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Abstract
A system is vulnerable to an API-level attack if its security can be compromised by invoking an allowed

sequence of operations from its API. We present a formal framework to model and analyze APIs, and develop an
automatic technique based upon bounded model checking to discover API-level vulnerabilities. If a vulnerability
exists, our technique produces a trace of API operations demonstrating an attack. Two case studies show the
efficacy of our technique. In the first study we present a novel way to analyze printf-family format-string
attacks as API-level attacks, and implement a tool to discover them automatically. In the second study, we model
a subset of the IBM Common Cryptographic Architecture API, a popular cryptographic key-management API,
and automatically detect a previously known vulnerability.

1 Introduction
Software modules communicate through application programming interfaces (APIs). Failure to respect an API’s
usage conventions or failure to understand the semantics of an API may lead to security vulnerabilities. For instance,
Chen et al. [13] demonstrated a security vulnerability in sendmail-8.10.1 that was due to a misunderstanding of
the semantics of UNIX user-id setting commands. A programmer mistakenly assumed that setuid(getuid()) would
always drop all privileges. Prior work has addressed automatic detection of erroneous API-usage patterns, such as
ordering constraints when invoking system calls or when acquiring locks, in client software modules [2, 3, 4, 12, 23].
These projects demonstrate that care needs to be exercised when using APIs. In particular, the semantics of the API
should be developed carefully and should be exposed to users of the API. In addition, rules of usage, such as ordering
restrictions, must be respected when the API is used in client software modules.

A natural question that arises is whether API-level vulnerabilities can be discovered automatically. We have
developed a technique that analyzes specifications of APIs to identify sequences of API operations that take a system
from a good state to a state that violates a given safety property. In some cases we can prove that the API is secure
with respect to the property in question. We make the following contributions:
• We develop a formal framework that can capture the semantics of APIs and sequences of API operations allowed

by a system.

• We develop a technique based upon bounded model checking that analyzes API specifications and automatically
identifies API-level vulnerabilities. If a vulnerability exists, the technique produces an attack, i.e., a sequence of
API operations exploiting the vulnerability. Descriptions of the framework and the technique appear in Section 3.

• We demonstrate the efficacy of our technique through two case studies from different problem domains. In
Section 4, we show a novel way to analyze and understand printf-family format-string attacks [27, 38]. We
model these as API-level attacks and show how our technique discovers them automatically. In Section 5, we
apply the technique to the IBM Common Cryptographic Architecture (CCA) API [29] and discover a previously
known vulnerability [7]. In each of the above cases we have developed prototype tools.

A direct consequence of the technique is the capability to infer rules for safe API-usage. Such rules can benefit
both static and dynamic analysis tools. Tools such as MOPS [12], meta-level compilers [3, 23], and SLAM [4]
statically analyze source code for deviations from acceptable patterns of API-usage. However, the patterns checked
are typically produced manually. Our analysis could benefit such tools by automating the generation of such patterns.
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The rules could also be used to create reference monitors [41] that track the runtime behavior of applications and
enforce API-usage rules. We discuss these applications in Section 6.

2 Overview
Our automated technique to discover API-level vulnerabilities is based upon bounded model checking [6, 15]. A
schematic overview of the technique is shown in Figure 1. The bounded model checker accepts the description of a
system and its API, specified using our framework, which has four components: (1) a set of variables that describe
the state of the system, (2) the initial state of the system, (3) the set of API operations allowed and the semantics of
these operations in terms of how they change the state of the system, and (4) a representation of the set of traces of
API operations allowed by the system.

Bounded
Model Checker

(counter−example)
Violation of safetySafety

condition

API
specification

Integer
bound

Increase bound and iterate

No violation

Figure 1: A schematic overview of the method.

For instance, consider a toy protection system as described by
Harrison et al. [26]. A protection system is defined by a finite set
of rights and commands, and its state is given by a triple (S, O, P),
where S is a set of subjects, O is a set of objects, and P is an access
matrix with a row for each subject and a column for each object. As
presented by Harrison et al., each subject is also an object, and we
have S ⊆ O. The entry P[s, o] of the access matrix is a set of rights
that subject s has on object o. We restrict ourselves to three rights,
own, read, and write, with their natural meanings.

The initial state of the protection system is given by the initial values of S, O, and P. Assume that these values
are S = O = {A, B}, P[A, A] = P[B, B] = {own,read,write}, and P[A, B] = P[B, A] = ∅. In other words, A and B
have all possible rights upon themselves, but no rights on each other.

The commands presented by the protection system define the API; each command changes the state of the
protection system. We restrict ourselves to the three commands shown below with their semantics. We also assume
that the protection system allows these operations to be applied in any order.
1. Create(s, o): If s ∈ S and o /∈ O, adds o to O, creates a new column o in P and enters own into P[s, o].

2. Conferread(s1, s2, o): If s1, s2 ∈ S and o ∈ O, enters read into P[s2, o] if own ∈ P[s1, o].
3. Conferwrite(s1, s2, o): If s1, s2 ∈ S and o ∈ O, enters write into P[s2, o] if own ∈ P[s1, o].

In addition to a description of the protection system, the bounded model checker also accepts a safety condition.
For instance, the safety condition could be a security policy such as “no subject can both read and write to an object
that it does not own”. The model checker systematically explores all allowed traces of API operations up to a certain
length, given by an integer bound, and determines whether each trace satisfies the safety condition. If the model
checker finds a violation of the safety policy, it terminates with a trace of API operations showing the vulnerability.
For instance, a bound of at least 3 discovers the following API-level vulnerability in the protection system: Cre-
ate(A, file) → Conferread(A, B, file) → Conferwrite(A, B, file). This sequence of API operations adds (B,
file, read), and (B, file, write) to P, but does not add (B, file, own), and this violates the safety condition,
because B does not own file, but can read and write it.

If the model checker terminates without a counter-example, we must increase the bound and iterate. In Section 3,
we note that it is undecidable to check if an arbitrary system is vulnerable to API-level attacks. Thus, in general,
the iterative process could go on forever. Our procedure is sound, but incomplete—any vulnerabilities found will
indeed be exploitable in the model; however, it is not always possible to discover all vulnerabilities. In certain cases,
including the study in Section 4, it is possible to derive values of the bound for which the procedure is complete.

3 Formal Framework
We present a formal framework to model and analyze APIs. An API is the interface that a system presents to
client modules. Each command in the API changes the state of the system in a predefined way and hence is a state
transformer. A sequence of API operations defines a state transformer obtained by composing the state transformers
of the individual API operations. We focus on such sequences of API operations, and how they affect the security of
the underlying system.

2



Formally, a system S is defined by a quadruple (V , Init, Σ, L):

• V denotes a finite set of variables {v1, v2, . . . , vn} where vi ∈ Di for some (possibly infinite) domain of values
Di. The value of the vector ~x = (v1, v2, . . . , vn) provides an instantaneous description (henceforth referred to as
state) of the system S . Note that ~x ∈ D = D1 × . . .×Dn.

• Init: D → BOOL is a predicate that characterizes the initial states of the system. Each vector ~x such that
Init(~x) holds is a possible initial state of the system.

• Σ denotes a finite set of API operations {op1,op2, . . . ,opm}. Each operation opi may also take some input pa-
rameters, denoted by the vector ~ai, from some domain Ai. Each opi defines a family of state-transformation func-
tions: opi(~ai): D → D. The semantics of opi(~ai) is given by predicates that define its pre- and post-conditions,
Prei(~ai): D → BOOL and Posti(~ai): D → BOOL, as follows: Suppose the state of S , denoted by ~x, is such that
Prei(~ai)(~x) holds, then opi(~ai)(~x) = ~y and Posti(~ai)(~y) holds. If Prei(~ai)(~x) does not hold, then opi(~ai) leaves
the state of the system unchanged.

• L ⊆ Σ∗ is a language of API operations.
In addition, a predicate Bad: D → BOOL defines the set of bad states; each vector ~x such that Bad(~x) holds is

a state that the system should never enter. Bad is defined based upon the security properties required for S .
L plays two roles in the framework:

1. It encodes temporal restrictions on API operations that are inherent in system S , as could be specified using a
reference monitor. This allows us to avoid checking sequences of API operations that are explicitly disallowed by
S , and thus reduce false alarms.

2. It formalizes the possible set of traces of API operations that could be generated by a client. This avoids wasteful
exploration of the state space during verification, and also reduces false alarms. For instance, suppose the API in
question is the set of system calls supported by an operating system, and that we wish to verify that an application
that uses system calls conforms to a safety property and does not launch an API-level attack on the operating
system. Rather than considering all interleavings of arbitrary system calls, it is sufficient to restrict our attention
to system call traces that can be generated by the application.

It is also possible to handle systems in which both kinds of restrictions are important. To do so, L is defined as
the intersection of two trace languages, one that plays the first role, and one that plays the second.

A language recognizer R for L is a machine that accepts a string of API operations and determines whether it is
a member of L or not. In general, a recognizer need not exist for L. We restrict ourselves to cases where a recognizer
R exists, for instance, when L is regular or context-free. For the case studies in Sections 4 and 5, we consider a
special case of the framework presented above. In particular, L will be a regular language and its recognizer will be
a finite-state machine called the API-automaton.
Definition 1 (API-safety) Consider a system S whose state ~x satisfies Init(~x). For a predicate Bad, S is said
to be safe with respect to ~x if L does not contain a trace of API operations that takes S into a state ~y that satisifes
Bad. Formally, S is safe with respect to ~x if there is no satisfying assignment to the formula:
∃opi1

,opi2
, . . . ,opik

,~a1,~a2, . . . ,~ak. (opi1
·opi2

· . . . ·opik
∈ L) ∧ Bad(opik

(~ak) ◦ . . . ◦opi2
(~a2) ◦ opi1

(~a1) (~x))
for any finite value of k. (Here ‘·’ denotes concatenation, and ‘◦’ denotes function composition.)

Note that only sequences of API operations in L are checked for safety. We have the following fact, whose proof
follows from a similar theorem for protection systems [26].
Fact 1 (Undecidability) Given an arbitrary system S and a predicate Bad, no algorithm can decide if S is safe
with respect to state ~x.

The above fact is obvious if a recognizer R for L does not exist. However, the API-safety problem remains
undecidable even if we impose the restriction that L is a regular language. This is because one or more of the
domains Di could be infinite. If the domains Di are all finite, and L is regular or context-free, then it is possible to
check that a system is safe with respect to an initial state ~x. In our case studies, we do not make any assumptions on
the finiteness of the domains Di.
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3.1 Solution Methodology

As a consequence of Fact 1, we can only propose semi-algorithms for the API-safety problem. Our approach is
based on bounded model checking.

Bounded model checking was originally developed for finding logical errors in finite-state transition systems [6,
15]. The inputs to such a model checker consist of a finite-state transition system M , a logical formula ψ to be
checked, and a natural number N . The model-checking procedure checks if there are sequences in M of length
less than or equal to N that violate ψ. This process proceeds by encoding computation sequences and ψ as a
decision problem, such as satisfiability of a Boolean formula, and invoking a decision procedure, such as a Boolean
satisfiability (SAT) solver. Recent advances in SAT solving (e.g., [37]) have made bounded model checking a
practical tool for analyzing finite-state systems. This procedure is sound, so counter-examples found will indeed
be vulnerabilities in the model. It is not complete, because sequences of length greater than N are not checked.
However, for finite-state systems it is often possible to derive a value of N for which the procedure is complete [17].

Many real-world systems are infinite-state. In particular, the set of variables V that describe the state of the
system could be from infinite domains, such as integers. Bounded model checking has also been used to analyze
infinite-state systems for correctness. The approach works exactly as in the finite-state case, except that a decision
procedure for a more expressive logic is used in place of a SAT solver. The general problem of model checking
infinite-state systems is undecidable; however, bounded model checking for a fixed bound N is decidable when the
satisfiability problem in the underlying logic is decidable. In recent times, bounded model checking for infinite-state
systems has been made possible by the development of efficient decision procedures for expressive, decidable logics
(e.g., [10, 20, 48]) that leverage advances in SAT solving. Section 4 considers a case where we use bounded model
checking to identify API-level vulnerabilities in an infinite-state system.

Our approach to the API-safety problem restricts attention to sequences of API operations in L of length less
than or equal to a bound N . Thus, for a state ~x, we systematically check all sequences of operations opi1

. . . opik
∈

L such that k ≤ N to determine if Bad(opik
(~ak) ◦ . . . ◦ opi1

(~a1)(~x)) is satisfied for any values of ~ak,. . ., ~a1. This
is accomplished using a bounded model checker that accepts a description of the system S and the bound N . If L is
regular, then it is described using an API-automaton. The model checker explores all execution paths of length less
than or equal to N in the API-automaton, checking, for each state on that path, if Bad is satisfied. For cases where
L is context-free, pushdown model checkers [42] will have to be used. In this paper, we only consider cases where
L is regular, and ¬Bad is a safety property.

3.2 Illustrative Example

ConferwriteConferread

Create

Figure 2: API-automaton for L.

We illustrate the concepts developed above using the protection system example
from Section 2. Recall that in the example, we initially had two subjects and
objects, A and B. In our framework, we have S = (V , Init, Σ, L), where
• V = {S, O, P}. Note that all three variables are set-valued, because the matrix

P can also be viewed as a set of triples (s, o, r), where r denotes a right.

• Init = (S = O = {A, B}) ∧ (P[A, A] = P[B, B] = {own, read, write}) ∧ (P[A,
B] = P[B, A] = ∅).

• Σ = {Create, Conferread, Conferwrite}. The predicate Pre(s, o) for Create(s, o) asserts that such an entry
does not already exist in P, while Post(s, o) asserts that an entry (s, o) is created in P and own ∈ P[s, o]. The
predicate Pre(s1, s2, o) for Conferread(s1, s2, o) asserts that own ∈ P[s1, o], and Post(s1, s2, o) asserts that
read ∈ P[s2, o]. The predicates for Conferwrite are similar.

• L = Σ∗. That is, all possible interleavings of the API operations are permitted in this example.

To verify that “no subject can both read and write to an object that it does not own”, we use the predicate
Bad = ∃s,o. (s ∈ S) ∧ (o ∈ O) ∧ (read, write ∈ P[s, o]) ∧ (own /∈ P[s, o]). The API-automaton for L for the
protection system is shown in Figure 2. Bounded model checking for this case is equivalent to “unrolling” this API-
automaton a finite number of times and checking that the property holds. When presented with a bound of at least 3,
a bounded model checker explores the path Create → Conferread → Conferwrite, and discovers the vulnerability.
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3.3 Case studies

We demonstrate applications of the technique to two real world problems. In Section 4, we formalize printf-
family format-string vulnerabilities, and build a tool to discover format-string attacks automatically. In Section 5, we
model a subset of the IBM Common Cryptographic Architecture API and discover a previously known vulnerability.

4 Printf-family Format-String Vulnerabilities
Format-string vulnerabilities [27, 38] are a dangerous class of bugs that allow an attacker to execute arbitrary code on
the victim machine. printf is a variable-argument C function that treats its first argument as a format-string.1 The
format-string contains conversion specifications, which are instructions that specify the types that printf should
assign to other arguments, and instructions on how to format the output. For instance, the conversion specification
"%s" instructs printf to look for a pointer to a char value as its next argument, and print the value at that
location as a string. When arg does not contain conversion specifiers, the statements printf("%s", arg) and
printf(arg) have the same effect. However, if printf(arg) is used in an application, and a user can control
the value passed to arg, then the application is susceptible to a format-string vulnerability. Shankar et al. [45]
have proposed a technique to analyze source code to identify “tainted” format-strings that can be controlled by an
attacker. Potentially vulnerable printf locations can also be identified in binary executables [27]. A possible fix for
such vulnerabilities is to do a source-to-source transformation that replaces all occurrences of printf(arg) with
printf("%s", arg), but this may not always be possible, for instance when the source code of the application
is not available, or when the application generates format-strings dynamically. The tools mentioned above are also
incapable of producing a format-string that demonstrates the attack at the vulnerable locations they identify.

We present a novel way to analyze and understand printf-family format-string vulnerabilities. We treat the
format-string as a sequence of commands that instructs printf to look for different types of arguments on the
application’s runtime stack. We have built a tool that can analyze potentially vulnerable call sites to printf and
determine if an attack is possible. If an attack is possible, our tool produces a format-string that demonstrates the
attack. The technique does not require the source code of the application and can analyze potentially vulnerable
printf locations from binary executables. Our technique could potentially be used in conjunction with the tool
proposed by Shankar et al. to identify format-strings that exploit the vulnerabilities identified, thus confirming the
presence of attacks. Our discussion and implementation make the following platform-specific assumptions, although
the technique applies to other platforms as well:

1. We work with the x86 architecture. In particular, the runtime stack of an application grows from higher addresses
to lower addresses, and the machine is assumed to be little-endian.

2. The arguments to a function are pushed on the stack from right to left. A call to foo(arg1, arg2) pushes arg2

on the stack followed by arg1. This is a popular C calling convention that is implemented by several compilers.

3. We analyze printf as implemented in glibc-2.3.

4.1 Understanding printf

(1) int foo (char *usrinp) {
(2) char fmt[LEN];
(3) int a, b;
(4) ...
(5) strncpy(fmt, usrinp, LEN - 1);
(6) printf(fmt);
(7) ...
(8) }

Figure 3: A procedure with a vulnerable call to printf

This section reviews how printf works. Consider the
code fragment shown in Figure 3. Procedure foo accepts
user input, which is copied into the local variable fmt, a
local array of LEN characters. printf is then called with
fmt as its argument. Because the first argument to printf
can be controlled by the user, this program can potentially
be exploited. When printf is called on line (6), the argu-
ments passed to printf are placed on the stack, the return
address and frame pointer are saved, and space is allocated

for the local variables of printf, as shown in Figure 4(A). In this case, printf is called with a pointer to fmt,
which is a local character buffer in foo shown as the heavily shaded region in Figure 4(A). Hence the value of the

1We restrict our attention to printf; the concepts extend to other printf-family functions in a natural way.
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first argument contains the starting address of fmt.
As mentioned earlier, printf assigns special meaning to the first argument passed to it, and treats it as a

format-string. Any other arguments passed to printf appear at higher addresses than the format-string on the
runtime stack. In our case, only fmt was passed as an argument, and hence there are no other arguments on the
runtime stack.

The printf implementation internally maintains two pointers to the stack; we refer to these pointers as FMTPTR

and ARGPTR. The purpose of FMTPTR is to track the current formatting character being scanned from the format-
string, while ARGPTR keeps track of the location on the stack from where to read the next argument. Before printf
begins to read any arguments, FMTPTR is positioned at the beginning of the format-string and ARGPTR is positioned
just after the pointer to the format-string fmt, as shown in Figure 4(A).

When printf begins to execute, it moves FMTPTR along format-string fmt. Advancing a pointer makes it
move towards higher addresses in memory, hence FMTPTR moves in the direction opposite to which the stack grows.
The printf system can be in one of two “modes”. In printing mode, it reads bytes off the format-string and prints
them. In argument-capture mode, it reads arguments from the stack from the location pointed to by ARGPTR. The
type of the argument, and thus the number of bytes by which ARGPTR has to be advanced as it reads the argument,
is determined by the contents of the location pointed to by FMTPTR. As FMTPTR and ARGPTR move toward higher
addresses, they reach intermediate configurations, as shown in Figure 4(B). Note that ARGPTR advances only if the
contents of fmt causes printf to enter argument-capture mode at least once.
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fmt fmt

...... ......

Figure 4: The runtime execution stack for the program in Figure 3.

To take a concrete example, suppose that fmt is "Hi%d" when printf is called in Figure 3. printf starts
off in printing mode, and advances FMTPTR, printing Hi to stdout as a result. When FMTPTR encounters the
byte "%", it enters argument-capture mode. When FMTPTR is advanced, it points to the byte "d" – which instructs
printf to read four bytes from the location pointed to by ARGPTR and print the resulting value to the terminal as
an integer. This also results in ARGPTR being advanced by four bytes, the size of an integer. Note that no integer
arguments were explicitly passed to printf in Figure 3, hence instead of reading a legitimate integer value off the
stack, in this case ARGPTR reads the values of local variables in the stack frame of foo. As a result, it is possible to
read the contents of the stack, which may possibly contain values of interest to an attacker, such as return addresses.

In the format-string attacks that we consider, the goal of the attacker is to control the contents of the format-string
in such a way that ARGPTR advances along the stack until it enters the format-string itself. By doing so, the attacker
can control the arguments read by printf. We develop this point further in Section 4.3.
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4.2 Formalizing printf

Observe that each byte in the format-string can be interpreted as an instruction to printf to move FMTPTR and
ARGPTR by an appropriate amount. These bytes also instruct printf as to the types of the arguments passed to
it. Hence, in our formulation, each byte in the format-string is treated as an API-command to printf and thus
the format-string is a sequence of API operations. Our goal is to discover possibly malicious sequences — which
corresponds to finding format-strings that can be used for an attack.

Each printf call is characterized by two parameters, namely the values DIS and LEN shown in Figure 4.
Format-string vulnerabilities occur only when the format-string that can be controlled by the attacker is a buffer on
the runtime stack. LEN denotes the length of this buffer. DIS denotes the number of bytes that separate the pointer
to the format-string from the format-string itself. Figure 4 only shows a simple scenario where the stack frame
containing the format-string and the stack frame containing the pointer to it are adjacent. In general, they can be
separated by stack frames of several intermediate functions, resulting in larger values of DIS. Note that the values
of DIS and LEN are sufficient to capture the important details of the problem. Moreover, the values of DIS and
LEN for each printf call can be obtained by disassembling the binary executable file of the application that calls
printf, and examining the call graph and the size of stack frames of functions.

Formally, the printf system is defined as S = (V , Init, Σ, L), where:
• V denotes the set of local variables used by the implementation of printf that capture the state of the printf

system. We identified 24 local variables (or “flags”) with integer and Boolean values2 by examining the source
code of printf. While our implementation considers all of these flags, for purposes of explanation we restrict
ourselves to just four flags, namely, FMTPTR, ARGPTR, DONE, and IS LONGLONG. FMTPTR and ARGPTR are
pointers whose functionality was discussed earlier. We shall treat these as integer values. DONE is an integer
that counts the number of bytes printed, and IS LONGLONG is a Boolean variable that determines whether the
argument on the stack is a long long value or not (a long long int is 8 bytes in length).

• Init: The initial state of printf is determined by the values to which the flags in V are initialized. We assume
that all addressing is relative to the initial location of ARGPTR, and hence Init is defined as (ARGPTR = 0) ∧
(FMTPTR = DIS) ∧ (DONE = 0) ∧ (IS LONGLONG = FALSE).

• Σ: As explained, each byte in the format-string is interpreted as an instruction to the printf system. Hence
Σ is [0..255], i.e., all possible byte values. The values of Pre and Post for each operation are based on how it
changes the state of printf, and were obtained by examining the source code of printf. For instance, "%"
∈ Σ has Pre = TRUE, and Post captures the following semantics: if printf is in printing mode (determined
by a variable MODE in V), then FMTPTR is incremented, and printf enters argument-capture mode. If printf
is in argument-capture mode, then FMTPTR and DONE are incremented, and printf enters printing mode (this
corresponds to printing a "%" to stdout). Formally, [(MODE = printing) → (FMTPTR ′ = FMTPTR + 1) ∧
(MODE′ = argument-capture)] ∧ [(MODE = argument-capture) → (FMTPTR ′ = FMTPTR + 1) ∧ (DONE′ = DONE +
1) ∧ (MODE′ = printing)], where primed variables denote next-state values of the corresponding variables.

• L is defined to be the language of all possible format-strings, which turns out to be a regular language. We
extracted an API-automaton that recognizes all legal format-strings from the control-flow graph of the implemen-
tation of printf. A portion of this API-automaton is shown in Figure 11 in Appendix A.1.

Several values are possible for Bad, and each value determines an attack that exploits format-string vulnerabil-
ities. We present a few values of Bad in Section 4.3. In general, this predicate can be expressed as a formula on
the elements of V in a decidable logic that includes quantifier-free Presburger arithmetic, uninterpreted functions,
and a theory of memories (arrays). (A formula in quantifier-free Presburger arithmetic consists of a set of linear
constraints over integer variables combined using the Boolean operators ¬, ∧, and ∨.)

We constructed a tool to examine the above system and detect format-string attacks. The tool encodes the

2In the actual implementation of printf, the flags are C integer and pointer data types, i.e., finite-precision bit-vectors. In our model,
flags that just take two values, 0 and 1, are treated as Boolean, while the rest are treated as (unbounded) integers. While this approach
achieves efficiency by raising the level of abstraction, it does not model integer overflow, and hence might lead to both false positives and
false negatives.
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(A) Bad for Section 4.3.1 (B) Bad for Section 4.3.2
[FMTPTR < DIS + (LEN − 1) − 1]
∧ [ARGPTR > DIS]
∧ [ARGPTR < DIS + (LEN − 1) − 4]
∧ [∗FMTPTR = ‘%’]
∧ [∗(FMTPTR + 1) = ‘s’]
∧ [∗ARGPTR = a1]
∧ [∗(ARGPTR + 1) = a2]
∧ [∗(ARGPTR + 2) = a3]
∧ [∗(ARGPTR + 3) = a4]
∧ [MODE = printing]

[FMTPTR < DIS + (LEN − 1) − 1]
∧ [ARGPTR > DIS]
∧ [ARGPTR < DIS + (LEN − 1) − 4]
∧ [∗FMTPTR = ‘%’]
∧ [∗(FMTPTR + 1) = ‘n’]
∧ [∗ARGPTR = a1]
∧ [∗(ARGPTR + 1) = a2]
∧ [∗(ARGPTR + 2) = a3]
∧ [∗(ARGPTR + 3) = a4]
∧ [DONE = ATTACK]
∧ [MODE = printing]

Figure 5: Values of the predicate Bad used in Section 4.3.1 and Section 4.3.2.

printf system, and is parameterized by the values of DIS, LEN, and the predicate Bad. Our choice of a bounded
model checker was mainly influenced by the logic needed to express our model of printf, as elaborated below:
1. We need to model certain values in the stack precisely. In particular, we need to track the contents of the format-

string because it serves as a concrete counter-example if Bad is satisfied. This necessitates the use of a theory of
memories and uninterpreted functions.

2. printf uses both integer and Boolean variables, where the integer variables are modified using linear-arithmetic
operations (addition and multiplication by a constant). Thus, to express formulas over these variables, we need
quantifier-free Presburger arithmetic.

Based on these requirements, we chose to use a bounded model checker called UCLID [49]. The details of how
UCLID works are outside the scope of this paper, and may be found elsewhere [10, 44]; in Appendix A.2, we include
a brief description of the subset of UCLID’s logic that we make use of. The printf system S can be encoded as
an UCLID model in a straightforward manner. If Bad is satisfied, then UCLID produces a counter-example that can
be directly translated to a format-string that demonstrates the attack. At each call-site to printf, we only need to
examine format-strings of length less than or equal to LEN−1 (we exclude the terminating ‘\0’). Hence, a bound
of LEN−1 suffices to make bounded model checking complete at that call-site; i.e., a printf location deemed safe
using our tool with the bound LEN−1 will indeed be safe with respect to the property checked.

4.3 Identifying Attacks

In attacks that we consider, the goal of the attacker is to manipulate the contents of the format-string so as to force
ARGPTR to move into the format-string. Hence, ARGPTR has to move by at least DIS bytes by the time FMTPTR

moves LEN−1 bytes. Because the attacker controls the value of the format-string, he can control the value of the
arguments that printf reads from the stack. As demonstrated below, this vulnerability can be used to read data
from, or write data to nearly any location in memory.

4.3.1 Reading from an arbitrary location

One of the ways an attacker can print the contents of memory at address a4a3a2a1,3 where a4 is the most-significant
byte, is to construct a format-string that moves FMTPTR and ARGPTR such that when printf is in printing mode
and FMTPTR points to the beginning of a "%s", ARGPTR points to the beginning of a sequence of 4 bytes, whose
value as a pointer is a4a3a2a1. Then, when printf reads a "%s", it interprets the argument at ARGPTR as a
pointer and prints the contents of the memory location specified by the pointer as a string, which would let the
attacker achieve his goal. This is formalized using the predicate Bad shown in Figure 5(A). The following features
of Bad are noteworthy:
1. The little-endianness of the machine is reflected in the formulation of Bad: bytes are arranged from most-

significant to least-significant as addresses decrease; thus, for example, a1 appears at a lower address than a4.

2. Symbolic values of different stack locations, such as those at FMTPTR and ARGPTR, appear in Bad, and demon-

3
a1, a2, a3, a4 are required to be non-zero, because a zero value is interpreted as ‘\0’, and terminates the format-string.
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Sl.no. DIS LEN Read attack (Section 4.3.1) Write attack (Section 4.3.2)
Attack string discovered Time (sec.) Attack string discovered Time (sec.)

(1) 0 7 "a1a2a3a4%s" 0.2 No attack possible. 0.3
(2) 4 7 No attack possible. 0.3 No attack possible. 0.3
(3) 4 16 "a1a2a3a4%d%s" 0.4 "%234Lg%na1a2a3a4" 4.8
(4) 4 16 "%Lx%ld%sa1a2a3a4" 1.0 "a1a2a3a4%%%229X%n" 13.1
(5) 8 16 "a1a2a3a4%Lx%s" 0.9 "a1a2a3a4%230g%n" 22.2
(6) 16 16 "%Lg%Lg%sa1a2a3a4" 1.1 "a1a2a3a4%137g%93g%n" 106.5
(7) 20 20 "a1a2a3a4%Lg%g%s" 5.3 "a1a2a3a4%210Lg%20g%n" 148.7
(8) 24 20 "a1a2a3a4%Lg%Lg%s" 2.1 "a1a2a3a4%61Lg%169Lg%n" 204.2
(9) 32 24 "a1a2a3a4%g%Lg%Lg%s" 13.5 "a1a2a3a4%78Lg%80g%72Lg%n" 343.5

Figure 6: Some attack patterns generated by our tool. For the write attack, we chose to write the integer 234 to the
memory location with address a4a3a2a1.

strate the need to track stack contents precisely.
Figure 6 shows some results produced by the tool for various values of DIS and LEN. For instance, line (3) shows

that the format-string "a1a2a3a4%d%s" can be used to read the contents of memory at a4a3a2a1 when DIS and LEN
are 4 and 16, respectively. The attack proceeds as follows: initially FMTPTR points to the format-string, and ARGPTR

is 4 smaller than FMTPTR. printf starts execution in printing mode; it advances FMTPTR and prints the bytes a1,
a2, a3, and a4 to stdout. When printf reads the ‘%’, it advances FMTPTR by one and enters argument-capture
mode. When it reads ‘d’, it advances FMTPTR by one, reads an integer (4 bytes) from the location pointed to by
ARGPTR, prints this integer to stdout, and returns to printing mode. As a result ARGPTR points to the beginning
of the format-string, and FMTPTR is positioned at the beginning of the sequence "%s". When printf processes
the "%s", the contents of memory at location a4a3a2a1 are printed to stdout. Other interesting features to note
in Figure 6 are:

1. In line (2), the tool is able to infer that an attack is not possible. Intuitively, this is because the format-string is too
small to contain a sequence of commands that carry out the desired attack.

2. Lines (3) and (4) present two format-strings for the same parameters. We achieved this by first observing case (3),
and running the tool again, appending a suitable term to Bad to exclude case (3). This technique can be iterated
to infer as many variants of this attack as desired. Such attack variants could be used to design input validators
that disallow malicious format-strings.

4.3.2 Writing to an arbitrary location

Another kind of format-string attack allows an attacker to write a value of his choice at a location in memory chosen
by him. To do so, he makes use of the "%n" feature provided by printf. When printf is in printing mode
and encounters a "%n" in the format-string, it reads an argument off the stack, which it interprets to be a pointer to
an integer. It then writes the value of the flag DONE to this location, where DONE counts the number of bytes that
should have been output by printf. Figure 5(B) shows the case where an attacker writes the integer ATTACK to
the address a4a3a2a1.

Figure 6 shows some format-strings obtained by the tool to write the integer 234 to the address a4a3a2a1 in
memory. Consider line (5) for instance; for the values 8 and 16 for DIS and LEN respectively, the tool inferred
the format-string "a1a2a3a4%230g%n". When printf starts execution, it is in printing mode, and ARGPTR is
8 bytes below FMTPTR on the stack. As FMTPTR moves along the format-string, a1, a2, a3, and a4 (4 bytes) are
printed to stdout, thus incrementing DONE by 4. The next byte "%" increments FMTPTR by 1 byte and forces
printf into argument-capture mode. The next 3 bytes, ‘2’, ‘3’ and ‘0’ are treated as width parameters, and
printf stores the value 230 in an internal flag WIDTH (part of V for printf). When printf processes the next
byte, ‘g’, it advances ARGPTR by 8 bytes, reads a double value from the stack, prints this value (appropriately
formatted) to stdout, adds the value of WIDTH to DONE, and returns to printing mode. At this point, ARGPTR

points to the beginning of the format-string, whose first four bytes contain a1a2a3a4, DONE is 234, and FMTPTR

points to the beginning of the sequence "%n". When printf processes "%n", the value of DONE is written to
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a4a3a2a1, completing the attack.
The times shown in Figure 6 were obtained on a machine with an Intel Pentium-4 processor running at 2GHz,

with 1GB of RAM, running Redhat Linux-7.2. All runs completed within a few minutes. As a general trend, the
time taken increases as LEN increases, though not monotonically. The reason is that for larger values of LEN, it
is required to run the bounded model checker UCLID for more steps, leading to a larger formula for it to check.
UCLID translates the problem into one of checking the validity of a Boolean formula, which is checked using a SAT
solver called Siege [46]. Note also that the time taken for finding read attacks is much lower than that for finding
write attacks. This is because finding a write attack involves solving a more constrained problem than for the read
attack: In addition to finding a sequence of conversion specifications that moves ARGPTR into the format-string, one
needs to find associated width values that add up to the desired value (234 in Figure 6). Furthermore, this sequence
of API operations must fit within the format-string.

The write attack results in Figure 6 are for writing a specific value to a specific address. One can also ask whether
it is possible to write any value to any address, a conservative test which can be performed faster since the problem
is less constrained. For example, for line (9) of Figure 6, we were able to perform this check in 168 seconds, about
half the time needed to perform the precise check.

4.4 Optimizations

In our model of the printf system, each byte in the format-string is considered as an API operation. An alternative
technique would be to use “summary” operations infered by the tool as building blocks to generate format-strings.
For instance, the tool automatically discovered that if printf is in printing mode, then the sequence of API opera-
tions "%Lg" moves FMTPTR by 3 bytes, ARGPTR by 12 bytes, and reads a long double value. Such sequences
of API operations could be used as building blocks and composed together to discover format-string vulnerabilities.
A tool based on such techniques would potentially work faster than the basic technique presented.

5 The IBM CCA API
The IBM CCA API [29] is a cryptographic key-management API that is used with hardware security modules (secure
coprocessors) such as the IBM 4758. The IBM 4758 is widely used in commerce and banking, and has received the
highest possible rating for its physical security (FIPS level-4). This section focuses on a vulnerability in the CCA
API that was first discovered by Bond [7, 28]. We first provide some background information on the IBM 4758 and
the CCA API, and use the technique developed in Section 3 to discover the vulnerability automatically.

5.1 Background on CCA

The IBM 4758 is a coprocessor, and is used together with a host computer. Every IBM 4758 is associated with a
distinct master key; we will use the notation MK to denote master keys. Each coprocessor safeguards its master key;
physical security ensures that MK cannot be retrieved by physically attacking the device. The security of a system
built using the IBM 4758 is bootstrapped by safeguarding a single secret, namely MK.

CCA is often used together with the IBM 4758 for key-management tasks (although the IBM 4758 can be used
without CCA as well). An important requirement of any key-management service is that the clear values of keys
should never be revealed. CCA manages keys by storing them encrypted under the master key MK of the IBM 4758
it operates with. Before we develop this point further, we must introduce the concept of a control vector [32, 33],
whose design and implementation is an important contribution of CCA.

Every key managed by CCA is associated with a control vector. Control vectors are used by CCA to implement
role-based access control (RBAC) [24]. The value of the control vector associated with a key decides the subset of
operations from the API that the key has access to. For instance, CCA defines control vectors for PIN keys, data
keys, keys for message authentication codes, and so on. The values of control vectors are published by IBM and are
publicly available.

Because it is important to maintain the integrity of RBAC, each key and its control vector should be tightly
coupled, and any attempt to change the value of the control vector should render the key unusable. There are several
options available to implement this, and CCA implements this by using the value of the control vector associated
with a key to encrypt it [32, 33]. As mentioned earlier, a key is also stored encrypted under the master key MK

10



MK : Master key of the coprocessor CCA operates with.
KEK : Clear value of the key-encrypting key.

K : Clear value of a CCA key.
CVK : Control vector associated with K.

CVKEK : Control vector for key-encrypting keys.
API command Expected Input 1 Expected Input 2 Output
Key Part Import KP1 (clear) KP2 (clear) (EMK⊕CVKEK (KP1⊕KP2), CVKEK)
Key Export (EMK⊕CVKEK (KEK), CVKEK) (EMK⊕CVK (K), CVK) (EKEK⊕CVK (K), CVK)
Key Import (EMK⊕CVKEK (KEK), CVKEK) (EKEK⊕CVK (K), CVK) (EMK⊕CVK (K), CVK)

Figure 7: Some commands from the IBM CCA API.

of the IBM 4758 that the CCA operates with. The CCA achieves both these requirements by encrypting key K as
EMK⊕CVK

(K) where CVK is the control vector associated with K.4 A symmetric key algorithm, such as 3DES, is used
to perform encryption. Each key is stored on the hard disk of the host computer (that the IBM 4758 operates with)
as an operational key-token, which contain several pieces of information related to the key. For the purpose of this
paper, an operational key-token will refer to just two of the components and will be denoted as (EMK⊕CVK (K), CVK).
That is, it contains the encrypted value of K, and the clear value of CVK. When presented with the key-token, the
IBM 4758 can use CVK from the key-token to compute MK⊕CVK. This value is used to decrypt EMK⊕CVK

(K) and
retrieve K within the coprocessor. Of course, this clear value should not be revealed outside the IBM 4758. This
operational key-token will not function with another IBM 4758 because the master keys will be different.

We now consider communication between two parties, A and B, each of which has an IBM 4758 (with master
keys MKA and MKB, respectively) and uses the CCA API for key management (each party has a host computer and
a coprocessor). One of the supported methods for communication involves establishing a communication channel
between A and B, and setting up a symmetric key-encrypting key to encrypt all CCA-managed keys that are trans-
ported over the channel in further communications. The key-encrypting key, whose clear value we denote by KEK,
is itself stored as a CCA key, and is associated with the control vector for key-encrypting keys: CVKEK. It is stored
at A and B as an operational key-token with values (EMKA⊕CVKEK (KEK), CVKEK) and (EMKB⊕CVKEK (KEK), CVKEK),
respectively. One of the methods supported by CCA for installing key-encrypting keys works as follows: One of the
parties, say A, generates two (or more) key parts, KP1 and KP2, such that KEK = KP1 ⊕ KP2. These key parts are
transported (in the clear) separately to B, where they are entered using the CCA command Key Part Import (see
Figure 7). The result of this command is an operational key-token for KEK. The idea is that the clear value of KEK
cannot be retrieved unless all the key-part holders collude.5

Now suppose that A has a key K associated with control vector CVK, stored at A as (EMKA⊕CVK
(K), CVK), that

it wants to share with B. Clearly, this key-token cannot be used by B because the clear value of K is encrypted with
MKA. Hence, to make the key-token “device-independent”, CCA provides an API command Key Export, which
is specified in Figure 7. This command takes as input the operational key-tokens corresponding to KEK and K
and produces the value (EKEK⊕CVK (K), CVK). This value is device-independent, and is called an export key-token.
Intuitively, the key-token (EMKA⊕CVKEK (KEK), CVKEK) is used to retrieve the value of KEK, which is then used to
produce KEK⊕CVK, where CVK is retrieved from the key-token (EMKA⊕CVK (K), CVK). The IBM 4758 can also
retrieve the value K from (EMKA⊕CVK

(K), CVK). These values can then be used to produce the export key-token.
The export key-token can be transported over the network to B, where it is referred to as an import key-token. At

B, an API command Key Import is used to convert this key-token into an operational key-token for B. The details
of this command are shown in Figure 7. The first input to this command is the operational key-token of KEK, while
the second input is the value of the key-token received over the communication channel. As with Key Export,
Key Import first retrieves the clear value of KEK, and uses this value with the value of CVK from the second input
to produce KEK⊕CVK. This value is used to retrieve K by decrypting EKEK⊕CVK

(K). The clear value of K and the
value of CVK are then used to produce an operational key-token (EMKB⊕CVK (K), CVK), which can be used at B.

4⊕ denotes bit-wise exclusive-or; EK(P) and DK(P) denote encryption and decryption of P using key K, respectively.
5This technique is insecure, and IBM [28] recommends the use of public-key encryption to transport key parts. However, this mode of

key-part transportation continues to be supported.
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5.2 Formalizing the API

We will now formalize the CCA API using the framework developed in Section 3. Our focus is on the security of
the CCA API, and hence we will restrict our attention to the sequence of API operations that can be issued on just
one coprocessor. We make the following assumptions:
1. A and B communicate, and normal operation proceeds as described in Section 5.1. In particular, A has a key K

associated with control vector CVK that it wishes to share with B.

2. A sends the key-token (EKEK⊕CVK
(K), CVK) over the communication channel to B. Here A assumes that the

value of the shared key-encrypting key is KEK; that is, the key-token at A corresponding to the shared key is
(EMKA⊕CVKEK (KEK), CVKEK).

3. The key-encrypting key is installed at B using the Key Part Import command, and the two key parts are KP1 and
KP2, where KEK = KP1 ⊕ KP2. Moreover, we assume that the attacker knows one of the key parts, say KP2, but
not the other key part. The attacker is not assumed to collude with the holder of KP1.

4. The attacker has complete control over B. In particular, the attacker can (a) manipulate any value sent to B over
the communication channel, (b) manipulate any key-token stored on the host computer at B, and (c) issue any
CCA API command to the coprocessor at B with inputs of his choice. These are standard assumptions following
the Dolev-Yao attacker model [22].

Informally, the safety property that we will attempt to verify is that every operational key-token obtained at B
using Key Import should be associated with the same control vector as the control vector associated with the export
key-token sent by A. That is, if the value sent by A over the communication channel is (EKEK⊕CVK (K), CVK), then
the operational key-token that must result at B is (EMKB⊕CVK (K), CVK).

Using the framework developed in Section 3, we have S = (V , Init, Σ, L) where,

• V denotes a single set-valued variable keytokens, which denotes the set of all key-tokens known to B.

• Init: keytokens = ∅, the empty set.
• Σ = {Key Part Import, Key Import}
• L = Σ∗

The predicate Bad is defined as (EMKB⊕CVnew(K), CVnew) ∈ keytokens, where CVnew 6= CVK. Intuitively, we
keep track of the set of key-tokens available on the IBM 4758 using the variable keytokens, and assume that this set
is initially empty. We will only model two operations from the CCA API, namely Key Import and Key Part Import,
and assume that these can be interleaved in any order, denoted by L = Σ∗. The operations in Σ accept two arguments
each, and Pre and Post are defined as follows:
1. Key Part Import(arg1, arg2): Pre(arg1, arg2) is TRUE and Post(arg1, arg2) asserts that

(EMKB⊕CVKEK
(arg1⊕arg2), CVKEK) ∈ keytokens.

2. Key Import(arg1, arg2): Pre(arg1, arg2) asserts that arg1 and arg2 have the structure of key-tokens. Let
argenc

1 and argcv
1 denote the first and second half respectively of the key-token arg1, and similarly for arg2.

Post(arg1, arg2) asserts that EMKB⊕argcv
2

(Key) ∈ keytokens, where we define Key = DVal⊕argcv
2

(argenc
2 ), and

Val = DMKB⊕argcv
1

(argenc
1 ).

⊕ rules : Γ ` a Γ ` b
Γ ` a⊕b

Γ ` a⊕b Γ ` b
Γ ` a

(En/De)cryption : Γ ` k Γ ` p

Γ ` Ek(p)
Γ ` k Γ ` Ek(p)

Γ ` p

(Un)pairing : Γ ` a Γ ` b
Γ ` (a,b)

Γ ` (a,b)
Γ ` a Γ ` b

Figure 8: Knowledge enhancement by the attacker.

Intuitively, Val denotes the clear value of the key-
encrypting key, retrieved from arg1, and this value is
used to retrieve the value Key from arg2. This value is
then used to produce an operational key-token, which
is required by Post to be in keytokens.

In accordance with our assumptions, the attacker
can use any value that he knows as an argument to
the API operations. The attacker initially knows (a)

(EKEK⊕CVK
(K), CVK), which he can learn from the communication channel, (b) KP2, namely, the clear value of one

of the key parts that is used to construct KEK, and (c) values of control vectors, which are publicly known. The
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attacker can apply rules such as those shown in Figure 8 to enhance his knowledge. In the figure, Γ is used to denote
the set of terms known to the attacker, and the rules capture how the attacker can enhance his knowledge using the set
of terms that he knows. For instance, the first rule says that if the attacker knows two terms a and b, he can combine
these to know a ⊕ b. These rules correspond to the rules of the Dolev-Yao model augmented with the capability
to manipulate terms by combining them with exclusive-or. Standard rules such as commutativity and associativity
apply for terms generated using exclusive-or, and we have omitted these from Figure 8.

When the above API is presented to our model checker, which is described in detail in Section 5.3, we obtain the
counter-example trace shown in Figure 9. This counter-example denotes the “chosen-difference attack” on control
vectors, first discovered manually by Bond [7].

In statement (1) of Figure 9, the attacker installs a key of his choice as the key-encrypting key at B. Recall that
the attacker knows KP2, where KP1 ⊕ KP2 = KEK, and KP1 is not known to the attacker. However, the attacker
can manipulate key part KP2 using the rules presented in Figure 8; he modifies KP2 to KP2⊕CVK⊕CVnew, where
CVK is the control vector of the key transported over the network, and CVnew is another control vector, chosen
by the attacker. When Key Part Import is executed with the modified key part as the second argument, the key-
token (EMKB⊕CVKEK (KEK⊕CVK⊕CVnew), CVKEK) results, and B thinks that this is the key-token for the shared
key-encrypting key.

(1) Key Part Import:
Input 1: KP1

Input 2: KP2⊕CVK⊕CVnew

Output: (EMKB⊕CVKEK (KEK⊕CVK⊕CVnew), CVKEK)
(2) Key Import:

Input 1: (EMKB⊕CVKEK (KEK⊕CVK⊕CVnew), CVKEK)
Input 2: (EKEK⊕CVK (K), CVnew)
Output: (EMKB⊕CVnew (K), CVnew)

Figure 9: Counter-example trace exposing vulnerability.

Input 2 of Statement (2) of Figure 9 corresponds to
a step in which the attacker first uses the unpairing and
pairing rules in Figure 8 to obtain (EKEK⊕CVK (K), CVnew)
from (EKEK⊕CVK

(K), CVK), a value that he knows. Sec-
ond, he invokes Key Import with this modified key-token
and the key-token of the shared key obtained in the first
step of the attack. As explained earlier, Key Import pro-
duces MKB⊕CVKEK using the value of CVKEK from In-
put 1, which is then used to retrieve KEK⊕CVK⊕CVnew

from the first half of Input 1. Note that under normal operation this would have retrieved the value KEK instead.
Key Import then extracts CVnew from Input 2, and xor’s this with KEK⊕CVK⊕CVnew to obtain KEK⊕CVK. This
value is used to retrieve K from the portion EKEK⊕CVK(K) of Input 2. Note that in the process, B has been fooled into
thinking that the key is associated with the control vector CVnew. Hence, Key Import terminates by producing an
operational key-token (EMKB⊕CVnew(K), CVnew); this violates the safety criterion, which demands that operational
key-tokens should be associated with the same control vector at B as was intended by A. As explained earlier, vio-
lating the safety condition compromises the integrity of RBAC; Bond [7] demonstrates how this can be used to learn
sensitive values, such as PIN-encrypting keys.

5.3 The Model Checker

We now discuss the implementation of the bounded model checker used to discover the attack presented in Figure 9.
A formal description of the API as presented in Section 5.2 is presented to the bounded model checker. Informally,
the bounded model checker “unwinds” the API-automaton for L and produces all paths of length less than or equal
to N , where N is the bound for the model checker. Each reachable state is then checked to see if the safety property
in question, namely ¬Bad, is satisfied.

Path
Generator

enhacement rules
Knowledge

Prolog
program

Prolog code for
generated path

Query
Bad?

Description
of the API

bound
Integer

Generate another path

No Yes
Stop. Output
proof tree.

Figure 10: Design of the bounded model checker.

A schematic diagram of the bounded model checker is
shown in Figure 10. The model checker uses Prolog as its un-
derlying decision procedure. The choice of Prolog was moti-
vated by two requirements: (a) we needed to encode inference
rules, such as those presented in Figure 8, to model knowl-
edge enhancement by the attacker, and (b) we needed to pro-
duce concrete values for the variables involved in the above
rules in case a counter-example was found. Prolog satisfies

both these requirements; its capability to perform unification provides us with a concrete counter-example trace if
one exists. Moreover, it is also easy to encode transformations corresponding to API operations as Prolog statements.
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The main component of the model checker is a path generator that accepts the API-automaton for L and an integer
bound N . It exhaustively generates all paths of length up to N , where each path corresponds to a sequence of API
operations. Each path also corresponds to a Prolog program obtained by combining the Prolog statements of the API
operations in the path with initial knowledge of the attacker and the knowledge-enhancing rules shown in Figure 8.

In our implementation, we simplified the first rule presented in Figure 8 by assuming that only ground terms (i.e.,
terms without the encryption symbol) could be combined using exclusive-or. This simplification restricts the set of
terms that can be learned by the attacker, but was sufficient to detect the attack. The general model with Dolev-Yao
rules but allowing arbitrary terms to be combined with exclusive-or was recently studied [14, 18], and the insecurity
decision problem was shown to be decidable. Hence, it must be emphasized that it is possible to solve the problem
with the rules as presented in Figure 8, and that our simplification was solely an implementation consideration.

To discover the attack presented in Figure 9, a bound of N = 2 suffices. When the model checker explores
the path Key Part Import → Key Import of the API-automaton, the Prolog statements corresponding to these API
operations are emitted, and combined with the Prolog statements for the rules in Figure 8. The resulting Prolog
program satisfies the predicate Bad, and the proof tree generated by Prolog provides concrete values to the arguments
of the API operations in the path explored. This results in the trace shown in Figure 9.

IBM recommends the use of procedural controls to avoid the attack discussed above [28]. One such procedural
control is the use of verification patterns, which are akin to hash functions. A generates a verification pattern VPA
for KEK, and transports it separately to B. When the key-encrypting key is installed using Key Part Import at B, a
verification pattern VPB is generated and compared with VPA. If the verification patterns do not match, it means that
the key parts have been tampered with; the resulting key is unsafe, and must not be used. In a second experiment,
we modified the semantics of Key Part Import, so that it compared the verification patterns of the combined key
parts and KEK. With this modification, we were no longer able to discover the attack shown in Figure 9.

6 Discussion
We consider several applications of our work. The technique can be used to analyze APIs, and the resulting error
traces can be used by static checkers, such as MOPS and meta-compilers, and by runtime checkers, such as reference
monitors. They can also be used as patterns in signature-based misuse-detection systems, such as Snort [40].

If the set of traces of allowed API operations L for a system S is finite, and arguments to the API operations
are from a finite domain, then the technique can be used to produce all possible traces of API operations that
violate a safety property. This is achieved by iteratively running the model checker, cumulatively excluding paths
corresponding to counter-examples. These traces can then be used directly with the checkers mentioned above.

If L is infinite or the API operations accept inputs from an infinite domain, then it is not possible to enumerate
all possible traces. In such cases, an option would be to generate a number of counter-examples and use learning
techniques on the traces to identify a class of vulnerabilities. For instance, Chen et al. argue that it is potentially
dangerous to call execl() after calling seteuid(0), but before dropping privileges [12]. A tool based on our technique
that analyzes system calls as API operations, with an appropriate safety property, would possibly discover this
sequence. It would also discover sequences that contain non-user-id-setting system calls between seteuid(0) and
execl(), because those sequences would also have the same semantics with respect to the property at hand. The
problem of learning patterns from a finite set of malicious traces has also been addressed in research on anomaly
detection [43], and those techniques could be brought to bear in this situation, as well.

Our work can also be used for API-level test-vector generation. Traces of API operations produced by our
technique can be used to test revised versions of the API, as we did in Section 5.3. Recent work has shown that
model checking is useful for test-vector generation [1, 5].

To apply our technique to analyze the API of a system, a formal specification of the system as described in
Section 3 is required. Formal specifications of the system and the semantics of API operations may not always
be available, in which case an option is to extract them from an implementation. In the case of software systems,
this may be possible by analyzing source code, as we did for the case of printf. In other systems, and in cases
where source code is not available, simulation may be used. For instance, Chen et al. extract the effect of UNIX
user-id-setting system calls, such as setuid, using a simulator that tries the system call from every possible state of
the system [13].
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7 Related Work
Software model checking. There are several model-checking tools that check software for violations of temporal
ordering rules on API calls. MOPS [12] and meta-compilation [3, 23] use context-sensitive pattern matching to
check source code for the presence of erroneous API-usage patterns. While these tools sacrifice precision of results
in the interest of scalability, SLAM [4] achieves precision by doing a more thorough analysis, based on predicate-
abstraction [25]. To scale, it automatically abstracts away data-flow details that are irrelevant to verify the property
in question. Vault [21] is a C-like programming language that allows users to express domain-specific resource-
management protocols, such as ordering restrictions on operations, and uses type checking to enforce these rules.
The common theme in all the above projects is to identify erroneous API-usage patterns by examining source code.
Ammons et al. [2] have worked on using machine learning on runtime execution traces of programs that use API
calls to infer protocol rules that APIs must follow. CHIC [11] is a tool that checks compatibility of interactions
between software modules. For instance, it can check that API-level assumptions made by one module about other
modules are consistent with the guarantees provided by those modules.

Our research is complementary to the projects discussed above—it focuses instead on analyzing API specifica-
tions for vulnerabilities. We assume that a specification of the API is provided, and analyze it to check if there are
sequences of API calls that compromise the security of the system. As discussed in Section 6, such sequences of API
operations could potentially benefit the tools discussed above. Additionally, our work requires precisely modeling
data values, as was exemplified in our case studies. Prior work [3, 4, 12, 23] has mostly addressed checking client
software for control-flow-intensive properties.

Security-protocol verification. The use of model checking in protocol analysis has been explored by several
researchers. Lowe [30] used the model checker FDR to find an attack against the Needham-Schroeder protocol.
Mitchell et al. [35, 36] demonstrated the use of a general-purpose model checker called Murϕ to verify several
security-protocols, including SSL-3.0. These tools suffer from the state-space-explosion problem and can only
analyze a bounded number of protocol sessions. The use of theorem provers has been investigated to analyze an
unbounded number of protocol sessions, albeit at the cost of losing complete automation–the NRL Analyzer [34]
and Isabelle [39] are two tools that adopt this approach. Both these tools encode the behaviour of honest participants
of the protocol and the messages exchanged in the protocol. The NRL Analyzer starts with the description of an
insecure state, and uses backtracking and unification to see if the state is reachable. On the other hand, Isabelle uses
the description of the protocol rules to inductively describe the set of possible traces that could arise. Athena [47]
and Brutus [16] are two special-purpose model checkers for security-protocols that combine state space exploration
with theorem proving. While most of these tools assume the Dolev-Yao [22] adversary model, recent work [14, 18]
has considered extensions to this model; we considered such an extended model in Section 5.

Our work can be applied to verify a limited class of security protocols; we could use techniques similar to [36] to
model protocols with a bounded number of sessions. However, our framework cannot model an unbounded number
of sessions. In addition, protocol verifiers explicitly mention the principals involved in the protocol, and often treat
the adversary as one of the principals, who can intercept, modify, misdirect, or retransmit messages. Our framework
does not accommodate the notion of principals, and our notion of the adversary is rather simple—it assumes that
he has complete control over the system, and can apply API operations in any allowed order to compromise the
security of the system. It is possible to model knowledge enhancement in some cases—as was demonstrated in
Section 5. Security-protocol verifiers can also be used to verify certain classes of API-level vulnerabilities; for
instance, the subset of the IBM CCA API that we modeled could have been modeled and analyzed with the NRL
Analyzer, as well. However, verifying API-safety for a general system requires a framework that precisely captures
the changes that an API operation makes to an individual process’s state, as was illustrated in the printf case
study. Protocol analyzers are geared towards analyzing the messages exchanged, and how these can be used to
enhance the adversary’s knowledge. We are unaware of protocol verifiers that capture system state in as precise a
manner as would be required to check for API-safety.

Other work. Manadhata and Wing [31] address the problem of measuring security, and give a formal definition,
and techniques to measure the attack-surface metric, using a framework similar to ours. This metric includes the
API of the system, and the resources of the system that the API modifies. However, they do not give an algorithm to
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analyze APIs to identify traces that could violate security properties.
There has also been work specific to the case studies considered in this paper. Shankar et al. [45] have used type

qualifiers to identify format-strings that could potentially be controlled by the attacker. Their technique adds anno-
tations to variable types and uses program analysis to propagate the annotations to identify “tainted” format-strings.
FormatGuard [19] is a glibc patch that detects possible exploits against format-string vulnerabilities at runtime.
Bond and Anderson [8, 9] have studied the IBM CCA API and several other cryptographic-key-management APIs,
and have identified several weaknesses in them. However, they have not developed a general technique to analyze
APIs automatically. We believe our technique is a first step towards providing an automatic technique to identify
API-level vulnerabilities.
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A Appendix
A.1 API-automaton for L in printf

Figure 11 presents a portion of the API-automaton for printf. We do not show the entire API-automaton because
it is too large. The API-automaton for printf was extracted by examining the control-flow structure of the code
in vfprintf.c in glibc-2.3.
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Figure 11: A portion of the API-automaton for printf.

A.2 The logic used to model printf

Figure 12 summarizes the expression syntax of the logic used to model the printf system described in Section 4.2.
This logic is a subset of that handled by the bounded model checker UCLID [49]. There are three types of expres-
sions: integer (int-expr), Boolean (bool-expr), and functions that map integer-valued arguments to an integer value
(function-symbol).

The simplest Boolean expressions are the values TRUE and FALSE. Boolean expressions are also formed by
combining Boolean variables, equalities, or inequalities using Boolean connectives.

Integer expressions are either integer constants or variables, or formed by applying arithmetic functions “+”
(addition of integer expressions) and “∗” (multiplication by an integer constant) to integer arguments, using the
ITE (“if-then-else”) operator, or applying an uninterpreted function symbol to a list of integer expressions. The
ITE operator chooses between two values based on a Boolean control value; i.e., ITE(TRUE, x1, x2) yields x1
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bool-expr ::= TRUE | FALSE | bool-var | ¬bool-expr | (bool-expr ∧ bool-expr)

| (bool-expr ∨ bool-expr) | (int-expr= int-expr) | (int-expr< int-expr)

int-expr ::= c | int-var | function-symbol(int-expr, . . . , int-expr)

| int-expr + int-expr | c ∗ int-expr | ITE(bool-expr, int-expr, int-expr)

Figure 12: Syntax of the logic used to model printf. Expressions can denote computations of Boolean values, integers,
or functions yielding integers; c denotes an integer constant.

while ITE(FALSE, x1, x2) yields x2. The arithmetic functions and the ITE operator enable us to model conditional
updates to the flags used by printf. Uninterpreted function symbols are used to model functions: nothing is
assumed about the meaning of the function except that it maps equal arguments to equal values. They can be used
in modeling memories, like the stack in the printf system. A memory can be viewed as a function M that maps
addresses to data values. Thus, reading from M at address a simply yields the value M(a). (More about how to use
UCLID’s logic to model memories and arrays can be found in [10].)

The value of a well-formed expression in this logic is defined relative to an interpretation I of the Boolean and
integer variables, and the function symbols. Let Z denote the set of integers. Interpretation I assigns to each variable
a Boolean or integer value, and to each function symbol of arity k a function from Z

k to Z. Given an interpretation
I of the variables and function symbols and a well-formed expression E, we can define the valuation of E under
I , denoted [E]I , according to its syntactic structure. The valuation of E is either a Boolean value, an integer, or
a function from integers to integers, according to whether E is a Boolean expression, an integer expression, or a
function expression, respectively. A well-formed formula F is true under interpretation I if [F ]I is TRUE. It is valid
when it is true under all possible interpretations.

As explained earlier, the bounded model checker UCLID explores all execution sequences of the model presented
to it of length up to the integer bound. On each step, the problem of checking the safety property is converted to
that of checking the validity of a corresponding “safety formula” in the logic of Figure 12. UCLID performs the
latter check by performing a validity-preserving translation of the safety formula to a Boolean satisfiability problem,
which is checked using a SAT solver. Further details on UCLID’s logic and decision procedure can be found
elsewhere [10, 44].
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