Working Set-Based Access Control
for Network File Systems

Stephen Smaldone, Vinod Ganapathy, and Liviu Iftode
Department of Computer Science
Rutgers, the State University of New Jersey

ABSTRACT

Securing access to files is an important and growing concern
in corporate environments. Employees are increasingly ac-
cessing files from untrusted devices, including personal home
computers and mobile devices, such as smart phones, that
are not under the control of the corporation, and may be
infected with viruses, worms, and other malware. In such
cases, it is crucial to protect the confidentiality and integrity
of corporate data from malicious accesses. Existing tools for
network administrators are either too permissive or too re-
strictive in allowing file access from untrusted devices.

This paper proposes a novel scheme called Working Set-
Based Access Control (WSBAC) to restrict network file sys-
tem accesses from untrusted devices. The key idea is to con-
tinuously observe and extract working sets for users when
they access files from trusted devices and use the working
sets to restrict user file accesses from untrusted devices. This
paper reports on the design and implementation of tools to
automatically extract working sets, and transparently en-
force WSBAC without requiring changes to the file system.
Our experiments with realistic network file system traces
lead us to conclude that WSBAC offers a flexible yet secure
way to restrict access from untrusted devices, and that the
runtime overheads of WSBAC enforcement are negligible.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Access controls; D.4.3
[File Systems Management]: Distributed file systems

General Terms

Design, Experimentation, Security

Keywords

access control, network file system

1. INTRODUCTION

This paper concerns the problem of securing access to files
on corporate Intranets. Employees are increasingly begin-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SACMAT’09, June 3-5, 2009, Stresa, Italy.

Copyright 2009 ACM 978-1-60558-537-6/09/06 ...$5.00.

ning to access such files from a variety of devices, including
personal computers as well as mobile devices, such as smart
phones (e.g., utilizing web-based file access). File access is
typically secured using standard network file systems au-
thentication mechanisms, such as VPNs and firewalls. How-
ever, a user may choose to access files from a device whose
software stack is not under the control of the corporation.
Such an untrusted device may contain malware, for exam-
ple viruses and worms, that compromise the confidentiality
and integrity of corporate files when they are accessed via
these devices. For example, a worm on an employee’s mobile
phone may delete all her files when she accesses the corpo-
rate Intranet.

Prior work on securing access to resources on corporate
Intranets has focused on verifying the software stack on em-
ployees’ devices. Sailer et al. [26] present an attestation-
based approach that uses Trusted Platform Module (TPM)
hardware to acquire integrity measurements of the software
running on an employee’s device. User connections are al-
lowed only from devices that run software configurations
that have been approved by the corporate network. While
this approach limits user connection origination from valid
trusted devices, it assumes the existence of TPM hardware
on those devices. Neither legacy devices nor most of today’s
handheld devices have such hardware installed. This neces-
sitates an all-or-nothing approach to allow access from such
devices—either prevent them from connecting to the corpo-
rate network or allow them to connect at the risk of exposing
the file system to malicious accesses from these devices.

This paper proposes a novel approach, called Working
Set-Based Access Control (WSBAC), which restricts file ac-
cess from untrusted devices without requiring special hard-
ware and in a manner that is fully compatible with legacy
file systems. Our approach augments access control mecha-
nisms implemented on network file systems with the notion
of working sets. The key idea is to prevent accesses to files
outside an employee’s working set when this access happens
from an untrusted device. ! When an employee accesses files
from a trusted device (e.g., on the corporate network), she
is allowed free access to all her files, and is limited only by
the native access control policy enforced by the network file
system. Simultaneously, an agent on the corporate network
observes her file access patterns and extracts her working
set. This working set is used to construct an access control

IFor this paper, we will assume that devices administered by the
corporation are trusted, and that employee’s personal devices are
untrusted. However, WSBAC is independent of this assumption
and will work with any technique that can be used to differenti-
ate between trusted and untrusted devices, e.g., devices equipped
with TPM hardware and integrity measurement tools [26] could
be considered trusted.

policy that is enforced upon access from an untrusted device.

Using the employee’s working set to regulate file accesses
ensures that access control is neither overly restrictive, nor
overly permissive. Intuitively, most file accesses are governed
by the working set; indeed prior work has shown temporal
patterns in user file accesses [30]. Because an employee will
tend to access a file that she has recently accessed, using the
working set does not overly restrict file accesses. In contrast,
malware accesses to the file system, such as those by viruses
and worms, typically exhibit no such patterns. Using the
working set to guard accesses from untrusted devices ensures
that files outside of the employee’s working set are protected
from such accesses by malware. Damage caused by malware
is thus restricted to the employee’s working set. Because
the working set only contains files that have most recently
been modified by the employee (e.g., during the course of a
day), WSBAC can be coupled with version-control systems
to recover quickly from the damage caused by malware.

Implementing WSBAC requires the design and implemen-
tation of two key agents, one that extracts the working set
and formulates a file access policy (POLEX), and one that
enforces this policy (POLEN). We have implemented both
PoLEX and POLEN for the network file system (NFS) proto-
col. POLEX automatically extracts a user’s network file sys-
tem working set by observing that user’s network file system
accesses. Through this extraction, POLEX generates per-user
working set summaries, which are subsequently utilized by
POLEN. POLEN is the WSBAC enforcement agent that in-
terposes on the network file system client-server path and
intercepts all messages passed between them. To perform
WSBAC policy enforcement, POLEN extracts, inspects, and
modifies network file system message attributes. Finally,
POLEN provides speculation mechanisms to allow file cre-
ations and writes from untrusted devices to occur in the
case of imprecise working set estimation. Speculations are
reconciled and committed to the file server by the user (or
user’s delegate) from a trusted device. To be compatible
with legacy file systems, we have implemented both POLEX
and POLEN as network middleboxes utilizing our existing
FileWall framework [28, 6]. However, WSBAC can also be
implemented without a network middlebox by suitably mod-
ifying the file system.

This paper makes the following, novel, contributions:

e Working Set-Based Access Control (WSBACQC).
We propose and evaluate WSBAC, an access control
technique that estimates per-user working sets to for-
mulate an access control policy that is enforced during
untrusted accesses.

e Prototype implementation of WSBAC. We present
an implementation of WSBAC in the context of the
Network File System (NFS). We have implemented
POLEX, an agent that continuously observes user file
access patterns and formulates a working set-based ac-
cess policy, and POLEN, an agent that enforces this
policy using a network middlebox.

e Evaluation on network file system traces. We
present an empirical evaluation of POLEX and POLEN
using real-world network file system traces. Our evalu-
ation suggests that WSBAC is highly effective; in par-
ticular, the WSBAC policies extracted by POLEX es-
timate file access behavior to within an error rate of
0.92%.

The remainder of this paper is organized as follows. Sec-
tion 2 presents a motivating example for our work. We ad-

Alice @Trusted

e\
N\ 7 !
1 '-i’/ L veN
= | Server
VPN Firewall

Internet

|
‘ |
‘ E
[
I Network file servers
|

I
Figure 1: Example scenario showing access to cor-
porate files from untrusted personal devices.

dress several common concerns on the applicability of WS-
BAC in Section 3. Sections 4, 5, and 6 present the WSBAC
system design, prototype implementation, and evaluation.
Finally, Section 7 reviews related work and Section 8 con-
cludes the paper.

2. EXAMPLE SCENARIO

To motivate WSBAC, consider the file accesses made by
a typical employee, Alice, of a corporation that manages
files using a network file system (Figure 1). At work, Alice
may access several files during the course of a day using her
desktop PC, which the corporation trusts. For instance, she
may develop source code using an IDE, look up or modify
documentation using an editor, or use a spreadsheet appli-
cation. Each of these applications involves several accesses,
both reads and writes, to files stored on the network file
server. She may also wish to access these files from a per-
sonal computer that her employer does not trust, e.g., from
home or during travel. Such accesses typically happen via a
VPN connection to the corporate Intranet, and may either
be from a personal laptop, a PC on the network of a business
partner or client of her employer, or, increasingly, via mobile
devices such as smart phones (e.g., web-based file access).

To ensure safe yet easy access to files in such scenarios,
two conflicting requirements must be met. First, Alice must
be allowed access to read/modify her files, being constrained
only by the access control policy of the network file system.
This requirement is necessary to ensure seamless access to
files both within and outside the corporate network. Second,
“insecure” accesses to Alice’s files must be denied. This re-
quirement is necessary to prevent accesses that may poten-
tially be performed by malicious software on Alice’s personal
computer or mobile device using her credentials. These re-
quirements conflict because of the limited power of existing
network file system administration tools.

Network file system administration tools offer an all-or-
nothing choice to enforce secure accesses to files on a cor-
porate Intranet. First, existing tools do not offer any fine-
grained method to determine the file accesses performed by
Alice, either from within the corporate network, or from her
personal computing device. Consequently, these tools can
neither observe Alice’s file system access patterns nor en-
force policies that disallow anomalous file accesses. Second,
network file systems do not store the network context of

a user’s accesses with the file system context. This makes
it difficult to differentiate Alice’s file system accesses from
different devices, such as from her work PC within the cor-
porate network or from her personal laptop at home.

WSBAC addresses the above shortcomings by extracting
the working set of Alice’s file accesses from trusted devices
and enforcing access control based upon her working set
when she accesses files from untrusted devices. WSBAC’s
POLEX agent continuously approximates Alice’s working set
by observing her file access patterns when she is connected
from a device that her corporation trusts. This working set
is used as the basis for enforcing access control when Al-
ice connects from her smart phone or personal laptop. WS-
BAC’s POLEN agent enforces policy, in this case as a network
middlebox, thereby ensuring transparent enforcement, even
with legacy network file systems.

The ability of WSBAC to continuously and automatically
adapt to changes in Alice’s working set is its central, novel,
feature. This feature ensures that untrusted file accesses are
not governed by a static access control policy that is restric-
tive, hard to formulate, and hard to maintain. Working sets
offer a flexible yet secure abstraction to restrict untrusted
file accesses. However, enforcing access control by denying
all accesses outside the working set may be too restrictive
in certain scenarios. For example, the IDE or spreadsheet
application that Alice uses to access her files may create tem-
porary files, such as locks, that may not be in her working
set. Alice may be unable to usefully access her files from
her personal device if the creation of such files is disallowed.
WSBAC handles such cases by allowing for speculative file
accesses during policy enforcement. Speculative file accesses
allow the IDE or spreadsheet application to create and mod-
ify temporary files, thereby permitting Alice useful access to
her files.

3. APPLICABILITY OF WSBAC

With the background above, we now address some com-
mon concerns on the applicability of WSBAC.

Suppose that a user, Alice, accesses files from an
untrusted device. How can she access files that are
not in the working set extracted by Polex? We con-
sider separately the case of reads and writes. Writes to files
that are not in the working set, including the creation of new
files, are handled speculatively by POLEN; changes made to
such files are visible only to Alice. When Alice accesses
these files again from a trusted device, POLEN commits the
speculative accesses after they have been verified by Alice.

To handle reads to files that are not in the working set,
WSBAC supports the inclusion of a reliable secondary au-
thentication mechanism [1, 10, 14, 24] for Alice to add files
to her working set. The inclusion of this type of mechanism
would ensure that malware on untrusted devices cannot au-
tomatically add files to her working set. For example, Alice
could call a help desk to add files to her working set using a
secret PIN number during the call to prove her identity to
the help desk. Afterward, Alice can access the newly added
files in her working set, thereby allowing WSBAC to be prac-
tical even in scenarios where Alice does not have access to
a trusted device for extended periods of time, e.g., during
travel.

Can Alice share speculative updates to files with
other users? As described earlier, WSBAC handles writes
to files that are not in Alice’s working set using speculation;
these updates are normally only visible to Alice until she
commits them. However, there may be cases where these

updates must be visible to other users. For example, suppose
that Alice is collaborating on a paper with others.

WSBAC offers Alice two choices to ensure that an update
to the paper made from an untrusted device is visible to her
co-authors. Alice can include the file in her working set us-
ing a reliable secondary authentication mechanism; because
POLEN does not restrict accesses to files in the working set,
updates to the paper will be visible to the entire group.
However, this approach has the disadvantage of committing
possibly malicious updates to the files, e.g., by malware on
Alice’s untrusted device, to the file system.

Alice can avoid this problem by instead using WSBAC’s
mechanism to share speculative file updates. Using this mech-
anism, Alice can share speculative updates to selected files
with her co-authors. However, this mechanism also ensures
that all subsequent updates to the file (including those made
by her co-authors) will be speculative. Changes are commit-
ted only when one of the group members (not necessarily Al-
ice) working on a trusted device verifies the file updates. In
this way, by sharing speculative updates with her co-authors,
Alice is also delegating commit permission to them, should
they be working from trusted devices.

Can Alice defeat WSBAC protection by artificially
inflating the size of her working set? Yes, this is pos-
sible. For example, Alice could write a script that runs
overnight from a trusted terminal and accesses all her files,
thereby forcing POLEX to include all her files into her work-
ing set. Alternately, Alice could add all her files to her work-
ing set via the Web interface.

However, it is to Alice’s advantage to use WSBAC. Much
as Alice can disable her virus scanner at the risk of being
infected, she can disable WSBAC protection at the risk of
exposing the files in her working set to malware. Even in
this case, damage is limited to Alice’s files, because WSBAC
augments traditional network file system access control.

Still, there are several procedural regulations that Alice’s
employer could use to prevent her from artificially inflating
her working set. For example, POLEN could record her ac-
cesses from an untrusted device and compare them against
the POLEX working set. If these accesses differ significantly,
the employer could use this as an indication that Alice is ar-
tificially inflating her working set, and issue her a warning.

One special case of this could be caused directly by a valid
process that accesses files while acting on Alice’s behalf,
for example, a client-based virus scanner that scans Alice’s
mounted network file systems.? This problem can be solved
in two ways. One way is to take advantage of a distributed
Mandatory Access Control system [16] such that any net-
work file system messages issued by the virus scanner can
be distinguished by their accompanying labels and ignored
by PoLEX. For legacy clients, the virus scanner process can
run in the context of a special user, and then all network
file system messages issued by that user ID can be safely
ignored.

Does WSBAC compromise Alice’s privacy? Both
PoOLEX and POLEN continuously monitor Alice’s accesses.
While Alice’s employer could potentially use these tools to
compromise her privacy, such compromise is possible even
otherwise. The network file server, accesses to which WS-
BAC protects, is administered by Alice’s employer, who
therefore can observe all her accesses even without POLEX
and POLEN. Several reports suggest that corporations per-

2We can safely ignore the effects of a server-based virus scan-
ner since they operate locally at the file server and do not cause
network file systems messages to be issued.

form such monitoring on their employee’s work habits [2,
22, 27] and are unlikely to change this practice. We argue
that the use of POLEX and POLEN at least makes employ-
ees aware of such monitoring by their employers. WSBAC
also requires that encrypted file accesses originating from
untrusted devices be decrypted at POLEN (rather than at
the network file server). However, because both POLEN and
the network file server are administered by Alice’s employer,
decrypting file accesses at POLEN compromises her privacy
no more than decrypting them at the file server.

In spite of these restrictions, Alice can protect her privacy
by using a scheme that only encrypts the contents of packets
(and not their headers, which contain information that is
used by POLEX and POLEN).

Why is virus scanning at the network file server
not enough? Although is it common for virus scanning to
occur at network file servers, this technique is insufficient to
protect a user’s data. Virus scanning at the server can inter-
cept file writes and inspect the modifications to search for
virus signatures, should a virus attempt to propagate itself
in the content of the writes. Virus scanning cannot com-
pletely protect the integrity of a user’s data since it cannot
detect malicious deletes made by a virus from an untrusted
device. Furthermore, it does not protect the confidentiality
of user data, since any virus masquerading as a legitimate
user would have complete access to all of that user’s data.

4. DESIGN

In this section, we provide a detailed overview of the de-
sign and architecture of our WSBAC system.

4.1 Working Set-Based Access Control

We define a user’s file access working set (WS) to be the
set of files (and directories) the user has accessed over some
recent period of time (typically 1 day). Within this set,
files belong to subsets that define the access permissions for
that file. For example, all the WS files for which a user has
read permission are included in the read permission subset
of the WS. These subsets are not necessarily disjoint, as a
file may be included in multiple permission subsets (e.g., a
file for which a user has both read and write permissions).
Therefore, a file included in any subset of the user’s WS
implies that the user possesses the permission defined by
that subset for that file.

Since working sets are specific to each user and typical
network file systems scale to serve several hundred users, it
is impractical for an administrator to manually define the
WS for each user of the system. Alternately, allowing users
to self-define their WSs defeats the primary purpose of the
WSBAC system. Users will likely over-estimate their WSs
for fear of lacking access to files they may need, even if there
is a low probability that they will actually need to access
the files while working from an untrusted device. To address
these concerns, we approximate the per-user WSs automati-
cally. This removes the potential burden on administrators,
while reducing the ability of a user to over-estimate their
WS. WS extraction is performed by the POLEX agent of our
system.

Automatic extraction of user WSs may lead to inaccura-
cies because of two possibilities. First, the WS may include
files that the user will not need to access from an untrusted
device. Second, required files may be excluded from a user’s
WS. In either case, users will never gain access to a file that
they do not already have access to since WSBAC only aug-
ments the standard network file system access policy, and

;m

\
\
\
‘ Trusted
| Device
\
Untrusted \fﬂ ‘
Device | | |
Y \

C\
-‘éi;(//]
Figure 2: WSBAC Overview. Requests from trusted

(1) and untrusted (2 and 3) devices are shown. Re-
quest 3 is handled speculatively.

]
y

cannot make a user’s access rights more permissive. In the
limit, a user’s WS may only grow to match the set of all files
that she already has permission to access from a file server.

In general, there are two read cases and two write cases
that must be handled by the WSBAC system. File and di-
rectory reads may be attempted for files either included in or
excluded from a user’s WS. For these cases, WSBAC allows
reads only for those files included in a user’s WS and denies
all other read attempts (although, a user is able to add files
to her WS using a reliable secondary authentication mecha-
nism). Note that this covers both data and meta-data reads.
File and directory writes include both data and meta-data
writes (create, remove, rename fall into this category). Writes
to files and directories included in a user’s WS are performed
normally, while writes to files and directories not included in
a user’'s WS are performed speculatively (described in Sec-
tions 4.4 and 5.2.2). WSBAC enforcement is performed by
the POLEN agent of our system.

4.2 WSBAC Policy Extraction (POLEX)

WSBAC working set extraction and policy formulation is
performed by the POLEX agent. POLEX observes a user’s
network file system accesses when they are performed from
a trusted device. These accesses, which travel between net-
work file system clients and servers in messages, are captured
by POLEX and inspected. POLEX utilizes the file system at-
tributes contained in these messages to construct and main-
tain per-user working set summaries.

Figure 2 illustrates how this occurs. In the figure, a trusted
device performs a network file system access, shown in the
figure as a network message labeled 1. This message trav-
els through the network and ultimately reaches the network
file server where the file access is performed on the file sys-
tem. Along the way, the message is captured by a network
element and a copy is sent to POLEX for processing. Any
network element, such as a network switch, could perform
this message capture and copy forwarding function. To han-
dle the case of encrypted or signed network traffic, POLEX
(and POLEN) shares the encryption keys with the network
file server.

POLEX maintains the per-user WS summaries on stable
storage, as they are built and updated. These summaries
are built through the use of compact summary data struc-
tures (Bloom filters, in our implementation) and they are ex-
ported by POLEX for use in POLEN. POLEX also utilizes the
WS summaries to provide per-user virtual file system names-
paces. These virtual namespaces provide administrators a
mechanism to view and modify the WSBAC permissions for

individual users as approximated by POLEX. Further discus-
sion of POLEX virtual namespaces is in Section 5.1.

4.3 WSBAC Policy Enforcement (POLEN)

WSBAC enforcement is performed by the POLEN agent.
POLEN resides on the network, interposed between the net-
work file system clients and servers, and intercepts all mes-
sages passed between them. POLEN utilizes the file system
attributes contained within the messages and the per-user
WS summaries to enforce WSBAC for those users accessing
the network file system from an untrusted device.

Figure 2 shows POLEN interposed between network file
system clients and a file server. Messages from untrusted
devices, such as message 2 in the figure, are evaluated against
the WSBAC policy. For file accesses that are allowed, POLEN
forwards them to the file server (as is the case for message
2 in the figure), otherwise, POLEN responds directly with a
“permission denied” message.

4.4 POLEN Speculation

Writes from an untrusted device to files not included in
a user’'s WS are allowed by POLEN, but are not commit-
ted to the network file system. Instead, POLEN holds these
writes aside by logging them in a vault area. This area is a
stable storage location where speculative writes can be se-
questered from the network file system. Access to the vault
is reserved for POLEN only. This partitioning of specula-
tive writes from the network file system provides safety for
these writes, while denying visibility of the speculative ac-
cesses for all other users. Speculative writes are visible to
the users who issue them. All user accesses flow through
PoOLEN, which exports per-user virtual namespaces to the
users. These namespaces are the union of the real file sys-
tem merged with the speculative operations performed by
the user.

POLEN allows speculative writes to data and meta-data
to be performed by a user from an untrusted device for two
reasons. First, the user may wish to create new or temporary
files. If POLEN limits writes to files within the user’s WS,
it will not permit this. Second, although POLEX may have
observed reads to a file and included the file in the WS for
reads, POLEX may not have observed any writes by that user
to that file. Since it is possible the user may also have write
permission, we allow these writes to occur speculatively.

Figure 2 shows a speculative access as it traverses the
network from an untrusted device to a network file server
(shown as message 3). When the message is intercepted by
POLEN, it is logged and stored in the POLEN vault area,
which may reside on any stable storage accessible to POLEN.

Speculative writes may pose a problem in the cases of
write-after-write and read-after-write sharing between users.
This problem is mitigated by two factors, though. First,
for typical deployments of network file systems, both types
of sharing have been found to be very low (between 0.9%
and 0.6% of all file systems operations as reported in [18,
31, 19]). Second, network file systems, such as NFS [7], in
the absence of locking, do not provide strong file consistency
between users. They typically provide close-to-open consis-
tency where update propagation is only guaranteed at the
time of file closure. In spite of this, there are likely to be
cases where update delays due to speculation pose a problem
between users sharing files. To handle this, we extend shar-
ing to speculative accesses through our speculation sharing
and delegation mechanism. We expect (and in fact show in
our evaluation) write speculation to be the exception and
not the common case in practice. Further description of this

mechanism is in Section 5.2.2.

Reconciliation of speculative accesses occurs when a user
returns to a trusted device and resumes interacting with the
network file system. At this point, POLEN starts reconcilia-
tion for speculative changes stored for the user in the vault
area. POLEN allows speculative creates and writes to tempo-
rary files to be automatically committed to the server once
reconciliation begins, since they will not potentially destroy
or modify any existing data. We assume that all network
file servers perform virus scanning for all file writes before
committing them, as this is common practice. In the event
that virus scanning is not performed at the server, automatic
reconciliation can be completely disabled.

All other speculative updates to existing files must be
manually verified by the user, before POLEN will proceed
to commit them. This may occur in a number of ways, in-
cluding a web-based interface or an automated email service.
Once verified, speculative updates are presented to the net-
work file server as if issued by the user, and reconciled by the
system in a manner similar to the CODA File System [19].

S. IMPLEMENTATION

We have implemented both POLEX and POLEN by extend-
ing FileWall [28, 6], a network file system middlebox that we
developed in prior work. Using a middlebox permits WS-
BAC enforcement without modifying the file system. How-
ever, WSBAC can also be implemented without a network
middlebox by suitably modifying the file system.

5.1 Implementation of POLEX

In this section, we describe the implementation of our pol-
icy extraction agent. We have two primary requirements in
designing this system. First, it must run online in order to
continuously and automatically adapt to changes in users’
network file system working sets. Second, it should be non-
intrusive to both clients and servers. By requiring no server
modifications, POLEX can be easily deployed without impact
(in terms of software maintenance, or performance effects)
to the critical resource being monitored. We further restrict
the system to not require any software modifications to the
clients. For this system to be most useful, it must be deploy-
able in any scenario, including situations that involve legacy
deployments and untrusted devices.

POLEX implements a framework to extract approxima-
tions of user network file system working sets, which form the
basis of WSBAC. We built POLEX as a network agent that
receives and processes copies of network file system messages
to examine message attributes and extract per-user working
sets. Figure 2 shows how POLEX is deployed for a typical
network file system infrastructure, where copies of network
file system messages are forwarded to POLEX by a cooper-
ating network element (e.g., network switch port mirroring,
POLEN, etc.) The remainder of this section describes the
working set extraction mechanism, the administration inter-
face provided by POLEX, and WSBAC state maintenance.

5.1.1 Working Set Extraction

As shown in Figure 2, POLEX extracts per-user working
sets by observing the network file system messages that flow
between trusted devices and file servers. This is accom-
plished by using semantic knowledge about the network file
system protocol. Since POLEX can observe the servers’ re-
sponses to the devices’ requests, it can discover, over time,
the file permissions users have to various portions of the file
system (files and directories). Once discovered, these per-

* Start / Stop WS Estimation
* Modify Estimation Parameters
* Modify PVN Parameters

Filtered
FS Namespace

Figure 3: Subset of the Policy View Namespace
(PVN). For each user (e.g., Bob), there are control
and WS view namespaces.

missions are stored in a set of per-user compact summary
data structures (Bloom Filters). POLEX creates and main-
tains six Bloom Filters per user, three for file permissions
(read, write, and execute) and three for directory permis-
sions (read, write, and execute). The Bloom filters comprise
the WSBAC user policy summaries and are stored on local
persistent storage. Once generated, they are held by POLEX
for later use in POLEN.

5.1.2 Policy View Namespace (PVN)

POLEX defines a virtual namespace, called the Policy View
Namespace (PVN), for WSBAC working set summary ad-
ministration. It is an interface that provides views of users’
effective network file system access control policies. Through
the PVN, administrators can interact with POLEX over the
network file system interface using a familiar set of tools.
In fact, one of the main purposes of using the standard file
system protocol as the policy view interface was to enable
building tools that could easily take advantage of this well-
known interface. Access to the PVN is restricted to admin-
istrators. In a secure deployment, such access would occur
over a secured private network, reserved for this purpose.

The functionality of the PVN is similar to that of the
Linux /proc file system. View Handlers are invoked at POLEX
on receiving file system requests for virtual objects. For
read-only requests, for example, read, readdir, getattr, etc.,
the handlers query the PVN state and generate the file con-
tents dynamically. Write operations update the PVN state
and are used to modify the POLEX and PVN configuration
parameters, or manually modify per-user working set sum-
maries. Figure 3 shows an example PVN for user Bob. There
is a similar pair of namespaces for every other user in the
system. The figure shows the two primary components to
Bob’s PVN: the control namespace and the WS namespace.

Through the PVN control namespace, administrators can
tailor view configurations to meet their needs. Additionally,
they can modify WS estimation parameters and start/stop
the WS estimation process. These tasks can be performed
for individual users (e.g., Bob in the figure) or globally for
all users. The PVN WS namespace provides a view of the
real exported network file system namespace filtered by the
user WS summary permissions. The names for objects in
the WS namespace are derived directly from the files they
represent in the observed network file system, but only the
files and directories that exist in a user’s estimated working

Scheduler

I

Enfo
Landley File Server
Network E, Ood
File System Forwarder ;
Stream Speculation Client
Handler [_|Access or
IContext| Vault Area
POLEN
User Policy
Summaries

Figure 4: Primary components of Polen. Included
are the Enforcement Handler, Speculation Handler,
User Policy Summaries (access context), and Vault
Area.

set are visible in the WS namespace. The WS namespace
provides an interface for administrators to query and modify
the effective permission assignments for each of a user’s files
and to manually add and remove files from a user’s estimated
working set.

5.1.3 State Maintenance

POLEX maintains two different forms of persistent state.
First, it maintains the system configuration based on any pa-
rameter/control changes issued through the PVN. Second,
POLEX stores the WSBAC per-user working set summaries
extracted from the network file system messages it observes.
Keeping the summaries as persistent state is more for con-
venience rather than a strict requirement. Since this state is
built through observation of network file system messages,
it can be continuously regenerated over time. The primary
penalty, in the case of lost state, is the time that it takes to
regenerate that state.

5.2 Implementation of POLEN

In this section, we describe the implementation of the
policy enforcement agent. POLEN includes mechanisms for
WSBAC policy enforcement, write speculation, speculation
sharing and delegation, and update reconciliation.

5.2.1 WSBAC Policy Enforcement

POLEN operates on network file system messages as they
are exchanged between clients and servers, as shown in Fig-
ure 4. As messages are captured, they are handled by POLEN
for WSBAC evaluation and enforcement. POLEN only oper-
ates on messages from untrusted devices (see Figure 2).

Messages from untrusted devices are passed to the FEn-
forcement Handler (see Figure 4). This handler extracts
network file system attributes from the message to determine
the file system operation (fop), file identifier (fileid), user
identifier (uid), and request identifier (reqid). The handler
then retrieves the user’s working set policy summary from a
local persistent state store using the user’s wid, and checks
if the fileid is included in the WS of this user with the nec-
essary permission to perform the requested operation fop.
For reads, the network file system message will either be for-
warded to the file server (as in the figure) or POLEN will
generate a “permission denied” response message and for-
ward it to the client. For writes, the message will either be
forwarded to the file server or will be speculatively allowed.

5.2.2 Write Speculation

Whenever POLEN encounters a write operation to a file
from an untrusted device that is not explicitly allowed based

on the WSBAC evaluation, POLEN handles it speculatively.
File system updates are stored within a predefined wvault
area, located on stable storage. POLEN includes an inter-
face for a user to view her speculative updates from the
untrusted device that performed them. This interface can
be accessed via the standard network file system protocol
or via a web-based mechanism, and is implemented by the
Speculation Handler as shown in Figure 4.

5.2.3 Reconciliation

Reconciliation must occur when a user has any outstand-
ing speculative updates stored for her by POLEN in the vault
area. During reconciliation, speculative updates must first
be verified by the user who issued them (or by a user’s dele-
gate), before they will be committed to the server. Such ver-
ification guarantees that any speculative updates submitted
by malware will be identified by the user prior to commit.

Users manage their speculative updates through the same
interface (network file system or web-based mechanisms)
provided by POLEN for write speculation. Through this in-
terface, a user (or administrator) can manually inspect her
speculative updates currently stored in the vault area, ap-
prove the updates to be committed to the file server, and
handle any exceptional conditions that arise. The granular-
ity of the update is per file, and a user can view the individ-
ual changes prior to approving or denying them.

5.2.4 Speculation Sharing and Delegation

As previously mentioned in Section 4.4, to support the
existing sharing model common to modern network file sys-
tems, we provide mechanisms to allow speculative updates
to be shared between users. The first mechanism has been
discussed in the Section 5.2.3. A user who has performed a

speculative update can directly commit those updates through

the POLEN-provided interface. Once committed, they are
available to all other users immediately.

For more tightly coupled sharing situations, though, it
might be tedious for each untrusted user to manually com-
mit changes to a small set of files. For this case, we allow
a user to share a portion of their speculative updates with
other untrusted devices. Using the POLEN-provided inter-
face, a user can directly specify, per file, other untrusted
devices that should have immediate visibility to her specu-
lative updates. Under this sharing model, users experience
traditional close-to-open network file system semantics and
are not burdened with manually committing updates. In
this case, the users’ updates remain speculative and WS-
BAC protection holds.

For trusted devices to access speculative changes from un-
trusted devices, we provide a delegation mechanism. The
owner of the speculative changes can allow a user of a trusted
device to commit the updates to the shared files (through
the POLEN user interface). This gives a user the ability to
commit updates as if she was the update owner. Finally, for
frequent sharing between trusted and untrusted devices, we
allow a trusted device to connect to the file server through
the same path as an untrusted device, to gain visibility to
the speculative update similar to an untrusted device.?

6. EVALUATION

3For the purposes of this paper, we assume any trusted device
that requires such access can either connect through the secure
VPN to be treated as an untrusted device, or may connect to the
file server through the POLEN path.

Size of Trace | Time to Analyze State Size

1 Day 52 min

145MB (1.16MB per user)

1 Hour 2.49 min

145MB (1.16MB per user)

Figure 5: Processing time and storage costs for
working set estimation in Polex.

In this section, we present the evaluation of the WSBAC
system. The goals of the evaluation are as follows. First,
we measure the processing time and storage costs to per-
form WS extraction with POLEX. Second, we measure the
accuracy of per-user working set extraction. Third, we per-
form sensitivity analysis on working-set extraction accuracy.
Fourth, we quantify the amount of speculation that occurs
during POLEN enforcement. Finally, we measure the over-
heads imposed by the POLEN enforcement mechanism.

In our experimental setup, all systems are Dell SMP sys-
tems with two 2.4GHz Intel P4 CPUs, and 3GB of RAM.
All systems run a Linux 2.6 kernel and are connected using a
Gigabit Ethernet switch. POLEX is configured to listen to all
NF'S v3 requests and responses. This is accomplished by en-
abling port monitoring on the switch. POLEN is configured
to interpose on all NFS v3 requests and responses.

6.1 Evaluation of POLEX

Time and Storage Costs: The utility of POLEX to admin-
istrators is determined by the benefits of the functionality
it provides and the costs associated with this functionality.
We measure costs for POLEX in terms of the time it takes
to process the network file system messages it receives, as
well as the size of the state that must be stored to maintain
a fixed amount of history (in terms of time). To quantify
the accuracy, we perform offline analysis using a set of large
file system traces provided by Harvard University [9]. These
traces represent a month of network file system usage from
the EE/CS Department at Harvard University.

Figure 5 shows the results in terms of processing time
and the size of the resulting state, once processing has been
completed. We measure these costs for trace samples of size
corresponding to one day and one hour. One day of the
trace represents 3.3GB of trace storage space corresponding
to 6,308,023 NFS request/response pairs. To process 1 day
took 52 mins and generated 145MB (1.16MB per user on
average) of state as history. This equates to an approximate
time compression factor of 96%. Since we utilize Bloom fil-
ters to store per-user working set state, the storage costs re-
main fixed at approximately 145MB regardless of trace size.
Therefore, we observe that POLEX imposes negligible costs
in terms of processing time and state storage requirements.

6.2 Evaluation of POLEN

Accuracy: A key factor in the utility of POLEN is the ac-
curacy with which the system operates. The accuracy is
presented as the ratio of the set of file permissions that we
approximate incorrectly to the total that we observe (includ-
ing correctly approximated permissions). This provides the
error or false positive rate for POLEN. To quantify these
costs, we perform offline analysis using the Harvard traces.
To determine accuracy using the network file system traces,
we choose two consecutive days worth of trace data. We ran-
domly select ten users from those in the traces. We use the
traces from the first day to perform per-user working set
extraction using the POLEX algorithm. Then we run a test
against the WS summaries using the traces from the second
day, and measure the number of errors. An error is gener-
ated by a file or directory access, if the access is to a file (or

Average Error Rate | Over-Estimation Rate
Run 1 1.08% 31.6%
Run 2 0.76% 41.2%
Run 3 1.02% 42.5%
Run 4 0.79% 36.5%
Run 5 0.97% 42.9%
Avg 0.92% 38.9%
Figure 6: WSBAC working set error and over-
estimation rates.
Day 2 Day 3 Day 4 Day 5 Day 6
User 1 | 0.262% | 0.027% | 0.017% | 0.012% | 0.096%
User 2 | 0.309% | 4.40% 0% 3.30% | 0.274%
User 3 | 0.386% | 0.356% | 0.818% | 2.51% | 0.608%
User 4 | 0.479% | 1.82% | 0.548% | 0.655% | 0.105%
User 5 | 0.181% | 0.278% | 0.177% | 0.343% | 0.270%
Avg | 0.323% | 1.38% | 0.312% | 1.36% | 0.271%

Figure 7: WSBAC working set sensitivity.

directory) for which the user does not have the appropriate
permission to execute the specific access, according to the
user’s WS summary. These errors represent file access at-
tempts by the user that would be denied by the WSBAC
system, but allowed by the network file server. We repeat
this experiment five times using a different two days worth
of trace data and randomly choosing a new set of ten users
each time. The results are reported in Figure 6.

The figure shows the average error rate for each of the
five runs. The maximum error rate is 1.08%, the minimum
is 0.76%, and the total average is 0.92%. From these results,
we observe that the average per-user accuracy is high (low
error rates), and this confirms that WSBAC is not overly
restrictive.

We further assess the rate at which an approximated work-

ing set is overly permissive. We measure this as the percent-
age of the estimated working set that is included during the
estimation phase, but never accessed in the testing phase.
These results are reported in the third column of Figure 6.
As shown in the figure, the maximum over-estimation rate
is 42.9%, the minimum is 31.6%, and the average is 38.9%.
Although WSBAC is more restrictive than the standard net-
work file system discretionary access control system, the re-
sults of this experiment show that there is still room for
improvement.
Sensitivity: To understand how frequently a user’s work-
ing set estimate must be updated, we perform a sensitivity
analysis on the working set accuracy. For this experiment,
we perform offline analysis similar to the accuracy measure-
ments. This time we choose six consecutive days worth of
traces. We use the traces from the first day to perform
per-user working set extraction and test with the remain-
ing five days worth of traces. Accuracy measurements are
determined as before, and are reported in Figure 7.

The figure shows the average error rate for five randomly
selected users over the five days following the working set ex-
traction day. From these results, we observe that the average
per-user accuracy remains fairly stable over a reasonable pe-
riod of time. Users 1 and 5 are very stable across the five
days, while users 3 and 4 are stable four out of five days.
Finally, user 2 is the least stable fluctuating every other
day, which possibly indicates that a multi-day extraction
period might benefit some users. In general, the accuracy
results are very promising, given the low error rates across
the board.

800 —
NFS-minimal —=
POLEN-minimal sessssm
700 - NFS-LAN mm -
POLEN-LAN mww——
600

500

400

300

Response Latency (usec)

200

100

getattr lookup access read write create

Figure 8: Microbenchmark results for Polen.

Speculation: Since the amount of speculative accesses a
user performs is related to the number of updates that must
be validated by the user when they return to a trusted de-
vice, we measure the average rate of speculation for ten
randomly chosen users from the traces. Due to space con-
straints, we do not provide a figure for these results. For this
experiment, the average speculation rate is 1.44%, the max-
imum is 2.4%, and the minimum is 0.018%. These results
are also promising since they imply a low burden on the av-
erage user with respect to the amount of manual validation
that must be performed for speculative updates. Even for
heavy users (500 or more requests per day), the results imply
relatively low levels of manual intervention (7 average spec-
ulative requests per day). From these results, we conclude
that WSBAC is highly automated, and does not require an
administrator or the end-user to laboriously configure addi-
tional access control policies.
Performance—Microbenchmark: To study the fine-grained
overhead of POLEN with respect to the network file system,
we utilize our own microbenchmark. This benchmark is an
NFS client that issues requests without relying on the client
file system interface. Using this benchmark eliminates any
noise due to the client buffer cache and allows fine-grained
measurements to be collected.

We present the operation latency of the default NFS pro-
tocol, as a baseline. Figure 8 shows the client observed la-
tency for the most common NFS operations, as reported by
various file system workload studies [9]. In the figure, each
group of bars has four members, NF'S and POLEN in a min-
imal configuration, and NFS and POLEN in a typical LAN
configuration. The average round-trip time is 30us for the
minimal configuration and 300us for the LAN configuration.
The latency measurement for the minimal configuration rep-
resents the average latency measured through a 1Gbps net-
work switch. Each bar presents the average response latency
over 1000 instances.

We observe that POLEN imposes modest overhead when
compared to the NFS case for the minimal configuration.
The largest overhead measured for the minimal case was
40us, which represents a 15% performance degradation. Since
typical LAN round-trip times are larger than 30us, this rep-
resents the worst case performance for our system. Very
little of the POLEN processing time is hidden by the net-
work latency. As we introduce delay in the network, most
if not all of the POLEN processing time is hidden due to the
relative time of processing to network latency. In fact, at
and beyond the 300us mark (as shown in the figure as the

70
NFS
R POLEN ssooomm
60 —]
50]
S 40t |
&
£
c 30]
20]
10]
untar configure compile install remove

Benchmark Phase

Figure 9: OpenSSH compilation for Polen.

LAN bars) the relative performance between base NFS and
POLEN is within 10us on average which corresponds to, at
most, a 2% overhead. For users accessing a corporate In-
tranet over a WAN, the situation is even better (e.g., from
a satellite office or remote access situation). Since the typi-
cally observed network latencies in a WAN deployment are
between 15ms - 30ms, we expect there to be no perceived
performance impact on WAN users due to this system. We
have also validated this experimentally, but do not present
the results due to space constraints.
Performance—Application Benchmark: In the follow-
ing, we compare the performance of NFS with POLEN WS-
BAC enforcement against the default NFS for an OpenSSH
build benchmark similar to a modified Andrew Benchmark [13].
We measure the time taken to complete each of five phases
(untar, configure, compile, install, and remove). To simu-
late the LAN conditions a typical user would experience, we
introduce additional delay in the network, such that we in-
crease the approximate round trip-time between hosts in the
experiment to 300us. The results are reported in Figure 9.

This figure shows the average time over five runs with
a cold client cache for each phase of the benchmark from
left to right. The bars in each group are base NFS and
NFS with POLEN. We observe that POLEN imposes very low
overheads (less than 2% in all cases) when compared to the
normal NFS case for remote users over a LAN. We conclude
from these and the microbenchmark results, presented ear-
lier, that POLEN introduces no perceived performance over-
heads on network file system users.

6.3 Discussion

Although we utilize a well-understood set of network file
system traces in our evaluation, they unfortunately do not
allow us to fully evaluate the effectiveness of WSBAC. In
particular, since the traces do not identify the types and
capabilities of client devices, (e.g, trusted/untrusted, hand-
held/desktop/mobile), there are a number of dimensions
that we cannot assess quantitatively in our evaluation. Al-
though it is possible for differing capabilities in a user’s de-
vice to affect how she accesses her file system data, it re-
mains to determine whether it also affects which data items
she will access. We intend to investigate this aspect further
in the future by capturing real-world user traces that provide
the necessary details to analyze the effects of various devices
and their differing capabilities. However, we note that tech-
nological trends point to increasing capabilities of personal
devices, such as laptops, handhelds and PDAs, which in turn

provide a rich set of capabilities for users to access files in
much the same way as they do from a desktop PC, such as
a trusted corporate terminal. For example, the OpenMoko
Freerunner has OpenSSH installed by default, and is capable
of mounting network file systems (e.g., NFS, CIFS, etc.). We
therefore hypothesize that WSBAC will be broadly applica-
ble as the capabilities of such devices continues to increase.

7. RELATED WORK

This section describes the work related to WSBAC, which

we divide into two categories: (i) Policy Extraction and In-
ference, and (i1) Context-Aware Access Control.
Policy Extraction and Inference: Role-Based Access
Control (RBAC) [15, 11] has been proposed as a standard
for network file system access control. Although there are
many attractive features in favor of RBAC, legacy instal-
lations have to handle the onerous task of migrating their
existing access control information (e.g., ACLs, access per-
missions, etc.) to Roles and Object Permission Matrices.
For large installations, this task is a major road block to-
wards acceptance of RBAC. Kuhlmann, et al., [20] utilize
Data Mining techniques to address this problem automati-
cally, by learning common patterns in the existing ACLs or
permissions lists in order to automatically define the roles
in the RBAC system and place the appropriate users into
these roles. In this fashion, they are able to extract the
RBAC policy principles from existing legacy data. There
has also been work to infer access control properties spec-
ified in the XACML language [3, 21], to infer and confine
process privileges through the observation of process syscall
behavior [23], and to automatically generate SELinux poli-
cies based on observing dynamic program behavior [29].

Although there has been substantial work in the general
area of firewall and packet filter analysis, there are a number
of works related specifically to firewall policy inference [12,
32]. Tongaonkar, et al., [32], describe a method to infer
high-level policies from low level firewall rule sets. They
describe a method to generate a flattened rule set (high-level
rules) by first generating an automaton based on the low-
level rules. Golnabi, et al., [12], use data mining techniques
to learn a set of firewall rules from packet logs, based on
packet frequencies. These observed rules are used to analyze
the existing rule set configurations for firewalls as an aid to
determine a new, more efficient, set of firewall rules.

Our work shares a similar goal to these works, in that
we are attempting to determine efficient representations of
the access control policies. We differ since we operate on
network file systems, rather than firewalls. Additionally, we
are not attempting to generate static rules sets, but are ap-
proximating the set of resources (files and directories) that
a user needs to access in the near future based on their past
accesses. It is not clear that the working set approach gener-
alizes to network resources other than network file systems.

Finally, in the general area of policy inference and con-
trol, there has been work in using gray-box techniques to
monitor and control the enforcement of operating systems
policies (e.g., buffer cache, memory access control, file lay-
out, etc.) [4]. The general technique is to either understand
the policy under control a priori, or to infer it through ex-
ternal (to the system) observation. Additionally, it is ac-
ceptable to perturb the system under observation, in order
to aid the process or to actually enact control over system
policies. Our goal differs from typical gray-box techniques
in that we do not assume a priori to understand the effec-
tive access control policy, instead we determine the WSBAC

policy automatically per-user.

Context-Aware Access Control: Substantial work has
been performed in the area of context-aware access control.
The concept has been applied in mobile and pervasive com-
puting to provide secure collaborations [33] for wireless and
mobile devices, to provide anonymous context-aware access
control for ubiquitous services [34], for ubiquitous service
provisioning [8], and adaptive context-aware access control
for ad-hoc networks [25]. A number of works have been pro-
posed in the area of context-aware access control for web
services [17, 5]. These works all attempt to include con-
text in the access control decision-making process, in some
cases for mobile computing. Our work shares this general
approach, but we utilize different context and apply it in a
different manner to a different domain. First, we leverage
a user’s network file system access behavior to further re-
strict their access to those files that they are actually using.
Second, we only apply this restriction for user access from
untrusted devices.

8. CONCLUSIONS

In this paper, we presented the Working Set-Based Ac-
cess Control scheme for network file systems. WSBAC is
an access control technique that extracts per-user working
sets through the observation of users’ network file system
accesses. We also presented the design and implementation
of our WSBAC system, which is composed of two network
agents: POLEX and POLEN. POLEX monitors network file
system accesses for users of trusted devices, extracts per-
user working sets, and produces compact per-user working
set summaries. The summaries are used by POLEN to enforce
WSBAC for untrusted devices. We evaluated our system us-
ing a set of real-world traces and our experiments validate
our approach. The average accuracy for working set estima-
tion is high (low error rates) and the costs in terms of POLEX
processing time and storage requirements are low. Finally,
we measured the performance overheads of POLEN, which
were shown to be very low for typical LAN deployments and
completely hidden for typical WAN deployment scenarios.

As future work we plan to deploy WSBAC in real-world
scenarios to conduct user studies to better understand the
effectiveness of the system. Additionally, a user study will
provide us the opportunity to study the qualitative impact
of WSBAC on real users as they interact with the system.
Finally, it will allow us to produce further trace data to bet-
ter analyze the impact of device capabilities on the behavior
of users of network file systems.

9. ACKNOWLEDGEMENTS

We thank our shepherd Konstantin Beznosov and the anony-

mous reviewers for their valuable comments and suggestions.
This work is supported in part by the National Science Foun-
dation through grant number NSF-CNS-0831268.

10. REFERENCES

[1] Simple Distributed Security Infrastructure (SDSI) web page.
http://groups.csail.mit.edu/cis/sdsi.html.

[2] American Management Association. 2007 Electronic Monitoring
and Surveillance Survey. AMA Press Release —
http://press.amanet.org/press-releases/177/
2007-electronic-monitoring-surveillance-survey/, February
2008.

[3] A. Anderson. XACML Profile for Role Based Access Control
(RBAC). OASIS Access Control TC Committee Draft, 1:13,
2004.

[4] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Information
and Control in Gray-Box Systems. In SOSP’01, 2001.

5]

(6]
(7]

8]

19l

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]
(20]
(21]

(22]

(23]
[24]
(25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

R. Bhatti, E. Bertino, and A. Ghafoor. A Trust-Based
Context-Aware Access Control Model for Web-Services.
Distributed and Parallel Databases, 18(1), July 2005.

A. Bohra, S. Smaldone, and L. Iftode. FRAC: Role Based
Access Control for Network File Systems. In NCA 07, 2007.
B. Callaghan, B. Pawlowski, and P. Staubach. NF'S Version 3
Protocol Specification, RFC 1813. IETF, June 1995.
http://www.ietf.org/rfc/rfc1813.txt.

A. Corradi, R. Montanari, and D. Tibaldi. Context-Based
Access Control for Ubiquitous Service Provisioning. In
COMPSAC’04, 2004.

D. Ellard, J. Ledlie, P. Malkani, and M. I. Seltzer. Passive NFS
Tracing of Email and Research Workloads. In FAST’03, 2003.
C. Ellison. IETF RFC 2692: SPKI Requirements, September
1999.

D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and

R. Chandramouli. Proposed NIST standard for role-based
access control. ACM Trans. on Information and System
Security, 4(3):224-274, 2001.

K. Golnabi, R. K. Min, L. Khan, and E. Al-Shaer. Analysis of
Firewall Policy Rules Using Data Mining Techniques. In
NOMS’06, 2006.

J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,

M. Satyanarayanan, R. N. Sidebotham, and M. J. West. Scale
and Performance in a Distributed File System. ACM Trans. on
Computer Systems, 6(1):51-81, 1988.

R. S. Inc. RSA SecurlD Authenticators web page.
http://www.rsasecurity.com.

International Committee for Information Technology.
Role-based access control. ANSI/INCITS 359-2004, Feb. 2004.
T. Jaeger, D. King, K. Butler, S. Hallyn, J. Latten, and

X. Zhang. Leveraging ipsec for mandatory per-packet access
control. In SecureComm’06, 2006.

V. Kapsalis, L. Hadellis, D. Karelis, and S. Koubias. A
Dynamic Context-Aware Access Control Architecture for
e-Services. Computers and Security, 25(7), October 2006.

M. Kim, L. P. Cox, and B. D. Noble. Safety, Visibility, and
Performance in a Wide-Area File System. In FAST’02, 2002.
J. J. Kistler and M. Satyanarayanan. Disconnected Operation
in the Coda File System. ACM Trans. on Computer Systems,
10(1):3-25, 1992.

M. Kuhlmann, D. Shohat, and G. Schimpf. Role Mining -
Revealing Business Roles for Security Administration Using
Data Mining Technology. In SACMAT’03, 2003.

E. Martin and T. Xie. Inferring Access-Control Policy
Properties via Machine Learning. In POLICY 06, 2006.

B. Petersen. Employee Monitoring: It’s Not Paranoia You
Really Are Being Watched! PC Magazine —
http://www.pcmag.com/article2/0, 1759, 2308369, 00.asp, May
2008.

N. Provos. Improving Host Security with System Call Policies.
In SECURITY 03, 2003.

T. Pullar-Strecker. NZ bank Adds Security Online.
http://www.smh.com.au, November 2004.

A. Saidane. Adaptive Context-Aware Access Control Policy in
Ad-Hoc Networks. In ICAS’07, 2007.

R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn.
Attestation-based Policy Enforcement for Remote Access. In
CCS’04, 2004.

M. Schulman. LittleBrother is Watching You. Santa Clara
University — http:
//www.scu.edu/ethics/publications/iie/v9n2/brother.html.

S. Smaldone, A. Bohra, and L. Iftode. Filewall: A Firewall for
Network File Systems. In DASC’07, 2007.

B. T. Sniffen, D. R. Harris, and J. D. Ramsdell. Guided Policy
Generation for Application Authors. Technical report, The
MITRE Corporation, 2006.

C. Soules and G. Ganger. Connections: Using Context to
Enhance File Search. In SOSP’05, 2005.

M. Spasojevic, T. Corporation, and M. Satyanarayanan. An
Empirical Study of a Wide-Area Distributed File System. ACM
Trans. on Computer Systems, 14(2):200-222, 1996.

A. Tongaonkar, N. Inamdar, and R. Sekar. Inferring Higher
Level Policies from Firewall Rules. In LISA’07, 2007.

A. Toninelli, R. Montanari, L. Kagal, and O. Lassila. A
Semantic Context-Aware Access Control Framework for Secure
Collaborations in Pervasive Computing Environments. In
ISWC’06, 2006.

S. Yokoyama, E. Kamioka, and S. Yamada. An Anonymous
Context Aware Access Control Architecture For Ubiquitous
Services. In MDM’06, 2006.

http://groups.csail.mit.edu/cis/sdsi.html
http://press.amanet.org/press-releases/177/2007-electronic-monitoring-surveillance-survey/
http://press.amanet.org/press-releases/177/2007-electronic-monitoring-surveillance-survey/
http://www.rsasecurity.com
http://www.pcmag.com/article2/0,1759,2308369,00.asp
http://www.smh.com.au
http://www.scu.edu/ethics/publications/iie/v9n2/brother.html
http://www.scu.edu/ethics/publications/iie/v9n2/brother.html

	Introduction
	Example Scenario
	Applicability of WSBAC
	Design
	Working Set-Based Access Control
	WSBAC Policy Extraction (POLEX)
	WSBAC Policy Enforcement (POLEN)
	POLEN Speculation

	Implementation
	Implementation of POLEX
	Working Set Extraction
	Policy View Namespace (PVN)
	State Maintenance

	Implementation of POLEN
	WSBAC Policy Enforcement
	Write Speculation
	Reconciliation
	Speculation Sharing and Delegation

	Evaluation
	Evaluation of POLEX
	Evaluation of POLEN
	Discussion

	Related Work
	Conclusions
	Acknowledgements
	REFERENCES -9pt

