
A Contributory Public-Event 
Recording and Querying System

Arun Joseph, Nikita Yadav, Vinod Ganapathy
(Indian Institute of Science, Bangalore, India)

Dushyant Behl (IBM Research, India)



How many CCTV cameras are in town?

● CCTV (Closed-Circuit Television) technology is widely used for security and 
surveillance

● Delhi, India, has 1446 cameras per square mile, with both public and private 
installations

● London, UK boasts over 942,562 CCTV cameras, including private cameras. In 
London, a person can be captured on CCTV up to 70 times a day



Number of CCTV cameras in some of the world's 
populated cities

City Cameras Per Square Miles Per 1000 People

Delhi, India 436600 1446 26.7

Chennai, India 282126 614 24.53

Singapore, Singapore 108981 281 18.04

Seoul, South Korea 77814 333 7.8

Moscow, Russia 213000 219 16.85

London, UK 127373 210 13.35

New York, USA 56190 187 6.87

Cities of China* 54000000 1000 372



Why private parties should join such a network?

● Sharing public CCTV footage enhances overall 
surveillance and security in the area

● Lead to cost savings as multiple organizations share the 
infrastructure

● To prove video recording is tamper proof.
● Other cameras can provide continuous surveillance 

coverage even when our camera is 
○ damaged
○ malfunctioning 
○ technical problems

● Reducing blind spots



If we create a public network including all these parties

● Public authorities can make use of extra video footage, especially from private 
cameras, to support their investigations

● Help to identify the fleeing vehicle in a hit-and-run accident
● With multiple sources of footage cross-reference is possible to verify information



Challenges to build a contributory CCTV network

1. Untrustworthy Video Feed:
a. Video feeds can be compromised by technical errors or malicious activities, leading to damaged or 

edited footage that is unreliable for investigations
b. Organizations may intentionally share incorrect footage for their benefit or to deceive others

2. Privacy of Video Feed:
a. Private organizations reluctant to share raw video feeds due to data security and privacy concerns
b. Unauthorized access and misuse of footage hinder their participation in a contributory CCTV network

3. Variable Quality of Video Feed:
a. CCTVs with varying qualities, viewing angles, aspect ratios, and color calibrations complicates the 

analysis
b. Inconsistencies can arise due to unsynchronized timestamps on different cameras, and the sheer 

volume of data generated poses challenges in processing and analysis
4. Availability of CCTV Footage:

a. The absence of CCTV cameras in certain areas results in surveillance blind spots.
b. Camera malfunctions can also lead to gaps in footage



Untrustworthy Video Feed

Fake insurance claim

Hide the mistake/flaw lead to crime/accident

Doing some illegal activities

Destroying the evidence for crime

Create scam videos/ fake proofs



Public Event Recording and Querying System (PERQS)

● PERQS is an innovative distributed network of CCTV cameras
● PERQS is a collaborative CCTV system allows users to submit queries
● The system utilizes the entire network of camera feeds, leveraging advanced video 

analytics techniques to provide responses
● Eliminates the need for manual review of individual camera feeds
● PERQS introduces a novel consensus-based video analysis concept to address 

trust and privacy challenges in a contributory CCTV network
● Multiple cameras participate in query execution to reach results, enhancing accuracy 

and reducing the risk of false positives



How PERQS address the four challenges

I. Tamper-Proof Video Feed:
○ Video-hash commitment and verification to ensure video authenticity

II. Private Video Storage:
○ PERQS shares only video analysis results, preserving raw video privacy
○ Eliminates the need for vast central storage facilities

III. Consensus-Based Video Analysis:
○ The use of consensus to enhance reliability by involving multiple cameras in query execution
○ Faults, damage, or malicious behavior of individual cameras do not affect the output

IV. Time-Travel Consensus:
○ Introduction of a time-travel consensus mechanism to address blind spots and camera faults
○ Uses footage from other cameras to answer queries and fill gaps in recordings
○ "Travels through time and space" to access pre-event or post-event footage using nearby 

cameras for consensus



PERQS Design

● Blockchain-Based Architecture:
○ The necessity for mutual distrust among participants, video feed hash commitment, and 

consensus led to the adoption of a blockchain-based architecture
○ Consensus and hash verification establish collective correctness, ensuring system accuracy 

and reliability
● PERQL Query Language:

○ Developed the PERQL query language, similar to SQL, which is an extension of FRAMEQL
○ Provides users with a flexible and customizable queries

● Participant Analysis Facilities:
○ Each participant maintains their analysis facility for video analysis within the system

● Integration of Features in PERQS:
○ PERQS combines novel query consensus, time-travel consensus, tamper-proof videos, and 

the PERQL query language to address the challenges discussed



PERQS Architecture

● PERQS Network:
○ A permissioned blockchain network that connects all participating CCTV owner organizations in PERQS
○ Membership is verified, ensuring that only actual CCTV owner organizations can participate

● PERQS Client:
○ The blockchain peer that facilitates organization participation in the PERQS network
○ Multiple roles include committing video hashes to the blockchain, decoding and sending queries for execution, 

and reaching consensus on query results
● Video Capture & Storage Service:

○ Manages CCTV cameras within an organization and handles video storage through a central system
● PERQS Video Analyzer:

○ Responsible for conducting video analysis on recorded videos
○ Receives queries, decodes and executes them on individual video feeds



Query Language PERQL

● CREATE MODEL
○ To add a Machine Learning (ML) or vision model

● ALTER MODEL
○ To changes or updates existing models
○ It is used to propagate these modifications to all 

participating organizations
● SELECT

○ Used to extract information from the collective 
video database within PERQS

○ Narrows down video feeds using GPS location and 
time data

○ Video analyzer server uses an ML/vision model for 
analysis, generating a table with results



Query Execution

A single query execution in PERQS consists of four stages

● Query Parsing:
○ Decode keywords and parameters from the query string

● Find the Camera:
○ Identify cameras of interest based on GPS location
○ “camera-finder" oracle returns the camera ID given GPS location and range

● Owner Query Execution:
○ CCTV owners locate the relevant video using the time parameter provided with the query
○ The client verifies the video hash against the committed hash in the blockchain
○ If the hashes match, an API call is made to the video analytics server with the video and decoded query 

parameters
○ The video is analyzed, and the result is returned in the form of a table as per query options

● Consensus:
○ Combine all received tables following consensus rules and policies



Time Travel Consensus

PERQL query execution reaches consensus when multiple cameras are available at a 
location, with the majority operating honestly

Majority consensus will not work situations with no cameras, insufficient cameras for 
consensus, or malicious camera owners

Time-travel consensus provides a solution to these limitations

Time-travel consensus allows tracing events related to the event of interest across different 
locations and times



Hit-and-Run Example

● An accident in a camera blind spot can be traced back in time to locations where 
related vehicles were captured

● It also allows traveling forward in time to identify vehicles involved in a hit-and-run 
accident



Case Study 1 - Majority consensus

Find a blue truck passed through junction one at around 
11:30 AM

SELECT timeAppeared, vehicleType, vehicleColor
FROM vehicleDetector
AT 42.525678, -90.723601
WHERE vehicleType="truck", vehicleColor="#0000FF"
TIME 2023-01-25 11:30:00.005 TO 2023-01-25 11:35:00.005

Time sync screenshots of 5 cameras when a blue SUV 
truck crossing the junction at 11:30:05.50.



Results



Case Study 2 - Time-travel consensus

The execution process is similar to Case Study 1, except that junction eight lacks 
overlapping camera views. Only two of the six nearby cameras capture the 
junction's view. Therefore, we utilize time-travel consensus to merge the outcomes 
from the six cameras.

SELECT timeAppeared, vehicleType 

FROM vehicleDetector 

AT 42.525678, -90.723601 

WHERE vehicleType="cycle"

TIME 2023-01-25 10:00:00.000 TO 2023-01-25 10:05:00.000



Results



Summary

● PERQS utilizes blockchain technology to ensure video feed integrity
● Enables multiple organizations to collectively execute CCTV video analysis
● Ensure data privacy and security while allowing efficient querying
● Limitations of PERQS:

○ Inability to perform effective joint video comparisons. Joint video analysis is crucial for tracking 
objects, identifying patterns, and conducting synchronized monitoring

○ Current architecture does not support direct video stream sharing for concurrent video 
analysis

● Future Possibilities:
○ Introduction of a secure hardware-based solution for multi-video joint analysis. Participants 

can send private encrypted videos to a secure execution environment for joint analysis
○ Enhancement of PERQS experience: Addition of a interactive UI for easy querying
○ Integration of a natural language interpreter to convert questions into PERQL query





THANK YOU



Publication

“A CONTRIBUTORY PUBLIC-EVENT RECORDING AND QUERYING SYSTEM,” ARUN JOSEPH, 
NIKITA YADAV, VINOD GANAPATHY, AND DUSHYANT BEHL 
Proceedings of SEC'23, the 8th ACM/IEEE Symposium on Edge Computing, Wilmington, 
Delaware, USA, December 2023.



Additional Slides



Implementation of Time-Travel Consensus

● Used when the camera-finder oracle returns a limited or zero count of cameras at a specified 
GPS location

● The search radius "R" and time offset "Δ" are specified as configuration parameters, with 
values determined by geographical context

● "R" is expanded iteratively if enough cameras are not found
● Dispatches queries to initiate video analytics within the estimated time interval
● Results from all cameras are received, and related events are identified to substantiate 

consensus, multiple supporting cameras are required for a final consensus
● The effectiveness of time-travel consensus relies on machine learning and vision models; 

they are treated as black boxes and can be updated as technology advances



Limitations of Time-Travel Consensus

● Many events cannot be supported with corroborative activities observed by nearby cameras
● Irrelevant nearby cameras may participate in the consensus, which can complicate the 

process.
● The search for cameras is confined to a defined radius "R" from the event-of-interest, and not 

all cameras within this range may have supporting events.
● Compatibility issues can arise, as not all video analytic models are suitable for time-travel 

consensus.
● Example: In the case of the example car accident, if only an accident detection model is 

available, and none of the cameras captured the accident, this model will not contribute to 
reaching a consensus. Estimations like speed and direction of vehicles may be possible with 
other ML/vision models.



Spatiotemporal Context

Acknowledges that real-world events are often interconnected across time and space

A single event may be causally related to activities at other locations and times

Time-travel consensus aims to support and validate the initial event occurrence

Conducts a meticulous search of events in the spatiotemporal vicinity when camera 
coverage is insufficient

Examines nearby cameras at different time frames to piece together causally related event 
patterns



PERQS Prototype

Our PERQS prototype was built on Hyperledger Fabric v2.2, a well-established permissioned 
blockchain framework.

Deployment was carried out on a Kubernetes cluster, utilizing Kubernetes for container 
orchestration.

Video analytics servers within the prototype were developed using the Python Django framework. 
The implementation used Django v4.1.4, Python v3.10.6, and TensorFlow v2.8.0.

These servers are responsible for conducting video analysis, a crucial component of the PERQS 
system.

Smart contracts were utilized to implement essential functionalities, including video hash 
commitment and query executions.



Consensus Study Summary



Evaluation

We have used the AICITY21 benchmark (CityFlowV2), captured by 46 cameras in 
a real-world traffic surveillance environment. A total of 880 vehicles are annotated 
in 6 different scenarios. There are 215.03 minutes of videos in total.

Within the PERQS video analyzer, a dedicated model named vehicleDetector was 
defined. This model leveraged YOLOv3 for real-time object detection, examining 
each frame to identify vehicle types (car, truck, bike, or SUV).

The machine learning model's output structure encompassed critical information, 
including vehicleID, timeAppeared, vehicleType, vehicleColor, vehicleModel, and 
featureVector.



References


