (which result because the approach is

not sound) and identify false negatives (which result because the approach is not complete).

The approach is not sound primarily because of the limited expressive power of the language
that is currently used to represent fingerprints. Two extensions to the language will greatly
improve its expressive power. First, the language must be extended to express temporal
relationships between code patteragy.,using finite state automata to express fingerprints.
Second, the language must be extended to include data-flow information. Augmenting the
language with data-flow information will enable the expression of fine-grained information

that determines how resources afieeted by a security-sensitive operation.

The approach lacks completeness for unsafe languages (such as C). As disci&sed in
tion 5.6 this is a consequence of type-safety violations, such as those caused by pointer
aritmetic and direct writes to memory. One approach to achieving completeness is to add
extra runtime checksa(la CCured NCH*05, NMWO02)) to the retrofitted program to ensure

type safety. The resulting retrofitted system will contain checks that enforce type safety in

addition to those that enforce site-specific authorization policies.

3. Automating failure handling. An important issue that has been side-stepped by the ap-
proach presented in this dissertation is, “how to handle failed authorization policy checks?”
While the primary goal is to ensure that a security-sensitive operation is never performed
when an authorization policy check fails, an important secondary goal is to ensure that the
server notifies clients in such a way that the failed check is handled gracefully by the clients.
For example, failure to create a new window or copy from a window must not crash an
X client that requested this operation. In current work, we defer the task of implement-
ing failure handling code to a human. An interesting future direction will be to investigate

automated techniques to gracefully handle failure in a principled and automated way.
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4. Enforcing policies on unmodified binaries. The approach presented in this dissertation
modifies legacy (source) code by retrofitting it with authorization checks. An interesting
future direction will be to investigate techniques to enforce authorization policies on unmod-
ified binaries. Doing so will require constructing a runtime envionment that will enforce
authorization policies as code executes. Such a runtime environment will enable the enforce-
ment of authorization policies on commerci&li-the-shelf servers that may not be amenable

to analysis and transformation.

The above directions provide fodder for much future research and experimentation.
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