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Detecting Kernel-Level Rootkits
Using Data Structure Invariants

Arati Baliga, Vinod Ganapathy, and Liviu Iftode

Abstract—Rootkits affect system security by modifying kernel data structures to achieve a variety of malicious goals. While early
rootkits modified control data structures, such as the system call table and values of function pointers, recent work has demonstrated
rootkits that maliciously modify noncontrol data. Most prior techniques for rootkit detection have focused solely on detecting control
data modifications and, therefore, fail to detect such rootkits. This paper presents a novel technique to detect rootkits that modify both
control and noncontrol data. The main idea is to externally observe the execution of the kernel during an inference phase and
hypothesize invariants on kernel data structures. A rootkit detection phase uses these invariants as specifications of data structure
integrity. During this phase, violation of invariants indicates an infection. We have implemented Gibraltar, a prototype tool that infers
kernel data structure invariants and uses them to detect rootkits. Experiments show that Gibraltar can effectively detect previously
known rootkits, including those that modify noncontrol data structures.

Index Terms—Kernel-level rootkits, noncontrol data attacks, invariant inference, static and dynamic program analysis.

1 INTRODUCTION

ERNEL-LEVEL rootkits are a form of malicious software

that compromise the integrity of the operating system.
Such rootkits stealthily modify kernel data structures to
achieve a variety of malicious goals, which may include
hiding malicious user-space objects, installing backdoors,
logging keystrokes, and disabling firewalls. Recent studies
have shown a phenomenal increase in malware that use
stealth techniques commonly employed by rootkits. For
example, MacAfee Avert Labs [5] reported a 600 percent
increase in the number of rootkits in the three-year period
from 2004-2006. The most recent list of threat predictions
[6], also by MacAfee, contains several recent examples of
trojan horses that were used to commit bank fraud. These
trojan horses used stealth techniques to hide on a victim’s
system, disable antivirus software, prevent signature
updates, or include the victim’s system into a botnet.

The increase in the number and complexity of rootkits
can be attributed to the large and complex attack surface
that the kernel presents. The kernel manages several
hundred heterogeneous data structures, most of which are
critical to its correct operation. A rootkit can subvert kernel
integrity by subtly modifying any of these data structures.
In particular, kernel data structures that hold control data,
such as the system call table, jump tables, and function
pointers, have long been a popular target for attack by
rootkits. However, recent work has demonstrated rootkits
that achieve a variety of malicious goals by modifying
noncontrol data in the kernel. For example, Petroni et al. [34]
demonstrated a rootkit that hid malicious user-space
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processes by manipulating linked lists used by the kernel
for bookkeeping. In our previous work, we also have
demonstrated rootkits that alter noncontrol data in the
kernel [9], such as rootkits that degrade application
performance by modifying memory management metadata
and those that affect the output of the pseudorandom
number generator by contaminating entropy pools. Non-
control data present a much larger attack surface than
control data, and these rootkits demonstrate the ease with
which attackers can subtly modify noncontrol data struc-
tures to subvert the kernel.

To counter rootkits that modify noncontrol data, Petroni
et al. [34] proposed a detection architecture in which kernel
data structures are periodically compared against a set of
integrity specifications. These specifications codify semantic
properties of kernel data structures; the detection architec-
ture uses specification violation as an indicator of rootkit
behavior. While this approach has the advantage of detect-
ing sophisticated rootkits, it also poses a new challen-
ge—that of developing integrity specifications. High-quality
specifications can possibly be supplied by a team of experts
who have a detailed understanding of kernel data structure
semantics. However, commodity operating system kernels
typically maintain several hundred, complex data struc-
tures. Consequently, specification writers could either fail to
supply certain integrity specifications (e.g., because they are
unaware of certain specifications) or fail to realize how a
rootkit could exploit them.

We propose anovel approach that automatically generates
kernel data structure integrity specifications. In our ap-
proach, these integrity specifications take the form of data
structure invariants—properties that musthold for the lifetime
of a data structure. The key idea is to monitor the values of
kernel data structures during an inference phase in order to
hypothesize invariants that are satisfied by these data
structures. These invariants can encompass both control
and noncontrol data structures. For example, an invariant
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could state that the values of elements of the system call table
are a constant (an example of a control data invariant).
Similarly, an invariant could state that all the elements of the
running-tasks linked list (used by the Linux kernel for
process scheduling) are also elements of the all-tasks
linked list that is used by the Linux kernel for process
accounting (an example of a noncontrol data invariant) [34].
These invariants are then checked during a rootkit detection
phase, in which violation of an invariant is assumed to
indicate the presence of a rootkit.

To evaluate the proposed approach, we built Gibraltar, a
rootkit detection tool that automatically infers invariants on
kernel data structures. Gibraltar periodically captures snap-
shots of kernel memory via an external PCI card to
reconstruct kernel data structures. It adapts Daikon [19],
an invariant inference tool for user-space application
programs, to infer invariants on kernel data structures. In
experiments with 23 rootkits, including those that modify
noncontrol data, we found that Gibraltar detected all
rootkits while imposing a runtime monitoring overhead of
under 0.5 percent.

Our experiments demonstrate the feasibility of auto-
mated generation of integrity specifications for kernel data
structures. The invariants inferred by our approach can
serve as the starting point for a team of kernel experts, who
can further refine these specifications. However, we found
that the automatically generated invariants were quite
precise. For example, during a 42 minute rootkit detection
phase, we observed only 82 spurious invariants out of a
total of 236,444 automatically inferred invariants. Never-
theless, the semantic quality of automatically generated
invariants remains unknown. For example, it maybe
possible for a kernel expert to provide a small set of
invariants that encompasses several hundred invariants
inferred by our approach. Future work can further explore
how the output of our automatic approach compares
against invariants written by a kernel expert.

In summary, this paper makes the following contributions:

e Rootkit detection via invariant inference. It pro-
poses a novel approach that detects rootkits by
identifying violations of automatically inferred
kernel data structure invariants. Section 3 presents
an overview of our approach, and presents examples
of both control and noncontrol data attacks that were
detected in our experiments.

e Design and implementation of Gibraltar. Section 4
presents the design and implementation of Gibraltar,
a prototype tool that uses the above approach for
rootkit detection.

o Evaluation on real-world rootkits. Section 5 pre-
sents a comprehensive evaluation of Gibraltar on
23 rootkits, which affect both control and noncon-
trol data structures. Gibraltar can detect all of them
with negligible monitoring overhead.

2 RELATED WORK

The evolution of rootkits and the techniques to detect them
has traditionally been an arms race between attackers and
defenders. Early rootkits operated by replacing system

binaries on disk with infected versions. Rootkits have more
recently evolved to infecting the system by modifying
kernel code, control data, and noncontrol data. Gibraltar is
the latest in a long list of rootkit detection tools, but is one
of only two techniques that can detect malicious modifica-
tions of noncontrol data.

Defending system utilities. Rootkits can hide malicious
user-space objects by replacing key system utilities with
infected versions. For example, a rootkit can replace the
ps utility with a version that hides a malicious process from
a system administrator. Such rootkits can be detected using
a number of prior tools, such as Tripwire [25] and Strider
Ghostbuster [10], and several commercial tools (e.g., [1],
[14], [45]). Most of these tools operate by comparing the
kernel’s view of user-space object (e.g., a cryptographic hash
of system utilities) against known values. Any inconsisten-
cies are indicative of rootkits. Recent work [11] has aimed to
prevent such rootkits by modifying hard disk drives to
disallow modifications to critical system utilities unless such
changes are authorized, e.g., by physically connecting an
authentication token to the hard disk.

In contrast to these techniques, which focus on protecting
user-space objects, Gibraltar focuses on rootkits that operate
by modifying the kernel. These techniques maybe used
together with Gibraltar to provide comprehensive protection.

Protecting kernel code and critical data. Modern rootkits
operate by directly infecting the operating system kernel. For
example, a rootkit can modify kernel code or the system call
table to instead execute malicious code. Prior work to detect
such rootkits falls under three broad categories:

e Kernel module wvalidators. Rootkits often spread as
kernel modules that affect kernel code and data
after they have been loaded. Such kernel modules
can also use techniques such as polymorphism to
evade detection by virus scanners. Static analysis of
kernel modules (e.g., using symbolic execution [26],
[49]) can detect these rootkits, but conservative
approximations made by static analysis may result
in false alarms. Instead of checking kernel modules,
Gibraltar focuses on observing and validating data
modifications to kernel memory, including those
made by kernel modules.

e  Hardware-based integrity monitors. The recent addition
of trusted platform modules (TPM) to commodity
hardware has allowed the development of protocols
to verify the integrity of the software stack executing
on a remote machine (e.g., [21], [38], [39], [41]). Such
techniques can detect certain kinds of rootkits, in
particular, those that modify kernel code and critical
data structures. However, we are not aware of the
use of trusted computing to detect rootkits that
modify arbitrary kernel data structures.

Secure coprocessors allow remote monitoring of
physical memory, and have been used to build
rootkit detectors [33], [51]. For example, Copilot uses
a coprocessor [33] to periodically fetch and ensure
the integrity of physical memory pages that contain
kernel code and critical data. Gibraltar uses a similar
technique (a PCl-card) to periodically fetch snap-
shots of kernel memory from a target machine,
reconstruct data structures in these snapshots and
check invariants.
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Attack

Example invariants violated by the attack

(a) Entropy pool contamination (§3.1)
poolinfo.tap5 == 1
run-list C all-tasks
LenctH(formats) ==

(b) Process hiding (§3.2)

(¢) Adding binary formats (§3.3)
(d) Resource wastage (§3.4)

(e) Intrinsic denial of service (§3.5)
(f) Disabling firewalls (§3.6)

(g) Disabling PRNG (§3.7)

(h) Altering real-time clock (§3.8)
(i) Defeating signature scans (§3.9)

max threads == 14,336

poolinfo.tapl € {26, 103}, poolinfo.tap2 € {20, 76}, poolinfo.tap3 € {14, 51}, poolinfo.tap4 € {7, 25},

zone table[1].pages min==255, zone table[1l].pages low==510, zone table[1].pages high==765

nf_Tlooks [2]1[1] .next.hook == 0xc®3295b0®

random_ fops.read == 0xc028bd48, urandom_fops.read == 0xc028bdas
rtc_fops->ioctl == 0xc0la39ed

kmem fops->read == 0xc0186e00, mem fops->read == 0xc0186c40

Fig. 1. Summary of the attacks discussed in Section 3 and kernel data structure invariants violated by these attacks.

e  Virtual machine introspection. Virtual machine moni-
tors offer an alternative technique to monitor
the integrity of memory pages that contain kernel
code and data. In this technique, called virtual
machine introspection [7], [22], [27], the virtual
machine monitor fetches and forwards memory pages
from a guest operating system to a rootkit detector,
which can analyze the integrity of these pages. This
technique has also been used to prevent rootkits from
modifying kernel code [36]. Gibraltar can potentially
be adapted to use virtual machine introspection.

Protecting kernel hooks. Rootkits have recently evolved
to hijacking control of the kernel by modifying kernel control
data, such as function pointers. This attack technique, called
hooking, has spurred research on tools to detect and protect
kernel hooks [35], [46], [47], [50]. For example, SBCFI [35]
periodically scans hooks in kernel memory and ensures that
they point to preapproved locations, e.g., addresses of
exported kernel functions. As discussed in Section 1,
Gibraltar infers invariants over both control and noncontrol
data, and can therefore detect rootkits that use hooking to
hijack kernel control flow.

Protecting noncontrol data. Recent research has demon-
strated rootkits that affect system security by modifying
arbitrary kernel data [9], [34]. In contrast to rootkits that
hijack kernel control flow, these rootkits operate by modify-
ing kernel data structures to hide user-space processes [34],
affect application performance, or affect the output of the
kernel’s pseudorandom number generator [9]. The rootkit
detection tools discussed above do not monitor noncontrol
data structures and therefore cannot detect such rootkits.

Petroni et al. [34] first proposed an architecture to detect
rootkits that affect noncontrol data structures. Their
architecture periodically compares kernel data structures
against integrity specifications that describe semantic
properties of kernel data structures. These specifications
must hold during normal execution of the kernel. Violation
of any of these specifications indicates the presence of a
rootkit. Their paper demonstrated this approach by using
two sets of specifications (developed manually) to detect
two rootkits.

Gibraltar extends the approach developed by Petroni
et al. by automating the extraction of integrity specifica-
tions. It does so by applying automated techniques that
observe kernel data structures over a period of time and
hypothesize invariants, violations of which are then used in
an anomaly detection phase to identify rootkits. In this
respect, Gibraltar closely resembles prior work on software
engineering aids that use a similar approach to detect
programming errors [13], [16], [24].

Recovery. Finally, recent work has proposed techniques
to automatically recover from system infections and errors,
including rootkits [17], [20], [32], [42]. In contrast to these
techniques, Gibraltar only performs detection and cannot
recover from rootkit infections.

3 RoOOTKIT DETECTION VIA INVARIANT INFERENCE

This section motivates the use and effectiveness of data
structure invariants at detecting rootkits by presenting nine
attacks that employ stealth techniques. These attacks either
modify noncontrol kernel data (cf. Attacks 1-5) or modify
kernel control data (cf. Attacks 6-9). Although these attacks
were implemented using the Linux kernel, similar attacks
should also be applicable to other operating systems.
Gibraltar successfully detects each of the attacks discussed
in this section. Where applicable, we discuss existing tools
that can detect each attack.

For each of the attacks presented in this section, we also
describe a data structure invariant (automatically inferred
by Gibraltar by observing the execution of an uncompro-
mised kernel) that is violated by the attack (see Fig. 1). In
addition, we also describe the semantic meaning of each
invariant, i.e., the reason why a data structure satisfies the
property specified by the invariant in an uncompromised
kernel. The invariants listed in this section are examples
drawn from several thousand invariants that are automa-
tically inferred by Gibraltar. Particularly, noteworthy in the
examples below is the heterogeneity of the data structures
over which Gibraltar infers invariants. Although these
invariants can be examined, interpreted, and refined by a
security expert, Gibraltar, by default, automatically uses
these invariants as specifications of data structure integrity.

3.1 Attack 1: Entropy Pool Contamination
The kernel uses the pseudorandom number generator
(PRNG) to obtain randomness needed to seed several other
security-critical applications. The goal of the entropy pool
contamination attack [9] is to contaminate entropy pools
and associated polynomials used by the PRNG, so as to
degrade the quality of random numbers that it generates.
Attack. The PRNG uses the primary and secondary
entropy pools to generate random numbers. The primary
pool derives entropy from external events such as key-
strokes, mouse movements, disk, and network activity. As a
request arrives for a random number, the kernel extracts
bytes from the primary pool and moves them to the
secondary pool. Bytes extracted from the secondary pool
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are, in turn, used to provide random numbers to kernel
functions and user-level applications.

To ensure that the numbers generated by the PRNG are
pseudorandom, the contents of the pools are updated using
a stirring function each time bytes are extracted from the
pools. The stirring function uses a polynomial whose
coefficients are specified in five integer fields of a struct
poolinfo data structure, namely tapl, tap2, tap3,
tap4, and tap5. This attack zeroes the coefficients of the
polynomial, which renders ineffective part of the algorithm
used to extract bytes from the pool. It also writes zeroes
constantly into the entropy pools. Consequently, the
numbers generated by the PRNG are no longer random.

Invariants. Fig. 1la shows the invariants that Gibraltar
identifies for the coefficients of the polynomial that is used
to stir entropy pools in an uncompromised kernel (the
poolinfo data structure shown in this figure is repre-
sented in the kernel by one of random_state->poolinfo
or sec_random_state->poolinfo). The coefficients are
initialized upon system start-up, and must never be
changed during the execution of the kernel. The attack
violates these invariants when it zeroes the coefficients of
the polynomial. Gibraltar detects this attack when the
invariants are violated.

3.2 Attack 2: Process Hiding

The goal of this attack is to hide a malicious user-space
process from the system utilities, such as ps. The attack
operates by modifying the contents of the kernel linked lists
used for process accounting and scheduling [2], [34].

Attack. This attack relies on the fact that process
accounting utilities, such as ps, and the kernel’s task
scheduler consult different process lists. The process
descriptors of all tasks running on a system belong to a
linked list called the all-tasks list (represented in the
kernel by the data structure init_tasks->next_task).
This list contains process descriptors headed by the first
process created on the system. The all-tasks list is used
by process accounting utilities. In contrast, the scheduler
uses a second list, called the run-1ist (represented in the
kernel by run_gueue_head->next), to schedule pro-
cesses for execution.

The process hiding attack removes the process descriptor
of a malicious user-space process from the all-tasks list
(but not from the run-1list list). This ensures that the
process is not visible to process accounting utilities, but that
it will still be scheduled for execution.

Invariant. Fig. 1b presents the invariant automatically
discovered by Gibraltar, which states that all elements of
run-list must also be elements of the all-tasks list.
When a rootkit attempts to remove a task from the all-
tasks list, this invariant is violated, and is therefore
detected by Gibraltar. This attack was previously described
by Petroni et al. [34] as an example of a noncontrol data
attack. They also describe an invariant enforcement tool to
detect such attacks. However, in their approach, data
structure invariants were supplied manually by a security
expert. Gibraltar extends Petroni et al.’s work by developing
an automated approach to produce data structure invariants.

1. For ease of presentation, we have simplified some details of the attacks
presented in Section 3. For full details of each attack, please consult the
original references.

3.3 Attack 3: Adding Binary Formats

The goal of this attack is to invoke malicious code each time
a new process is created on the system [44]. While rootkits
typically achieve this form of hooking by modifying kernel
control data, such as the system call table, this attack works
by inserting a new binary format into the system.

Attack. This rootkit adds a malicious handler to support a
new binary format. The binary formats supported by a system
are maintained by the kernel in a global linked list called
formats. The binary handler, specific to a given binary
format, is also supplied when a new format is registered.

When a new process is created on the system, the kernel
creates the process address space, sets up credentials and in
turn calls the function search_binary_handler, which
is responsible for loading the binary image of the process
from the executable file. This function iterates through the
formats list to look for an appropriate handler for the
binary that it is attempting to load. As it traverses this list, it
invokes each handler in it. If a handler returns an error code
ENOEXEC, the kernel considers the next handler on the list;
it continues to do so until it finds a handler that returns the
code SUCCESS.

This attack works by inserting a new binary format in the
formats list and supplying the kernel with a malicious
handler that returns the error code ENOEXEC each time it is
invoked. Since the new handler is inserted at the head of the
formats list, the malicious handler is executed each time a
new process is executed.

Invariants. Gibraltar infers the invariant shown in Fig. 1c
on the formats list on our system, which has two registered
binary formats. The size of the list is constant after the system
starts, and changes only when a new binary format is
installed. As this attack inserts a new binary format it
changes the length of the format s list violating the invariant
in Fig. 1c; consequently, Gibraltar detects this attack.

3.4 Attack 4: Resource Wastage

This attack creates artificial pressure on the memory
subsystem [9], thereby forcing the memory management
algorithms to constantly free memory by swapping pages to
disk. In spite of the availability of free memory, this
memory is not used either by the kernel or by user-space
applications. Continuous swapping to disk also affects the
performance of the system.

Attack. The kernel’s memory management unit ensures
that there are always free pages in memory to fulfill
allocation requests made both from the kernel and user-
space applications. To do so, it employs memory balancing
algorithms, which use three watermarks to estimate memory
pressure, namely, the fields pages_min, pages_low, and
pages_high, of a struct zone_struct data structure
(zone_table[1], in Fig. 1d). When the number of free
pages in the system drops below the pages_1low watermark,
the kernel asynchronously swaps unused pages to disk. This
process continues until the number of pages reaches the
pages_high watermark. In contrast, if the number of free
pages available drops below the pages_min watermark, the
kernel synchronously swaps pages to disk.

This attack manipulates the three watermarks and sets
their values close to the number of free pages in the system.
Consequently, the number of free pages frequently drops
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below the pages_min and pages_low watermarks, for-
cing the kernel to continuously swap pages to disk, thereby
creating synthetic memory pressure in the system.
Invariants. Gibraltar identifies the invariants shown in
Fig. 1d for the three watermarks. These values are initialized
upon system start-up, and typically do not change in an
uncompromised kernel. The attack sets the pages_min,
pages_low, and pages_high watermarks to 210,000,
215,000, and 220,000, respectively. The values of these
watermarks are close to 225,280, which is the total number
of pages available on our system. Gibraltar detects this attack
because the invariants shown in Fig. 1d are violated.

3.5 Attack 5: Intrinsic Denial of Service

The goal of this attack is to degrade application perfor-
mance by throttling the number of processing threads that
an application can create to perform tasks in parallel. It
works by corrupting data used by the clone system call in
Linux. As a result, this attack stealthily causes a measured
degree of denial of service because resources beyond a
certain threshold become temporarily unavailable to appli-
cations, which, in turn, experience a slowdown.

Attack. The kernel relies on the process creation
mechanisms to satisfy user requests. In particular, server
applications are designed to be multiprocess or multi-
threaded; they constantly create new processes/threads to
service requests obtained from clients. This attack changes
the max_threads variable used by the clone system call.
This variable is used to check if the total number of
processes created on the system exceeds the total number of
processes that can possibly be created. This check within the
clone system call is incorporated to curtail fork bombs.
The max_threads variable is in the static kernel has a
default value of 14,336, which is therefore an upper limit on
the total number of processes that can exist on a system.
During our attack, the total number of processes existing at
the time of attack was 33. The attack changes the value of
max_threads to 40, thereby severely limiting the number
of new processes that can be created on the system. Once
the number of processes exceeds 40, subsequent system
calls to create new processes receive an error message,
indicating the temporary unavailability of the resource.
Although applications are typically programmed to handle
this error code, they experience a slowdown because this
attacks limits their ability to create new processes. This
attack resembles an intrinsic denial-of-service attack, where
the service is unable to function at its full capacity.

Invariants. The invariant inferred by Gibraltar on the
max_threads variable is shown in Fig. le. The attack
modifies the value of this variable and violates the invariant
and is therefore detected by Gibraltar.

3.6 Attack 6: Disabling Firewalls

The goal of this attack is to stealthily disable firewalls
installed on the system [9]; a user is unable to determine
that firewalls have been disabled using the iptables
utility. Instead, iptables shows the firewall rules that
were created for the system, and the firewall appears to
be enabled.

Attack. This attack overwrites hooks in the Linux
netfilter framework, which is a packet filtering frame-
work in the Linux kernel. It provides hooks at multiple

points in the networking stack, and was designed for kernel
modules to register callbacks for packet filtering, packet
mangling, and network address translation. The iptables
command line utility enforces firewall rules through the
netfilter framework. Pointers to the netfilter hooks
are stored in a global table called nf_hooks. This attack
overwrites the hooks for the IP protocol, and instead sets
them to point to the attack function, thereby effectively
disabling the firewall. The table where the firewall rules are
stored is unaltered and therefore displayed by iptables
when the user manually inspects the firewall.

Invariants. Gibraltar inferred the invariant shown in
Fig. 1f for netfilter. The attack overwrites the hook
with the attack function, thereby violating the invariant
that function pointer nf_hooks[2] [1] .next .hook is a
constant.

As this attack modifies kernel function pointers, it can
also be detected by SBCFI [35], which automatically extracts
and enforces kernel control-flow integrity. In fact, function
pointer invariants inferred by Gibraltar implicitly deter-
mine a control-flow integrity policy that is equivalent to
SBCFI. However, in contrast to SBCFI, Gibraltar can also
detect noncontrol attacks (e.g., Attacks 1-5).

3.7 Attack 7: Disabling the PRNG

This attack overwrites the addresses of the functions
registered with the virtual file system layer by the PRNG
[9]. The overwritten values point to functions that always
return zero or an attacker-defined sequence when random
bytes are requested from the PRNG; the PRNG’s functions
are never executed.

Attack. The kernel provides two devices /dev/random
and /dev/urandom from which random numbers can be
read. The data structures used to register the device
functions are random_fops and urandom_fops, both of
which are variables of type struct file_operations.
These data structures have function pointers to the various
functions provided by the PRNG. The attack replaces the
genuine function pointers for the read function within
these data structures. After the attack has infected the
kernel, every byte read from the two devices simply returns
a zero. The original PRNG functions are never called.

Invariants. The invariants inferred by Gibraltar on our
system for the random_fops and urandom_fops are
shown in Fig. 1g. The attack code changes the values of the
above two function pointers, violating the invariants. As
with Attack 6, this attack can also be detected using SBCFIL.

3.8 Attack 8: Altering Real-Time Clock Behavior

The real-time clock (RTC) on a system provides the system
time and features, such as setting an alarm clock, for
scheduled execution of applications at later points in time.
This attack alters the behavior of the real-time clock so that
alarms registered by certain applications, such as antivirus
software and other intrusion detection systems, are never
triggered. This disables scheduled virus scans and other
defense activities carried out on the system, thus making it
vulnerable to attacks.

Attack description. The real-time clock in a computer
system is powered by a small battery or accumulator and
continues to tick even when the system is turned off. It can
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be programmed to issue periodic interrupts or to issue an
interrupt when the clock reaches a certain value. The Linux
kernel uses the RTC to retrieve the date and time. The RTC
driver provides the device /dev/rtc to applications,
which they can use to access the RTC. The system time
can be set by an administrator using the clock utility.

The RTC is used by applications that rely on periodic
execution of tasks. A classic example of such an application
is an antivirus software. A user typically schedules
complete disk scans for viruses and worms when the
system is not in use because it is a time-consuming process.
For example, a periodic scan of the system might be
scheduled to run every Sunday morning at 3:00 a.m. The
antivirus program relies on the RTC to issue an interrupt
when the clock reaches this time.

The goal of this attack is to disable the scheduled
execution of the antivirus program. Applications set such
an alarm by using the ioctl system call on the /dev/rtc
device. This attack works by overwriting the function
pointer for the ioctl system call, which is stored within
the data structure rtc_fops. The malicious function can
selectively disable alarms only for certain applications of
interest, such as the antivirus software, thereby other
regular applications function flawlessly. The system con-
tinues to be vulnerable to attacks because antivirus and
intrusion detection systems do not run at their scheduled
times. This attack makes the system more vulnerable to
future attacks.

Invariants. The invariant inferred by Gibraltar on the
rtc_fops->ioctl variable is shown in Fig. 1h. Since the
attack installs its own ioctl handler, this invariant is
violated and the attack is detected. As with Attack 6, this
attack can also be detected by SBCFI.

3.9 Attack 9: Defeating In-Memory Signature Scans

This attack defeats malware detectors that use in-memory
signature scans by providing them with a fake view of
memory. The attack achieves this goal by installing malicious
read functions for the /dev/kmem and the /dev/mem
devices, which provide interfaces for reading and writing
to the kernel virtual address space and the system physical
memory, respectively.

Attack description. /dev/mem and /dev/kmem are
character devices provided by a Linux system that allow
read and write access to system memory. Only privileged
users are allowed to read or write to these devices. The
device /dev/kmem accesses data from the kernel virtual
memory, while /dev/mem reads data from the system
physical memory. Reads from these devices return the
memory contents existing at the respective memory loca-
tions, while writes allow patching memory with supplied
data. Rootkits have also used the /dev/kmem interface to
patch the running kernel (e.g., SucKIT [40]).

The high-level objective of this attack is similar to that of
the Shadow Walker rootkit [43], which utilizes the split
TLB architecture of the Intel Pentium processor to modify
the kernel’s page-fault handler to return fake memory
contents. However, this attack achieves the same objective
by overwriting function pointers registered by the /dev/
mem and /dev/kmem devices. These function pointers are
stored in the virtual file system layer in the data structure

kmem_fops and mem_fops, of type struct file_o-
perations. The malicious handlers for the read function
can present a counterfeit view of the memory pages, thus
thwarting all detection software that uses these interfaces to
scan memory for malware signatures.

Invariants. The /dev/mem and /dev/kmem devices
register their respective read function handlers with the
Linux VFS layer. The invariants inferred by Gibraltar for
the respective data structures are shown in Fig. 1i. When the
attack replaces these function handlers to point to its own
malicious functions, the invariants shown in Fig. 1i are
violated and hence the attack is detected.

4 DESIGN AND IMPLEMENTATION OF GIBRALTAR

Gibraltar must be physically isolated from the monitored
system because it aims to detect kernel-level rootkits. In our
implementation, Gibraltar executes on a separate machine,
called the observer, and monitors the execution of the target
machine. Both the observer and the target are intercon-
nected via a secure back-end network using the Myrinet PCI
intelligent network cards [3].? The back-end network allows
Gibraltar to remotely access the target kernel’s physical
memory, from which it infers data structure invariants. Both
coprocessor and VMM-based monitors use similar techni-
ques to read the target’s memory. Consequently, Gibraltar
can be easily adapted to work with either infrastructure.

Gibraltar operates in two modes, namely, an inference
mode and a detection mode. In the inference mode, Gibraltar
infers invariants on data structures of the target’s kernel.
Inference happens in a controlled environment on an
uncompromised target, e.g.,, a fresh installation of the
kernel on the target machine. In the detection mode,
Gibraltar checks whether the data structures on the target’s
kernel satisfy the inferred invariants.

Gibraltar consists of four key components, as shown in
Fig. 2. The page fetcher responds to requests by the data
structure extractor to fetch kernel memory pages from the
target. The data structure extractor, in turn, analyzes raw
physical memory pages and extracts values of data struc-
tures. To do so, it requires data type definitions of the target’s
kernel and a set of root symbols that it uses to traverse the
target’s kernel memory pages. Both these inputs are obtained
via an offline static analysis of the source code of the kernel
version executing on the target machine. The data structure
extractor outputs a (partial) kernel snapshot, i.e., the set of
kernel data structures in the physical memory pages obtained
from the target.’ The invariant generator processes snapshots
and hypothesizes likely invariants, which represent proper-
ties of individual data structures (i.e., memory objects), as

3. The snapshot is partial because our implementation of the data
structure extractor currently ignores dynamically allocated arrays, opaque
pointers, and untagged unions (see Section 4.2). Moreover, the data
structure extractor may encounter inconsistent data structures views
because it fetches memory pages in an asynchronous fashion.

2. Prior work [37] shows that both PCI and coprocessor-based techniques
to read the contents of main memory can be bypassed for AMD processors.
These attacks operate by inserting illegal entries into the memory map of
the memory controller (i.e., the northbridge). In the worst case, attempts to
read the contents of memory on a compromised machine can return values
chosen by the attacker. Gibraltar can also operate with other techniques that
can securely fetch memory pages from the target machine, e.g., VMM-based
monitors [22].
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Fig. 2. Design of Gibraltar. Boxes with solid lines show components of
Gibraltar, while boxes with dashed lines show the input or output of
different components.

well as collections of data structures. Examples of objects
include scalars, such as integer variables or array elements,
and fields within aggregate data structures, such as
C structs. Collections of data structures represent objects
of the same type grouped together, e.g., linked lists. During
detection, the monitor uses the inferred invariants as
specifications of kernel data structure integrity. The monitor
raises an alert when a kernel data structure invariant is
violated. The following sections elaborate on the design of
each of these components.

4.1 The Page Fetcher

Gibraltar executes on the observer, which is isolated from
the target system. Gibraltar’s page fetcher is a component
that takes a physical memory address as input, and obtains
the corresponding memory page from the target. The target
runs a Myrinet PCI card with an enhanced version of the
original firmware, which directly interprets and services
requests from the page fetcher, without intervention from
the target’s kernel. For each request, the firmware on the
target initiates a DMA request for the requested page, and
sends the contents of the physical page to the observer upon
completion of the DMA.

4.2 The Data Structure Extractor

The data structure extractor analyzes raw physical
memory pages received from the page fetcher and outputs
kernel snapshots. It has two key responsibilities: locating
(Section 4.2.1) and naming (Section 4.2.2) data structures.

4.2.1 Locating Data Structures

The extractor uses a set of root symbols and type definitions to
locate data structures in raw physical memory pages
received from the target. Root symbols denote kernel data
structures whose physical memory locations are fixed. All
data structures on the target’s heap are reachable from root
symbols. In our implementation for targets running Linux,
we used the symbols in the System.map file of the target’s
kernel as the set of roots. Second, it uses a set of type definitions
of the data structures in the target’s kernel. Type definitions
are used as described below to recursively identify all

Input: (a) R: addresses of roots;
(b) Data structure definitions.
Output: Set of all data structures reachable from R.
worklist = R;
visited = ¢;
snapshot = ¢;
while worklist is not empty do
addr = remove an entry from worklist;
visited = visited U {addr};
M = physical memory page containing addr;
obj = object at address addr in M;
snapshot = snapshot U value of obyj,
10. foreach pointer p in obj do
11. if p ¢ visited
12. worklist = worklist U {p};
13.  return snapshot;

000N kW N

Fig. 3. Algorithm used by the data structure extractor.

struct task_struct {...
struct list_head
ConTAINER(Struct task struct,run_list) run_list;

-}

Fig. 4. An example showing the ConTaInNErR annotation. The field
run_list within the structure task struct points to the run list
field of another task_struct.

reachable data structures. We automatically extracted 1,292
type definitions by analyzing the source code of the target’s
Linux-2.4.20 kernel using a CIL module [30].

Fig. 3 presents the algorithm that the data structure
extractor uses to locate data structures in physical memory.
The extractor first adds the addresses of the roots to a
worklist and issues requests to the page fetcher for memory
pages containing the roots. It extracts the values of the roots
from these pages, and uses their type definitions to identify
pointers to previously unseen data structures. For example,
if a root is a C struct, the data structure extractor adds all
pointer-valued fields of this struct to the worklist to
locate more data structures in the kernel’s physical
memory. This process continues in a recursive fashion until
the traverser identifies all the data structures target kernel’s
memory reachable from its roots. A complete set of data
structures reachable from the roots is called a snapshot. The
data structure extractor periodically probes the target and
outputs snapshots.

The data structure extractor may require assistance
when it encounters certain pointer-valued fields during
traversal. A particularly important case is when the
traverser encounters pointers to linked lists. In the Linux
kernel, linked lists are implemented using the 1ist_head
data structure. Kernel objects that must be organized as a
linked list simply include the 1ist_head data structure.
Fig. 4 presents an example of a task_struct, in which the
field run_list is of type list_head. Objects of type
task_struct are linked together as a list using the next
and prev fields, which are members of the 1ist_head
structure. The kernel provides functions to add, delete, and
traverse 1list_head data structures. To traverse a list of
task_struct structures, the kernel locates the list_
head structures within the task_struct structure in the
list and computes a pointer to the next task_struct
object in the list using pointer arithmetic. This is a
commonly used idiom in the Linux, and is codified in the
container_of macro.
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We added code annotations to assist the data structure
extractor when it encounters pointer-valued fields, such as
those in the 1ist_head structure. The CONTAINER annota-
tion, shown in Fig. 4, explicitly specifies the type of the
container data structure (struct task_struct) and the
field within this type (run_list) that the list_head
pointers point to. The extractor uses this annotation when it
encounters the run_1list field, and locates the container
task_struct data structure. The CONTAINER annotations
therefore disambiguate the semantics of the 1ist_head
pointer to the data structure extractor. In our experiments,
we annotated all 163 occurrences of the 1ist_head data
structure in the Linux-2.4.20 kernel. Gibraltar may also
require assistance to disambiguate opaque pointers
(void *), dynamically allocated arrays and untagged
unions. For example, the extractor would require the length
of a dynamically allocated array in order to traverse and
locate objects in the array. Our current prototype does not
support traversal of dynamic arrays, opaque pointers, and
untagged unions. However, recent work has addressed this
shortcoming using pointer analysis of the kernel [12].

The algorithm depicted in Fig. 3 may encounter
inconsistencies, such as pointers to nonexistent objects, as
it processes raw physical memory pages. This is because
the page fetcher obtains pages from the target asynchro-
nously, i.e., without halting the target. Consequently,
operations such as deallocation may invalidate pointers.
Such invalid pointers are problematic because the data
structure extractor will incorrectly fetch and parse the
(invalid) memory region referenced by the pointer. In turn,
this memory region may contain values that resemble
pointers, which the data structure extractor will recursively
follow to identify more spurious objects. To prevent our
implementation from extracting a large number of spur-
ious objects, we placed an upper bound on the number of
objects traversed by the extractor (as in prior work [35]). In
our experiments, we found that on an idle system, the
number of data structures in the kernel varies between
40,000 and 65,000 objects. We therefore placed an upper
bound of 150,000. The data structure extractor aborts the
collection of new objects when this threshold is reached. In
our experiments, this threshold was reached only when the
system was heavily loaded. On average, the data structure
extractor takes about 100 seconds to gather a single kernel
snapshot. Note that by placing an upper bound on the
number of extracted objects, the data structure extractor
may fail to extract certain kernel data structures. In turn,
Gibraltar may fail to infer invariants on these data
structures (or detect invariant violations).

4.2.2 Naming Data Structures

Gibraltar uses two schemes to name each data structure
extracted from the target’s memory. The first scheme
assigns a pathname to each data structure, which reflects
the path from one of the root symbols to the data structure.
For example, Gibraltar represents the head of the all-
tasks linked list, described in Section 3.2, using the name
init_tasks->next_task (here, init_tasks is a root
symbol). The second scheme names a data structure using
its virtual memory address in the physical memory pages
received from the target. This naming scheme is particu-
larly useful during invariant inference, when it helps
identify cases where the same name may represent different
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DECLARE
file_system_type::: \
proc_fs_type->next

name hashcode

fs_flags int

read_super hashcode
owner hashcode

next hashcode
fs_supers®_next hashcode
fs_supers®_prev hashcode

(a)Variable declaration.

file_system_type::: \
proc_fs_type->next

name 3223787403

fs_flags 16

read_super 3223233888
owner

next 3223882668
fs_supers®_next 3250705524
fs_supers®_prev 3250705524

(b)Variable values.

Fig. 5. Declaration and values observed for an object of type
file system_ type.

data structures in multiple snapshots. Such a scenario may
arise because of deallocation and reallocation. For example,
suppose that the kernel deallocates (and reallocates, at a
different address) the head of the all-tasks linked list.
As the name init_tasks->next_task will be associated
with different virtual memory addresses before and after
allocation, it represents different data structures.

Each of these naming schemes has distinct advantages.
Pathnames are useful to generate meaningful invariants for
data structures whose paths persist across multiple snap-
shots. They have the important advantage of being portable
across machine reboots: the data structure can be identified
using its path name. In contrast, names based on virtual
memory addresses are not portable across machine reboots.
However, virtual memory addresses can be used to express
invariants for both persistent and transient data structures;
Section 4.5 discusses this issue in further detail.

4.3 The Invariant Generator

During invariant inference, Gibraltar uses the output of the
data structure extractor to infer likely data structure
invariants. These invariants are used as specifications of
data integrity.

We adapted the Daikon [19] tool to infer likely data
structure invariants. Daikon is a software engineering aid
that infers likely program invariants using dynamic
program analysis. Daikon’s front-end instruments pro-
grams to emit a frace file as it executes. Each trace file
contains the values of variables at selected program points,
such as the entry points and exits of functions. Several trace
files maybe obtained by executing the program on a test
suite, and are then fed to Daikon’s inference engine, which
analyzes these traces to infer likely invariants—properties
of variables that hold across all executions of the program.
Daikon generates invariants that conform to one of several
templates. For example, the template x == const checks
whether the value of a variable x equals a constant value
const, where const represents a symbolic constant.
Daikon also infers invariants over collections of objects. For
example, it may infer that the field bar of all objects of type
struct foo has the value 5.

We developed a new front end to convert kernel
snapshots into a format that can be processed by Daikon’s
inference engine. Our front end converts each snapshot into
the equivalent of a single Daikon trace file. The front end
outputs a variable declaration and observed variable values
for each memory object in a snapshot. To record the values
of complex objects (such as C structs), we flatten the
objects and record the values of each of their fields. Fig. 5
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list:::struct task_struct

init_tasks->next_task

[4160716800 3250692096 3250675712 3250667520 3250987008
3250978816 3250888704 4153163776 4153663488 4155981824
4154613760 4154474496 4151255040 4150353920 4150247424
4149018624 4149002240 4148912128 4148871168 4148207616
4147781632 4151115776 4147806208 4147773440 4147830784
4147757056 4147675136 4147642368 4147470336 4146806784
4152762368 3224125440]

init_tasks->prev_task

[4152762368 4146806784 4147470336 4147642368 4147675136
4147757056 4147830784 4147773440 4147806208 4151115776
4147781632 4148207616 4148871168 4148912128 4149002240
4149018624 4150247424 4150353920 4151255040 4154474496
4154613760 4155351040 4151402496 4155981824 4153663488
4153163776 3250888704 3250978816 3250987008 3250667520
3250675712 3250692096 4160716800 3224125440]

init_tasks->thread_group®->next
[3250978816 3250987008 3250667520 3250675712 3224125440]

init_tasks->thread_group®->prev
[3250675712 3224125440 3250978816 3250987008 3250667520]

Fig. 6. Output of the front end to generate linked list invariants on objects
of type task_struct.

presents a simplified example: Fig. 5a shows the declaration
of a variable named proc_fs_type->next (using the
pathname-based naming scheme) of type file_system_
type. This declaration also contains the names and types of
the fields of the data structure; hashcode indicates that the
type is a pointer. The type hashcode is intended for unique
object identifiers like memory addresses (pointers) or the
return value of Java’s Object .hashcode method. Fig. 5b
shows the values of each of the fields observed in the
snapshot. Daikon’s inference engine hypothesizes likely
invariants for this variable by reasoning about its value
across multiple snapshots. We use the term object invariants
to refer to properties of individual memory objects.

Our front end can also convert snapshots into a format
that allows Daikon to infer invariants over collections of
objects. We call such invariants collection invariants. To do so,
the front end converts each memory snapshot into the
equivalent of a Daikon trace file that contains the equivalent
of one “program point” for each collection of objects. The
front end records the values of all objects belonging to that
collection. The inference engine hypothesizes invariants for
all objects in that collection by observing their values across
multiple snapshots. In preliminary experiments with Gi-
braltar, we found that the number of objects in a collection
maybe overly large, which may, in turn, cause the invariant
inference engine to exhaust available memory on our
machine. We avoided this problem by configuring the front
end to split a large collection of objects into smaller
subcollections.

Daikon does not infer properties on linked lists. How-
ever, linked lists are ubiquitous in the Linux kernel and can
be exploited subtly by rootkits, as demonstrated in Section 3.
As done in prior work [18], our front end therefore
linearizes linked lists into arrays, over which Daikon infers
invariants. Fig. 6 presents examples of four kernel linked
lists of type task_struct, linearized into arrays. In each
of these examples, addresses of the objects in each list are
recorded as elements of the array. This representation

suffices to infer a restricted family of invariants over linked
lists, which we discuss next. In the current prototype of
Gibraltar, we restrict ourselves to linked lists with heads in
the static data region.

4.3.1 Invariants and Invariant Templates

Daikon infers invariants that conform to 75 different
templates [19]. In the discussion below, and in the
experimental results reported in Section 5, we focus on five
templates. In the templates below, var denotes either a
scalar variable or a field of a structure.

. Membership template (var € {a, b, c}). This
template corresponds to invariants that state that
var only acquires a fixed set of values (in this case,
a, b, or c). If this set is a singleton {a}, denoting that
var is a constant, then Daikon expresses the
invariant as var == a.

2. Nonzero template (var != 0). The nonzero
template corresponds to invariants that determine
that a var is a non-NULL value (or not 0, if var is
not a pointer).

3. Bounds template (var > const), (var <
const). This template corresponds to invariants
that determine lower and upper bounds of the
values that var acquires.

The three example templates discussed above
correspond to invariants over variables and fields of
C struct data structures. These invariants can be
inferred over individual objects, as well as over
collections of data structures, e.g., the fields bar of all
objects of type struct foo have value five.
Invariants over collections describe a property that
hold for all members of that collection across all
snapshots.

4. Length template (LENGTH (var) == const). This
template describes invariants over lengths of
linked lists.

5. Subset template (coll; C colly). This template
represents invariants that describe that the collection
coll; is a subset of collection colly. This is used, for
instance, to represent invariants that describe that
every element of one linked list is also an element of
another linked list.

The last two example templates are used to describe
properties of kernel linked lists. As reported in Section 5, in
our experiments, invariants that conformed to the Daikon
templates sufficed to detect all the control and noncontrol
data attacks that we tested. However, to accommodate for
rootkits that only violate invariants that conform to other
kinds of templates, we may need to extend Gibraltar with
more templates in the future. Daikon supports an extensible
architecture that allows new templates to be supplied,
thereby allowing Gibraltar to detect more attacks.

4.4 The Monitor

During detection, the monitor ensures that the data
structures in the target’s memory satisfy the invariants
obtained during inference. As with the invariant generator,
the monitor obtains snapshots from the data structure
extractor, and checks the data structures in each snapshot
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init_fs->root->d_sb->s_dirty.next->i dentry.next
->d_child.prev->d_inode->i fop.read == 0xeff9bf60

Fig. 7. Example of a transient invariant. The name of the variable
changes across reboots.

against the invariants. This ensures that any malicious
modifications to kernel memory that cause the violation of
an invariant are automatically detected.

4.5 Persistent and Transient Invariants

The invariants inferred by Gibraltar can be categorized as
either persistent or transient. Persistent invariants represent
properties that are valid across reboots of the target
machine, provided that the target’s kernel is not reconfi-
gured or recompiled between reboots. An invariant is
persistent if and only if the expression that references the
object persists across reboots and the property represented
by the invariant holds across reboots. All the examples
presented in Section 3 are persistent invariants.

In contrast, a transient invariant either expresses a
property of an object whose pathname does not persist
across reboots or represents a property that does not hold
across reboots. For example, consider the invariant in
Fig. 7, which expresses a property of a struct
file_operations object. This invariant is transient
because it does not persist across reboots. The expression
that references this object changes across reboots as it
appears at different locations in kernel linked lists.
Consequently, the number of next and prevs that appear
in the expression differs across reboots.

The distinction between persistent and transient invar-
iants is important because it determines the number of
invariants that must be inferred each time the target
machine is rebooted. To find the number of persistent
invariants inferred by Gibraltar, we repeatedly rebooted the
system and executed an inference workload (Section 5.1
presents details of the workload) until the number of
persistent invariants remained constant. After eight reboots,
we found that the total number of persistent invariants
reported as true by Daikon was 26,946. Invariants inferred
by Gibraltar over the kernel static area also persist across
reboots, and total 209,498 invariants. In contrast, a single
run of the inference workload yielded a total of 718,940
invariants for data structures allocated dynamically on the
kernel’s heap.

Even though the number of persistent invariants is
much smaller than the number of transient ones,
persistent ones have the advantage that they do not have
to be relearned after the system is rebooted. Moreover,
they sufficed to detect all the rootkits in our test suite.
Therefore, the primary focus of our experiments is on
persistent invariants.

5 EXPERIMENTAL RESULTS

This section presents the results of experiments to test the
effectiveness and performance of Gibraltar at detecting
rootkits that modify both control and noncontrol data
structures. We focus on three concerns:

o Detection accuracy. We tested the effectiveness of
Gibraltar by using it to detect both publicly available
rootkits as well as those proposed in the research
literature [9], [34], [44]. Gibraltar detected all these
rootkits (Section 5.3).

e Spurious alerts. When operating in the detection
mode, Gibraltar raises an alert when it observes an
invariant violation. An alert is spurious if the
invariant violation was not as a result of a malicious
change to a data structure. In our experiments, we
observed that 0.035 percent of the persistent invar-
iants raised spurious alerts (Section 5.4).

e Performance. We measured Gibraltar’s performance
and found that it imposes a negligible monitoring
overhead (Section 5.5).

All the experiments reported in this section were
performed on a target system with a Intel Xeon 2.80 GHz
processor with 1 GB RAM, running a Linux-2.4.20 kernel.
Infrastructure limitations prevented us from upgrading to
the latest version of the Linux kernel. The observer also had
an identical configuration.

5.1 Experimental Methodology

Our experiments with Gibraltar were conducted using three
workloads, as described below. We ran Gibraltar in the
inference mode and executed an inference workload, which
emulated user behavior on the target system. We then used
Gibraltar’s invariant generator to hypothesize invariants
using the kernel snapshots collected during the execution of
the inference workload. The numbers reported in this paper
are based upon invariants inferred over 15 kernel snapshots
collected by Gibraltar. We also configured Gibraltar to
collect 30 kernel snapshots and inferred invariants over
these snapshots. However, we observed that fewer than
0.01 percent of the invariants changed when we used a
larger set of kernel snapshots for invariant inference. We
then configured Gibraltar to run in the detection mode
using the automatically inferred invariants. We executed a
malicious workload, comprising 23 rootkits, and studied the
effectiveness of Gibraltar at detecting these rootkits. Finally,
we studied the number of spurious alerts by executing a
benign workload on the target. All three workloads are
described in detail below.

1. Inference workload. We chose Lmbench [29], a
micro-benchmark suite used to measure operating
system performance, as our inference workload.
Lmbench measures bandwidth and latency for
common operations performed by applications, such
as copying to memory, reading cached files, context
switching, networking, file system operations, pro-
cess creation, signal handling, and IPC operations.
This benchmark exercises several kernel subsystems
and therefore modifies several kernel data structures
as it executes.

2. Malicious workload. This workload comprised 23
rootkits (see Figs. 8 and 9). We installed the rootkits
one at a time, and determined whether Gibraltar
could detect the infection. We uninstalled each rootkit
after recording alerts generated by Gibraltar, and
then installed the next rootkit from the workload.
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Rootkit/Attack | Data structures affected |
Rootkits from Packet Storm [4]
Adore-0.42, All-root, Kbd, Synapsys-0.4 | System call table
Linspy2, Modhide, Phide, Rial, Kis 0.9
Rkit 1.01, Shtroj2, THC Backdoor

Adore-ng Vfs hooks, udp recvmsg
Knark 2.4.3 System call table, proc hooks
Rootkits from research literature [9]

Disabling firewall (§3.6) Netfilter hooks
Disabling PRNG (§3.7) Vfs hooks
Altering real-time clock (§3.8) Vfs hooks
Defeating signature scans (§3.9) Vfs hooks

Fig. 8. Linux-based rootkits that modify control data. This table shows
the data structures modified by the rootkit. Gibraltar successfully detects
all the above rootkits. The invariants violated are all Object invariants,
detected by the Membership(constant) template.

3. Benign workload. To count the number of spurious
alerts, we designed a workload consisting of several
benign applications:

1. copying the Linux kernel source code from one
directory to another;

2. editing a text document;

3. compiling the Linux kernel;

4. downloading eight video files from the Inter-
net; and

5. performing file system read /write and metadata
operations using the IOZone benchmark [31].

This workload ran for 42 minutes on the target,
during which time we ran Gibraltar in detection
mode using the automatically inferred invariants.
The benign workload contained real application
tasks and was chosen to be completely different
from the inference workload.

5.2 Invariants

As discussed in Section 4, the invariants inferred by
Gibraltar include both properties of both individual objects
and collections of objects, e.g., all objects of the same type or
all nodes belonging to a linked list. Gibraltar inferred a total
of 26,946 persistent invariants on individual objects as well
as on collections of objects on the kernel heap. These
invariants conformed to the five templates discussed in the
previous section; the length and subset invariants apply
only to linked lists. Gibraltar inferred 209,498 invariants on
the kernel static data region, thereby yielding a total of
236,444 persistent invariants. Gibraltar also inferred 428,046
transient invariants on dynamically allocated kernel data
structures to yield a total of 718,940 invariants.

5.3 Detection Accuracy

We tested Gibraltar’s detection accuracy using 23 rootkits,
listed in Fig. 8. These included rootkits that modify both
control and noncontrol data.

e Detecting control data modifications. We used 14
publicly available rootkits [4] that modify kernel data
structures to test the effectiveness of Gibraltar. We
also included four rootkits that have been proposed in
the research literature [9] (Attacks 6-9 from Section 3);
these rootkits modify kernel function pointers.

Gibraltar was successfully able to detect all the
above rootkits. Each of these rootkits violated a
persistent invariant that conformed to the template
var == constant. Because these rootkits modify
kernel control flow, they can also be detected by
SBCFI. However, as discussed in Section 3, the
invariants on control data structures inferred by
Gibraltar implicitly determine a control-flow integ-
rity policy that is equivalent to SBCFL

The most common form of invariant violated by
publicly available rootkits that modify control data is
var == constant. This is because these rootkits
hijack control of the kernel by overwriting otherwise
immutable function pointers. Gibraltar can possibly
detect all such rootkits by restricting invariants to the
var == constant template. Doing so can possibly
improve the performance and precision of Gibraltar.
However, detecting advanced rootkits that violate
properties of noncontrol data requires more power-
ful invariants, as discussed at length in Section 3.
Consequently, we currently use five templates dur-
ing invariant inference.

e Detecting noncontrol data modifications. We used
five noncontrol data attacks discussed in prior work
[9], [34], [44] to test Gibraltar. These attacks and the
invariants that they violate were discussed in detail in
Section 3. Fig. 9 summarizes these attacks; it shows the
data structures modified by the attack, the invariant
type (collection/object) violated, and the template
that classifies the invariant. Each of the invariants that
was violated was a persistent invariant, which
survives a reboot of the target machine.

5.4 Spurious Alerts

An invariant violation reported by Gibraltar is spurious if
the violation was not caused by a malicious data structure
modification. Spurious alerts therefore identify invariants
whose precision must be improved using manual refine-
ment or an enhanced inference workload. To measure the
number of spurious alerts, we conducted an experiment in
which we executed Gibraltar in detection mode using a
benign workload on the target system. For this experiment,
we configured Gibraltar to detect violations of persistent
invariants, numbering 236,444 in total. During the 42-minute
duration of this workload, we observed 85 spurious alerts on

[ Attack Name | Data Structures Affected | Invariant Type | Template |
Entropy Pool Contamination (§3.1) | struct poolinfo Collection Membership
Hidden Process (§3.2) all-tasks list Collection Subset
Linux Binfmt (§3.3) formats list Collection Length
Resource Wastage (§3.4) struct zone _struct Object Membership (constant)
Intrinsic Denial of Service (§3.5) max _threads Object Membership (constant)

Fig. 9. Rootkits that modify noncontrol data [9], [34], [44]. This table also s
violated by the attack, and the template that this invariant conforms to.

hows the data structure modified by the attack, the type of the invariant
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a total of 82 unique invariants. Note that we directly used
the automatically inferred invariants for detection. Despite
this fact, only 0.035 percent of the persistent invariants
contributed to spurious alerts, thereby suggesting that the
persistent invariants inferred by Gibraltar are of relatively
high precision. Future work on manual refinement of
invariants can further improve their precision and reduce
the number of spurious alerts.

We also measured the number of spurious alerts by
configuring Gibraltar to use both persistent and transient
invariants, numbering 718,940 in total. In this case, the
number of spurious warnings rose drastically. For the same
42-minute duration, we observed a total of 4,673 spurious
alerts (i.e., 0.65 percent of the invariants resulted in spurious
alerts). This experiment suggests that the precision of
transient invariants is lower than persistent invariants,
and that future work is needed to improve their precision.

5.5 Performance

We measured three aspects of Gibraltar’s performance:
1) inference time, i.e., the time taken by Gibraltar to
observe the target and infer invariants; 2) detection time,
ie., the time taken for an alert to be raised after the
rootkit has been installed; and 3) performance overhead,
ie., the overhead on the target system as a result of
periodic page fetches via DMA.

1. Inference time is calculated as the cumulative time
taken by Gibraltar to gather kernel data structure
snapshots and infer invariants when executing in
inference mode. Overall, the process of gathering 15
snapshots of the target kernel’s memory required
approximately 25 minutes, followed by 31 minutes
to infer invariants, resulting in a total of 56 minutes.

Inference is currently a time-consuming process
because our current prototype invokes Daikon to
infer invariants after collecting all the kernel snap-
shots. Inference time can potentially be reduced by
invoking Daikon after obtaining each snapshot so
that the invariant set is built in parallel as Gibraltar
fetches more snapshots.

2. Detection time is the interval between the installa-
tion of the rootkit and Gibraltar detecting that an
invariant has been violated. As Gibraltar traverses
the data structures in a snapshot and checks
invariants over each data structure, detection time
is proportional to the number of objects in each
snapshot and the order in which they are encoun-
tered by the traversal algorithm. Gibraltar’s detection
time varied from a minimum of 15 seconds, when
there were 41,254 objects in the snapshot, to a
maximum of 132 seconds, when there were 150,000
objects in the snapshot. On average, we observed a
detection time of approximately 20 seconds.

3.  Monitoring overhead. The Myrinet PCI card fetches
raw physical memory pages from the target using
DMA. Because DMA increases contention on the
memory bus, the target’s performance will poten-
tially be affected. We measured this overhead using
the Stream benchmark [28], a synthetic benchmark
that measures sustainable memory bandwidth.

Func. Time (Monitoring OFF) Time (Monitoring ON) Overhead
Avg. Min Max Avg. Min Max

Copy | 0.2260  0.2259  0.2271 02272 0.2269  0.2277 0.48%

Scale | 0.2239  0.2237  0.2242 | 0.2251 0.2248  0.2254 0.49%

Add 03316 03313 0.3321 03329  0.3326  0.3336 0.39%

Triad 03295 03292  0.3298 | 0.3308 0.3304 0.3314 0.37%

Fig. 10. Results from the Stream microbenchmark. All numbers reported
are across 100 iterations of the benchmark.

Measurement is performed over four vector opera-
tions, namely, copy, scale, add, and triad and
averaged over 100 executions. The vectors were
chosen so that they clear the last-level cache in the
system, forcing data to be fetched from main
memory.

Fig. 10 presents the bandwidth measurements for
these four vector operations, both with Gibraltar’s
monitoring turned off, and turned on. Bandwidth
measurements and time taken for the four vector
operations are shown. This figure shows the
maximum and minimum time taken for each
operation, and the average over 100 executions. As
this figure shows, Gibraltar imposes a negligible
overhead of 0.49 percent on the operation of the
target system.

6 LIMITATIONS

While we are encouraged by Gibraltar’s ability to detect
rootkits, our current prototype has several limitations,
which we plan to remedy in future work.

o Inconsistent data structures. Gibraltar fetches pages
from the target system in an asynchronous fashion.
Consequently, the data structure extractor may
encounter inconsistent data structures during tra-
versal. For example, it may encounter a linked list in
which the next pointer of a node was updated by
the kernel but the prev pointer was not yet updated.
In such cases, the data structure extractor will
traverse stale pointer values and view the resulting
data structure as valid. Such inconsistencies intro-
duce noise in the inference process and may result in
spurious alerts during detection. In addition to false
positives, this noise may also prevent an important
set of data structure invariants from being inferred,
thereby causing Gibraltar to miss attacks that violate
those invariants.

This limitation can potentially be remedied by a
proxy driver in the target kernel that notifies and
blocks Gibraltar’s page fetcher if a data structure is in
the process of being modified. For example, this
proxy can identify program points (e.g., function
entry points and exits) at which it is “safe” to fetch
pages, acquire locks on behalf of Gibraltar, and allow
the page to be transferred to the observer. It can
subsequently release the lock after Gibraltar has
acquired a complete snapshot of the target’s memory.

e Portability of transient invariants. Transient invar-
iants inferred by Gibraltar are not portable, i.e.,
invariants must be inferred for each target system to
be protected by Gibraltar, and must also be inferred
each time the system is booted. Two reasons
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contribute to this limitation. First, the names used to
identify objects are not portable. As discussed using
the example in Fig. 7, several data structures in
dynamic regions do not have portable names
because the path to these data structures constantly
changes as a result of allocations and deallocations.
Second, invariants may contain absolute values,
such as memory addresses, that may not be the
same across different machines or after a reboot.
This limitation can possibly be overcome by naming
kernel data structures differently and improving the
invariant specification language. For example, kernel
allocators can possibly be annotated to assign object
names, which, in turn, can be used to uniquely
identify objects. Similarly, constant values, such as
memory addresses, can be encoded symbolically
rather than using their actual values, thereby
ensuring that invariants inferred on one system can
be applied to other systems.

e Soundness and completeness of invariants. As
Gibraltar uses a dynamic approach to infer invar-
iants, the resulting invariants are neither sound nor
complete. That is, false invariants may potentially be
inferred, e.g., because the inference workloads fail
to discover all possible values of a data member,
leading to spurious alerts during detection. Simi-
larly, it is challenging to infer all possible invariants.
This is because the invariant templates used by
Daikon may not suffice to capture an important data
structure property. While it is challenging to over-
come these limitations, prior work has developed
techniques to produce inference workloads that
improve the accuracy of invariants [23]. Future work
can possibly adapt these techniques to improve the
kernel data structure invariants used by Gibraltar.

e Need for source code. Gibraltar’s data structure
extractor critically relies on knowing the layout of
kernel data structures. We currently obtain this
information using static analysis of the kernel’s
source code. Consequently, Gibraltar cannot be used
with closed-source operating systems that lack de-
bug symbols. This limitation can possibly be over-
come using static analysis of binary executables, or
using recent techniques to infer data structures from
memory layouts [15].

e Inability to detect transient attacks. Gibraltar’s
approach of inferring and enforcing invariants
restricts it to detecting persistent modifications to
kernel data. A rootkit might violate an invariant for a
short period of time and revert it between two
consecutive snapshots that Gibraltar collects [48].
Such rootkits can possibly be detected by reducing
the time required to collect a single snapshot and
increasing the frequency at which Gibraltar samples
the target’s memory.

7 CoNcLUSIONS AND FUTURE WORK

Several recent rootkits and research papers have demon-
strated that attacks against control and noncontrol data in
dynamically allocated kernel memory are a realistic and
growing threat. Such rootkits are challenging to detect
because the vast number and heterogeneity of kernel data
structures makes writing correctness specifications for these

data structures a challenging exercise. Motivated by this
challenge, we sought to develop an automated approach to
detect such rootkits.

In this quest, we developed Gibraltar, a tool that detects
kernel-level rootkits using data structure invariants. Gi-
braltar uses an anomaly detection-based approach: it uses
an automatic technique to infer invariants on kernel data
structures, including both control and noncontrol data
structures, and uses these invariants to detect rootkits.
Gibraltar was able to detect all 23 rootkits that we tested it
against, while imposing a runtime monitoring overhead of
under 0.5 percent. We also found that the automatically
inferred invariants were quite precise. For example, we
observed spurious warnings on only 0.035 percent of the
persistent invariants during a 42-minute testing phase. The
approach, described in this paper, therefore, demonstrates
the feasibility of automatic invariant inference for rootkit
detection.

There are a number of avenues to improve Gibraltar.
Foremost among these are techniques to address the
limitations outlined in Section 6. Additional directions
include:

e Attack analysis. While Gibraltar successfully de-
tected all 23 rootkits that we tested it against, it
maybe possible to design a rootkit that compromises
the kernel without violating any of Gibraltar’s
automatically inferred data structure invariants.
Such a rootkit could exploit deficiencies in the
coverage provided by Gibraltar’s invariants. Future
work could develop techniques to estimate the
difficulty of creating such rootkits by measuring
how much of the kernel’s attack surface is covered
by Gibraltar’s invariants. An alternative approach
could be to employ a “red team” to design rootkits
that bypass Gibraltar’s invariants, e.g., as done by
Perkins et al. [32].

e Studying the quality of invariants. Our study left
unexplored the semantic quality of automatically
inferred invariants. For example, it maybe possible
for a kernel expert to craft a single, high-quality
invariant that subsumes thousands of automatically
inferred invariants. Future work could compare the
merits of a manual approach against an automated
approach to infer kernel data structure invariants.

e Incremental invariant updates. As presented, the
design of our system requires a new set of invariants
to be inferred upon each update to the operating
system, e.g., via security patches. However, future
enhancements to Gibraltar may make it possible to
incrementally update the set of invariants by
performing a change-impact analysis on how the
updates affects kernel data structures.
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