
A Contributory Public-Event Recording andQuerying System
Arun Joseph

Indian Institute of Science
Bangalore, India
arunj@iisc.ac.in

Nikita Yadav
Indian Institute of Science

Bangalore, India
nikitayadav@iisc.ac.in

Vinod Ganapathy
Indian Institute of Science

Bangalore, India
vg@iisc.ac.in

Dushyant Behl
IBM Research

Bangalore, India
dushyantbehl@in.ibm.com

ABSTRACT
CCTV (Closed-Circuit Television) systems are commonly used for
security and surveillance. They provide a visual record of events,
which can be used to monitor criminal activity, support investiga-
tions, and improve public safety. Many cities have implemented a
number of cameras for surveillance, with Delhi, India having 1446
cameras per square mile. These cameras are installed mainly by of-
ficial traffic police or city authorities, but private organizations and
individuals also have their cameras pointed toward public spaces.
In many cases, the city authorities or police require query capability
and access of the video feed from these CCTV cameras to perform
diligent inquiries but the private entities usually do not share the
raw footage due to various concerns.

To address the above issue, we introduce the “Public Event
Recording and Querying System (PERQS)”, a video analysis-based
querying system. PERQS is a contributory CCTV network that
encompasses both private and public parties. PERQS provides a
reliable and secure solution for querying CCTV video feeds by
leveraging video analytic algorithms. It ensures video privacy by
allowing participants to perform video analysis locally on their
servers. Additionally, PERQS employs hash-based commitments
and query consensus, guaranteeing tamper-proof and accurate re-
sults. Furthermore, it provides a novel consensus mechanism called
time-travel consensus to build trust in the query output even in
the case of a lack of cameras pointing at a particular location. We
introduce a query language PERQL, similar to SQL, which makes
the system expandable and flexible. The plug-and-play architecture
allows for integration with advanced vision models and algorithms
for analysis.

CCS CONCEPTS
• Information systems → Collaborative and social computing
systems and tools.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SEC ’23, December 6–9, 2023, Wilmington, DE, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0123-8/23/12. . . $15.00
https://doi.org/10.1145/3583740.3628445

KEYWORDS
contributory-CCTV, video analytics, video querying, blockchain
ACM Reference Format:
Arun Joseph, Nikita Yadav, Vinod Ganapathy, and Dushyant Behl. 2023. A
Contributory Public-Event Recording and Querying System. In The Eighth
ACM/IEEE Symposium on Edge Computing (SEC ’23), December 6–9, 2023,
Wilmington, DE, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/
10.1145/3583740.3628445

1 INTRODUCTION
CCTV (Closed-Circuit Television) technology has become an invalu-
able asset for security and surveillance in various settings, including
homes, businesses, public areas, and critical infrastructure. These
systems consist of cameras, recorders, and monitors that enable
real-time monitoring and recording of events. CCTV’s significance
stems from its ability to provide a visual record of events. It serves
purposes such as deterring and monitoring criminal activity, fur-
nishing evidence for criminal investigations, and enhancing public
safety [1, 4, 24, 36, 38, 46, 49, 56]. CCTV use has increased in recent
years due to technological advancements and increased demand
for security and surveillance [3, 5].

The statistics in Table 1 reveal that Delhi, India, has 1446 cameras
per square mile. These cameras are primarily installed by official
traffic police and city authorities. In addition, many private organi-
zations and individuals also have their own CCTV cameras which
look out at public spaces. In London, there are over 942,562 CCTV
cameras if we include private cameras [11], meaning there is one
CCTV camera for every ten people in the city. A person is likely to
be captured on London CCTV up to 70 times a day [1, 11]. Despite
the abundance of CCTV cameras in neighborhoods, utilizing them
collectively poses several complexities. The video streams captured
by these cameras are owned by various entities, both private and
public, making it difficult to query and access them as a unified
resource.

In some situations, public authorities require access to additional
footage captured by private cameras to aid their investigations. Let
us consider a scenario where a car is involved in an accident and
flees the scene. The identification of the vehicle becomes crucial in
apprehending the culprit. Law enforcement agencies examine the
traffic police CCTV footage, but if the captured view is limited, they
explore additional sources, such as cameras installed by nearby
businesses or residents. By analyzing multiple footage sources, au-
thorities can cross-reference information to verify the registration
number of the fleeing vehicle. This highlights the importance of

SEC ’23, December 6–9, 2023, Wilmington, DE, USA Arun Joseph, Nikita Yadav, Vinod Ganapathy, and Dushyant Behl

Table 1: Number of CCTV cameras in some of the world’s
populated cities [2].

City # Cameras Per Square
Miles

Per 1000
People

Delhi, India 436600 1446 26.7
Chennai, India 282126 614 24.53
Singapore, Singapore 108981 281 18.04
Seoul, South Korea 77814 333 7.8
Moscow, Russia 213000 219 16.85
London, UK 127373 210 13.35
New York, USA 56190 187 6.87
Cities of China1 54000000 1000+ 372+

a contributory CCTV networks in assisting law enforcement in
solving crimes and maintaining public safety.

Participating in contributory CCTV systems provides several
benefits to organizations, both public and private. The main objec-
tive of CCTV is to enhance security and ensure the neighborhood’s
safety. By sharing public CCTV footage, the overall surveillance
and security of the area can be significantly improved. In cases
where one camera may be damaged, malfunctioning, or experienc-
ing technical issues, other cameras from different organizations can
still monitor the area, ensuring continuous surveillance coverage.

Building such a comprehensive contributory CCTV network sys-
tem poses several challenges. Private entities are often reluctant to
share their video feeds with public authorities. Concerns regarding
privacy, data security, and trust in the appropriate use of footage
contribute to this hesitation. Additionally, the video feed’s relia-
bility, camera quality variations, time synchronization, and blind
spots in surveillance coverage make it difficult to create an effective
system. The four significant challenges in designing such a system
are:
1 Untrustworthy Video Feed: Video feeds are compromised
by technical errors or malicious activities, resulting in damaged
or edited footage that is unreliable for investigations. Moreover,
a lack of trust exists among organizations, making video footage
sharing difficult. There is always the risk that organizations might
intentionally share incorrect footage to benefit themselves or to
deceive others.
2 Privacy of Video Feed: Private organizations do not wish to
share raw video feeds. They are concerned about the security and
privacy of data, as well as the potential for unauthorized access and
misuse of the footage. These concerns make it difficult to get all
parties to participate in a contributory CCTV network.
3 Variable Quality of Video Feed: The cameras used for record-
ings differ in quality, viewing angle, aspect ratio, and color calibra-
tion, making it difficult to standardize and integrate the footage
for analysis. Additionally, the recording timestamps of different
cameras may not be perfectly synchronized, leading to inconsisten-
cies in the data. Moreover, the sheer volume of data generated by

1Due to limited transparency, the exact number of cameras in each Chinese city is still
being determined. However, if China has 540 million cameras and divides it among its
1.46 billion population, we can estimate that there are approximately 373 cameras per
1,000 people.

multiple cameras will make it challenging to process and analyze
the footage efficiently.
4 Availability of CCTV Footage: The absence of CCTV cam-
eras in certain areas results in blind spots, leaving surveillance
systems incomplete. Additionally, camera malfunctions also lead to
gaps in footage. Even without direct visual evidence, it is possible to
use nearby cameras to infer what happened. However, identifying
the appropriate neighboring cameras and effectively utilizing them
is a challenging task.

Prior works related to video analytics and querying are not
equipped to solve many of these challenges. [7, 8, 28, 29, 40, 58, 60]
can be used to query large set of videos with the help of video
analytic tools. They assume videos are readily available for analysis.
None of them addresses video privacy, correctness, or mutual trust
between participants. While [13, 39, 51, 52, 59] attempt to address
the privacy issues to an extent, none of the prior work attempts
to build a collaborative CCTV network that respects participants’
privacy and can handle mutual distrust between participants. A
detailed related works discussion can be found in Section 7.

In this work, we introduce an innovative system called the Pub-
lic Event Recording and Querying System (PERQS). Our system
aims to establish an efficient distributed network of CCTV cameras,
overcoming the need for participants to place blind trust in one
another. The core idea behind PERQS is to create a collaborative
environment where users submit queries to the system, and it will
autonomously utilize the entire network of camera feeds to provide
responses by leveraging advanced video analytic techniques. This
eliminates the need for users to review individual camera feeds
manually or rely on the cooperation of specific participants within
the network. PERQS introduces a novel consensus based video anal-
ysis concept to solve trust and privacy challenges associated with a
contributory CCTV camera network. The insights we put together
to solve the main challenges are as follows.
1 Tamper-proof Video feed: PERQS introduces video-hash
commitment and verification, which assures video authenticity.
In case of disputes, the authenticity of the video footage can be
easily verified, eliminating any concerns about the video being
edited or tampered with later on. This added level of security and
transparency further supports the importance of participating.
2 Private Video Storage: PERQS does not share the raw video
feeds. Instead, the system only shares the video analysis results,
ensuring that sensitive information is kept private. This approach
enhances privacy and eliminates the need for a vast central storage
facility to store massive amounts of video data.
3 Consensus-based Video Analysis: To address the reliability
issues of individual cameras, PERQS uses consensus, wheremultiple
cameras participate in a query execution to reach a result. This
approach ensures that the camera’s fault, damage, or malicious
behavior does not affect the output. Consensus not only improves
the accuracy of the surveillance but also reduces the likelihood of
false positives.
4 Time-travel Consensus: If there are blind spots in the city or
camera faults, we devised a novel time-travel consensus mechanism
in PERQS that uses footage from other cameras to answer the
query. This mechanism can also be used when there are insufficient

A Contributory Public-Event Recording andQuerying System SEC ’23, December 6–9, 2023, Wilmington, DE, USA

Figure 1: An example city map with CCTV cameras. Red cameras are the traffic police cameras, blue are the institution cameras,
and green are homeowner’s cameras. The map pointer represents the GPS location of these cameras. The intersections are
marked on the road with alphabets.

cameras to reach a consensus. The system uses nearby cameras to
access pre-event or post-event footage to achieve consensus. This
process is known as time-travel consensus because it enables the
system to "travel through time" and use footage from other cameras
to fill in gaps in the recordings.

The requirements of mutual distrust between participants, the
hash-based commitment of video feeds, and the consensus naturally
led us to adopt a blockchain-based architecture. This also helps us to
ensure that participants do not need to trust each other for either the
video feeds or the analysis results. Consensus and hash verification
enable us to establish collective correctness, ensuring the accuracy
and reliability of the system. To enable a flexible and customizable
user experience, we developed the PERQL query language, similar
to SQL, an extension of FRAMEQ[28]. This language allows users to
design queries tailored to their specific needs while also providing
the ability to combine multiple queries to answer more complex
questions. Each participant maintains their analysis facility for the
video analysis, and our architecture ensures that any video analysis
tool can be easily plugged into the system. We combine the novel
query consensus, time-travel consensus, tamperproof videos, and
query language in PERQS to address all of the challenges previously
discussed.

The novel contributions of this paper are:
• Design of a distributed collaborative CCTV video query-
ing framework, PERQS, its prototype implementation and
evaluation.

• Query consensus mechanism to solve mutual trust and
video quality-related issues.

• Time-travel consensus to improve the query consensus
with the help of additional footage from nearby cameras.

While the PERQS system has several advantages, it also has
inherent limitations. One of the significant limitations is its inabil-
ity to perform joint video comparisons effectively. Various vision
techniques are available to compare and analyze the two videos
jointly [33, 36, 55, 57, 60]. However, since PERQS does not share
videos, applications requiring joint video analysis are not feasible.

The rest of the paper is as follows: we explain the use cases which
motivated the design of PERQS in Sec 2, we present the design of
our PERQS system in Sec 3, we explain our query execution engine
in more detail along with our query language PERQL in Sec 4, we
explain our implementation in Sec 5, we evaluate our system in
Sec 6, discuss related work in Sec 7 and finally discuss future work
and conclude the paper in Sec 8

2 EXAMPLE USE CASES
A contributory network of CCTV(s) can help a lot in surveillance
and security. We present some practical examples where pooling
will help us to get better and more accurate results. We use the map
in Figure 1 to illustrate the examples.
Example 1: Hit and Run Incident. A car involved in an accident
flees the scene. The objective is to locate the culprit by identifying
the car involved. Consider the map in Figure 1. Suppose the acci-
dent happened at junction ‘D’, and the traffic police CCTV nearby
only captured a side view of the vehicle. According to the figure,
the car originated from somewhere between ‘B’ and ‘D’ and pro-
ceeded towards ‘E’. Unfortunately, there are no other traffic police
cameras available to identify the license plate number. However,
there is a camera at junction ‘C’ and a few individual cameras on
the way towards ‘A’. By utilizing this supplementary footage, we
can pinpoint the individuals responsible for the accident.
Example 2: Incident in a Camera Blind Area. Consider a sce-
nario where two vehicles collide in an area without CCTV cameras.
Suppose that one vehicle’s excessive speed causes an accident. Video
footage can be gathered from homeowners, shop owners, and ATMs
along the road to estimate the car’s speed. Combined, these pieces
of evidence can support the claim of an overspeeding accident. Say
a truck travelled from ‘B’ to ‘M’, a car from ‘M’ to ‘C’ and the ac-
cident occurred between ‘D’ and ‘I’. There are a couple of traffic
police cameras along the road and many other private cameras.
They can all participate in the over-speed estimation process.

SEC ’23, December 6–9, 2023, Wilmington, DE, USA Arun Joseph, Nikita Yadav, Vinod Ganapathy, and Dushyant Behl

Example 3: Vehicle counting. Counting the number of cars on
a particular road is a critical task for traffic management and in-
frastructure planning. This information helps authorities assess
traffic conditions, identify congested areas, and make informed
decisions about road widening or constructing additional routes
to alleviate traffic congestion. However, challenges arise when the
cameras are positioned on the side of the road, as they may not
capture all passing vehicles. For example, if a camera is focused
on one side of the road, it may not detect cars traveling alongside
large vehicles, such as buses or trucks. This limitation can lead to
undercounting and inaccurate representation of the traffic volume.
Leveraging multiple cameras in this scenario can provide a higher
level of accuracy and confidence in the car count.
Example 4: Road Safety Violation. Traffic safety is a vital con-
cern in every city and town around the world. In order to keep
roads safe for drivers, passengers, pedestrians, and cyclists, it is es-
sential to enforce traffic rules and regulations. Accidents can occur
when vehicles fail to adhere to traffic safety regulations, such as
running red lights, speeding, or riding a bike without wearing a
helmet. It is crucial to identify these violations and issue fines or
warnings to those responsible. While traffic police cameras may
not provide comprehensive coverage of all areas within the city,
by collaborating with other stakeholders in the community, traffic
police can access additional footage from these privately owned
cameras to help identify and apprehend traffic violators more ac-
curately. This additional information can be used to investigate
accidents, determine who is at fault, and enforce traffic laws. Ulti-
mately, a collaborative approach to surveillance can lead to safer
streets, fewer accidents, and a better quality of life for everyone in
the community.

As we have observed, the pooling of CCTV footage from a va-
riety of sources has the potential to enhance public safety greatly.
However, there are also several challenges that come with bringing
together footage from private, public, and individual organizations.
We present PERQS (Public Event Recording and Querying System)
as a solution to the challenges of pooling CCTV footage from vari-
ous organizations. The detailed system design is explained in the
next sections.

3 PERQS DESIGN
PERQS allows public, private, and individual CCTV cameras to be
connected and integrated into a contributory distributed network.
Organizations that own one or more public CCTV cameras can
participate in this contributory network. As discussed earlier, such
a system poses many challenges in ensuring the trustworthiness
of video feeds, participants’ privacy, reliability, and availability of
video. We have designed PERQS to tackle all of these challenges
efficiently. With this contributory system, event querying can be
performed across all the diverse sets of participating cameras, pro-
viding a more comprehensive surveillance coverage. PERQS is es-
pecially useful when an event or incident is spread across multiple
locations or multiple camera feeds from different organizations
provide complete coverage of an area.

We aim to preserve the existing CCTV recording and storage
architecture as much as possible so that organizations can easily
integrate our system into their existing CCTV deployments without

making significant changes. Doing so minimizes disruption and
ensures a smooth transition to our system.

We prioritized a distributed design, as some organizations may
want to keep their raw video feeds private. To address this, we
came up with a distributed storage and video analytics architec-
ture that avoids the need for sharing raw video feeds with others.
Participating organizations store and analyze their video feeds on
their private servers, whether they are located locally or remotely.
This distributed design eliminates the need for centralization by
allowing multiple organizations to participate and share the work-
load. Another advantage of the distributed design is scalability, with
multiple servers and storage nodes that can handle the processing
and storage of large volumes of video data. This allows the system
to scale up easily as more cameras and participants are added to
the network.

CCTV cameras may not work correctly sometimes, or the feed
may become corrupted. To address this problem, we introduce the
concept of query consensus in which multiple cameras can collec-
tively participate in the query processing phase. This increases the
system’s reliability and ensures the query results remain accurate
even if one camera is not working correctly. For locations with-
out cameras or a small number of cameras, we propose a novel
consensus mechanism called time-travel consensus. In time-travel
consensus, we use other nearby cameras to identify events in the
past and at locations leading up to the location of the incident (i.e.,
travel back spatiotemporally) to participate in the query result con-
sensus. These cameras participate in achieving consensus about a
past event that may be causally related to the event for which more
evidence was needed.

The extra capability we require from each participant is to per-
form video analysis on their video feed. They set up their own
ML server locally or use remote servers to upload the video for
analysis. Furthermore, we have designed our system to be flexible
and adaptable to different CCTV architecture options. Includes sup-
port for local storage, which allows recordings to be stored on-site;
cloud storage, which allows for remote access and management of
recordings; and intelligent cameras, which incorporate advanced
features such as motion detection and facial recognition.

To summarize, we aimed to create a distributed system to handle
unreliable participants, whether due to technical faults or malicious
behavior, with minimal change. To meet these requirements, we
decided to implement a blockchain-based architecture. We imple-
mentedmechanisms for video verification and query execution over
all participants without sharing the raw video feed. By committing
a hash of the video feed to the blockchain while recording, we can
verify if the feed has been tampered with or corrupted at a later
point in time. The query execution and consensus mechanisms can
be easily integrated into the blockchain structure.

We chose to use a permissioned blockchain as we envision the
system being limited to CCTV owners and official authorities. In
a permissioned blockchain ecosystem, the participants who add
entries to the shared log are not anonymous entities but authenti-
cated entities whose identities are known to all other participants.
With different roles and permissions, a permissioned blockchain is a
more suitable design choice to facilitate the needs of these different
groups of participants. Using a blockchain also makes the system

A Contributory Public-Event Recording andQuerying System SEC ’23, December 6–9, 2023, Wilmington, DE, USA

Figure 2: PERQS components in video capturing organiza-
tions.

fault-tolerant, as it is designed to be distributed and can withstand
individual failures.

Overall, the design of PERQS aims to provide an efficient, scal-
able, and user-friendly permissioned system for querying and an-
alyzing video footage from many CCTV cameras while ensuring
video privacy. In the upcoming sections, we will explain the PERQS
architecture and query execution in detail.

3.1 PERQS Architecture
The design of PERQS uses a blockchain-based architecture com-
posed of several vital components, as shown in Figure 2. At the
system’s core are the participating CCTV owner organizations, in-
dividuals, or groups that own one or more CCTV cameras. These
organizations are connected to the PERQS network and deploy
specific PERQS components alongside their CCTV video capture
and storage service. The main components are:
• PERQSNetwork:A permissioned blockchain network connects
all the participating CCTV owner organizations in PERQS. Access
to the network is restricted to verified members, ensuring that only
actual CCTV owner organizations can participate. Each organi-
zation has one or more blockchain peers for participation in the
network, allowing for efficient and secure communication.
• PERQS Client: It is the blockchain peer that enables the partici-
pation of organizations in the PERQS network. It has multiple roles,
such as committing the video hash to the blockchain, decoding and
sending queries for execution, and reaching a consensus on query
results. These functionalities are explained in more detail in the
upcoming sections of the paper.
• Video Capture & Storage Service: In an organization, CCTV
cameras are managed and stored using a central system called the
video capture and storage service. Depending on the organization’s
preference, storage service can be on-premises or remotely. One of
the critical features of PERQS is that it does not require any changes
to the existing recording systems, but it must be integrated with
the PERQS video analyzer.
• PERQS Video Analyzer: Responsible for performing video
analysis on the recorded videos. The queries are passed to the
video analyzer, which decodes and executes them on the individual
video feeds. The organizations set up their video analysis servers

locally or remotely. The video analyzer is designed to be extensible,
so it can easily be updated with new video analytics models for
improved accuracy. This allows the system to stay up-to-date with
the latest advancements in video analysis technology, ensuring that
the system remains effective in providing accurate results.

To summarize, PERQS is a decentralized system that enables
organizations to collaborate in analyzing video footage without
sharing their raw video feeds. Organizations must be able to con-
duct video analysis on their feeds using machine learning models.
Participants are linked together using a blockchain network, and
video committing ensures the integrity of the recordings, making
them tamper-proof.

3.2 Public Event Recording and Committing
In PERQS, CCTV cameras record the video footage, which is then
saved to the affiliated organization’s servers (i.e., the organization
that owns the CCTV cameras). The PERQS client, integrated with
the organization’s video capture and storage service, computes
a video hash and commits it to the blockchain. This process, in
effect, stores a commitment of the captured video feed onto the
blockchain and allows the system to verify later if the video feed
has been tampered with or corrupted by the video feed owner.

PERQS requires minimal changes to the current CCTV video
recording system. The process involves saving video streams into a
file at certain intervals, computing a hash summary, and sending
it for commitment. The interval at which the videos are saved can
be configured for optimal video analyzer performance. Apart from
this step of interval saving and hash computation, all other parts
of the existing CCTV recording system remain unchanged. This
allows organizations to easily integrate PERQS into their existing
video capture and storage infrastructure.

3.3 Event Querying
PERQS allows only select participants, such as public authorities
and CCTV owners, to send queries and receive results. It utilizes
a query language similar to SQL- PERQL(Public Event Recording
and Querying Language), which allows users to specify a time and
location of interest. This information is used to determine which
cameras are likely to have captured the event in question. The
query is then passed on to the camera owners, who perform video
analytics on their saved video feeds and send the results back to
the network. By combining the results from multiple organizations,
PERQS forms a consensus result. This query consensus provides a
comprehensive and accurate view of the event in the query. This
consensus-based approach ensures that the system is reliable and
fault-tolerant, even if one or more cameras are not working cor-
rectly or their video feeds are corrupted. In Section 4, we will
provide a detailed explanation of the query execution engine in
PERQS.

PERQS requires participants to register the cameras with their
GPS location and field of view directions. This information narrows
down the cameras of interest while performing a query execution.
We use two oracles 1) camera finder and 2) timing oracle. An or-
acle is a trusted external entity that can provide off-chain data to
the blockchain network[15]. Oracles can fetch data from external
sources such as APIs or databases and make it available to the smart

SEC ’23, December 6–9, 2023, Wilmington, DE, USA Arun Joseph, Nikita Yadav, Vinod Ganapathy, and Dushyant Behl

contracts running on the blockchain network. As the name suggests,
a camera finder oracle is a tool that locates cameras in a specific
geographic area based on GPS coordinates. For example, if a user
inputs the GPS coordinates of a location, the camera finder oracle
will return information about all the cameras that are close to that
location. Oracle can use any technique to find a set of interesting
cameras. In our case, it uses Euclidean distance and a more complex
search circle expansion[31].

On the other hand, a timing oracle like [42] is used to synchronize
the clocks of multiple cameras. It is instrumental in a consensus
setting, where multiple cameras may need to be time-synced to
ensure accurate data collection and processing. When asked about
two specific cameras, the timing oracle will return the time offset
between the two cameras, which can then be used to adjust the
clocks as needed. In our case, it is implemented using basic Network
Time Protocol (NTP) [37] exchange between cameras.

4 QUERY EXECUTION ENGINE
The query execution is responsible for user query handling. It
consists of several components: query language, decoding and exe-
cution, and video analyzers. The primary means of communication
between the user and the system is through the Public Event Record-
ing and Querying Language (PERQL), which allows users to prepare
and send queries to the PERQS client. The query decoding and ex-
ecution process is a collective effort of the PERQS client and the
PERQS video analyzer. The client identifies the relevant videos and
requests the analyzer to perform video analysis to generate query
results. The results from the Video Analyzers combined to produce
the final results.

4.1 Query Language - PERQL
PERQL is a new language that provides more flexibility and cus-
tomization for querying camera feeds. This SQL-like language al-
lows users to design their queries rather than being limited to
pre-defined popular queries. We have extended FRAMEQL [28] for
PERQS to support GPS location, time interval, and consensus mech-
anism. PERQL assumes that the output from the video analyzer
is organized in a table format, and the query is run through this
table to retrieve the desired information. This approach allows for
a wide variety of queries to be executed, making it more versatile
and efficient for handling large amounts of data. Key operations
supported in PERQL and their syntax.
• CREATE MODEL

CREATE MODEL <model_name>
(
<data_field1> <data_type>,
<data_field2> <data_type>,
...)

An ML (Machine Learning) or vision model for video analysis is a
trained algorithm that can detect and identify objects, people, or ac-
tions within a video. When a new machine learning or vision model
is added to PERQS, it is distributed throughout the network using
a query mechanism. This process allows organizations to update
their servers with the new video analytic algorithms, ensuring that
the system stays up-to-date with the latest advancements in video

Figure 3: PERQL query execution stages. Organization 1 ini-
tiates a query execution. Send the parsed query to two owner
organizations, 2 & 3.

analysis technology. The data_fields are the output fields generated
by these models.
• ALTER MODEL

ALTER MODEL <model_name>
ADD <data_filed> <data_type>

When there is a change in existing models, this query propagates it
to all the organizations. Modifications to the ML model can result
in additional data fields. For example, the vehicleDetector model can
detect vehicleType and vehicleModel. If vehicleColor is added as a
new field, it will require an ALTER MODEL query to distribute the
changes across all organizations.
• SELECT

SELECT <fields>
FROM <model_name>
WITH <feature_parameters> -- optional
AT <gps_loc>
WHERE <conditions> -- optional
TIME <start_time> TO <end_time>

A SELECT query is used to extract information from the collective
video database. The video feeds are narrowed down using the GPS
location and time data. On the video feeds, the owner organization’s
video analyzer server applies an ML/vision model to perform anal-
ysis and create a table with the results. The query conditions are
then used to filter out unwanted results. Using the WITH keyword,
we pass optional parameters to any models if required. Finally, the
results frommultiple cameras are combined to form the final output
of the SELECT query.

Using a query language in PERQS makes the system highly
expandable, providing numerous possibilities for extracting infor-
mation from the video database. The model plug-and-play design
ensures that new updates and techniques in the field of computer
vision can be quickly integrated into the system. The language
used in the system, similar to SQL, makes it easy for developers
to design queries for natural language requests. PERQL provides a
more intuitive, user-friendly user experience and powerful query-
ing capabilities. Make the system more accessible and efficient in
providing accurate information from the video footage.

A Contributory Public-Event Recording andQuerying System SEC ’23, December 6–9, 2023, Wilmington, DE, USA

Table 2: An example consensus policy for different data fields.

Output Type Consensus Rules Error handling/policies
1 String Equals Majority, at least 𝑛
2 Set of strings Set Intersection / Set Union Strings present with majority or 𝑛 of the results
3 Range (time, integer, float) Overlapping range Floor or ceil of overlapping
4 Number(float/int) Equals ±5% is considered as equal (x%)
5 Set of numbers(float/int) Set Intersection majority, ±5% is considered as equal
6 Color (hex string) Equals ±5% in each RGB is considered as equal
7 Boolean(true/false, yes/no) Equals Majority, at least 𝑛

4.2 Query Decoding and Execution
Interpreting and executing queries is at the heart of the PERQS
system. The entire execution engine is spread across clients, peers,
and video analytic servers. When a query is initiated, it reaches
the client and is forwarded to the organizations for video analysis.
Finally, the results are sent back, and a consensus step is imple-
mented to ensure that false results caused by malicious actors are
eliminated. A single PERQS query execution consists of four stages,
as shown in Figure 3.
1 Query parsing: Decode the keywords and parameters from
the query string. If the GPS location or time details are not in the
query, we abort the execution.
2 Find the camera: Identify the camera sets of interest based on
the GPS location details. A ‘camera-finder’ oracle returns the camera
ID given GPS location and range. Each organization registers the
camera location details to the camera-finder oracle at the time
of joining or when a new camera is added. Once we identify the
cameras, send the decoded query to each owner.
3 Owner query execution: CCTV owners find the correspond-
ing video using the time parameter passed with the query. Then,
the client verifies the hash of the video with the committed hash
in the blockchain. If the hashes match, an API call is made to the
video analytics server with the video, video_id, and decoded query
parameters. It analyses the video and returns the result as a table
per the query options. This result is sent back.
4 Consensus: Combine all the tables received using the consen-
sus rules and policies. Example consensus rules for some widely
used data types are in Table 2. New data types and policies will be
added when new analyzers or ML models are added to the system.
Policies include majority, at least n cameras, at least n organization.
Default policies set by configuration can be overridden by query
parameters if required. Instead of relying on the analysis of a sin-
gle camera, the consensus algorithm requires a certain number of
cameras, 𝑡 , to participate in reaching a decision.

4.3 Video Analyzer
In PERQS, a video analyzer refers to a set of vision-based tools
and modules to analyze video feeds and detect events, objects, or
features. We consider the video analyzer module as a function that
takes a video feed and specific parameters as input and returns
a table as output. The columns of this table represent the output
parameters of the model used, and each row represents an event or
object that the vision model detected. This approach allows for easy

and efficient processing of large amounts of video data, making it
possible to extract valuable information from the feeds quickly. An
example is an object Detector ML model, which will detect objects
in each video frame.

4.4 Time-travel Consensus
PERQL query execution arrives at a consensus of an event hap-
pening when multiple cameras are available at a location, and the
majority operate honestly. However, at certain locations, reaching
a consensus may not be feasible because no cameras are present
or the number of cameras that may have captured the event is not
sufficient in number to reach a consensus. Alternatively, it may
also be possible that even when cameras are present, the camera
owners may behave maliciously or exhibit Byzantine behavior, lead-
ing to incorrect results, thereby thwarting consensus. Time-travel
consensus proposes a solution to mitigate this limitation in certain
cases.

Time-travel consensus can be likened to the ability to “go back
and forth in time and space” to trace events that may have happened
elsewhere geographically but are causally linked to the event of
interest. To illustrate this, consider the example in Figure 4, which
shows an accident that has occurred at a camera blind region. Even
though the accident is not captured by any of the cameras, we can
travel back in time to other locations where these two vehicles are
captured by some CCTV cameras. The footage from these locations
may be used to establish factors such as the speed of the vehicle or
even its presence at the intersection where the accident happened.
Likewise, we can travel forward by several time units from the
event to identify the vehicle at other locations, which is especially
useful if the accident was a hit-and-run.

The fundamental concept behind time-travel consensus is to
perform a spatiotemporal search on the footage of nearby CCTV
cameras to identify activities related to the event-of-interest in the
past or future. These additional events help to reach a consensus,
even when direct visual evidence is limited or absent. Major aspects
of time-travel consensus are as follows:
• Spatiotemporal Context: Time-travel consensus recognizes
that events in the real world are often interconnected across time
and space. Often, a single event may be causally related to activities
at other locations and at different times.
• ComprehensiveAnalysis:The primary objective of time-travel
consensus is to support and validate the occurrence of the initial
event. The PERQS system conducts a meticulous search of events
in the spatiotemporal vicinity of a particular location when that

SEC ’23, December 6–9, 2023, Wilmington, DE, USA Arun Joseph, Nikita Yadav, Vinod Ganapathy, and Dushyant Behl

location has insufficient or no camera coverage. By examining the
immediate vicinity and other nearby cameras at different time-
frames, PERQS tries to piece together the patterns and sequences
of events that may be causally related to the initial incident. Hence,
time-travel consensus provides comprehensive coverage by expand-
ing the scope of analysis beyond a single camera’s field of view.

We use time-travel consensus when the camera-finder oracle
returns a limited or zero count of cameras at a specifiedGPS location.
The minimum number of cameras required for consensus and the
consensus policies are configured beforehand. When the minimum
camera count criterion is not met, the PERQS peer initiates a search
for additional cameras by expanding the search radius 𝑅, which
is specified as a configuration parameter. Subsequently, the query
is executed on these newly identified camera feeds with a time
offset Δ, which is again specified as a configuration parameter (or
can be computed as a function of 𝑅). The specific values for the
searching radius 𝑅 and the time offset Δ are determined based on
the geographical context of the search area. For instance, a smaller
search radius in city limits may yield numerous cameras likely
to capture pertinent events. However, a larger radius is required
for remote areas with fewer cameras. Furthermore, the parameter
Δ can often be computed as a function of 𝑅, e.g., by considering
typical time intervals that a vehicle may have taken to travel the
distance 𝑅. Approximate estimations suffice since the search occurs
within a time interval rather than a fixed time. These 𝑅 and Δ are
established and configured through rigorous testing during the
system’s deployment phase. The value of 𝑅 is expanded iteratively
if enough cameras are not found.

After identifying the potential cameras and establishing an ap-
proximate time and radius Δ and 𝑅, respectively, the query is dis-
patched to initiate video analytics within the estimated time interval.
Once the PERQS peer has received the results from all cameras, a
search is conducted to identify related events that can substantiate
the consensus regarding the event-of-interest. The endorsement of
multiple supporting cameras is pivotal in reaching a final consen-
sus. The effectiveness and precision of the time-travel consensus
significantly depend upon the machine learning and vision models
employed. These models must possess the capability to detect re-
lated events that provide corroborative evidence for the occurrence
of the event-of-interest. We treat these models as black boxes in a
plug-and-play manner. As advancements in ML and vision technol-
ogy continue to enhance their performance and accuracy, this is a
relatively minor concern in the future.

We can see in detail how time-travel consensus is used in the
context of the car accident example shown in Figure 4, where we
reach a consensus on the speeds of involved vehicles. A truck from
‘B’ and a car from ‘M’ collide in a camera blind area between ‘D’
and ‘I’. Figure 4b and Figure 4c shows the positions of vehicles at
times 𝑡 − Δ1 and 𝑡 − Δ2, respectively. A speed estimation model
is run at junction ‘I’ in the past for the time interval (𝑡 − Δ1) − 𝜃

and (𝑡 − Δ1) + 𝜃 and in the future for the time interval (𝑡 + Δ3) − 𝜃

and (𝑡 + Δ3) + 𝜃 . Where 2𝜃 is the time interval. Similarly, we run
the speed estimation model with additional cameras at locations
‘D’, ‘M’ and ‘B’. With the help of these additional results, we can
reach a consensus on the speed of the vehicles. Suppose one vehicle
was speeding over the allowed speed limit; we can suggest that

Figure 4: Example 2 Section 2 illustration for time travel con-
sensus. a) An accident occurred. b) Positions of the vehicles
at 𝑡𝑖𝑚𝑒 = 𝑡 − Δ2. c) Positions at 𝑡𝑖𝑚𝑒 = 𝑡 − Δ1. d) Hit and run.
Position at 𝑡𝑖𝑚𝑒 = 𝑡 + Δ3. Only the cameras which might cap-
ture the vehicles are shown.

the accident might have occurred due to the overspeeding of that
vehicle and catch the culprit.
Limitations: It is essential to note that the time-travel consensus
mechanism will not always be able to produce results. For many
events, supporting the occurrence with other activities observed
by nearby cameras is not possible. Another limitation is the partici-
pation of irrelevant nearby cameras. From the event-of-interest, we
search for cameras in a radius of 𝑅. It is possible that the majority
of these cameras do not have any supporting events to participate
in the consensus. Another issue is that time-travel consensus is not
compatible with all video analytic models. Consider the car accident
example in Figure 4. Say we have only an accident detection model.
Since none of the cameras captured the accident, this model will
not help to reach a consensus. We may only estimate the speed and
direction of the vehicles with some other ML/vision models.

4.5 Multiple Queries
PERQL allows for the implementation of complex operations through
the use of multiple queries. One example of such a complex oper-
ation is tracking a moving object across multiple CCTV cameras.
In order to achieve this, queries would need to be sent to different

A Contributory Public-Event Recording andQuerying System SEC ’23, December 6–9, 2023, Wilmington, DE, USA

GPS locations at specific time offsets to track the movement of
the object. PERQL supports these complex use cases and can be
utilized by query experts to design the sequence of queries and
logic required to combine the results. In our PERQS evaluation sec-
tion, we demonstrated the use of PERQL to perform vehicle finding.
However, these capabilities of PERQL are wider than just vehicle
tracking and can be used to solve more complex applications with
sufficient programming and SQL skills.

5 IMPLEMENTATION
Our PERQS prototype was built on Hyperledger Fabric v2.2 [22]
and deployed on a Kubernetes cluster [32]. The video analytics
servers were developed using the Python Django framework, uti-
lizing Django v4.1.4, Python v3.10.6, and TensorFlow v2.8.0. In our
implementation, the PERQS network is a Hyperledger Fabric net-
work, with the Fabric client and Fabric peer performing the role of
the PERQS client. Smart contracts were used to implement hash
committing and query executions.

Hyperledger Fabric [6] is an open-source permissioned blockchain
framework. it employs a unique architecture that separates the
network’s consensus process from the smart contract execution,
enabling a higher degree of scalability and privacy. It can handle
thousands of transactions per second and accommodate hundreds
of organizations [16, 18]. Additionally, Hyperledger Fabric provides
role-based access control, identity management, and confidentiality.
Fabric also supports the use of smart contracts, which are written
in a variety of programming languages such as Go, JavaScript, and
Java.

5.1 PERQS Client
The Fabric client and Fabric peer work jointly to perform the role
of the PERQS client. When the organization user sends a video
hash or queries to the Fabric client, it utilizes the peer to commit
the hash or execute the query. To facilitate the operation of the
PERQS system, we have implemented two smart contracts within
the Fabric peer. The first smart contract is responsible for hash
commitment and the second is for query execution.

5.1.1 Video hash committer: To optimize the performance of our
ML models, the video is saved in smaller chunks, with chunk size
typically set to five minutes or less. When a chunk is saved, a hash is
computed and a Fabric smart contract is executed. The Fabric client
sends transaction proposals to the Fabric peer, which executes the
smart contract and endorses the transactions. Fabric clients then
send these endorsed transactions to the Fabric orderer to commit
them to the blockchain. Once the committing process is complete,
a new block with video hash is delivered to all peers.

5.1.2 Query execution: The PERQL queries are sent to the Fabric
client for execution. The query is first decoded, and the GPS co-
ordinates are identified. The Fabric client then sends the location
information to the Camera Oracle, which returns the nearby cam-
era IDs based on their GPS coordinates and direction of view. The
Camera Oracle essentially acts as a database of active cameras.

Once the Fabric client has obtained the IDs of the nearest cam-
eras, it prepares a transaction with the decoded query and sends

Figure 5: CityFlowV2 [17]: Case study 1: time sync screen-
shots of 5 cameras when a blue SUV truck crossing the junc-
tion at 11:30:05.50.

it to the peers who own the nearest cameras. The peers then ex-
ecute a smart contract with the decoded query. Within the smart
contract, the corresponding video feeds are found and verified for
hash integrity. From the smart contract, an API call is made to the
video analysis server with the query and video details. The analytic
server performs the video analysis and prepares an output table.
This output is then sent back to the Fabric client along with the
transaction response.

The Fabric client collects the results from all peers and performs
a majority consensus or time-travel consensus, depending on the
availability of the cameras, to determine the final query result.

6 EVALUATION
6.1 Experimental Setup
We set up a Fabric-based testbed for our experiments, consisting of
three organizations. There is one orderer node, and each organiza-
tion has a single peer node. Our Kubernetes cluster setup contains
six nodes. All nodes run as a virtual machine and are allocated
vCPUs of Intel(R) Core(TM) i9-7920X CPU, running at 2.90GHz.
Fabric components are deployed as Kubernetes pods. We have set
up our video analyzer as a python-django server, which utilizes
GeForce GTX 1080 Ti GPU available in the server.

We have used the AICITY21 benchmark (CityFlowV2) [17], [14],
captured by 46 cameras in a real-world traffic surveillance environ-
ment. A total of 880 vehicles are annotated in 6 different scenarios.
There are 215.03 minutes of videos in total. We have identified eight
junctions where we have multiple camera recordings.

6.2 Consensus
We conducted a simulation of a real-world scenario utilizing the
CityFlowV2 dataset. Over the eight junctions, we try to reach a
consensus of finding vehicle queries. On the PERQ video analyzer,
we define a model vehicleDetector which uses YOLOv3 [48] frame by
frame to detect the type of vehicles present (car, truck, bike, or SUV)
in each frame. We used overlapping bounding boxes to combine
the individual frame results. We then utilized the cropped images
of the vehicles to determine their model and color. Our resulting
machine learning model comprises a table structure that includes
vehicleID, timeAppeared, vehicleType, vehicleColor, vehicleModel, and
featureVector.

SEC ’23, December 6–9, 2023, Wilmington, DE, USA Arun Joseph, Nikita Yadav, Vinod Ganapathy, and Dushyant Behl

Table 3: Case study 1: reply from five cameras available at
junction one and the final result after majority consensus.

timeAppeared vehicleType vehicleColor
Camera 1 result table
11:30:04.90 11:30:07.10 truck #012AB4
11:30:36.30 11:30:38.70 truck #1336B8
11:32:08.40 11:32:09.90 truck #15247F
11:33:12.60 11:33:14.50 truck #3655AA
Camera 2 result table
11:30:04.30 11:30:06.70 truck #103BB8
11:30:35.90 11:30:37.70 truck #1538B9
11:32:07.90 11:32:08.60 truck #20247C
11:33:12.20 11:33:14.30 truck #26456A
Camera 3 result table
11:30:05.10 11:30:17.30 truck #002CAD
11:30:36.50 11:30:48.70 truck #1A35B4
11:32:08.20 11:32:19.30 truck #25249B
11:33:12.90 11:33:23.20 truck #36559A
Camera 4 result table
11:30:01.80 11:30:06.80 truck #003AB3
11:30:31.40 11:30:38.40 truck #1254A4
11:33:09.20 11:33:14.10 truck #36557A
Camera 5 result table
11:30:04.80 11:30:09.20 truck #001261
11:33:12.30 11:33:16.60 truck #26356A
Final result table after consensus
11:30:05.10 11:30:06.70 truck #032CA2
11:30:36.50 11:30:37.70 truck #1234B4
11:32:07.90 11:32:08.60 truck #15245F
11:33:12.90 11:33:14.10 truck #36558A

Case Study 1 - Majority consensus: Find a blue truck passed
through junction one at around 11:30 AM. This case study is a sim-
plified version of Example 1 described in Section 2 to demonstrate
the majority consensus. Consider Figure 5; we have five views of
the junction from five different cameras. Representing the query in
our PERQL as follows

SELECT timeAppeared, vehicleType, vehicleColor
FROM vehicleDetector
AT 42.525678, -90.723601
WHERE vehicleType="truck", vehicleColor="#0000FF"
TIME 2023-01-25 11:30:00.005 TO 2023-01-25 11:35:00.005

1 The query planning stage. Find the cameras available at junction
one(42.525678, -90.723601) using the camera-finder oracle.
2 Forward the query to each of the camera owners.
3 Each camera owner executes the query.
• From the time information, identify which stored video feed got
the visuals

• Verify the hash commitment to check whether the video has been
tampered with. In case of hash mismatch, abort.

• Call the vehicleDetector video analyzer with the video feed and
fields required. Object detector returns a table with vehicleID,

Figure 6: Case study 2: cycle captured by camera 10, 11, 12,
13, 15 for the find cycle query at different times.

Figure 7: Case study 2: all the three cycles captured by camera
15 at 10:01:06.10.

timeAppeared, vehicleType, vehicleColor, vehicleModel, and fea-
tureVector. Execute the condition to filter out rows not required.
vehicleType and color similarity in this case. Filtered tables for
these five cameras is shown in Table 3. Send the table back to the
querier.

4 Collect the results from all camera owners. Use the time sync
oracle to synchronize the tables. Then, compare the tables to con-
struct the final table. If the majority of the cameras spotted a car,
it would be there in the final list. The Table 3 shows the query
execution results.
Case Study 2 - Time-travel consensus: Find a cyclist passing
through junction eight. PERQL query is as follows.

SELECT timeAppeared, vehicleType
FROM vehicleDetector
AT 42.525678, -90.723601
WHERE vehicleType="cycle"
TIME 2023-01-25 10:00:00.000 TO 2023-01-25 10:05:00.000

The execution process is similar to Case Study 1, except that
junction eight lacks overlapping camera views. Only two of the six

A Contributory Public-Event Recording andQuerying System SEC ’23, December 6–9, 2023, Wilmington, DE, USA

Table 4: Case study 2: final result after time-travel consensus.

timeAppeared vehicleType
10:00:14.20 10:01:13.10 cycle
10:01:02.30 10:01:45.40 cycle
10:01:04.50 10:01:42.30 cycle

nearby cameras capture the junction’s view. Therefore, we utilize
time-travel consensus to merge the outcomes from the six cameras.
One camera missed the cycles entirely because cycles took a turn
before entering the field of view. The remaining cameras record the
cycle, some a few seconds prior and another a few seconds after
the junction. By merging the outcomes from these five cameras,
we achieved a majority, hence the outcome. Steps 2 and 3 remain
unchanged, but in step 4, we utilize time-travel consensus instead
of a simple majority. The result is shown in Table 4.

Table 5: Consensus execution results summary on eight junc-
tions.

J Cameras IDs Find Query #Out Consensus Type
1 1,2,3,4,5 Blue Truck 4 Simple Majority
2 6,7,8,9 Green Car 1 Simple Majority
3 36,38,39,40 White Car 2 Simple Majority
4 34,35,36,37 White SUV 1 Time-travel
5 29,30,31,32 Blue Car 2 Time-travel
6 22,23,24,25,26 White Truck 1 Time-travel
7 18,19,20,21 Silver Car 1 Time-travel
8 10,11,12,13,14,15 Cycle 3 Time-travel

Consensus Study Summary: Table 5 summarises the consensus
experiment on eight junctions from the CityFlowV2 dataset [17].
The first three junctions had a majority of the available cameras
pointing towards the junction, which allowed for the capture of
the passing vehicles simultaneously. However, the cameras were
not completely overlapping for the remaining five junctions. Thus,
we used time-travel consensus to locate the vehicle’s prior or post
appearance using nearby cameras at a Δ time offset. We took this
offset into account while merging the table results for consensus.
The offset was determined based on the camera’s distance from the
junction and the average traffic speed on that road.

6.3 Query Execution Time
Query execution time can be broken down into query planning time,
parsing time, video analytic model execution time, and consensus
time. To measure query planning, query parsing, and consensus

Query
Planning

Query
Parsing

Video
Analytics

Majority
Consensus

Time-travel
Consensus

31.5ms 230.5ms 1.72s 47.15ms 89.44ms

timings, we simulated the process 1000 times and calculated the
average. For video analytics, we measured the time required for per-
forming detection on our eight-junction case study. There were 36
videos, each averaging three minutes long and having a frame rate

of 10 fps. For a three-minute video, if we process each frame with
YOLOv3, it takes around four minutes, and combining the result
and detecting color will also require around a minute. Therefore, on
average, 1.72 seconds are required to process one second of video.
The step that consumes the most time during query execution is
the video analysis process. The impact of the other steps involved
in the query execution is negligible.

As we do not have a real-world deployment of PERQS, we have
not measured network latency. However, it will be in the order
of milliseconds, which is unlikely to impact overall performance
significantly.

6.4 Optimizations
The main bottleneck that hinders fast query execution is the time-
consuming process of video analysis. To improve performance,
we have implemented two optimizations. The first one involves
parallelizing the object detection process. Instead of processing
frames one by one, we utilized the power of the GPU to process
multiple frames simultaneously, which resulted in a significant
improvement in the speed of video analysis. The 3-minute video
object detection will be finished in less than 1 minute. We can
improve performance further by fine-tuning the parameters and
using more efficient models.

The second optimization we implemented is caching video ana-
lytic results in the server. By storing the results of previous analyses
in a cache, we can avoid performing the complete video analysis
again. Instead, we can filter out the relevant results from the cache
using the query constraints provided by the user and send them
back as the response to the query.

7 RELATEDWORKS
PERQS is a collaborative video querying system built on recent
computer vision models. We are going through some of the related
literature.
Video Querying Systems: Numerous studies on video querying
systems have focused on various aspects, including feature extrac-
tion, query interface design, and query optimization. For instance,
Blazeit [28] proposed a system for efficiently performing spatiotem-
poral queries over large video datasets. They introduced FRAMEQL,
a declarative extension of SQL for video analytics, which enabled
optimized aggregation and cardinality-limited queries, resulting in
up to 83x performance improvement. While [27] is a user-friendly
end-to-end video query system.

In contrast, the QBIC system [19] was developed by IBM re-
searchers in the 1990s for searching and retrieving images from
large collections of visual data based on their content. Another
study [8] discusses the implementation and evaluation of a video
query processing system in the VDBMS Testbed, while [60], [7]
focuses on the challenges of performing real-time video analytics
on large-scale live video streams. Scanner [40] is a distributed sys-
tem that enables users to perform various video analytics tasks
on large-scale video data, such as object detection, tracking, and
scene understanding. Miris [12] is a system designed to query object
tracks in videos efficiently.

Additionally, VIVA [29] is an end-to-end system that allows
users to interact with video data using natural language queries.

SEC ’23, December 6–9, 2023, Wilmington, DE, USA Arun Joseph, Nikita Yadav, Vinod Ganapathy, and Dushyant Behl

At the same time, PRIVID [13] is a practical privacy-preserving
framework for video analytics queries. Finally, Vstore [58] is a data
store designed to perform analytics on large videos.
Video Analysis: Several deep learning architectures have been
developed for object detection, video classification, and action recog-
nition in videos. YOLOv3 [41] uses a powerful backbone network
based on Darknet-53 for real-time object detection, while Faster
R-CNN [43] significantly improves the speed of object detection.
3D Convolutional Networks (3D CNNs) [47] process video frames
as a 3D stacked frame volume, including temporal information for
video analysis. Non-local Neural Networks [54] capture long-range
dependencies in images and videos.

Convolutional Neural Networks (CNNs) are used in [30] for video
classification, while [50] improves video classification accuracy
using self-supervised learning for 3D CNNs. Anomaly detection
in videos is tackled in [20] using self-supervised and multi-task
learning. Two-stream Convolutional Networks [44], involving two
separate CNNs, are used for action recognition in videos, with TS-
BiRCNN [45] improving this architecture. [53] aims to address the
challenge of modeling long-term temporal dependencies in videos
while maintaining computational efficiency.

In addition to the mentioned systems, Visor [39] provides confi-
dentiality for both the user’s video stream and the machine learning
models in the event of a compromised cloud platform. Vigil [61]
is a real-time distributed wireless surveillance system that lever-
ages edge computing capabilities. Chameleon [25] is a controller
that dynamically selects optimal configurations for existing neural
network-based video analytics pipelines. EdgeEye [35] is an edge
computing framework specifically tailored for real-time intelligent
video analytics applications. Reducto [34] is a system that adap-
tively adjusts filtering decisions based on time-varying correlations
in the video data. CrossRoI [21] utilizes the inherent physical cor-
relations of cross-camera viewing fields to enhance video analytics
performance. Lastly, Spatula [23] enables scalable cross-camera
analytics by leveraging edge compute boxes.

8 CONCLUSION AND FUTUREWORK
PERQS is a contributory CCTVnetwork solution that utilizes blockchain
technology to ensure the integrity of the video feed. It enables mul-
tiple organizations to pool their CCTV footage for public safety
while maintaining data privacy and security.
Limitations: Although the PERQS system offers numerous advan-
tages in terms of efficient querying and privacy of CCTV footage, it
is essential to acknowledge its inherent limitations. One significant
limitation is its inability to perform joint video comparisons effec-
tively. Joint video analysis is crucial in various situations, including
tracking the movement of objects or individuals across multiple
camera views [55, 62], identifying patterns and correlations be-
tween different events, or conducting synchronized monitoring of
specific areas [9, 10, 26, 33, 36, 57]. These tasks require the ability
to compare and analyze videos concurrently to derive meaningful
insights and make accurate judgments. With PERQS’s current ar-
chitecture, which does not involve the sharing of video streams, it
is not possible to directly perform a joint analysis of the two video
streams. Instead, separate queries would need to be executed for
each location, retrieving and analyzing the footage individually.

Future Possibilities: We can introduce a secure hardware-based
solution to handle multi-video analysis. Participants can send their
private videos encrypted to the secure execution environment,
and a joint analysis can be performed. This will require additional
hardware support from participants.

To enhance the appeal of PERQS, we can add a user-friendly
interactive UI that facilitates easy querying of the system. Another
option is to include a natural language interpreter, which can con-
vert questions into the PERQL query format. The backend of these
can use our core engine to execute the queries. These additional
features would make PERQS more accessible to more users.

ACKNOWLEDGMENTS
Grants from the Department of Science and Technology’s National
Mission on Inter-Disciplinary Cyber-Physical Systems (via IHUB-
IIT Kanpur), the National Security Council (via Indian Urban Data
Exchange), and the Indian Institute of Science funded our work.

REFERENCES
[1] 1211 2022. An overview of video analytics in security. https://www.ifsecglobal.

com/video-surveillance/overview-video-analytics-security/ (accessed on 23 June
2023).

[2] 1231 2022. Surveillance camera statistics: which cities have the most CCTV cam-
eras? https://www.comparitech.com/vpn-privacy/the-worlds-most-surveilled-
cities/ (accessed on 10 March 2023).

[3] 1234 2021. Global Surveillance Camera Markets 2021-2025. https:
//www.prnewswire.com/news-releases/global-surveillance-camera-markets-
2021-2025---integration-of-ai-systems-adoption-of-iot-based-surveillance-
systems--spy-and-hidden-cameras-growth-in-transition-from-analog-to-ip-
cameras-301359651.html (accessed on 10 March 2023).

[4] 1241 2021. Adoption of advanced video analytics is “rising rapidly”, NW Secu-
rity UK study finds. https://www.ifsecglobal.com/video-surveillance/adoption-
of-advanced-video-analytics-is-rising-rapidly-nw-security-uk-study-finds/ (ac-
cessed on 10 March 2023).

[5] 1251 2021. INDIA CCTV MARKET - GROWTH, TRENDS, COVID-19 IMPACT,
AND FORECASTS (2022 - 2027). https://www.mordorintelligence.com/industry-
reports/india-cctv-market (accessed on 10 March 2023).

[6] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-
nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady
Laventman, Yacov Manevich, and et al. 2018. Hyperledger Fabric: A Distributed
Operating System for Permissioned Blockchains. In ACM Eurosys.

[7] Guilherme H. Apostolo, Pablo Bauszat, Vinod Nigade, Henri E. Bal, and Lin
Wang. 2022. Live Video Analytics as a Service. In Proceedings of the 2nd European
Workshop on Machine Learning and Systems (Rennes, France) (EuroMLSys ’22).
Association for Computing Machinery, New York, NY, USA, 37–44. https://doi.
org/10.1145/3517207.3526973

[8] Walid Aref, Moustafa Hammad, Ann Christine Catlin, Ihab Ilyas, Thanaa Ghanem,
Ahmed Elmagarmid, and Mirette Marzouk. 2003. Video Query Processing in
the VDBMS Testbed for Video Database Research. In Proceedings of the 1st ACM
International Workshop on Multimedia Databases (New Orleans, LA, USA) (MMDB
’03). Association for Computing Machinery, New York, NY, USA, 25–32. https:
//doi.org/10.1145/951676.951682

[9] Luca Ballan, Gabriel J. Brostow, Jens Puwein, and Marc Pollefeys. 2010. Un-
structured Video-Based Rendering: Interactive Exploration of Casually Captured
Videos. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2010) (July
2010), 1–11.

[10] Aayush Bansal, Minh Vo, Yaser Sheikh, Deva Ramanan, and Srinivasa G.
Narasimhan. 2020. 4D Visualization of Dynamic Events From Unconstrained
Multi-View Videos. In 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020. Computer Vision
Foundation / IEEE, 5365–5374. https://doi.org/10.1109/CVPR42600.2020.00541

[11] Richard Barker. 2022. How many CCTV cameras are in London? https://
clarionuk.com/resources/how-many-cctv-cameras-are-in-london/ (accessed on
10 March 2023).

[12] Favyen Bastani, Songtao He, Arjun Balasingam, Karthik Gopalakrishnan, Mo-
hammad Alizadeh, Hari Balakrishnan, Michael Cafarella, Tim Kraska, and Sam
Madden. 2020. MIRIS: Fast Object Track Queries in Video. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data (Portland,
OR, USA) (SIGMOD ’20). Association for Computing Machinery, New York, NY,
USA, 1907–1921. https://doi.org/10.1145/3318464.3389692

A Contributory Public-Event Recording andQuerying System SEC ’23, December 6–9, 2023, Wilmington, DE, USA

[13] Frank Cangialosi, Neil Agarwal, Venkat Arun, Srinivas Narayana, Anand Sar-
wate, and Ravi Netravali. 2022. Privid: Practical, Privacy-Preserving Video
Analytics Queries. In 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22). USENIX Association, Renton, WA, 209–228.
https://www.usenix.org/conference/nsdi22/presentation/cangialosi

[14] AI CITY CHALLENGE. 2021. AI City Challenge Dataset 2021. https://www.
aicitychallenge.org/2021-data-and-evaluation/ (accessed on 10 March 2023).

[15] Brian Curran. 2018. What are Oracles? Smart Contracts, Chainlink and The
Oracle Problem. https://blockonomi.com/oracles-guide/ (accessed on 10 March
2023).

[16] Shivdeep Singh Dave Enyeart. 2023. Benchmarking Hyperledger Fabric 2.5
Performance. https://www.hyperledger.org/blog/2023/02/16/benchmarking-
hyperledger-fabric-2-5-performance (accessed on 5 October 2023).

[17] Marta Fernandez, Paula Moral, Alvaro Garcia-Martin, and Jose M. Martinez. 2021.
Vehicle Re-Identification Based on Ensembling Deep Learning Features Including
a Synthetic Training Dataset, Orientation and Background Features, and Camera
Verification.. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops. 4068–4076.

[18] Christopher Ferris. 2019. Does Hyperledger Fabric perform at scale? https:
//www.ibm.com/blog/does-hyperledger-fabric-perform-at-scale/ (accessed on 5
October 2023).

[19] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Qian Huang, B. Dom, M. Gorkani,
J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. 1995. Query by image
and video content: the QBIC system. Computer 28, 9 (1995), 23–32. https:
//doi.org/10.1109/2.410146

[20] Mariana-Iuliana Georgescu, Antonio Bărbălău, Radu Tudor Ionescu, Fahad Shah-
baz Khan, Marius Claudiu Popescu, and Mubarak Shah. 2020. Anomaly Detection
in Video via Self-Supervised and Multi-Task Learning. 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (2020), 12737–12747.

[21] Hongpeng Guo, Shuochao Yao, Zhe Yang, Qian Zhou, and Klara Nahrstedt. 2021.
CrossRoI: Cross-Camera Region of Interest Optimization for Efficient Real Time
Video Analytics at Scale. In Proceedings of the 12th ACM Multimedia Systems
Conference (Istanbul, Turkey) (MMSys ’21). Association for ComputingMachinery,
New York, NY, USA, 186–199. https://doi.org/10.1145/3458305.3463381

[22] Hyperledger. 2023. Hyperledger Fabric - GitHub. https://github.com/
hyperledger/fabric

[23] Samvit Jain, Xun Zhang, Yuhao Zhou, Ganesh Ananthanarayanan, Junchen Jiang,
Yuanchao Shu, Paramvir Bahl, and Joseph Gonzalez. 2020. Spatula: Efficient cross-
camera video analytics on large camera networks. In 2020 IEEE/ACM Symposium
on Edge Computing (SEC). 110–124. https://doi.org/10.1109/SEC50012.2020.00016

[24] Facundo Lezama Javier Couto. 2022. A Guide to Video Analytics: Applications
and Opportunities. https://tryolabs.com/guides/video-analytics-guide (accessed
on 23 June 2023).

[25] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha Sen, and Ion
Stoica. 2018. Chameleon: Scalable Adaptation of Video Analytics. In Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data Communication
(Budapest, Hungary) (SIGCOMM ’18). Association for Computing Machinery,
New York, NY, USA, 253–266. https://doi.org/10.1145/3230543.3230574

[26] Wei Jiang and Jinwei Gu. 2015. Video stitching with spatial-temporal content-
preserving warping. In 2015 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW). 42–48. https://doi.org/10.1109/CVPRW.2015.
7301374

[27] Manu Joseph, Harsh Raj, Anubhav Yadav, and Aaryamann Sharma. 2022. AskY-
ourDB: An end-to-end system for querying and visualizing relational databases
using natural language. arXiv:2210.08532 [cs.DB]

[28] Daniel Kang, Peter Bailis, and Matei Zaharia. 2018. BlazeIt: optimizing declarative
aggregation and limit queries for neural network-based video analytics. arXiv
preprint arXiv:1805.01046 (2018).

[29] Daniel Kang, Francisco Romero, Peter D. Bailis, Christos Kozyrakis, and Matei
Zaharia. 2022. VIVA: An End-to-End System for Interactive Video Analytics.
In 12th Conference on Innovative Data Systems Research, CIDR 2022, Chaminade,
CA, USA, January 9-12, 2022. www.cidrdb.org. https://www.cidrdb.org/cidr2022/
papers/p75-kang.pdf

[30] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-
thankar, and Li Fei-Fei. 2014. Large-Scale Video Classification with Convolutional
Neural Networks. 2014 IEEE Conference on Computer Vision and Pattern Recogni-
tion (2014), 1725–1732.

[31] A. Khochare, A. Krishnan, and Y. Simmhan. 2021. A Scalable Platform for
Distributed Object Tracking Across a Many-Camera Network. IEEE Trans-
actions on Parallel Distributed Systems 32, 06 (jun 2021), 1479–1493. https:
//doi.org/10.1109/TPDS.2021.3049450

[32] Kubernetes. 2023. Kubernetes: Production Grade Container Orchestration. https:
//kubernetes.io/

[33] Jingwen Li, Lei Huang, and Changping Liu. 2012. People Counting acrossMultiple
Cameras for Intelligent Video Surveillance. In 2012 IEEE Ninth International
Conference on Advanced Video and Signal-Based Surveillance. 178–183. https:
//doi.org/10.1109/AVSS.2012.54

[34] Yuanqi Li, Arthi Padmanabhan, Pengzhan Zhao, Yufei Wang, Guoqing Harry Xu,
and Ravi Netravali. 2020. Reducto: On-Camera Filtering for Resource-Efficient
Real-Time Video Analytics. In Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communication (Virtual Event, USA)
(SIGCOMM ’20). Association for Computing Machinery, New York, NY, USA,
359–376. https://doi.org/10.1145/3387514.3405874

[35] Peng Liu, Bozhao Qi, and Suman Banerjee. 2018. EdgeEye: An Edge Service
Framework for Real-Time Intelligent Video Analytics. In Proceedings of the 1st
International Workshop on Edge Systems, Analytics and Networking (Munich,
Germany) (EdgeSys’18). Association for Computing Machinery, New York, NY,
USA, 1–6. https://doi.org/10.1145/3213344.3213345

[36] Sujit Biswas Milind Naphade, Vinay Kolar. 2018. Multi-Camera Large-Scale
Intelligent Video Analytics with DeepStream SDK. https://developer.nvidia.com/
blog/multi-camera-large-scale-iva-deepstream-sdk (accessed on 23 June 2023).

[37] D.L. Mills. 1991. Internet time synchronization: the network time protocol. IEEE
Transactions on Communications 39, 10 (1991), 1482–1493. https://doi.org/10.
1109/26.103043

[38] Thomas L. Norman. 2017. Chapter 6 - Electronics Elements: A Detailed Dis-
cussion. In Effective Physical Security (Fifth Edition), Lawrence J. Fennelly (Ed.).
Butterworth-Heinemann, 95–137. https://doi.org/10.1016/B978-0-12-804462-
9.00006-3

[39] Rishabh Poddar, Ganesh Ananthanarayanan, Srinath Setty, Stavros Volos, and
Raluca Ada Popa. 2020. Visor: Privacy-Preserving Video Analytics as a Cloud
Service. In 29th USENIX Security Symposium (USENIX Security 20). USENIX As-
sociation, 1039–1056. https://www.usenix.org/conference/usenixsecurity20/
presentation/poddar

[40] Alex Poms, Will Crichton, Pat Hanrahan, and Kayvon Fatahalian. 2018. Scanner:
Efficient Video Analysis at Scale. ACM Trans. Graph. 37, 4, Article 138 (jul 2018),
13 pages. https://doi.org/10.1145/3197517.3201394

[41] Joseph Redmon and Ali Farhadi. 2018. YOLOv3: An Incremental Improvement.
ArXiv abs/1804.02767 (2018).

[42] E. Regnath, N. Shivaraman, S. Shreejith, A. Easwaran, and S. Steinhorst. 2020.
Blockchain, what time is it? Trustless Datetime Synchronization for IoT. In
2020 International Conference on Omni-layer Intelligent Systems (COINS). https:
//doi.org/10.1109/COINS49042.2020.9191420

[43] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. 2015. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence 39 (2015), 1137–1149.

[44] Karen Simonyan and Andrew Zisserman. 2014. Two-Stream Convolutional
Networks for Action Recognition in Videos. In Proceedings of the 27th Interna-
tional Conference on Neural Information Processing Systems - Volume 1 (Montreal,
Canada) (NIPS’14). Cambridge, MA, USA, 9 pages.

[45] Bharat Singh, Tim K.Marks, Michael J. Jones, Oncel Tuzel, andMing Shao. 2016. A
Multi-stream Bi-directional Recurrent Neural Network for Fine-Grained Action
Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2016), 1961–1970.

[46] Saleem Durai M. A. Sreenu G. 2019. Intelligent video surveillance: a review
through deep learning techniques for crowd analysis. In Journal of Big Data 6.
https://doi.org/10.1186/s40537-019-0212-5

[47] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. 2015. Learning
Spatiotemporal Features with 3D Convolutional Networks. In 2015 IEEE In-
ternational Conference on Computer Vision (ICCV). Los Alamitos, CA, USA.
https://doi.org/10.1109/ICCV.2015.510

[48] Ultralytics. 2023. YOLOv3 in PyTorch > ONNX > CoreML > TFLite. https:
//github.com/ultralytics/yolov3

[49] Mark Patel Vasanth Ganesan, Yubing Ji. 2016. Video meets the Internet
of Things. https://www.mckinsey.com/industries/technology-media-and-
telecommunications/our-insights/video-meets-the-internet-of-things (accessed
on 23 June 2023).

[50] Duc-Quang Vu, Ngan T. H. Le, and Jia-Ching Wang. 2021. Self-Supervised
Learning via multi-Transformation Classification for Action Recognition. ArXiv
abs/2102.10378 (2021).

[51] Han Wang, Shangyu Xie, and Yuan Hong. 2020. VideoDP: A Flexible Platform
for Video Analytics with Differential Privacy. Proceedings on Privacy Enhancing
Technologies 2020 (2020), 277 – 296.

[52] Junjue Wang, Brandon Amos, Anupam Das, Padmanabhan Pillai, Norman Sadeh,
and Mahadev Satyanarayanan. 2017. A Scalable and Privacy-Aware IoT Service
for Live Video Analytics. In Proceedings of the 8th ACM on Multimedia Systems
Conference (Taipei, Taiwan) (MMSys’17). Association for Computing Machinery,
New York, NY, USA, 38–49. https://doi.org/10.1145/3083187.3083192

[53] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and
Luc Van Gool. 2016. Temporal Segment Networks: Towards Good Practices for
Deep Action Recognition. In European Conference on Computer Vision.

[54] X. Wang, Ross B. Girshick, Abhinav Kumar Gupta, and Kaiming He. 2017. Non-
local Neural Networks. 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (2017).

SEC ’23, December 6–9, 2023, Wilmington, DE, USA Arun Joseph, Nikita Yadav, Vinod Ganapathy, and Dushyant Behl

[55] Xue Wang, Jianbo Shi, Hyun Soo Park, and Qing Wang. 2017. Motion-Based
Temporal Alignment of Independently Moving Cameras. IEEE Transactions
on Circuits and Systems for Video Technology 27, 11 (2017), 2344–2354. https:
//doi.org/10.1109/TCSVT.2016.2581659

[56] Danielle Whittaker. 2021. Why AI CCTV is the future of security and surveillance
in public spaces. https://www.securitymagazine.com/articles/96719-why-ai-
cctv-is-the-future-of-security-and-surveillance-in-public-spaces (accessed on
23 June 2023).

[57] Xinyi Wu, Zhenyao Wu, Yujun Zhang, Lili Ju, and Song Wang. 2019. Multi-Video
Temporal Synchronization by Matching Pose Features of Shared Moving Subjects.
In 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).
2729–2738. https://doi.org/10.1109/ICCVW.2019.00334

[58] Tiantu Xu, Luis Materon Botelho, and Felix Xiaozhu Lin. 2019. VStore: A Data
Store for Analytics on Large Videos. In Proceedings of the Fourteenth EuroSys
Conference 2019 (Dresden, Germany) (EuroSys ’19). Association for Computing
Machinery, New York, NY, USA, Article 16, 17 pages. https://doi.org/10.1145/
3302424.3303971

[59] Xiaoyi Yu, Kenta Chinomi, Takashi Koshimizu, Naoko Nitta, Yoshimichi Ito,
and Noboru Babaguchi. 2008. Privacy protecting visual processing for secure

video surveillance. In 2008 15th IEEE International Conference on Image Processing.
1672–1675. https://doi.org/10.1109/ICIP.2008.4712094

[60] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose,
Paramvir Bahl, and Michael J. Freedman. 2017. Live Video Analytics at Scale
with Approximation and Delay-Tolerance. In 14th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 17). USENIX Association,
Boston, MA, 377–392. https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/zhang

[61] Tan Zhang, Aakanksha Chowdhery, Paramvir (Victor) Bahl, Kyle Jamieson, and
Suman Banerjee. 2015. The Design and Implementation of a Wireless Video
Surveillance System. In Proceedings of the 21st Annual International Conference on
Mobile Computing and Networking (Paris, France) (MobiCom ’15). Association for
Computing Machinery, New York, NY, USA, 426–438. https://doi.org/10.1145/
2789168.2790123

[62] Kang Zheng, Hao Guo, Xiaochuan Fan, Hongkai Yu, and Song Wang. 2016. Iden-
tifying Same Persons from Temporally Synchronized Videos Taken by Multiple
Wearable Cameras. In 2016 IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPRW). 810–818. https://doi.org/10.1109/CVPRW.2016.106

