
Buffer Overrun Detection using Linear Programming and Static Analysis

Vinod Ganapathy, Somesh Jha
{vg|jha}@cs.wisc.edu

Computer Sciences Department, University of Wisconsin-Madison

David Chandler, David Melski, David Vitek
{chandler|melski|dvitek}@grammatech.com

Grammatech Inc., 317, N. Aurora St., Ithaca NY 14850

UW-MADISON COMPUTER SCIENCES TECHNICAL REPORT 1488
Abstract

This paper addresses the issue of identifying buffer overrun
vulnerabilities by statically analyzing C source code. We
demonstrate a scalable analysis based on modeling C string
manipulations as a linear program. We also present fast, scal-
able solvers based on linear programming, and demonstrate
how to make the analysis context sensitive. Based on these
techniques, we built a prototype and used it to identify several
vulnerabilities in popular security critical applications.

1 Introduction

Buffer overruns are one of the most exploited class of
security vulnerabilities. In a study by the SANS insti-
tute [3], buffer overruns in RPC services ranked as the
top vulnerability to UNIX systems. A simple mistake
on the part of a careless programmer can cause a serious
security problem. Consequences can be as serious as a
remote user acquiring root privileges on the vulnera-
ble machine. To add to the problem, these vulnerabilities
are easy to exploit, and several “cookbooks” [4, 31] are
available to construct such exploits. As observed by sev-
eral researchers [23, 34], C is highly vulnerable because
there are several library functions that manipulate buffers
in an unsafe way. Millions of lines of legacy code have
been written in C, and systems running these applications
continue to be vulnerable.

Several approaches have been proposed to mitigate
the problem – these range from dynamic techniques
[8, 10, 12, 14, 24, 27] that prevent attacks based on buffer
overruns, to static techniques [17, 23, 29, 33, 34] that
examine source code to eliminate these bugs before the
code is deployed. Combinations of static and dynamic
techniques have also been proposed where the results of
static analysis are used to remove run-time checks. Un-
like static techniques, dynamic techniques do not elimi-
nate bugs, and often have the undesirable effect of caus-

ing the application to crash when an attack is discovered.
Static techniques have the added advantage that they im-
pose no run-time overhead on the applications.

In this paper, we describe the design and implemen-
tation of a tool that statically analyzes C source code to
detect buffer overrun vulnerabilities. In particular, this
paper demonstrates:
• The use of static analysis to model C string manipula-
tions as a linear program.
• The design and implementation of fast, scalable solvers
based on novel use of techniques from the linear pro-
gramming literature. The solution to the linear program
determines buffer bounds.
• Techniques to make the program analysis context sen-
sitive.
• The efficacy of other program analysis techniques, such
as static slicing to understand and eliminate bugs from
source code.

One of our principle design goals was to make the tool
scale to large real world applications. We used the tool to
audit several popular and commercially used packages.
The tool identified 14 previously unknown buffer over-
runs in wu-ftpd-2.6.2 (Section 6.1.1) in addition to
several known vulnerabilities in other applications.

The rest of the paper is laid out as follows: Section 2
describes the overall architecture of our tool. Section 3
and Section 4 describe the design of two solvers used by
our tool. Section 5 describes a technique to make the
program analysis context-sensitive. We report our ex-
perience with the prototype implementation in Section
6. Section 7 discusses related work, and Section 8 con-
cludes.

2 Overall Tool Architecture

The tool has five components (Figure 1) that are de-
scribed in the remainder of this section. Section 2.1

1

Taint
Analyzer

Constraint
GeneratorCodesurfer Constraint

Solver

Detector
Front−End

Hierarchical
 Solver

LP SolverConstraints
LinearLinear

Constraints

Ranges

Ranges

Warnings

PDGs
SDG

PDGs
SDG

C Source

Figure 1: Overall Architecture of the Buffer Overrun Tool

(1) main(int argc, char* argv[]){
(2) char header[2048], buf[1024],

*cc1, *cc2, *ptr;
(3) int counter;
(4) FILE *fp;
(5) ...
(6) ptr = fgets(header, 2048, fp);
(7) cc1 = copy_buffer(header);
(8) for (counter = 0; counter < 10;

counter++){
(9) ptr = fgets (buf, 1024, fp);

(10) cc2 = copy_buffer(buf);
(12) }
(13) }
(14)
(15) char *copy_buffer(char *buffer){
(16) char *copy;
(17) copy = (char *) malloc(strlen(buffer));
(18) strcpy(copy, buffer);
(19) return copy;
(20) }

Figure 2: Running Example

describes the code-understanding tool CodeSurfer.
CodeSurfer is used by the constraint generator, the de-
tector front-end, and to help the user examine potential
overruns. Section 2.2 describes constraint generation.
Section 2.3 presents taint analysis, which identifies and
removes unconstrained constraint variables. Section 2.4
describes how to solve the constraint system, and Sec-
tion 2.5 explains how to use the solution to the constraint
system in order to detect potential buffer overruns. The
program in Figure 2 will serve as a running example.

2.1 Codesurfer

The constraint generator and the detector front-end are
both developed as plug-ins to CodeSurfer. CodeSurfer
is a code-understanding tool that was originally de-
signed to compute precise interprocedural slices [20, 21].
CodeSurfer builds a whole program representation that

includes a system dependence graph (that is composed
of program dependence graphs for each procedure), an
interprocedural control-flow graph, abstract syntax trees
(ASTs) for program expressions, side-effect information,
and points-to information. CodeSurfer presents the user
with a GUI for exploring its internal program representa-
tions. The queries that CodeSurfer supports include for-
ward and backward slicing from a program point, precise
interprocedural chopping between two program points
(for details, see [28]), finding data and control depen-
dence predecessors and successors from a program point,
and examining the points-to set of a program variable.
CodeSurfer presents the user with a listing of their source
code that is “hot”, i.e., the user can click on a program
point in their code and ask any of the queries listed above.

CodeSurfer has two primary uses in the buffer over-
run tool: (1) the constraint generator is a CodeSurfer
plug-in that makes use of CodeSurfer’s ASTs and pointer
analysis (an implementation of Andersen’s analysis [6]).
(2) the detector front-end is a CodeSurfer plug-in that
uses CodeSurfer’s GUI in order to display potential over-
runs. Information about potential overruns is linked to
CodeSurfer’s internal program representation, so that the
user can make use of CodeSurfer’s features, such as slic-
ing, in order to examine potential overruns.

2.2 Constraint Generation

Constraint generation is similar to the approaches pro-
posed in [17, 23, 33]. We also use points-to information
returned by Codesurfer, thus allowing for more precise
constraints. Each pointer buf, to a character buffer, is
modeled by four constraint variables – buf!used!max

and buf!used!min, which denote the maximum and
minimum number of bytes used in the buffer, and
buf!alloc!max and buf!alloc!min, which denote

2

the maximum and minimum number of bytes allocated
for the buffer.

Each integer variable i is modeled by the constraint
variables i!max and i!min which represent the maxi-
mum and minimum value of i, respectively. Program
statements that operate on character buffers or integer
variables are modeled using linear constraints over con-
straint variables.

Our constraints model the program in a flow- and
context-insensitive manner, with the exception of library
functions that manipulate character buffers. A flow-
insensitive analysis ignores the order of statements, and
a context-insensitive analysis does not differentiate be-
tween multiple call-sites to the same function. For a
function call to a library function that manipulates strings
(e.g., strcpy or strlen), we generate constraints that
model the effect of the call; for these functions, the con-
straint model is context-sensitive. In Section 5, we will
show how we extended the model to make the constraints
context-sensitive for user defined functions as well.

Constraints are generated using a single pass over the
program’s statements. There are four program state-
ments that result in constraint generation: buffer dec-
larations, assignments, function calls, and return state-
ments. A buffer declaration such as char buf[1024]

results in constraints that indicate that buf is of size
1024. A statement that assigns into a character buffer
(e.g., buf[i]=’c’) results in constraints that reflect
the effect of the assignment on buf!used!max and
buf!used!min. An assignment to an integer i results
in constraints on i!max and i!min.

As mentioned above, a function call to a library func-
tion that manipulates string buffers is modeled by con-
straints that summarize the effect of the call. For exam-
ple, the strcpy statement at line (18) in Figure 2 results
in the following constraints:

copy!used!max ≥ buffer!used!max

copy!used!min ≤ buffer!used!min

For each user-defined function foo, there are con-
straint variables for foo’s formal parameters that
are integers or strings. If foo returns an integer
or a string, then there are constraint variables (e.g.,
copy buffer$return!used!max) for the function’s
return value. A call to a user-defined function is mod-
eled with constraints for the passing of actual parameters
and the assignment of the function’s return value.

As in [33], constraints are associated with pointers to
character buffers rather than the character buffers them-
selves. This means that some aliasing among character
buffers is not modeled in the constraints and false neg-

atives may result. We chose to follow [33] in this re-
gard because we are interested in improving precision
by using a context sensitive program analysis (Section
5). Currently, context-sensitive pointer analysis does
not scale well, and using a context-insensitive pointer
analysis would undermine our objective of performing
context-sensitive buffer overrun analysis.

However, we discovered that we could make use of
pointer analysis to eliminate some false negatives. For in-
stance, consider the statement “strcpy(p->f, buf),”
where p could point to a structure s. The constraints
generated for this statement would relate the constraint
variables for s.f and buf. Moreover, we use the results
of pointer analysis to handle arbitrary levels of derefer-
encing. Constraint generation also makes use of pointer
information for integers.

Figure 3 shows a few constraints for the program in
Figure 2, along with the program statement that gener-
ated them. Most of the constraints are self-explanatory,
however a few comments are in order:
• Since we do not model control flow, we ignore pred-
icates in our constraint generation. Hence we do not
model the effect of the predicate in an if or for state-
ment; the predicate counter < 10 in line (8) was ig-
nored in our example.
• The statement counter++ is particularly interest-
ing when generating linear constraints. A linear con-
straint such as counter!max ≥ counter!max + 1

cannot be interpreted by a linear program solver. Hence,
we model this statement by treating it as a pair of
statements: counter′ = counter + 1; counter =

counter′. These two constraints capture the fact that
counter has been incremented by 1, and can be translated
into constraints that are acceptable to a linear program
solver, although the resulting linear program will be in-
feasible. Section 3 discusses these and related issues in
detail.
• A program variable that acquires its value from
the environment or from user input in an unguarded
manner is considered unsafe – for instance, the state-
ment getenv("PATH"), which returns the search path,
could return an arbitrarily long string. To reflect the
fact that the string can be arbitrarily long, we gener-
ate constraints getenv$return!used!max ≥ ∞ and
getenv$return!used!min≤ 0. Similarly, an integer
variable i accepted as user input gives rise to constraints
i!max ≥ ∞ and i!min ≤ -∞

3

Constraint Program Statement
header!used!max ≥ 2048 6
header!used!min ≤ 1 6
buffer!used!max ≥ buf!used!max 10 (function call)
buffer!used!min ≤ buf!used!min 10 (function call)
buffer!alloc!max ≥ buf!alloc!max 10 (function call)
buffer!alloc!min ≤ buf!alloc!min 10 (function call)
copy buffer$return!alloc!max ≥ copy!alloc!max 19
copy buffer$return!alloc!min ≤ copy!alloc!min 19
copy buffer$return!used!max ≥ copy!used!max 19
copy buffer$return!used!min ≥ copy!used!min 19
cc2!used!max ≥ copy buffer$return!used!max 10 (assignment)
cc2!used!min ≤ copy buffer$return!used!min 10 (assignment)
cc2!alloc!max ≥ copy buffer$return!alloc!max 10 (assignment)
cc2!alloc!min ≥ copy buffer$return!alloc!min 10 (assignment)
counter′!max ≥ counter!max + 1 8 (counter++)
counter!max ≥ counter′!max 8 (counter++)
counter′!min ≤ counter!min + 1 8 (counter++)
counter!min ≤ counter′!min 8 (counter++)

Figure 3: Some constraints for the running example

Input: Set of Constraints C

Output: Subset of C with no uninitialized, or infinite variables
(1) InfSet = {var | var≤ −∞∨ var≥ ∞} ∪ {var | var is un-initialized}
(2) while InfSet 6= φ

(3) Select and remove var from InfSet
(4) foreach Constraint c ∈ C of the form MaxVar≥ RHS
(5) if MaxVar is var
(6) Drop c from C

(7) else if var appears in RHS
(8) Set MaxVar to +∞ and add MaxVar to InfSet
(9) Drop c from C

(10) endif
(11) foreach Constraint c ∈ C of the form MinVar≤ RHS
(12) if MinVar is var
(13) Drop c from C

(14) else if var appears in RHS
(15) Set MinVar to -∞ and add MinVar to InfSet
(16) Drop c from C

(17) endif
(18) Return C

Figure 4: Algorithm for Taint Analysis

2.3 Taint Analysis

The linear constraints then pass through a taint analysis
module. In Sections 3 and 4 we will demonstrate two
techniques to solve the constraints using linear program-
ming. The main goal of the taint analysis module is to
make the constraints amenable to these solvers. Linear
programming can work only with finite values, hence this
requires us to remove variables that can obtain infinite
values. Moreover, it is also important that max variables
have finite lower bounds and min variables have finite
upper bounds. Hence, the objectives of this module are
twofold:
• Identify and remove any variables that get an infinite
value: As mentioned in section 2.2, some constraint vari-
ables var are associated with constraints of the form var

≥ ∞ or var ≤ -∞. Taint analysis identifies constraint
variables that can directly or indirectly be set to ±∞
through such constraints and removes them from the set
of constraints.
• Identify and remove any uninitialized constraint vari-
ables: The system of constraints is examined to see if all
max constraint variables have a finite lower bound, and
all min constraint variables have a finite upper bound;
we refer to constraint variables that do not satisfy this
requirement as uninitialized. Constraint variables may
fail to satisfy the above requirement if either the program
variables that they correspond to have not been initialized
in the source code, or program statements that affect the
value of the program variables have not been captured by
the constraint generator. The latter case may arise when
the constraint generator does not have a model for a li-

4

brary function that affects the value of the program vari-
able. It is important to realize that this analysis is not
meant to capture uninitialized program variables, but is
meant to capture uninitialized constraint variables.

Figure 4 presents the taint analysis algorithm. In the
constraints obtained by the program in Figure 2, no vari-
ables will be removed by the taint analysis module, as-
suming that we modeled the library functions strlen,
fgets and strcpy correctly.

2.4 Constraint Solving

The constraints that remain after taint analysis can be
solved using linear programming. We have developed
two solvers, both of which use linear programming to ob-
tain values for the constraint variables. The first method
uses a linear program solver on the entire set of con-
straints to obtain values for constraint variables; a de-
tailed description of the algorithm can be found in Sec-
tion 3. The second method analyzes and breaks up the
set of constraints into smaller subsets, and passes each
of these subsets to the linear program solver; we explain
this algorithm in Section 4.

The goal of both solvers is the same, to obtain the best
possible estimate of the number of bytes used and allo-
cated for each buffer in any execution of the program.
For a buffer pointed to by buf, finding the number of
bytes used corresponds to finding the “tightest” possible
range [buf!used!min..buf!used!max]. This can be
done by finding the lowest and highest values of the con-
straint variables buf!used!max and buf!used!min

respectively that satisfy all the constraints. Similarly,
we can find the “tightest” possible range for the num-
ber of bytes allocated for the buffer by finding the
lowest and the highest values of buf!alloc!max and
buf!alloc!min respectively.

For the program in Figure 2, the constraint variables
take on the values shown in Figure 5; We explain in detail
in Sections 3 and 4 how these values were obtained.

2.5 Detecting Overruns

Based on the values inferred by the solver, as well as the
values inferred by the taint analysis module, the detector
decides whether there was an overrun on each buffer. We
use several heuristics to give the best possible judgment.
We shall explain some of these in the context of the val-
ues from Figure 5.
• The solver found that the buffer pointed to by header

has 2048 bytes allocated for it, but that its length could
have been between 1 and 2048 bytes. This is a scenario
where a buffer overrun can never occur – and hence the
buffer pointed to by header is flagged as “safe”. The

Variable min Value max Value
header!used 1 2048
header!alloc 2048 2048
buf!used 1 1024
buf!alloc 1024 1024
cc1!used 0 2048
cc1!alloc 0 2047
ptr!used 1 2048
ptr!alloc 1024 2048
cc2!used 0 2048
cc2!alloc 0 2047
buffer!used 1 2048
buffer!alloc 1024 2048
copy!used 0 2048
copy!alloc 0 2047
counter 0 ∞

Figure 5: Values of some constraint variables

same is true of the buffer pointed to by buf.
• The buffer pointed to by ptr was found to have be-
tween 1024 and 2048 bytes allocated, while between 1
and 2048 bytes could have been used. Note that ptr
is part of two assignment statements. The assignment
statement (6) could make ptr point to a buffer as long
as 2048 bytes, while the statement (9) could make ptr
point to a buffer as long as 1024 bytes. The flow insen-
sitivity of the analysis means that we do not differenti-
ate between these program points, and hence can only
infer that ptr was up to 2048 bytes long. In such a
scenario, where the value of ptr!used!max is bigger
than ptr!alloc!min but smaller than (or equal to) the
value of ptr!alloc!max, we conservatively conclude
that there might have been an overrun. This can result in
a false positive due to the flow insensitivity of the analy-
sis.
• In cases such as for program variable copy

where we observe that copy!alloc!max is less than
copy!used!max, we know that there is a run of the pro-
gram in which more bytes were written into the buffer
than it could possible hold, and we conclude that there
was an overrun on the buffer.

Notice that the constraint variables corresponding to
cc1 and cc2 get the same value; this is a result of the
context-insensitivity of our analysis. We will show in
Section 5 how to enhance the precision of the analysis
using context sensitivity.

We have developed a GUI front end (Figure 11) that
enables the end-user to “surf” the warnings – every warn-
ing is linked back to the source code line that it refers to.
Moreover, the user can exploit the program slicing capa-
bilities of Codesurfer to verify real overruns.

5

3 Constraint Resolution using Linear Pro-
gramming

A Linear Program is an optimization problem that is ex-
pressed as follows:

Minimize : cx

Subject To : Ax ≥ b

where A is an m×n matrix of constants, b and c are vec-
tors of constants, and x is a vector of variables. This is
equivalent to saying that we have a system of m inequal-
ities in n variables, and are required to find values for the
variables such that all the constraints in the system are
satisfied and the objective function cx takes its lowest
possible value. It is important to note that the above form
is just one of the numerous ways in which a linear pro-
gram can be expressed. For a more comprehensive view
of linear programming, see [11, 30]. Linear program-
ming works on finite real numbers; that is, the variables
in the vector x are only allowed to take finite real values.
Hence the optimum value of the objective function, if it
exists, is always guaranteed to be finite.

Linear programming is well studied in the literature,
and there are well-known techniques to solve linear pro-
grams, Simplex [16] being the most popular of them.
Other known techniques, such interior point methods
[35] work provably in polynomial time. Commercially
available solvers for solving linear programs, such as So-
Plex [36, 37] and CPLEX [26] implement these and re-
lated methods.

The set of constraints that we obtained after program
analysis are linear constraints, hence we can formulate
our problem as a linear program. Our goal is to ob-
tain the values for buf!alloc!min, buf!alloc!max,
buf!used!min and buf!used!max that yield the tight-
est possible ranges for the number of bytes allocated
and used by the buffer pointed to by buf in such a
way that all the constraints are satisfied. More pre-
cisely, we are interested in finding the lowest possi-
ble values of buf!alloc!max and buf!used!max,
and the highest possible values of buf!alloc!min and
buf!used!min subject to the set of constraints. We can
obtain the desired bounds for each buffer buf by solving
four linear programs, each with the same constraints but
with different objective functions:

Minimize: buf!alloc!max
Maximize: buf!alloc!min
Minimize: buf!used!max
Maximize: buf!used!min

However, it can be shown (the proof is beyond the
scope of this paper) that for the kind of constraints gen-

erated by the tool, if all max variables have finite lower
bounds, and all min variables have finite upper bounds,
then the values obtained by solving the four linear pro-
grams as above are also the values that optimize the lin-
ear program with the same set of constraints subject to
the objective function:
Minimize:

∑
buf

(buf!alloc!max - buf!alloc!min
+ buf!used!max - buf!used!min)

Note that this objective function combines the con-
straint variables across all buffers. Since taint analysis
ensures that all max variables have finite lower bounds
and all min variables have finite upper bounds, we can
solve just one linear program, and obtain the bounds for
all buffers.

It must be noted that we are actually interested in
obtaining integer values that represent buffer bounds
buf!alloc!max, buf!used!max, buf!alloc!min

and buf!used!min. The problem of finding integer so-
lutions to a linear program is called Integer Linear Pro-
gramming and is a well known NP-complete problem
[18]. Our approach is thus an approximation to the real
problem of finding integer solutions that satisfy the con-
straints. In some cases, however, it is possible to solve
the problem using standard linear programming algo-
rithms and yet obtain integer solutions to the variables in
the linear program. This is possible when the constraints
can be expressed as A·x ≥ b, and A is a unimodular
matrix [5, 19, 30, 32]. Here A is an m × n matrix of
integer constants, x is an n × 1 vector of variables, and
b is an m × 1 vector of integer constants. In our expe-
rience, the constraints produced by the tool have always
produced integer solutions.

3.1 Handling Infeasible Linear Programs

While at first glance the method seems to give the de-
sired buffer bounds, it does not work for all cases. In
particular, an optimal solution to a linear program need
not even exist. We describe briefly the problems faced
when using a linear programming based approach for de-
termining the buffer bounds.

A linear program is said to be feasible if one can find
finite values for all the variables such that all the con-
straints are satisfied. For a linear program in n variables,
such an assignment is a vector in

� n and is called a so-
lution to the linear program. A solution is said to be op-
timal if it also maximizes (or minimizes) the value of the
objective function. A linear program is said to be un-
bounded if a solution exists, but no solution optimizes

6

the objective function. For instance, consider:

Maximize : x

Subject To : x ≥ 5

Any value of x ≥ 5 is a solution to the above linear pro-
gram, but no finite value x ∈

�
optimizes the objective

function. Finally, a linear program is said to be infeasible
if it has no solutions. An example of an infeasible linear
program is shown in Figure 6.

Minimize : counter!max
Subject To : counter

′!max ≥ counter!max + 1

counter!max≥ counter
′!max

Figure 6: An Infeasible Linear Program

In our formulation, if a linear program has an optimal
solution, we can use that value as the buffer bound. None
of the linear programs in our case can be unbounded,
since the constraints have been examined by the taint an-
alyzer to ensure that all max variables have finite lower
bounds. We minimize for the max variables in the objec-
tive function, and since all the max variables have finite
lower bounds, the lowest value that each max variable
can obtain is also finite. Similarly, all min variables have
finite upper bounds, and so when we maximize the min
variables, the highest values that they could obtain are
also finite. Hence taint analysis is an essential step to
ensure that our approach works correctly.

However, when the linear program is infeasible, we
cannot assign any finite values to the variables to get a
feasible solution. As a result, we cannot obtain the val-
ues for the buffer bounds. In such a case, a safe option
would be to set all max variables to ∞ and min variables
to -∞, but that information would be virtually useless
to the user of the tool because there would be too many
false alarms. The linear program may be infeasible due to
a small subset of constraints; in such a scenario, setting
all variables to infinite values will be overly conserva-
tive. For instance, the constraints in Figure 2 are infeasi-
ble because of the constraints generated for the statement
counter++. Constraints generated by most real world
programs have such statements, as well as statements in-
volving pointer arithmetic, and we can expect the con-
straints for such programs to be infeasible. Thus, the
conservative approach of setting all constraint variables
to infinite values is unacceptable.

We have developed an approach in which we try to re-
move a “small” subset of the original set of constraints
so that the resultant constraint system is feasible. In fact,

the problem of “correcting” infeasible linear programs to
make them feasible is a well studied problem in the op-
erations research community. The approach is to identify
Irreducibly Inconsistent Sets (called IIS) [9]. An IIS is
a minimal set of inconsistent constraints, i.e., the con-
straints in the IIS together are infeasible, but any subset
of constraints in the IIS form a feasible set. For instance,
both the constraints in the linear program in Figure 6 con-
stitute an IIS because the removal of any one of the two
constraints makes the linear program feasible. There are
several efficient algorithms available to detect IISs in a
set of constraints. We used the Elastic Filtering algo-
rithm described in [9]. The Elastic Filtering Algorithm
takes as input a set of linear constraints and identifies an
IIS in these constraints (if one exists). An infeasible lin-
ear program may have more than one IISs in it, and the
elastic filtering algorithm is guaranteed to find at least
one of these IISs. To produce a feasible linear program
from an infeasible linear program, we may be required to
run the elastic filtering algorithm several times; each run
identifies and removes an IIS and produces a smaller lin-
ear program which can further be examined for presence
of IISs.

Figure 7 pictorially shows our approach to obtain a set
of feasible linear constraints from a set of infeasible lin-
ear constraints. We first examine the input set, depicted
as C , to find out if it is feasible; if so, it does not con-
tain IISs, and C can be used as the set of constraints in
our linear program formulation. If the C turns out to be
infeasible, then it means that there is a subset of C that
forms one or more IISs. This subset is depicted as C ′

in the figure. The elastic filtering algorithm, over sev-
eral runs, identifies and removes the subset C ′ from the
set of constraints. The resultant set C − C ′ is feasible.
We then set the values of the max and min variables ap-
pearing in C ′ to ∞ and -∞ respectively. We do so be-
cause we cannot infer the values of these variables using
linear programming, and hence setting these variables to
infinite values is a conservative approach. These vari-
ables whose values are infinite may appear in the set of
constraints C − C ′. The scenario is now similar to taint
analysis, where we had some constraint variables whose
values were infinite, and we had to identify and remove
the constraint variables that were “tainted” by the infi-
nite variables. Therefore, we run steps (2)-(13) of the
taint analysis algorithm (Figure 4) with Infset as the
constraint variables that appear in C ′. This step results
in further removal of constraints, which are depicted in
the Figure 7 by a subset C ′′ of C − C ′. The set of con-
straints after removal of C ′′, denoted as D in Figure 7,

7

C’

C

The set C of constraints.
C’ denotes a set of IISs.

C − C’

C’’

Removal of C’ results in
a set C’’ tainted by C’

Taint AnalysisElastic Filtering

D

removing C’’.
The set D obtained by

Figure 7: Making an Infeasible set of constraints amenable to Linear Programming

Input: Set of Constraints C

Output: For each buffer buf, values for buf!used!max, buf!used!min, buf!alloc!max, buf!alloc!min
(1) Removed = φ

(2) while C is infeasible
(3) IIS set = ELASTIC FILTER ALGORITHM(C)
(4) C = C - IIS Set
(5) Removed = Removed ∪ IIS Set
(6) foreach constraint variable v appearing in Removed
(7) if v is a max variable
(8) v←∞
(9) else
(10) v← −∞
(11) C = output of steps (2)-(12) of Taint Analysis (Figure 4) by setting Infset = Removed
(12) MaxSet = {v | v is a max constraint variable appearing in C}
(13) MinSet = {u | u is a min constraint variable appearing in C}
(14) Minimize: (�

v∈MaxSet
v) - (�

u∈MinSet
u) Subject To: C

(15) Set each variable to the value returned by the Linear Program Solver.

Figure 8: Constraint Resolution using Linear Programming

satisfies the property that all max variables appearing in
it have finite lower bounds, and all min variables have fi-
nite upper bounds. Moreover, D is feasible, and will only
yield optimal solutions when solved as a linear program
with the objective functions described earlier. Hence, we
solve the linear program using the set of constraints in D.

Figure 8 summarizes our approach to constraint res-
olution using linear programming. Steps (1)-(10) of
the algorithm describe the transformation that removes
the IISs, while step (11) performs the taint analysis to
obtain the set of constraints which can be used in the lin-
ear program formulation.

3.2 Implementation

We have implemented the above algorithm by extending
the commercially available package SoPlex [36, 37]. So-
Plex is a linear program solver; we extended it by adding
IIS detection and taint analysis. In practice, linear pro-
gram solvers work much faster when the constraints have
been presolved. Presolving is a method by which con-
straints are simplified before being passed to the solver.
In several cases, we can make simple inferences about

the constraints; for instance, if x ≥ 5 is the only con-
straint involving x, and we wish to minimize x, it is clear
that x is 5. Several such techniques are described in the
literature [7]; we have incorporated some of them in our
solver.

4 Solving Constraint Systems Hierarchically

In the previous section, we described an approach that
used linear programming to determine bounds on the
constraint variables. When the linear program was infea-
sible, we detected and removed IISs and solved a feasible
subset of the constraints. In this section, we present an al-
ternate approach for solving a set of constraints that han-
dles infeasible sets of constraints in a different way. This
approach was also developed independently by Rugina
and Rinard in [29]. The idea behind this approach is to
decompose the set of constraints into smaller subsets, and
solve each subset separately. We do so by constructing a
directed acyclic graph (DAG), each of whose members is
a set of constraints, and solve each member in the order
that it appears in a topological sort of the DAG.

To construct such a DAG, we first identify sets of con-

8

EQ3

EQ1

x!maxEQ2,
EQ4

y!max

w!max

z!maxEQ5

 EQ1: w!max >= 10
 EQ2: x!max >= w!max
 EQ3: y!max >= x!max + 10
 EQ4: x!max >= 2.y!max + 15
 EQ5: z!max >= 5.x!max + w!max

Figure 9: Constraint Dependency Graph – an example

straints such that each member of the set depends on
the other members of the set either directly or indirectly.
Consider for instance, the constraints shown on the left
in Figure 9. Constraint EQ3 gives a lower bound for the
variable y!max based on the value of x!max. However
the value of x!max itself has a lower bound determined
by EQ2 and EQ4. Thus EQ3 “depends” on EQ2 and EQ4.

To formalize the notion of dependency, we construct
a graph whose vertices are the constraint variables in the
set of equations. We associate the vertex corresponding
to a variable x with all constraints in which x appears on
the LHS. We draw an edge from a vertex y to a vertex x

if there is a constraint that has y on the RHS and x on the
LHS. We then identify Strongly Connected Components
(SCCs) in this graph. The set of constraints associated
with the vertices in an SCC are defined to be dependent
upon each other. Figure 9 shows the constraints asso-
ciated with each vertex; the SCCs are identified using
dotted lines. EQ2, EQ3 and EQ4 are dependent on each
other.

Recall that if we coalesce the SCCs in a graph, then
the resulting graph is a DAG. The topological sort of the
DAG naturally defines a hierarchy in the DAG. Hence,
we consider each SCC in topologically sorted order, and
solve the constraints associated with that SCC. Each SCC
consists of a set of linear constraints, and we formulate a
linear program to minimize (maximize) each max (min)
variable that appears in the set of constraints just as we
did in Section 3.

If the set of constraints C in an SCC are found to be
infeasible, we can immediately set all max and min vari-
ables appearing on the LHS of each constraint in C to
∞ and -∞ respectively. This approach does not require
us to identify and remove IISs in C . This is because an
IIS detection algorithm combined with the taint analysis
that follows IIS detection, denoted by steps (1)-(11) of
Figure 8, would remove all the constraints in C and set
the variables appearing on the LHS in each constraint in
C to infinite values. This can be attributed to the fact that
each constraint in C is dependent on at least one more

constraint in C; consequently, setting any LHS variable
to an infinite value will result in the LHS variables of all
constraints getting infinite values. Hence, the approach
of solving a set of dependent constraints together obvi-
ates the need for IIS detection and elimination.

Once we have the values for the constraint variables
that appear in an SCC, we can substitute these values in
the constraints that are associated with the children of
the SCC. Once all the SCCs have been solved, the values
for all the constraint variables in the set of constraints
becomes available.

A few points are worth noting with respect to this
solver:
• Constraint simplification by substituting available val-
ues presents an opportunity to avoid calling an LP solver
if the simplification makes the constraints amenable to
presolve. For instance, for the set of constraints shown
in Figure 9, we can infer that the value of w!max is 10
without having to invoke a linear program solver. This
value can be substituted in EQ2 and EQ5, thus simplify-
ing these constraints. Similarly, we can infer the value of
z!max once the value of x!max is available.
• The IIS detection based approach for handling infea-
sibility is an approximation algorithm. It may remove
more constraints than are actually required to make the
constraints feasible; as a result more constraint variables
than necessary may be set to ∞/-∞. It can be shown that
the solution obtained by the hierarchical solver is precise,
in the sense that it sets the fewest number of constraint
variables to ∞/-∞. Furthermore, when the linear pro-
gram is feasible, this solver produces the same solution
as obtained by the algorithm in Figure 8. This gives rise
to a trade-off, i.e., the user can choose between the hi-
erarchical solver which solves more (but smaller) linear
programs, the solutions to which are mathematically pre-
cise, or choose the algorithm from Figure 8, which may
be imprecise, but is more efficient. In our experiments,
we noted that the approach from Section 3 can be up to 3
times faster than the hierarchical solver, while sacrificing
the precision of only 5% of the constraint variables.
• Since we have broken down the problem into one of
solving small sets of constraints, we could use a different
solver for each set of constraints. Some kinds of con-
straint systems have fast solvers, for instance, the prob-
lem of finding a solution to a set of difference constraints
can be formulated as a shortest-path problem [13].
• Lastly, for very large constraint systems, one could en-
vision solving the SCCs at the same depth in parallel.
Thus, a DAG with depth D can be solved in D steps.

9

5 Adding Context Sensitivity

The constraint generation process described in Section
2 was context-insensitive. When we generated the con-
straints for a function, we considered each call-site as
an assignment of the actual-in variables to the formal-in
variables, and the return from the function as an assign-
ment of the formal-out variables to the actual-out vari-
ables. As a result, we merged information across call-
sites, thus making the analysis imprecise. In this section
we describe how to incorporate context sensitivity.

Constraint inlining is similar in spirit to inlining
function bodies at call-sites. Observe that in the context-
insensitive approach, we lost precision because we
treated different call-sites to a function identically, i.e, by
assigning the actual-in variables at each call-site to the
same formal parameter.

Constraint inlining alleviates this problem by creating
a fresh instance of the constraints of the called function at
each call-site. In other words, at each call-site to a func-
tion, we produce the constraints for the called function
with the local variables and formal variables renamed
uniquely for that call-site. This is illustrated in the ex-
ample below, which shows some of the constraints for
the function copy buffer from Figure 2 specialized for
the call-site at line (7):

copy!alloc!max1 ≥ buffer!used!max1 - 1
copy!used!max1 ≥ buffer!used!max1

copy!used!min1 ≤ buffer!used!min1

copy buffer$return!used!max1 ≥ copy!used!max1

copy buffer$return!used!min1 ≤ copy!used!min1

Context-sensitivity can be obtained by modeling each
call-site to the function as a set of assignments to the
renamed instances of the formal variables. The actual-
in variables are assigned to the renamed formal-in vari-
ables, and the renamed formal-out variables are assigned
to the actual-out variables. As a result, there is exactly
one assignment to each renamed formal-in parameter of
the function, which alleviates the problem of merging in-
formation across different calls to the same function.

Some of the constraints for the call-site to
copy buffer at line (7) in Figure 2 are shown
below:

buffer!used!max1 ≥ header!used!max
buffer!used!min1 ≤ header!used!min
cc1!used!max ≥ copy buffer$return!used!max1

cc1!used!min ≤ copy buffer$return!used!min1

With this approach to constraint generation, we obtain
the values 2047 and 2048 for cc1!alloc!max and
cc1!used!max respectively, while cc2!alloc!max

and cc2!used!max get the values 1023 and 1024 re-
spectively, which is an improvement over the values re-
ported in Figure 5.

We have implemented this approach because it re-
quires only minimal changes to the constraint generation
process that we have already described. However, it also
has some shortcomings:
• It does not handle recursive function calls; this is at-
tributed to the fact that inlining cannot work in the pres-
ence of recursion.
• The number of constraint variables in the constraints
with context sensitivity may be exponentially larger than
the number of constraints in their non-context sensitive
counterpart. As a result, we do not expect this technique
to scale well to large programs.

These drawbacks can be overcome through the use of
summary constraints. Summary constraints summarize
the effect of a function call in terms of the constraint vari-
ables representing global variables and formal parame-
ters of the called function. Once the summary constraints
of a function are available, we can obtain context sensi-
tivity by substituting actual parameters in place of the
formal parameters in the summary constraints. This ap-
proach is described in detail in Appendix A.1.

6 Experience with the tool

We tested our prototype implementation on several pop-
ular commercially used programs. In each case, the
tool produced several warnings; we used these warnings,
combined with Codesurfer features such as slicing, to
check for real overruns. We tested to see if the tool dis-
covered known overruns documented in public databases
such as bugtraq [1] and CERT [2], and also checked to
see if any overruns that were previously unreported were
discovered. We report our experience with wu-ftpd and
sendmail. Results on a few more packages are in Ap-
pendix A.2.

All our experiments were performed on a machine
with a 3GHz P4 Xeon processor machine with 4GB
RAM running Debian GNU/Linux 3.0. We used
Codesurfer version 1.8 for our experiments, the gcc-

3.2.1 compiler for building the programs, and glibc

version 2.2.4 for macro-expansion. Codesurfer imple-
ments several pointer analysis algorithms; in each case
we performed the experiments with a field-sensitive ver-
sion of Andersen’s analysis [6] that uses the common-
initial-prefix technique of Yong and Horwitz [39] to deal
with structure casts. We configured the tool to use the
hierarchical solver described in Section 4 for constraint
resolution (so the values obtained will be precise), and

10

produce constraints in a context-insensitive fashion.

6.1 WU-FTP Daemon

We tested two versions of the wu-ftp daemon, a popular
file transfer server. Version 2.5.0 is an older version with
several known vulnerabilities (see CERT advisories CA-
1999-13, CA-2001-07 and CA-2001-33), while version
2.6.2 is the current version with several security patches
that address the known vulnerabilities.

6.1.1 wu-ftpd-2.6.2

wu-ftpd-2.6.2 has about 18K lines of code, and pro-
duced 178 warnings when examined by our tool. Upon
examining the warnings, we found 14 previously unre-
ported overruns; we will describe one of these in detail.

The tool reported a potential overrun on a buffer
pointed to by accesspath in the procedure
read servers line in rdservers.c, where as
many as 8192 bytes could be copied into the buffer for
which up to 4095 bytes were allocated. Figure 10 shows
the code snippet from read servers line which is
responsible for the overrun.

int read_servers_line (FILE *svrfp,
char *hostaddress,
char *accesspath){

static char buffer[BUFSIZ];
...
while (fgets(buffer, BUFSIZ, svrfp)){
...
if ((hp = gethostbyname(hcp))){

struct in_addr in;
memmove(&in, hp->h_addr, sizeof(in));
strcpy(hostaddress, inet_ntoa(in));

}
else

strcpy(hostaddress, hcp);

strcpy(accesspath, acp);
}

}

Figure 10: Code snippet from wu-ftpd-2.6.2

The fgets statement may copy as many as 8192
(BUFSIZ) bytes into buffer, which is processed further
in this function. As a result of this processing, acp and
hcp point to locations inside buffer. By an appropri-
ate choice of the contents of buffer, one could make
acp or hcp point to a string buffer as long as 8190 bytes,
which could result in an overflow on the buffer pointed
to either by accesspath or hostname respectively.

The procedure read servers line is called at
several places in the code. For instance, it is
called in the main procedure in ftprestart.c where
read servers line is called with two local buffers,
hostaddress and configdir, which have been al-

located 32 bytes and 4095 bytes respectively. This
call reads the contents of the file PATH FTPSERVERS,
which typically has privileged access. However, in
non-standard and unusual configurations of the system,
PATH FTPSERVERS could be written to by a local user.

As a result, the buffers hostaddress and configdir

can overflow based on a carefully chosen input string,
possibly leading to a local exploit. The use of a strncpy
or strlcpy statement instead of the unsafe strcpy in
read servers line rectifies the problem.

Some other new overruns which were detected by the
tool were:
• An unchecked sprintf in main in the file ft-

prestart.c could result in 16383 bytes being written
into a local buffer that was allocated 4095 bytes.
• Another unchecked sprintf in main in the file ft-

prestart.c could result in 8447 bytes being written
into a local buffer that was allocated 4095 bytes.
• An unchecked strcpy in main in the file ft-

prestart.c could result in 8192 bytes being written
into a local buffer that was allocated 4095 bytes.

In each of the above cases, a carefully chosen string in
the file PATH FTPACCESS can be used to cause the over-
run. As before, PATH FTPACCESS typically has privi-
leged access, but could be written to by a local user in
non-standard configurations. We contacted the wu-ftpd
developers [22], and they have acknowledged the pres-
ence of these bugs in their code, and are in the process of
fixing the bugs (at the time of writing this paper).

6.1.2 wu-ftpd-2.5.0

wu-ftpd-2.5.0 has about 16K lines of code; when
analyzed by our tool, it produced 139 warnings. Figure
11 shows a screenshot of the GUI that our tool provides
for the user to surf the warnings. Each of the warnings
shown is a “hot” link, and is linked back to the line of
source code that is responsible for the warning. Consider
the first warning shown in the figure; it depicts that the
tool found a potential overrun on the buffer buf in the
procedure vreply in the file ftpd.c. It also shows two
possible locations where it thinks the overrun could have
occurred – an snprintf, and an sprintf statement.

The first location where a potential overrun was found,
an snprintf, was:

snprintf(buf + (n ? 4 : 0),

n ? (sizeof(buf)-4) : sizeof(buf),

"%s", fmt);

Clearly, no more than sizeof(buf) bytes are writ-
ten into buf, and hence this statement is safe. However
since the tool ignores control flow, this statement is mod-

11

Figure 11: A screenshot from the wu-ftpd-2.5.0 analysis

eled as though sizeof(buf) bytes could be written at
the location buf + 4, which causes the tool to report
that as many as 8196 bytes could be written into buf for
which 8192 bytes where allocated. As a result, this warn-
ing is a false alarm. The second location associated with
this warning, an sprintf statement, turns out to be safe
since it copies only 16 bytes into the 8192 byte array buf.
The tool inferred this from the constraints, and hence this
statement was marked “safe” as is shown in the figure.

We analyzed the warnings to check for a widely
exploited overrun reported in CERT advisory CA-1999-
13. The buffer overflow was on a globally declared
buffer mapped path in the procedure do elem in the
file ftpd.c. It was noted in [23] that the overrun was
due to a statement strcat(mapped path, dir),
where the variable dir could be derived (indirectly)
from user input. As a result it was possible to overflow
mapped path for which 4095 bytes were allocated.
Our tool reported the range for mapped path!used as
[0..+∞], while mapped path!allocwas [4095..4095].
We note that strcat(dst, src) would be modeled
as four linear constraints by our tool:

dst′!used!max≥ dst!used!max + src!used!max
dst!used!max≥ dst′!used!max
dst′!used!min≤ dst!used!min + src!used!min
dst!used!min≤ dst′!used!min

The first two constraints make the linear program in-
feasible, as explained in Section 3, and result in
dst!used!max being set to +∞. Hence, in wu-ftpd-
2.5.0, mapped path!used!max will be set to +∞,
and the tool would have reported the same range even

in the absence of an overrun. We used Codesurfer’s pro-
gram slicing feature to confirm that dir could be derived
from user input. We found that the procedure do elem,
one of whose parameters is dir, was called from the
procedure mapping chdir. This function was in turn
called from the procedure cmd, whose input arguments
could be controlled by the user. This shows the impor-
tance of providing the end user with several program
analysis features. These features, such as program slicing
and control and data dependence predecessors, which are
part of Codesurfer, aid the user of the tool to understand
the source code better and hence locate the source of the
vulnerability.

6.2 Sendmail

Sendmail is a very popular mail transfer agent. We an-
alyzed sendmail-8.7.6, an old version that was re-
leased after a thorough code audit of version 8.7.5.
However, this version has several known vulnerabili-
ties. We also analyzed sendmail-8.11.6; in March
2003, two new buffer overrun vulnerabilities were re-
ported in the then current sendmail version. We note
that sendmail-8.7.6 and sendmail-8.11.6 are vul-
nerable to these overruns as well.

6.2.1 sendmail-8.7.6

sendmail-8.7.6 has about 38K lines of code; when
analyzed by our tool, it produced 295 warnings. Due to
the large number of warnings, we focused on scanning
the warnings to detect some known overruns.

Wagner et al. use BOON [34] to report an off-by-one
bug in sendmail-8.9.3where as many as 21 bytes, re-

12

turned by a function queuename, could be written into a
20 byte array dfname. Our tool identified four possible
program points in sendmail-8.7.6 where the return
value from queuename is copied using strcpy state-
ments into buffers which are allocated 20 bytes. As in
[34], our tool reported that the return value from queue-

name could be up to 257 bytes long, and further manual
analysis was required to decipher that this was in fact
an off-by-one bug. Another minor off-by-one bug was
reported by the tool where the programmer mistakenly
allocated only 3 bytes for the buffer delimbuf which
stored "\n\t ", which is 4 bytes long including the end
of string character.

6.2.2 sendmail-8.11.6

sendmail-8.11.6 is significantly larger than version
8.7.6 and has 68K lines of code; when we ran our tool,
it produced 453 warnings. We examined the warnings to
check if the tool discovered the new vulnerabilities re-
ported in March 2003.

One of these vulnerabilities is on a function crack-

addr in the file headers.c, which parses an incom-
ing e-mail address string. This function stores the ad-
dress string in a local static buffer called buf that is de-
clared to be MAXNAME + 1 bytes long, and performs sev-
eral boundary condition checks to see that buf does not
overflow. However, the condition that handles the angle
brackets (<>) in the From address string is imprecise,
thus leading to the overflow [25].

Our tool reported that bp, a pointer to the buffer
buf in the function had bp!alloc!max = +∞ and
bp!used!max = +∞, thus raising an warning. However,
the reason bp!alloc!max and bp!used!max were set
to +∞ was because of several pointer arithmetic state-
ments in the body of the function. In particular, the
statement bp-- resulted in bp!alloc!max = +∞ and
bp!used!max = +∞. Hence, this warning would have
existed even if the boundary condition checks were cor-
rect.

We have discovered that the use of control dependence
information, which associates each statement with the
predicate that decides whether the statement will be exe-
cuted, is crucial to detecting such overruns reliably.

6.3 Performance

Figure 12 contains representative numbers from our
experiments with wu-ftpd-2.6.2 and sendmail-

8.7.6. All timings are wall-clock times, and are an
average over 4 runs; CODESURFER denotes the time
taken by Codesurfer to analyze the program, GENER-
ATOR denotes the time taken for constraint generation,

wu-ftpd-2.6.2 sendmail-8.7.6

CODESURFER 12.54 sec 30.09 sec
GENERATOR 74.88 sec 266.39 sec
TAINT 9.32 sec 28.66 sec
LPSOLVE 3.81 sec 13.10 sec
HIERSOLVE 10.08 sec 25.82 sec

Number of Constraints Generated
PRE-TAINT 22008 104162

POST-TAINT 14972 24343

Figure 12: Performance of the tool

while TAINT denotes the time taken for taint analysis.
The constraints produced can be resolved in one of two
ways; the rows LPSOLVE and HIERSOLVE report the
time taken by the solvers from Section 3 and Section 4
respectively. The number of constraints output by the
constraint generator is reported in the row PRE-TAINT,
while POST-TAINT denotes the number of constraints af-
ter taint-analysis.

These results serve to demonstrate the trade-off be-
tween performance and precision of the Hierarchical
solver versus the IIS detection based solver from Section
3. While the IIS detection based approach is much faster,
it is not mathematically precise. However, we found that
it is a good approximation to the solution obtained by the
hierarchical solver. In case of wu-ftpd-2.6.2 fewer
than 5% of the constraint variables, and in the case of
sendmail-8.7.6 fewer than 2.25% of the constraint
variables obtained imprecise values when we used the IIS
detection based approach.

6.4 Adding Context Sensitivity

We report here our experience with using context-
sensitive analysis on wuftpd-2.6.2 using both the con-
straint inlining approach and the summary constraints ap-
proach. To measure the effectiveness of each approach,
we will count the number of range variables that were
refined in comparison to the corresponding ranges ob-
tained in a context-insensitive analysis. Recall that the
value of a range variable var is given by the corre-
sponding constraint variables var!min and var!max as
[var!min..var!max]. We chose this metric since, as ex-
plained in Section 2.5, the detector uses the values of the
ranges to produce diagnostic information, and more pre-
cise ranges will more precise diagnostic information.

The context-insensitive analysis on wuftpd-2.6.2

yields values for 7310 range variables. Using the sum-
mary constraints approach, we found that 72 of these
range variables obtained more precise values. Note that
in this approach the number of constraint variables (and

13

hence the number of range variables) is the same as in
the context-insensitive analysis. However, the number
of constraints may change, and we observed a 1% in-
crease in the number of constraints. This change can
be attributed to the fact that summarization introduces
a some constraints (the summaries), and removes some
constraints (the old call-site assignment constraints).

The constraint inlining approach, on the other hand,
leads to a 5.8× increase in the number of constraints,
and a 8.7× increase in the number of constraint vari-
ables (and hence the number of range variables). This
can be attributed to the fact that the inlining based ap-
proach specializes the set of constraints at each callsite.
In particular, we observed that the 7310 range variables
from the context-insensitive analysis were specialized to
63704 range variables based on calling context. We can
count the number of range variables that obtained more
precise values in two possible ways:
• Out of the 63704 specialized range variables, 7497

range variables had obtained more precise values than the
corresponding unspecialized range variables.
• Out of the 7310 unspecialized range variables, 406

range variables had obtained more precise values in at
least one calling context.

As noted earlier, the constraint inlining approach re-
turns more precise information than the summary con-
straints based approach. To take a concrete example,
we consider the program variable msgcode (an integer),
which is the formal parameter of a function pr mesg in
the file access.c in wu-ftpd-2.6.2. The function
pr mesg is called from several places in the code with
different values for the parameter msgcode. The sum-
mary constraints approach results in the value [530..550]
for the range variable corresponding to msgcode. How-
ever, the constraint inlining approach refines these ranges
– for instance, it is able to infer that pr mesg is always
called with the value 530 from the function pass in the
file ftpd.c.

6.5 Effects of Pointer Analysis

As observed in Section 2, we were able to reduce false
negatives through the use of pointer analysis. The tool
is capable of handling arbitrary levels of dereferencing.
For instance, if p points to a pointer to a structure s, the
pointer analysis algorithms correctly infer this fact. Sim-
ilarly, if p and q are of type char** (i.e., they point-
to pointers to buffers), the constraints for a statement
such as strcpy(*p, *q) would be correctly modeled
in terms of the points-to sets of p and q (recall that
we generated constraints in terms of pointers to buffers

rather than buffers themselves).
To observe the benefits of pointer analysis we gen-

erated constraints with the pointer analysis algorithms
turned off. Since fewer constraints will be generated,
we can expect to see fewer warnings; in the absence of
these warnings, false negatives may result. We observed
a concrete case of this in the case of sendmail-8.7.6.
When we generated constraints without including the re-
sults of the pointer analysis algorithms, the tool output
only 251 warnings (as opposed to 295 warnings). How-
ever, this method resulted in the warning on the array df-
name being suppressed, so the tool missed the off-by-one
bug that we described earlier. A closer look at the code
in the procedure queuename revealed that in the absence
of points-to facts, the tool failed to generate constraints
for a statement:
snprintf(buf, sizeof buf, "%cf%s",

type, e− >e id)

in the body of queuename since points to facts for the
variable e, which is a pointer to a structure, were not
generated.

We note that BOON [34] identified this off-by-one bug
because of a simple assumption made to model the ef-
fect of pointers, i.e., BOON assumes that any pointer to
a structure of type T can point to all structures of type
T. While this technique can be effective at discovering
bugs, the lack of precise points-to information will lead
to a larger number of false alarms.

6.6 Shortcomings

While we found the prototype implementation a useful
tool to audit several real world applications, we also
noted several shortcomings and are working towards
overcoming these limitations.

First, the flow insensitivity of the analysis meant that
we would have several false alarms. Through the use
of slicing we were able to weed out the false alarms,
nevertheless it was a manual and often painstaking pro-
cedure. By transitioning to a Static Single Assignment
(SSA) representation [15] of the program, we can add a
limited form of flow sensitivity to the program. This will
result in a large number of constraint variables. Fortu-
nately, we have observed that the solvers readily scale to
large linear programs with several thousand variables.

Second, by modeling constraints in terms of pointers
to buffers rather than buffers, we can miss overruns, thus
leading to false negatives [34]. However, the reason we
did so was because the pointer analysis algorithms them-
selves were flow- and context-insensitive, and generat-
ing constraints in terms of buffers would have resulted in

14

a large number of constraints and consequently a large
number of false alarms. By transitioning to “better”
pointer analysis algorithms we can model constraints in
terms of buffers themselves, thus eliminating the false
negatives.

7 Related Work

Several static techniques have been proposed to mitigate
the problem of buffer overruns. Wagner et al. [33, 34]
have proposed a tool, BOON, similar in spirit to ours to
detect buffer overruns in C source code. However, un-
like our tool, BOON does not employ pointer analysis
algorithms and does not provide a way to enhance the
context-sensitivity of the analysis. Larochelle and Evans
[23] propose an extension to LCLint that uses semantic
information from annotations in the program to make in-
ferences on buffer bounds. The tool works like a com-
piler and produces warnings by making inferences based
on the annotations. Xi and Pfenning [38] propose an ex-
tension to ML that supports type annotations. These an-
notations are then used to determine the type safety of
the programs. However, in both these techniques, the
onus is on the user to provide correct annotations. As a
result, analyzing large legacy applications without these
annotations becomes almost impossible. Dor et al. [17]
propose a tool (CSSV) that aims to find all buffer over-
flows with just a few false alarms. The basic idea is to
convert the C program into an integer program, and use
a conservative static analysis algorithm that can check
the correctness of integer manipulations. The analysis is
performed on a per-procedure basis; to extend the anal-
ysis interprocedurally, they use the concept of contracts,
which are a set of pre-conditions and post-conditions of a
procedure, along with side-effect information. The num-
ber of false alarms generated depends on the accuracy of
the contracts, which are typically provided by the user.
They also discuss techniques whereby conservative user
supplied contracts can be automatically refined. Rugina
and Rinard [29] propose a technique based on linear pro-
gramming that infers symbolic upper and lower bounds
on arrays. They deal with infeasible linear programs by
using a solver similar to the hierarchical solver approach
presented in Section 4. They use a flow and context sen-
sitive program analysis to detect several programming
errors such as array out-of-bounds errors and race con-
ditions. However, the techniques in [17, 29] have not
been tested on large programs, and may scale poorly. For
instance, CSSV took > 200 seconds to analyze a string
manipulation program with a total of about 400 lines of
code.

There are a suite of dynamic techniques that help pre-
vent stack-smashing attacks. Stackguard [14] detects
changes to the return address by placing a “canary” word
on the stack. RAD [10] defends the return address by
storing it in a repository and checking the return address
against the repository before the function returns. Both
these techniques enhance the compiler to insert func-
tion prologues and epilogues that perform the checking.
Prasad and Chiueh [27] propose a binary rewriting tech-
nique that enhances binaries by incorporating the RAD
mechanism; however their technique suffers from im-
precision while disassembling the binary. While these
methods help in detecting and preventing attacks based
on buffer overruns, they fail to eliminate the buffer over-
flows from the source code, which is the goal around
which our tool is built.

Static techniques have also been used to reduce the
overhead of run-time checks. CCured [12, 24] is a pro-
gram transformation system that adds memory safety
guarantees to C programs by statically analyzing the
source code and classifying pointers as safe or unsafe.
Appropriate run-time checks are then inserted depending
on the kind of the pointer (lightweight checks for safe
pointers). CCured has been applied to several commer-
cial applications with reasonable run-time overhead [12].
However, in some cases, such as systems software, the
overhead of CCured could be as high as 87%. Bodik et
al. present ABCD [8], which provides a way to eliminate
frequently executed but redundant array bounds checks
for Java programs. This technique assumes the pres-
ence of the run-time checks in the code, and suggests a
way to improve performance by removing the unwanted
checks.

8 Conclusions

We have demonstrated a scalable technique to analyze
C source code to detect buffer overrun vulnerabilities.
We have shown the efficacy of the technique by apply-
ing it to real world examples and identifying new vul-
nerabilities in a popular security critical package. Our
techniques use novel ideas from the linear programming
literature, and provide a way to enhance the context sen-
sitivity of the program analysis. The output of our tool,
coupled with other program understanding features of
Codesurfer, such as static slicing, aid the user to com-
prehend and eliminate bugs from source code.

9 Acknowledgements

This work was supported in part by the National Science
Foundation under grant CCR-9619219, by the Office of

15

Naval Research under contracts N00014-01-1-0796 and
N00014-01-1-0708. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental
purposes, notwithstanding any copyright notices affixed
thereon. The views and conclusions contained herein are
those of the authors, and should not be interpreted as
necessarily representing the official policies or endorse-
ments, either expressed or implied, of the above govern-
ment agencies or the U.S. Government.

References
[1] bugtraq. www.securityfocus.com.

[2] CERT/CC advisories. www.cert.org/advisories.

[3] The twenty most critical internet security vulnerabilities.
www.sans.org/top20.

[4] Aleph-one. smashing the stack for fun and profit. Nov 1996.
Phrack Magazine.

[5] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows:
Theory, Algorithms and Applications. Prentice Hall, 1993.

[6] L. O. Andersen. Program Analysis and Specialization for the C
Programming Language. PhD thesis, DIKU, Univ. of Copen-
hagen, 1994. (DIKU report 94/19).

[7] E. D. Anderson and K. D. Anderson. Presolving in linear pro-
gramming. Mathematical Programming, 71(2):221–245, 1995.

[8] R. Bodik, R. Gupta, and V. Sarkar. ABCD: Eliminating array-
bounds checks on demand. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
2000.

[9] J. W. Chinnek and E. W. Dravinieks. Locating minimal infeasi-
ble constraint sets in linear programs. ORSA Journal on Com-
puting, 3(2):157–168, 1991.

[10] T-C. Chiueh and F-H. Hsu. RAD: A compile-time solution to
buffer overflow attacks. In Proceedings of the 21 st Interna-
tional Conference on Distributed Computing Systems (ICDCS),
April 2001.

[11] V. Chvátal. Linear Programming. W. H. Freeman and Co., New
York, 2000.

[12] J. Condit, M. Harren, S. McPeak, G. C. Necula, and W. Weimer.
CCured in the Real World. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
June 2003.

[13] T. H. Cormen, C. E. Lieserson, R. L. Rivest, and C. Stein. Intro-
duction to Algorithms. The MIT Press, Cambridge, MA, 2001.

[14] C. Cowan, S. Beaattie, R-F Day., C. Pu, P. Wagle, and E. Walth-
insen. Automatic detection and prevention of buffer overflow
attacks. In Proceedings of the 7th USENIX Security Sympo-
sium, 1998.

[15] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 13(4):452–490,
October 1991.

[16] G. B. Dantzig. Linear Programming and Extensions. Princeton
University Press, Princeton, N.J., 1963.

[17] N. Dor, M. Rodeh, and M. Sagiv. CSSV: Towards a realistic tool
for statically detecting all buffer overflows in C. In Proceedings
of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), June 2003.

[18] M. Garey and D. Johnson. Computers and Intractability. W. H.
Freeman and Co., San Francisco, CA, 1979.

[19] A. J. Hoffman and J. B. Kruskal. Integral boundary points of
complex polyhedra. Linear Inequalities and Related Systems,
pages 233–246, 1956.

[20] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. ACM Transactions on Programming
Languages and Systems (TOPLAS), 12(1):26–60, January 1990.

[21] S. Horwitz, T. Reps, M. Sagiv, and G. Rosay. Speeding up slic-
ing. In Proceedings of the Second ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE), pages 11–
20, New York, December 1994.

[22] K. Landfield. WU-FTPD resource center; personal communica-
tion. May 2003.

[23] D. Larochelle and D. Evans. Statically detecting likely buffer
overflow vulnerabilities. In Proceedings of the 10 th USENIX
Security Symposium, August 2001.

[24] G. C. Necula, S. McPeak, and W. Weimer. CCured: type-safe
retrofitting of legacy code. In ACM SIGPLAN-SIGACT Con-
ference on the Principles of Programming Languages (POPL),
January 2002.

[25] Posting on bugtraq mailing list. Technical analysis
of the remote sendmail vulnerability. 4th March 2003.
www.securityfocus.com/archive/1/313757.

[26] CPLEX Optimizer. ILOG CPLEX Division. 889 Alder Avenue,
Incline Village, Nevada. www.cplex.com/.

[27] M. Prasad and T-C. Chiueh. A binary rewriting defense against
stack based buffer overflow attacks. In Proceedings of the
USENIX’03 Annual Technical Conference, June 2003.

[28] T. Reps and G. Rosay. Precise interprocedural chopping. In
Proceedings of the Third ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE), volume 20, pages
41–52, October 1995.

[29] R. Rugina and M. C. Rinard. Symbolic bounds analysis of
pointers, array indices and accessed memory regions. In ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2000.

[30] A. Schrijver. Theory of Linear and Integer Programming. Wi-
ley, N.Y., 1986.

[31] N. P. Smith. Stack smashing vulnerabilities in the UNIX oper-
ating system. 1997.

[32] A. F. Veinott and G. B. Dantzig. Integer extreme points. SIAM
Review, 10:371–372, 1968.

[33] D. Wagner. Static Analysis and Computer Security: New tech-
niques for software assurance. PhD thesis, University of Cali-
fornia, Berkeley, December 2000.

[34] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A first step
towards automated detection of buffer overrun vulnerabilities.
In Network and Distributed System Security (NDSS), February
2000.

[35] S. J. Wright. Primal-Dual Interior-Point Methods. SIAM,
Philadelphia, 1997.

16

[36] R. Wunderling. Paralleler und Objektorientierter
Simplex-Algorithmus. PhD thesis, Konrad-Zuse-
Zentrum fur Informationstechnik Berlin, TR 1996-09.
www.zib.de/PaperWeb/abstracts/TR-96-09/.

[37] R. Wunderling, A. Bley, T. Pfender, and T. Koch. Se-
quential object-oriented simplex class library (SoPlex).
www.zib.de/Optimization/Software/Soplex/.

[38] H. Xi and F. Pfenning. Eliminating array bounds checks through
dependent types. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), June 1998.

[39] S. Yong, S. Horwitz, and T. Reps. Pointer analysis for pro-
grams with structures and casting. In ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation
(PLDI), May 1999.

A Appendix

A.1 Summary Constraints

The approach described in this section addresses the
shortcomings of constraint inlining – namely, the method
described here handles recursion and does not result in a
large number of variables. The basic idea is to summa-
rize the effect of a function call using a set of constraints
expressed only in terms of the constraint variables denot-
ing the global program variables and the formal param-
eters of the called function. We refer to such constraints
as summary constraints. Consider for instance, the func-
tion copy buffer shown in Figure 2. Figure 13 shows
a subset of constraints (only those involving max vari-
ables) generated by copy buffer, and the correspond-
ing summary constraints. Notice that the summary con-
straints are produced in terms of the constraint variables
denoting the formal parameters of copy buffer. The
program statements responsible for generating each con-
straint are also shown.

To summarize the effect of a function call, we must
eliminate the constraint variables corresponding to the
local variables of the called function. This will result
in a new set of constraints for the called function in
terms of the constraint variables denoting the formal pa-
rameters and the global program variables alone. There
are several variable elimination techniques available for
linear constraint systems, the most common one being
the Fourier-Motzkin elimination method. The Fourier-
Motzkin method takes as input a set of constraints C and
a set of variables V which must be retained in the sum-
mary constraints. It then iteratively eliminates the vari-
ables not in V . For example, for the constraints shown in
Figure 13 the Fourier-Motzkin method would eliminate
copy!alloc!max by combining constraints (1) and
(3) to produce constraint (A). Similarly, it would elim-
inate copy!used!max by combining constraints (2)

and (4) to produce constraint (B).

The Fourier-Motzkin variable elimination method
works with affine constraints, and in the worst case, can
result in the generation of a large number of constraints.
Specifically, if we want to eliminate a variable v from a
set of constraints, where m constraints use v and n con-
straints define v, the output could have as many as m · n
constraints. This problem can be partially alleviated by
eliminating constraints which are implied by other con-
straints.

Our observation however is that most of the constraints
that are generated by our tool are difference constraints.
For instance, about 98.8% of the constraints generated
by our tool for sendmail-8.7.6 were difference con-
straints. Variable elimination for difference constraints
reduces to an all-pairs shortest or longest path problem
on a graph formed by the constraints. Hence, we will
restrict our exposition to the case when a function gener-
ates only difference constraints. A difference constraint
has at most two variables, and involves exclusively max

variables or min variables. Hence, when we consider a
function that only generates difference constraints, the
constraint subsystem involving the max variables is com-
pletely disjoint from the constraint subsystem involving
the min variables. This means that we can produce sum-
mary constraints for each of these subsystems indepen-
dently.

First consider a function that does not call other func-
tions, or only calls those functions for which summary
functions are available. The function copy buffer from
Figure 2 is an example of such a function, since it only
makes calls to strcpy and malloc and we have the
summary functions for both of these.

To produce summary constraints for a set of con-
straints C of such a function in terms of a set of vari-
ables V (the set of formal-parameters and globals of
the function), we construct a graph to denote the con-
straints in C . The vertices of this graph are the con-
straint variables that appear in C . For a constraint of the
form v1 ≥ v2 + w, where v1 and v2 are max vari-
ables, we draw an edge with weight w from v2 to v1.
Since there may be several constraints that relate v1 and
v2, the edge is assigned a weight equal to the greatest
difference between these variables. For each constraint
of the form v1 ≥ w, we draw an edge with weight w
from a dummy “zero” variable v0 to v1. For instance,
the graph of the constraints involving the max variables
for the function copy buffer is shown in Figure 14
(the variable buffer!alloc!max was not involved in
any constraints generated by copy buffer and is hence
not shown in the graph). The problem of generating

17

Subset of Constraints Generated by copy buffer
(1) copy!alloc!max ≥ buffer!used!max - 1 (by line 17)
(2) copy!used!max ≥ buffer!used!max (by line 18)
(3) copy buffer$return!alloc!max ≥ copy!alloc!max (by line 19)
(4) copy buffer$return!used!max ≥ copy!used!max (by line 19)

Equivalent Summary Constraints
(A) copy buffer$return!alloc!max ≥ buffer!used!max - 1
(B) copy buffer$return!used!max ≥ buffer!used!max

Figure 13: Summary constraints for copy buffer

summary functions now reduces to finding the longest
path between each pair of vertices in V . Intuitively, the
longest path length is the maximum difference between
the two variables. Hence, if the longest path length from
v1 to v2 is a, we would generate the constraint v2 ≥ v1

+ a. The all pairs shortest path problem for vertices in V

can be solved using well known techniques (such as the
Floyd-Warshall algorithm [13]). An analogous construc-
tion for the min variables helps produce the summary
constraints for the constraints consisting of the min vari-
ables. In this case, a constraint v1 ≥ v2 + w would
result in an edge with weight w from v2 to v1, where v1

and v2 are min variables. However, in this case we would
be required to find the shortest path between each pair of
vertices in V . Thus, for copy buffer, the graph shown
in Figure 14 yields the constraints shown in Figure 13.

copy!used!max copy!alloc!max

000 −1

buffer!used!max copy_buffer$return!used!max copy_buffer$return!alloc!max

Figure 14: Graph for Summary Constraint Production

We can now use the summary constraints com-
puted for copy buffer in main to make the calls
to copy buffer context sensitive. This is denoted
pictorially in Figure 15. This figure shows the portion of
the constraint graph of main from Figure 2 pertaining
to the constraints generated at line (10). The dotted
edge originating from buf!used!max denotes the
assignment of buf!used!max to buffer!used!max,
while the dotted edges incident on cc2!used!max

and cc2!alloc!max denote the assignment state-
ments from the formal-out constraint variables of
copy buffer to the actual-out constraint vari-
ables. The dotted edges from buffer!used!max

to copy buffer$return!alloc!max and
copy buffer$return!used!max denote the
summary constraints (A) and (B) from Figure 13

respectively, and are computed by obtaining the pairwise
longest paths from Figure 14. The bold edges denote
the subsitution of the actual variables in place of the
formal parameters in the summary constraints. When
we generate constraints for main, we only generate the
constraints pertaining to the bold lines shown in the
figure. Hence, the call to copy buffer at line (10)

in the program in Figure 2 would result in the constriants:

cc2!used!max ≥ buf!used!max
cc2!alloc!max ≥ buf!used!max - 1
cc2!used!min ≤ buf!used!min
cc2!alloc!min ≤ buf!used!min - 1

���
�

���
�

���
�

���
�

��	
	

�
�

copy_buffer$return!alloc!max

−1

−1

00

0

0

copy_buffer$return!used!max

buffer!used!max

cc2!alloc!maxcc2!used!maxbuf!used!max

0

Figure 15: Obtaining Context-Sensitivity

The above technique can be formalized as follows:
• Inspect the call-graph of the program, identify SCCs in
it, and coalesce all the nodes belonging to an SCC.
• The resultant graph is a DAG; compute summary con-
straints in reverse topologically sorted order of the DAG.
For each function that calls other functions, summarize
the effect of the call by subsituting the actual variables in
place of the formal parameters of the called function.

A.2 More Results

We report on the experience of our tool with a few more
commercial applications.

A.2.1 Talk Daemon

The talk daemon program, a popular UNIX communica-
tion facility, derived from the current FreeBSD release is
about 900 lines of code, and produced just 4 warnings on
our tool. Upon furthur investigation, we found that all
the 4 warnings were false alarms; however one of these

18

warnings was particularly interesting.
The tool reported that as many as 33 bytes could be

copied into a buffer pointed to by tty which was al-
located 16 bytes. The source code responsible for this
warning is shown in Figure 16.

On our platform, UT LINESIZE macro-expanded to
32, as a result of which the tool reported the overrun.
However, we discovered that when we used the FreeBSD
header files for macro-expansion, UT LINESIZE was 8,
and hence the warning was suppressed.

This example serves to demonstrate the use of our tool
to determine whether an application is vulnerable on a
particular platform. For instance, the talk daemon pro-
gram would have been vulnerable to the aforementioned
buffer overflow on our platform.

struct utmp
char ut_line[UT_LINESIZE];
...

};

int find_user(const char *name, char *tty)
struct utmp ubuf;
char line[sizeof(ubuf.ut_line) + 1];

while (fread((char *) &ubuf, sizeof ubuf ..))
strncpy(line, ubuf.ut_line,

sizeof(ubuf.ut_line));
line[sizeof(ubuf.ut_line)] = ’\0’;
...

if (...)
...
(void) strcpy(tty, line);
...

Figure 16: Code Snippet from Talk Daemon

A.2.2 Telnet Daemon from kth-kerberos-4.0.0

We tested the Telnet Daemon program from the KTH re-
lease of kerberos-4.0.0 (circa 1995). Telnet daemon
has about 9400 lines of code, and produced 40 warnings
when analyzed by our tool. The tool identified an inter-
esting bug: it reported that as many as 256 bytes could
be copied into terminaltype, which points to a buffer
only 41 bytes long. We found that the bug was due to
a strncpy statement in getterminaltype in the file
telnetd.c:
strncpy(terminaltype, first, sizeof(first))

Note that strncpy was meant to be a “safe” function,
but was used in an unsafe way – the programmer mistak-
enly set the number of bytes to be copied into the desti-
nation buffer equal to the size of the source buffer, thus
rendering the strncpy statement equivalent to its “un-
safe” counterpart strcpy.

19

