Short Paper: Enhancing Users’ Comprehension of Android
Permissions

Liu Yang, Nader Boushehrinejadmoradi, Pallab Roy, Vinod Ganapathy, Liviu Iftode
Department of Computer Science
Rutgers,The State University of New Jersey
110 Frelinghuysen Road
Piscataway, New Jersey 08854-8019, USA

{lyangru@cs,naderb@cs,pkroy@eden,vinodg@cs,iftode@cs}.rutgers.edu

ABSTRACT resources needed for its funtionality at installation time. An appli-

Android adopts a permission-based model to protect user's data andcalion is installed only if the user approves all requested permis-
system resources. An application needs to explicitly request user‘ss'onhs' lication-based . deli h
approval of the required permissions at the installation time. The d'T e lapp |cabt|on-d ase per.m|35|or:jrrl108e mproves upr?nt eéra}-
utility of the permission model depends critically on end users' ditional user-based permission model [8]. However, this mode
ability to comprehend them. However, a recent study has shown works as expected updgr the assumption that users could correctly
that Android users have poor comprehension on permissions. pnderstand the permissions they grartnfortunately, recent stud- .

In this paper, we propose to help Android users better understand'®S haV(_a shown that Android phone users have poor understanding
application permissions through crowdsourcing. In our approach, of permissions [9, 12]. In particular, Felt et al. found that only 17%
collections of users of the same application use our tool to help eachOf phqne users paid agtentlon to permissions during application in-
other on permission understanding by sharing their permission re- stalla.tlon, and only 3% pf USers gould correctly answer all three
views. We demonstrate the feasibility of our approach by imple- Permission comprehension questions [9]. These findings clearly
menting a proof-of-concept of our design. Our case study shows indicate that the current permission warnings are not very effective
that the tool can provide helpful information of permission usage. " N€lping users make correct security decisions. As the number
It also exposes the limitations of the current implementation, and of applications are rapidly growing, there is an urgent need to find

the challenges need to be addressed in our next step. altgrnatlve qpproaches that help users better understand their appli-
cation permissions.

In this paper, we propose to enhance user comprehension of ap-

Categories and Subject Descriptors plication permissions using crowdsourcing. Our approach is to al-

H.1 [Information Systems]: Models and Principles low collections of users of the same application use our tool to help
each other on permission understanding by sharing their permission
General Terms reviews. Central to our approach is the assumptioobeérvability

of permission change. That is, we assume that changes in the per-
missions granted to an application reflect in changes in the applica-
tion behavior that can be observed, and possibly understood by the
Keywor ds user. Examples of observable and understandable changes in appli-
cation behavior due to permission changes are given in Section 3.
In this paper, we explore a particular case, namely when changes
in the application behavior angsible to the user. We show that
behavior changes of application due to permission suppression can
1. INTRODUCTION provide helpful information for users to understand the purposes
Android leads the market share in mobile application down- of certain permissions. To this end, we developed a tool called
loads since 2011 [13]. As an open source platform, Android sup- Droidganger.
ports third party application development with extensive APIs that Droidganger is constructed using two techniquesord/replay
provide access to the phone hardware, user data, and settingsandpermission suppression. It works in two steps. In the first step,
To protect system resources and user's data, Android adopts anDroidganger records the execution of an application with all re-
application-based permission model for security, where each ap- quested permissions granted. During the second step, it replays the
plication is required to explicitly indicate at installation time all execution multiple times with certain requested permissions sup-
pressed. When a permission suppression causes an application to
deviate from its normal behavior, i.e., different than the execution
during the record stage, Droidganger presents the differences to

Human Factors

Android permission, Mobile applications, Permission understand-
ing, Crowdsourcing, Record and replay.

Permission to make digital or hard copies of all or part of thisrkwfor the user. The user is asked to translate the observed difference
personal or classroom use is granted without fee providatidbpies are into a meaningful explanation on why the suppressed permission
not made or distributed for profit or commercial advantage aatichpies . g , A

bear this notice and the full citation on the first page. Toycoiherwise, to is needed. Droidganger uploads a user's permission comments to a

republish, to post on servers or to redistribute to listguiees prior specific Comments Processing Server (CPS), where permission comments

permission and/or a fee. 1 . -
SPSVI'12, October 19, 2012, Raleigh, North Carolina, USA. A second assumption is that the system has no capability leaks on

Copyright 2012 ACM 978-1-4503-1666-8/12/10 ...$15.00 permissions, but Grace et al. has shown that it is not true [10].

Execution

Record Replay
- trace -
(all permissions (a permission
: granted) suppressed)
~— Permission
Droidganger comments
! Permission 1 : Z::nmni::::g Deviation
comments ol i
S — B8l aggregation and detection
N/ presentation
Droidganger User inputs permission
comments
v
Comments Processing Send comments to CPS
_ Server (CPS)
Permission Figure 2: The structure of Droidganger.
- comments
Droidganger

quested permissions are granted). We expect that some behavior
.)) deviations due to permission suppression may provide meaningful
Figure 1: Design overview. clues for users to understamdhy a permission is needed or what
purposesit servesin an application. Droidganger has three compo-
. . nents: eRecord module, which records the execution of an applica-
are _aggregatet_j and presented for publlc_ access. D_rmd_ganger doegon when all requested permissions are granteReiay module,
not interfere with users while they are using an application. which replays the application using the recorded traces with certain
An individual user often uses a portion of functionalities of an requested permissions suppresseBediation Detection module,
application. Thus, her usage may only cover a portion of permis- \yhich compares the snapshots of recorded and replayed executions

sions requested by an application. We expect to increase permis-ynq detects the deviations, and presents the deviations to users. Fig-
sion coverage througbrowdsourcing by allowing collections of ure 2 shows the structure of Droidganger.

users of the same application to use Droidganger to help each other
on permission understanding by sharing their permission reviews Record
on CPS. Crowdsourcing is an efficient way to cope with the huge ,
number of applications in Android market. It also makes the review
burden of individual users small.

We demonstrate the feasibility of our approach by implementing
a proof-of-concept of Droidganger, which is capable of recording
the user input events, and replaying the execution of an application

with the recorded trace. Our case study shows that even with aihe GPS sensor, etc. These data can be obtained by monitoring

simple visual detection of the difference in output, our approach the system calls made by an application. In addition, we also need
0 o U . ;
can help users understand about 40% of application permissions. Itto record the start state of the execution, including the application

also exposes the limitations of the current implementation, and the configuration, and a snapshot of the file system, etc. To allow for

challenges need to be addressed in our next step. a later comparison, some snapshots, e.g., screenshots, system logs
of an execution are also recorded. All this data is stored in a trace

The Record module runs as a background service. When the
user interacts with the application under study, the Record module
records the execution of the application. To replay an application,
we record all nondeterministric inputs and events that influence the
execution. These inputs and events include user’s keystroke, screen
touches/drags, hardware lock, network traffic, location data from

2. ARCHITECTURE file on the phone itself.
Figure 1 depicts our approach. The envisioned system employs
a client-server model. The clients of the system are Andéqiali- Replay.
cation Communities. An application community is a collection of The replay module replays a recorded trace after suppressing one

Android users of a specific application who use Droidganger as a of the permissions requested by the application. During the replay,
tool to interpret permissions requested by that application. To be a snapshots corresponding to the same phases as in the record stage
client, an Android user simply installs Droidganger on her device, are taken for deviation detection. To observe the effects of each re-
and uses her applications as usual. Users’ comments on permisquested permission, the Replay module can be configured to replay
sion usage of applications are submitted to a Comments Processing recorded trace multiple times, each time with a different permis-
Server (CPS), which aggregates the permission comments for dif- sion being suppressed. However, we envision that each user in an
ferent applications. The aggregated permission comments can therapplication community will only replay the application with one

be accessed by any Android user, who can use the comments tgpermission suppressed. A large application community will assure
gauge the benefits and risks of installing an application. that all permissions of an application will be fully covered.

2.1 Droidganger Deviation Detection.

Droidganger is designed to give users helpful hints on how per- 1o observe the effects of a permission, the snapshots of the re-
missions are associated with an application’s functionality. The play where the permission was suppressed are compared pairwise
design is based on the assumption that every requested permissionith the snapshots taken in the record stage. If there is a significant
if not redundant, serves one or more purposes in an application. gifference between a pair, the user is shown the snapshot pair and

Depriving a requested permission may cause an application to beshe is asked to decide whether the difference might be due to the
less functional or deviate from its normal behavior (where all re-

suppressed permission. If so, the user inputs her comments on whascore ranging from 0 to 1 measuring the degree of their similarity,
purposes this permission serves in the application. For example, inwhere 1 denotes two images are equal. Two images are considered
a game application, the difference between a pair of screenshotssame if the score of comparison is higher than a threshold. In our
may be that the advertisements did not appear in the screenshoexperiments, we use a threshold of 0.95. Screenshot pairs with
when the INTERNET permission was suppressed. Then the userscores lower than a threshold are presented to user for review.
may input her comments saying that one purpose of using INTER-
NET in the game is to retrieve advertisements. Droidganger sub- 32 Case StUdy
mits users’ comments to the Comments Processing Server (CPS).
: Data Sets.
2.2 Comments Processing Server We downloaded two applications from Android market: Angry-
The comments processing server (CPS) is responsible for an-Birds Rio and Antivirus. The numbers of permissions requested
alyzing and presenting the permission comments received from by these applications are 6 and 39Together the two applications
users. Users’ comments are anonymized and grouped by appli-request 40 unique permissions.
cation names. Comments for an application are grouped by per-
mission names. Comments for a permission are aggregated a”d\/lethodology.
presented in a ranked manner. If a permission has too many com- \ye conducted an internal user study within our research group
ments, the top: are presented. The ranking of comments may g evaluate the feasibility of our approach. Three students (one
change over time since the CPS continuously receives comments,ngergraduate and two graduates) were invited to use Android em-
from users. Techniques commonly used in natural language pro- yjator equipped with our Droidganger implementation to observe
cessing can be used for comments aggregation and ranking. Alsohe permission usage of the two applications. Each student used
the CPS can use heuristics to discard spam submissions. Droidganger to record traces of her application usage, and replayed
the traces at a later time. During the record stage, all requested
3. FEASIBILITY STUDY permissions were granted. While in the replay stage, one of the re-
We have implemented a proof-of-concept of Droidganger on An- duested permissions was suppressed. For an applicatiom\wéth
droid 4.0.3 and deployed it on the Android emulator. In our imple- quested permissions, a recorded trace was replayedes, with a
mentation, the Record module is capable of recording user input different permission being suppressed each time. In a real deploy-
events, e.g., keystrokes, touches, drags, etc. The Replay moduldnent, we envision that different permissions could be suppressed
replays executions by reading the recorded input events. We mod-during the replay stage for various members of the application com-
ified Android Application Framework to allow us to suppress any Munity. Screenshots of the recorded and replayed stages are com-
permission of an application. Since this study is focused on visual Pared pairwise to find execution deviation caused by permission
effects of permission changes, we implemented the Deviation De- Suppression. Three students cross-validated their observations of

tection module as an image comparator, which compares screen-the effects caused by permission suppression.

shots of the record and replay stages pairwise. We evaluated the

feasibility of our approach using two applications downloaded from Findings.

Android market. Our experiments showed that even with a simple

The results of the user study are summarized in Figure 3, where

visual detection of the differences in output, our approach can help we categorize the side effects of permission suppression into four

user better understand about 40% of application permissions.

3.1 Implementation

Record.

We made minor changes to the Android Application Framework
by inserting code to record user input events while a user interacts
with an application. The record module records user’s keystrokes,
touches, and drags by monitoring the KeyEvents and MotionEvents
in the InputManger of the Framework. We also record the time of
each event, and screenshots for certain events.

Replay.

The Replay module reads a recorded trace, i.e., a sequence of
input events and times, translates the trace Miakeyr unner
scripts. It then calldbnkeyr unner to execute the scripts trans-
lated from a trace. We instrudbnkeyr unner to take screen-

shots corresponding to the same events as those in record stage.

We modified the PackageManager of the Framework to allow users
to selectively suppress permissions requested by an application.

Deviation Detection.
We implemented an image comparator to detect the differences

types:

e Meaningful effects: an execution deviation due to a permis-

sion suppression provides meaningful clues to the purposes
of a permission. For example, in a pair of AngryBirds screen-
shots shown in Figure 4, we found that advertisement did
not appear after the INTERNET permission was suppressed,
while a Goolge Play advertisement appeared on the top right
screen when all permissions were granted. Such an effect
can be considered as an indication that one purpose of the
INTERNET permission in AngryBirds is to access advertise-
ments.

Crashed effects: an application crashed or failed to start
when a permission was suppressed. We observed two types
of crashes due to permission suppression: (1) failed to start,
and (2) crashed in the middle. Case (1) often does not pro-
vide meaningful information to common users. In case (2),
reviewing the snapshots before the crash often gives helpful
information to a user: from that a user can learn which task
he was performing before the crash happened.

Syslog only: an execution deviation due to permission sup-
pression did not appear as screenshot difference, but it was

between screenshots taken in the record and replay stages. ThéWe only consider Android defined permissions and ignore permis-
Deviation Detection module reads two sequences of screenshotssions defined by third parties.

and compares them pairwise. For a pair of images, it computes a

Effects . / ~
App Meaningful Crashed Syslogonly None il ?s (Joog]e play PLAYNOW
AngryBirds 2 1 1 2 Vet 3 THIGASCORE
Antivirus 14 4 8 13 ’

Figure 3: Observed effects of the two applications.

SO

. UL L
captured in the system log. In our study, around 20% of ef- l

fects by permission suppression could only be captured by
the system log.

e Nonedenotes that no visual effects or system log information
were observed when a permission was suppressed. There
are three cases in which a permission suppression may have
no effects to the execution: (1) the permission is redundant,
or (2) the APIs associated with the permission are unusable
on an emulator, e.g., location service, etc., or (3) the APIs | B3 1
that related to the permission were not invoked. To test our i —
conjecture, we uploaded the Antivirus application to Stow- UL fiim
away [7] and the returned results indicated that this appli- A
cation is overprivileged, where 7 of the 39 requested per- = 1 gl
missions are redundant. Assuming the results returned by S
Stowaway are relatively accurate, our current implementa-
tion provides meaningful clues tglt- = 44% of permis- =
sions requested by Antivirus. (b) Replay stage

Figure 5 is a screenshot pair taken from Antivirus application.
It can be observed that the application failed to wipe personal data
after the WRITE_SYNC_SETTINGS permission was suppressed
during the replay stage. Such a deviation indicates that one pur-
pose of requesting the WRITE_SYNC_SETTINGS permission is
to provide the ability to “wipe personal data" in the application.
Due to space limits, we could not list screenshots of other permis-
sion suppressions.

Among the 40 requested permissions, 6 of them are not observ-
able on an emulator because emulator does not provide services
e.g., location-based, associated with these permissions. We expec|
that our current prototype of Droidganger may provide meaningful
clues to a higher percentage of permissions on real devices.

Also, by increasing code coverage of execution, e.g., asking a Hll"%
large number of users to use an application (as would be expected
in a real application community), we expect that some permission || EESEINR
suppressions that had no effect in our study may provide meaning- MBI

ful clues on permission usage. —._—i
4. CHALLENGES ’

There are a number of challenges to be addressed in order to
successfully build the envisioned system as described in Section 2.

Figure 4: A pair of screenshots of AngryBirds during record and re-
play stages. During the record stage, all permissions were granted;
while in the replay stage, the INTERNET permission was sup-
pressed. It can be observed that advertisements did not appear in

(b).

Wipe Personal Data [}

Wipe Personal Data

Wipe process failed

Network Proxy.

Many applications access Internet during execution. A survey by
Felt et al. showed that 86.6% of free and 65.0% of paid applications
request INTERNET permission [8]. To ensure a replay has same
network traffic inputs, we need to build a network proxy to record
the incoming traffic to the device. During the replay, the replay
module accesses the proxy and retrieves the traffic data needed fo
replay.

(a) Record stage (b) Replay stage

Figure 5: A pair of screenshots of Antivirus during record and re-
play stages. During the record stage, all permissions were granted;
yvhile in the replay stage, the WRITE_SYNC_SETTINGS permis-
sion was suppressed.

Randomness_. of the Pseudo Random Generator (PRG) is unknown. Recording
Some applications introduce randomness for unpredictability, o avecution in VM level allows full replay. However, VM level

e.g., in card games, cards are shuffled before being dealt. For o qrqreplay is too expensive for a smartphone. This calls for a
these applications, same inputs and events may produce d'ﬁerer“iight-weight record/replay technique.

outputs, thus, an execution may not be replayed well if the status

Non-repeatable Executions. and why certain privacy related resources are used by applications.
Executions related with online purchases are often hard to re- Our approach also employs crowdsourcing, but we enhance users’

play. For example, if a user makes an online payment during a understanding of general permissions (not limit to privacy related

record stage, then replaying the execution will make another pay- ones) by showing them deviations of app executions when certain

ment, which is often not desired by the user. For these applications, permissions are suppressed. Both [14] and our work leverage the

we need to find an alternative way to help users understand the pur-concepts of crowdsourcing and collaborative security. We propose

poses of permissions. an architecture that allows Android users to collaboratively label

the usages of permissions requested by applications. In this way,

Application Failure. application community users help each other and thus improve their
Since application developers may not capture exceptions trig- understanding of permissions.

gered by permission failures, an application may crash if one of the Doppelganger is a tool that helps users to perform privacy

requested permissions is suppressed. In that case, we may need tBreserving cookie configuration on their Internet browsers [17].

identify the failed API calls, and combine context information in Both Doppelganger and our work leverage the execution deviation

order to derive a permission usage. caused by policy configurations. However, Doppelganger aimed

for cookie configuration of Internet browsers, while our work fo-

User Incentives. cuses on improving users’ comprehension of Android permissions.
Since Droidganger uses crowdsourcing, its effectiveness is pro- DOPpelganger employs parallel execution, while our approach uses

portional to the number of users who actively use it. Using in- record/replay to achieve our goal.

centives can increase the number of active users and the quality

of submitted comments. Finding the incentive that maximizes the

number of Droidganger users and the quality of their submissions 6. CONCLUSION

is an important challenge. In this paper, we propose to use crowdsourcing to enhance
user comprehension of Android permissions. We design a tool,
5. RELATED WORK Droidganger, which provides information of permission usage to

Android’s application permission-based security model im- USers using two techniques: record/replay and permission suppres-
proves upon the traditional user-based permission model [8]. Even Sion. Our experiments showed that even with a simple visual detec-
so, researchers found that large number of applications have potenlion of the differences in output, our approach can help users better
tial to misuse users’ private information [11, 4, 5]. understand about 40% of application permissions.

Researchers have developed a number of techniques to amend
Android permission-based model. Nauman et al. proposed Apex, aAcknowledgments

framework allowing users to selectively granting permissions to ap- This work was supported in part by NSF grant CNS-1117711 and

plications [16]_on their d_evi_ces.' CyanogenMod is an open source ;o Army STIR grant W911NF-12-1-0018. We thank the anony-
replacement firmware distribution based on Ar_]dr0|d s_yst_em [3]. mous SPSM reviewers for useful comments on an earlier draft of
One of the features offered by CyanogenMod is permission sup- this paper

pression. Beresford et al. proposed Mockdroid, a tool allowing
phone users to selectively provide fake information to applications

which request sensitive information [1]. Enck et al. proposed Taint-
droid, a dynamic taint tracking and analysis tool that allows users
to track the usage of their sensitive data by third-party applications.
Hornyack et al. built AppFence, which allows users to protect their
sensitive data by data shadowing and exfiltration blocking [11].
AppFence originated the concept of “visibility of privacy control”.
The authors studied how privacy control affects the functionalities
of applications.

An underlying assumption of tools like Apex, CyanogenMod,
Mockdroid, and AppFence is that the user has a good understand-
ing of Android permissions, otherwise she could not properly use
or configure the tools. However, researchers have shown that An-
droid users have poor understanding of permissions [9, 12]. |n [6]
Felt et al. showed that application developers may also misunder-
stand permissions. Their study found that around one third of An-
droid applications are overprivileged [6], partly due to application
developers’ confusion on permission understanding.

Crowdsourcing provides the opportunities to delegate tasks typ-
ically performed by expensive in-house teams to mass of Internet
users. The concept of collaborative security has been applied to
malware detection [2], SMS spam filtering [18], and software self-
healing [15], etc. Concurrent with our work, Lin et al. presented
a study onprivacy as expectations, a crowdsourcing model used
for studying users’ expectation of what sensitive resources mobile
apps use [14]. In their study, users were shown application descrip-

tions and developer-selected screenshots and were asked whethe

7. REFERENCES

[1] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan.
Mockdroid: trading privacy for application functionality on
smartphones. IRroceedings of the 12th Workshop on
Mobile Computing Systems and Applications, HotMobile
11, pages 49-54, New York, NY, USA, 2011. ACM.

[2] J. Cheng, S. H. Wong, H. Yang, and S. Lu. Smartsiren: virus
detection and alert for smartphones Rroceedings of the
5th international conference on Mobile systems, applications
and services, MobiSys '07, pages 258-271, New York, NY,
USA, 2007. ACM.

[3] CyanogenModht t p: / / www. cyanogennod. cond ,
Retrieved in Aug 2012.

[4] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,

P. McDaniel, and A. N. Sheth. Taintdroid: an
information-flow tracking system for realtime privacy
monitoring on smartphones. Proceedings of the 9th
USENIX conference on Operating systems design and
implementation, OSDI'10, pages 1-6, Berkeley, CA, USA,
2010. USENIX Association.

[5] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study
of android application security. I[Rroceedings of the 20th
USENIX conference on Security, SEC’11, pages 21-21,
Berkeley, CA, USA, 2011. USENIX Association.

r[6] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner.
Android permissions demystified. Proceedings of the 18th

ACM conference on Computer and communications security,
CCS '11, pages 627-638, New York, NY, USA, 2011. ACM.

[7] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner.

Stowaway: A static analysis tool and permission map for
identifying permission use in android applications.
http://ww. andr oi d- per m ssi ons. org/, 2011.

[8] A. P. Felt, K. Greenwood, and D. Wagner. The effectiveness

of application permissions. IRroceedings of the 2nd
USENI X conference on Web application development,
WebApps'11, pages 7-7, Berkeley, CA, USA, 2011.
USENIX Association.

[9] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and

(10]

(11]

(12]

D. Wagner. Android permissions: user attention,
comprehension, and behavior.Pnoceedings of the Eighth
Symposium on Usable Privacy and Security, SOUPS '12,
pages 3:1-3:14, New York, NY, USA, 2012. ACM.

M. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic
detection of capability leaks in stock Android smartphones.
In Proceedings of the 19th Network and Distributed System
Security Symposium (NDSS), Feb. 2012.

P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall.
These aren't the droids you're looking for: retrofitting
android to protect data from imperious applications. In
Proceedings of the 18th ACM conference on Computer and
communications security, CCS '11, pages 639—-652, New
York, NY, USA, 2011. ACM.

P. Kelley, S. Consolvo, L. Cranor, J. Jung, N. Sadeh, and
D. Wetherall. A conundrum of permissions: Installing
applications on an Android smartphone Rroceedings of

the Workshop on Usable Security (USEC), Feb. 2012.

[13]

[14]

[15]

[16]

[17]

[18]

J. Kendrick. Latest smartphone market share numbers: Apple
is flat, google going strong.

http://ww. zdnet . com bl og/ mobi | e- news/

| at est - smart phone- nar ket - shar e

- nunmber s- appl e-i s- fl at - googl e- goi ng

- strong/ 2387, May 2011.

J. Lin, S. Amini, J. |. Hong, N. Sadeh, J. Lindqgvist, and

J. Zhang. Expecation and purpose: Understanding users’
mental models of mobile app privacy through crowdsourcing.
In Proceedings of the 14th ACM International Conference on
Ubiquitous Computing, Sep 2012.

M. E. Locasto, S. Sidiroglou, and A. D. Keromytis. Software
self-healing using collaborative application communities. In
Proceedings of the Network and Distributed System Security
Symposium, NDSS 2006, San Diego, California, USA. The
Internet Society, 2006.

M. Nauman, S. Khan, and X. Zhang. Apex: extending
android permission model and enforcement with
user-defined runtime constraints.Pnoceedings of the 5th

ACM Symposium on Information, Computer and
Communications Security, ASIACCS '10, pages 328-332,
New York, NY, USA, 2010. ACM.

U. Shankar and C. Karlof. Doppelganger: Better browser
privacy without the bother. IRroceedings of the 13th ACM
conference on Computer and communications security, CCS
‘06, pages 154-167, New York, NY, USA, 2006. ACM.

K. Yadav, P. Kumaraguru, A. Goyal, A. Gupta, and V. Naik.
Smsassassin: Crowdsourcing driven mobile-based system for
sms spam filtering. IiProceedings of the 12th Workshop on
Mobile Computing Systems & Applications, HotMobile "11.
ACM, 2011.

