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Abstract

Researchers have long argued that the best way to construct a secure sysf@naistieelyintegrate security
into the design of the system. However, this tenet is rarely followed because of economic and practical consid-
erations. Instead, security mechanisms are added as the need arises, by retrofitting legacy code. Unfortunately,
existing techniques to do so are manual and adhoc, and often result in security holes in the retrofitted code.

We show that program analysis techniques can be used to securely, and largely automatically, retrofit legacy
code for authorization policy enforcement. Our techniques are applicable to a large class of legacy servers, namely
those that simultaneously manage multiple clients, possibly witaréint security labels. It is important for such
servers to ensure that client interaction is governed by an authorization policy.

We demonstrate our ideas using two program analysis tools we builiad Aren, which work together
to automate the process of retrofitting legacy servers with mechanisms for authorization policy enforcement. We
show that an X server retrofitted using these tools securely enforces authorization policies on its X clients.

NOTE: This report is superseded by our paper that appears jn

Proceedings of the 2006 IEEE Symposium on Security and Priyacy.
Please read that paper instead; it is available at the following URL

http://www.cs.wisc.edu/~vg/papers/ieee-sp2006
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1 |INTRODUCTION

Extensive research has been done to retrofit legacy code to add functionality and perforemgii& 21, 32, 33,

39)). In contrast, relatively little research has focused on retrofitting legacy code to add security mechanisms, in
particular, the ability to enforce authorization policies. Most existing research has focused on finding and fixing
existing vulnerabilities €.9.,[12, 31, 34, 37]). Further, researchers have traditionally argued against retrofitting
existing code to add security mechanisms; rather they have advquatedivesecurity,i.e.,including security into

the design of the software. While proactive security is unquestionably the best way to produce secure code, this
tenet is often not followed, because of economic and practical considerations. As a result, there are large bodies of
legacy code with little or no security mechanisms built in. Security is retroactively added as the need arises, often
using adhoc, manual techniques, as was done in the case of the Linux Security Modules (LSM) frari&jvork [

Not surprisingly, these techniques result in security holes in retrofitted @2d49]. Even if proactive security is a

design goal, adhoc techniques used in implementation can result in vulneral2HfiesHus, it is desirable to have
automated techniques that can securely retrofit legacy code.

We address the problem of retroactively adding security to legacy software systems. In particular, we focus
on retrofitting a large class of legacy servers for authorization policy enforcement. The servers we consider simul-
taneously manage multiple clients. In such servers, it is paramount to ensure that the interaction between clients
be governed by an authorization policy. Popular examples of such servers are the X Window server, called the
X server[47], web-servers, middle-ware, and database servers.

We show that program analysis techniques can largely automate the process of retrofitting these servers for
authorization policy enforcement. The key idea in our work is to add policy enforcement code to the servers, so that
security-sensitive operations performed by the servecamgpletely mediate[85] by authorization policy lookups.

To do so, two important problems need to be addressed: (1) Identify all locations where the server performs security-
sensitive operations, and (2) Instrument these locations, such that the appropriate policy statements are consulted
before the operation is permitted. We equip the developer with two tools which largely automate these tasks:

1. Am (assistant for root-cause edtification), a hybrid statidynamic analysis tool, which helps the developer
identify all locations in the server where security-sensitive operations are performed. The key idea heisnd A
that each security-sensitive operation is typically characterized by certain canonical code-patterns being executed
by the server. Formally, the execution of these code-patterns isdheausdor the security-sensitive operation.
The main challenge then is to find succinct root-causes for security-sensitive opetliaioasmall set of code-
patterns that must be executed for a security-sensitive operation to be performed. We identify root-causes by
making a novel observation: security-sensitive operations are typically associated with tangibléesitse-Ehus,
by tracing the server as it performs a sidieet, and analyzing the code-patterns in the trace, we can extract the
root-cause of the security-sensitive operation associated with thefseibé-e
A operates in two phases. In the first phase, it traces the server, and identifies root-causes for security-sensitive
operations, using the observation discussed above. In the second phase, it employs static program analysis to find
all locations in the code of the server where these patterns occur; each of these locations is deemed to perform the
security-sensitive operation.
For example, consider the X server: the security-sensitive opemaiiatow_Create creates a window (a tangible
side-dfect) for an X client. By analyzing the trace generated by the X server as it opens a client window on the
screen, Ao identifies that a call to the functiatreateWindow, which is implemented in the X server, is the root-
cause ofwindow_Create. Indeed, this function allocates memory for, and initializes, a variable ofitydow in
response to a client request. Thus, each calktatewindow in the X server results iwindow_Create.

2. Avrreen (assistant for égacy code glicy erforcement), a static analysis tool, which instruments locations discov-
ered by Ap. The key idea behind e is to instrument the server with calls to a reference monitor, which
encapsulates the policy to be enforced. This ensures that a security-sensitive operation is performed only if al-
lowed by the authorization policy. Formally,Lfen ensures that security-sensitive operations are completely
mediated by authorization policy lookups.
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However, the above techniques are applicable only if the legacy code satisfies certain (easily verifiable) assump-
tions, which we lay out irBection 2
Retrofitting the X server:We demonstrate our ideas by using these tools to retrofit the X server. The X server
accepts connections from multiple X clients. We assume that the X server and X clients run on security-enhanced
operating systems, such as SELin@g][or Asbestos11], which are capable of enforcing mandatory access control
(MAC). Thus, the X clients will have associatedcurity-labels such asTop-secretor Unclassified The idea is
that the authorization policy is expressed in terms of the security-labslsbjécts who request security-sensitive
operations to be performed, antjects which are the entities upon which the operations are to be performed. We
show that the retrofitted X server enforces authorization policies on the X clients based upon their security-labels.

An astute reader may ask why the existing policy enforcement mechanism in the security-enhanced operating
system, upon which the server runs, is ifiiient to enforce authorization policies on the clients, and why the
server needs to be retrofitted. The answer is that the server may provide channels of communication between clients
which are not readily visible to the operating system. In the case of the X server, a “cut” operationTopasecret
window, and a “paste” operation to &mclassifiedvindow, violates the Bell-LaPadula polic§][ “Cut” and “paste”
are X server-specific channels for X client communication. While these operations have a kernel footprint, they are
not as readily visible in the operating system, as they are within the X server, where they are primitive operations. Itis
not advisable in such cases to use the operating system to enforce authorization policies, because it must be modified
to be made aware of kernel footprints of X server-specific operations, which introduces application-specific code into
the operating system. In addition, the X server must also be modified to expose more information to the operating
system, such as internal data structures which will fiecéed by the requested operation. It has been argued that
this is impractical 25].

It is also worth noting that the X server has an existing mechanism, called the X security extedido [
enforce authorization policies. It statically partitions clients ifitasted and Untrusted and enforces policies
on interactions between these two classes of clients. However, this framework is not powerful enough to enforce
arbitrary authorization policies when multiple clients connect to the X server. If three clients, with security-labels
Top-secret Confidential] and Unclassifiedconnect to the X server simultaneously, the X security extension will
group two of them into the same categorg(, either Trustedor Untrusted, and will not enforce policies on the
interaction between clients in the same category.

Finally, we note that anffort to manually retrofit the X server was initiated by the NSA in early 2% fand a
retrofitted X server was produced only recen8g][ Similar efforts in the context of the LSM framework also took
about two years. The techniques that we develop have the potential to reduce the turnaround time of such projects.
Contributions: To summarize, our main contribution is in showing thedgram analysis techniques can be used to
largely automate the process of securely retrofitting legacy servers for authaorization policy enforcdfagméesent
two tools, Ap and Aceen, and demonstrate theiffectiveness by using them to retrofit the X servan éses a novel
technique for finding the root-cause (in our case, canonical code-patterns) of each security-sensitive operation, by
analyzing traces produced by the server when a corresponding tangibldfsittdseinduced. Apen automatically
instruments the server with calls to a reference monitor to achieve complete mediation. We show that the retrofitted
X server can enforce authorization policies on X clients.

2 AssuMPTIONS AND OVERVIEW OF OUR APPROACH

Our goal is to enforce an authorization poligyon the security-sensitive operations requested by a diahiat
connects to a serveX. In this section, we show how our technigues can be used to securely &ttofio so. We
begin by defining our threat model.

2.1 THREAT M ODEL

We make several assumptions:

1. The serveiX itself is not adversarial,e., it is not written with malicious intent, and does not actively try to defeat
retroactive instrumentation. Thus, we assumeihdbes not automatically remove, or modify the instrumentation
that we insert. This can be ensured by the operating system as itAomi®execution, by comparing a hash of
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the executable against a precomputed value. We also requir& thatinon-self-modifying, thus precluding the
possibility that the instrumentation is modified at runtime. Note that this property can be enforced as well, by
making code pages write-protected.

2. Existing vulnerabilities, such as fiar-overflow vulnerabilities, could possibly be exploited by malicious hackers
to bypass our instrumentation. Such cases are currently beyond the scope of our techniques. While we cannot
hope to eliminate these vulnerabilities statically, one way to defend against them is to pArotgog techniques
such as CCured3fl], Cyclone R3], or runtime execution monitoringe(g.,[1, 13, 16, 17, 28, 36, 42]), which
terminate execution when the behaviorotliffers from its expected behavior.

3. The environment thaX runs in cooperates with to enforce authorization policies, and is not malicious in intent.
In particular,X relies on the operating system for several policy enforcement tasks. First, it requires that operating
system ensure that the policg is tamper-proof. Second, because clients typically connect to the server via the
operating system, the server relies on the operating system for important information, such as the security-labels
associated with the clients.

4. Clients cannot communicate directly with each other, and their communication is mediated by theXserver
the operating system. If client communication is mediated by the operating system, then the7pcolcybe
enforced by the operating system itself, as is done in SELinux, and Asbestos. Thus, we restrict ourselves to the
case where communication is mediated by the seXiekVe also note that if the clients communicate via the
operating system, they cannot avail of server-specific security-sensitive operations, such as “cut” and “paste” in
the case of the X server. Thus our goal is to enforce authorization policies on server-specific security-sensitive
operations requested by clients.

5. Client-server communication is not altered by any intervening software layers. For example, most commercial
deployments of the X server are accompanied hyirdow managersuch asgnome or kde, in the interest
of usability. Because the window manager controls how clients connect to the X server, it can in theory, alter
any information exchanged between the X server and its clients. However, because window managers are few
in number (unlike X clients), we assume that they can be verified, and certified, to satisfy the above assumption.
Further, the operating system can ensure that only certified window managers are allowed to run with the X server.

In summary, it stfices to ensure that the operating system is in the trusted computing base. It then bootstraps
security by ensuring that the instrumentation inserted in the server is not tampered with. The clients are not trusted,
and could be malicious. Because the operating system handles client connections, it oversees any interaction that the
clients may have at the operating system level. Similarly, client security information is bootstrapped by the operating
system during client connection, and is stored within the server, thus ensuring that clients cannot tamper with their
security information after connection has been established. As we will describe in the rest of this paper, client
interaction at the server level is mediated by the instrumentation we add, thus ensuring that interactions between the
clients are in accordance with the authorization policy.

2.2 SECURITY REQUIREMENTS

We enable authorization policy enforcement by retrofitting a seXwerensure that each security-sensitive operation
performed byX is mediated, and approved, 5. We do so using a reference monit8f.[
Formally, an authorization policyA, is defined as a set of tripldsuh obj, op), where each triple denotes
that the subjecsubis allowed to perform a security-sensitive operatigmon an objecbbj. Subjects and objects
are often associated wigecurity-labelswhich as mentioned earlier, denote the equivalence class to which they
belong. For instance, all top-secret documents may have the securityRab&lecret Authorization policies are
often represented using the security-labels of subjects and objects, rather than the subjects and objects themselves.
A reference monitorM, is defined asZ, S, u, ), whereX is a set ofsecurity eventsS is the state ofM,
u: IXSxA—S is a state transformer, arfd ExSxA—Bool is apolicy consulter For authorization policies; is a
set of triples of the forrgsuly obj, op); S is a set storing the security-labels associated with each subject and object
tracked byM, andu is a set of rules denoting how subject and object security-labels may change in response to
policy decisions. ArenforcerE, capable of controlling the execution &f observes events hgenerated by, and
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Figure 1: Steps involved in retrofitting a server for authorization policy enforcement.

passes them on t81. Any violations of the policyA, will result in f returningFalse, following which & will take
appropriate action. Thus, enforcing authorization policies entails implemettamgl M.

e Requirement 1: security of the enforceThe enforcer must meet two goals: (1) Ability to monitor all security
events generated by, and (2) Ability to take action if a security event generatedXbgesults in authorization
failure. The action may be to terminake or to audit the failure.

— Requirement 1.1:To monitor security events, the enforcer must be able to intercept the security-sensitive
operation to be performed by, the security-label of the subject which requests the operation, and the object
upon which the operation is to be performed.

— Requirement 1.2:To take preventive action if the security-sensitive operation is not permitted by the autho-
rization policy, the enforcer must be able to control the execution of clienXs of

e Requirement 2: security of the reference monitofhe main task of the reference monitor is to ensure that the
stateS of the reference monitor is not tampered with. In additiSnmust be updated appropriately using
Implementingf is easy, because it merely entails looking up the policy. Commercial implementations of policy
management libraries are available, such as Tresys Polsd@letijus implementingf reduces to calling the
appropriate function from the API of the library. Finally, the reference monitor must also ensure that the policy
A is tamper proof.

2.3 Our APPROACH

We present a high-level, informal overview of our approach, and show how it meets the security requirements above.
Details omitted from this section appearSection 3andSection 4 Our approach proceeds in six steps, as shown in
Figure 1 Where applicable, we illustrate the technique using an example from the X server.

Step 1: Find security-sensitive operations to be protect€e first step, that of determining the security-sensitive
operations to be protected, can proceed in one of two ways. Suppose that theXsewgrbe retrofitted to enforce

a particular authorization policfl. Recall thatA is a set of triplegsub obj, op). In this case, the set of operations

can be recovered automatically frafhas{op}, where(suh, obji, op) € A.

On the other hand, a design team can manually specify the set of security-sensitive operations. This is typically
done by considering a wide range of policies thamust enforce, and determining the set of security sensitive
operations based upon these policies. In this case as well, the set of security-sensitive operations can be recovered
by studying each authorization policy, as above.

In this paper, we assume that the set of security-sensitive operations is given. For the X server, we used the
set of operations identified manually by Kilpatriek al. [25]. This set of operations, 59 in number, considers
security-sensitive operations on several key X server resources, incltidiet, Window, Font, Drawable, Input,
andxEvent. They identify 22 security-sensitive operations on thadow data structure, such agindow_Create,
Window_Map, andwindow_Enumerate. Our techniques are parameterized on the set of security-sensitive operations,
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and additions or deletions from this set do nffeet any of our algorithms.

Step 2: Infer root-cause of security-senstive operatiofitie second step identifies the root-cause of each security-
sensitive operation. As mentioned in the introduction, the server executes certain canonical code-patterns when it
performs a security-sensitive operation, and the execution of these code-patterns is the root-cause of the operation.
However, the association between each security-sensitive operation, and the code-patterns that are executed is not
knowna priori, and the goal of this step is to recover the association.

Two key observations help us achieve this goal. The first observation is that each security-sensitive operation
is typically associated with a tangible sidffext. For example, the security-sensitive operatiisiow_Create,
Window_Map andwindow_Enumerate of the X server are associated with opening, mapping, and enumerating child
windows of, an X client window, respectively. Thus, if we induce the server to perform the tangibleffeidie-e
associated with a security-sensitive operation, and trace the server as we do so, the code-patterns that characterize
the security-sensitive operatiomustbe in the trace.

However, program traces are typically long, and it is still challenging to identify the code-patterns that char-
acterize a security-sensitive operation from several thousand entries in the program trace. Our second observation
addresses this challenge—to identify the code-patterns for a security-sensitive operatiice $ocompare the
program trace of a tangible sidéect associated with the operation against those that are not. For example, display-
ing a visible X client window, which involves mapping the window on the screen, is associatedinéibw_Map;
closing and moving an X client window are not. Thus, to identify the code-patterns canoniwaldmv_Map, it
sufices to compare the trace generated by opening an X client window against the trace generated by closing, or
moving, a window. Similarly, closing a browser window is associated with closing all child windows, which involves
Window_Enumerate, while typing to a window does not.

With these two observations, identifying root-causes reduces to studying fewer than 10 entries, on average, in
a program trace. Using this technique, we identified, amongst others, the root-cawgmgof Create as Call
CreatelWindow, Of Window_Map as writes ofMapRequest and MapNotify to the field type of a variable of type
xEvent andWindow_Enumerate asReadWindowPtr->firstChild andReadWindowPtr->nextSib andWindowPtr #
0, which are intuitively performed during linked-list traversal. Note that our technique can express code-patterns at
the granularity of reads and writes to individual fields of data structures. We discuss the tracing infrastructure, and
algorithms to compare traces to identify root-causes in more deté@#dtion 3.1
Step 3: Find all locations which are security-sensitive.he third step uses the results of root-cause analysis to
statically identify all locations in the server where code-patterns that characterize a security-sensitive operation
occurs; each of these locations performs the operation. CoriSigere 2 which shows a snippet of code from
MapSubWindows, a function in the X server. It contains writes WdpRequest andMapNotify tO event.u.u.type,
as well as a traversal of the children of the window poiptarent. Thus, a call to the functiomapSubWindows
performs both the operationgindow_Map and Window_Enumerate. We automatically identify the set of security-
sensitive operations performed by each function call using static analysis, as descBigetion 3.2

: : In addition to identifying the locations where security-sensitive oper-
T e e eeming ations occur, in this step we also identify the subject and object associated
for (;pWin; pWin = pWin->nextSib) with the operation. To do so, we identify the variables corresponding to
{ event.u.u.type = MapRequest;... subject and object data types (suchcasent andWindow) in scope. In
event.u.u.type = MapNotify;... . L. N K . . i
V) most cases, this heuristic precisely identifies the subject and the object.
In Figure 2 the subject is the client requesting the operatigm {ent),
and the object is the window whose children are to be mapgredént),
both of which are formal parametersiofpSubWindows, and are thus in scope.

Steps 2 and 3 together identify all locations where the server performs security-sensitive operations, and at each
location, also help identify the subject and object associated with the operation. These steps are realized in A
Step 4: Instrument the serverOnce Ap has identified all locations where security-sensitive operations are per-
formed, the server can be retrofitted by inserting calls to a reference monitor at these locations, to achieve complete
mediation. In particular, if & determines that a statemetint is security-sensitive, and that it generates the secu-

Figure 2: MapSubWindows
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rity event(suh obj, op), it is instrumented as shown below. Note thastft is a call to a functiorfoo, the query
can alternately be placed in the function-bodyteé.
if (query refmon({sub obj, op)) == False) then handle failure; else Stmt;

For example, becauserAdetermines thatapSubWindows performs both the security-sensitive operatigvis-

dow_Map andwindow_Enumerate, it protects calls tolapSubWindows as follows:
if (query_refmon({pClient, pParent, Window_Map)) == False) then handle_failure;
elsif (query_refmon({pClient, pParent, Window_Enumerate)) == False)
then handle_failure; else MapSubWindows (pParent,pClient)

The statemenhandle_failure can be used by the server to take suitable action againstfitaedong client,
either by terminating the client, or by auditing the failed request. As mentioned earlier, authorization policies are
expressed in terms of security-labels of subjects and objects. Security-labels can be stored in a table within the
reference monitor (generated in step 5), or alternately, with data structures used by the server to represent subjects
and objects. For example, in the X server, extra fields can be added ¢eittvec andwindow data structures to
store security-labels. In either case, because we pass both the subject and the object to the reference monitor using
query_refmon, the reference monitor can lookup the corresponding security-labels, and consult the policy.

Step 5: Generate reference monitor cod€his step generates code for pery_refmon function. We generate a
template for this function, omitting two details that must be filled-in manually by a developer. First, the developer
must specify how the policy is to be consultéé,, he must implement using an appropriate policy management

API (such as Polserved()]). Second, he must implement the state update functipmy specifying how the

state of the reference monitor is to be updated. For example, when a securitypetestit, piin, Window_Create)
succeeds, corresponding to creation of a new window, the security-laiielgfthe newly-created window, must be
initialized appropriately. Similarly, a security-event which copies data f#@in; to pWwin, may entail updating the
security-label ofpwin, (for e.g., under the Chinese-Wall policg]). Because security-labels are either stored as a
table within the reference monitor, or as fields of subject or object data structures, as described earlier, the developer
must modify these data structures appropriately to update security-labels. This step is described in further detalil
in Section 4 Note that while steps 2-4 are policy independent, step 5 requires implementaticendfu, which

depend on the specific policy to be enforced. Steps 4 and 5 together ensure complete mediation of security-sensitive
operations identified by #, are realized in the tool éken.

Step 6: Link the modified server and reference monitdihe last step involves linking the retrofitted server and the
reference monitor code to create an executable that can enforce authorization policies.

We now examine how our approach meets the security requirementsSkestion 2.2 In our approach, the
enforcer€ is implemented using the instrumentation inserted in stepid.identifies all locations where security-
sensitive operations are performed, and step 4 inserts instrumentation at these locations. Further, the subject, object,
and the operation that constitute the security-event at the location are passed to the reference monitor. Because
the security-labels of the subject, and the object are stored in the data structures that represent them, our approach
satisfies requirement 1.1. The design of our instrumentation ensures that if the security-event is not authorized, the
serverX handles failed authorizations appropriately. In particlhandle failure can be used to terminate the
execution of malicious clients. Thus, our approach satisfies requirement 1.2. Our approach meets requirement 2
because the retrofitted server runs as a separate process. In particular, because the state of the reference monitor i
stored internally in data structures private to the server, it is tamper-proof. Finally, we ensure that theApslicy
tamper-proof by storing it on the file-system with permissions such that only a privileged system user can modify it.

A noteworthy feature of our approach is its modularity. In particular, alternate implementations of root-cause
analysis (such as dynamic slicirg]]and instrumentation can be used in place af &nd ALpen, respectively. Thus,
our technique benefits directly from improved algorithms for these tasks.

2.4 L IMITATIONS OF OUR APPROACH

While we have so far identified security requirements for retroactive enforcement, in the rest of this paper, we de-
scribe largely automatic techniques to meet these requirements. Our automated techniques however, have limitations,
partly fundamental, and partly artifacts of our current implementation. We discuss them here:
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1. Binary executables.A key step in our analysis is that of identifying the root-cause of each security-sensitive
operation. In our case, the root-cause is the set of canonical code-patterns that characterize each security-sensitive
operation. Currently these code patterns are expressed in terms of abstract syntax trees (ASTs) at the source code
level, thus constraining our analysis to work with source code. However, this is not a fundamental limitation, and
can be overcome by modifying the language in which code patterns are expressed.

2. Obfuscated codeldentifying individual code-patterns might be possible in obfuscated code. However, the root-
cause of the security-sensitive operation may be the execution of several of these code-patterns together. Because
of obfuscation, it will be harder to identify if all the relevant code-patterns are executed together, without doing a
deeper control-flow analysis.
In addition, a security event also consists of the subject and the object associated with the security sensitive
operation. Our analysis does so by first identifying security-sensitive operations, and then locating variables in
scope, which could possibly be subjects or objects. Identifying these entities becomes harder if code is obfuscated.

3. Encrypted codeEncrypted code does not lend itself to program analysis.

4. Self-checksumming codeFinally, the code we analyze must be amenable to modification, because retrofitting
code involves instrumentation. Self-checksumming code may preclude modification, except by the code producer,
who can instrument the code, and recompute the checksums.

3 Am: A TooL 10 LOoCATE SECURITY-SENSITIVE OPERATIONS

A analyzes legacy servers and identifies locations where they perform security-sensitive operations. As discussed
earlier, this is done in two phases: identifying code-patterns, the execution of which is the root-cause of security-
sensitive operations, followed by a static analysis phase, which identifies all locations in the code where these
code-patterns occur. We discuss these steps in detail.

3.1 ROOT-CAUSE | DENTIFICATION VIA ANALYSIS OF PROGRAM T RACES

Recall that our ultimate goal is to retrofit a legacy server to ensure complete mediation of security-sensitive opera-
tions by policy lookups. A necessary step in this process is to identify the code-patterns executed by the server when
it performs a security-sensitive operation. Protecting these code-patterns then achieves complete mediation.
Formally, a code-pattern is defined to be a function call, a read or a write to a field of a data-structure, or a
comparison of two values, as shownHFigure 3 Note that code-patterns are expressed in terms of abstract-syntax-
trees (ASTSs); this allows us to express code-patterns more generically, in terms data-structures, rather than individual
variables. The root-cause of a security-sensitive operation is a conjunction of one or more code-patterns.
For example, in the X server, the root-cause Wihdow_Create

CodePat = Call AST|ReadAST . - . .
| Write Valueto AST is _CaII CreateWindow, While one root—caqse ot/\_/mdow,Enumerate,
| ComparéValue, Value)| Which enumerates all the children of a window H&r{dowPtr # 6 A
Value = constantAST ReadWindowPtr->firstChild A ReadWindowPtr->nextSib), which in-
AST = (type-name->)*field tuitively denotes the code-patterns used to traverse the list of children of

Figure 3: Code-pattern definition a window. A security-sensitive operation can have several root-causes,
corresponding to dierent ways of performing the operation. Both forward and backwards traversal of the linked list
of children of a window constitute root-causes ¥indow_Enumerate, for instance.

The key challenge, however, is to discover root-causes of security-sensitive operations, as this is often not known
a priori—this is especially the case with legacy and third-party code. Further, the root-cause swstibefi.e., it
must contain a small combination of code-patterns which, when executed, result in the security-sensitive operation.
We address this challenge by making two novel observations.
Observation 1 (Tangible side-ffects) Security-sensitive operations are associated with tangible gjdets.

Thus, if we induce a server to perform a tangible siffeat associated with a security-sensitive operation, then
the servemustperform the security-sensitive operation. Thus, identifying root-causes reduces to tracing the server
as it performs the tangible sidéfect, and recording the code-patterns frbigure 3that it executes in the process.
However, the program trace generated by the tangible stéetenay be huge. Using our tracing infrastructure, the
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X server generates a trace of length 10459 when the following experiment is performed: start the X server, open
anxterm, close thexterm, and close the X server. It is impossible to identify succinct root-causes by studying this
trace. Our second observation addresses this problem.
Observation 2 (Comparing traces generated by tangible sideffects) Comparing a trace associated with a security-
sensitive operation, against traces that are not associated with the operation, yields succinct root-causes.

The key idea underlying this observation is that a tangible sif¥sethat does not perform a security-sensitive
operation will not contain the code-patterns that characterize the operation. For example, tiig tietbat opens
an X client window on the X server will contain the root-causenofidow_Create, but the tracél ¢jpse that closes a
window will not. Thus,Topen- Tciose @ Shorter trace, still contains the root-causéMifdow_Create. Continuing
this process with other traces that do not perfevindow_Create reduces the size of the trace to be examined even
further. In fact, for the X server we were able to reduce, on average, the size of the trace by several orders of
magnitude using this techniquEigure 4, whittling down the search for root-causes to fewer than 10 functions.

A technical dificulty must be addressed before we compare traces of tangibleffédéseA tangible sideféect
may be associated with multiple security-sensitive operations, and all the security-sensitive operations associated
with it must be identified. For instance, when aterm window is opened on the X server, the security-sensitive
operations include (amongst others) creating a windawidow_Create), mapping it to the screemfindow_Map),
and initializing several window attribute®/(ndow_Setattr).

We manually identify the security-sensitive operations generated by each tangibl&sadeBecause the side-
effects we consider aangible programmers typically have an intuitive understanding of the operations involved
in performing the sideféect. The trace generated by the tangible sifieet is then assignedlabel with the set
of security-sensitive operations it performs. It is important to note that tangible Sefgtseare not specific to the
X server alone, and are applicable to other servers as well. For example, in a database server, dropping or adding
a record, changing fields of records, and performing table joins are tangibleffédese Because labeling traces
is a manual process, it is conceivable that the they are not labeled correctly. However we show that, somewhat
surprisingly, root-causes can be identified succinctly and precigselgjte of errors in labeling Because traces
can have multiple labels, we formulaset-equationgor each label (recall that a label is just a security-sensitive
operation) in terms of label-sets of all our traces.
Definition 1 (Set equation) Given set S, a set BS, and a collectiotC={C;, Cy, ..., Cy} of subsets of S, a set
equation for B is BC;,*C,*.. .*Cj,, where each § is an element, or the complement of an elemet, @nd *’
isuUorn.

Algorithm : Finp_Roor-Cause(X, S, Sef)

Input : (i) X: Server to be retrofitted, (i: A set of security-sensitive operatiofeps, .. ., opn}, and (iii) Set: A set of tangible sidefEects
{sdfy, ..., sdfy}.

Output :RGCy, ..., RG, : Each RGis the root-cause of the security-sensitive operation

1 X’ := X instrumented to perform tracing;

2 foreach (tangible side-ffect sdf; € Sef) do

3 T; := Trace generated h¥’ when induced to perform fig
4 label(T;) := Set of operations (fror8) involved in sdfj;

5 foreach (op; € S) do

6 SE := Set-equation foop; in terms oflabel(T,), .. ., labe(Ty);

7 CPset:= Set of code-patterns in;;T

8 RG; := Result when operations in S&re performed on CPset .., CPset;

Algorithm 1: Algorithm to find root-causes of security-sensitive operations.

To find a succinct root-cause for an operatipnwe do the following: LeS be the set of all security-sensitive
operations, an® = {op}. Let G denote the label.g., the set of security sensitive operations performed) of trace T
which is generated when the server performs the tangible fidetadf;. Formulate a set-equation f&in terms
of Ci’s, and apply thesame set-operatioren the set of code-patterns in the correspondirg The resulting set of
code-patterns is the root-cause &pt

For example, if T is a trace of sideféect sdf;, which performsp andop’, and T, is a trace of sideféect sdf,,
which performsop’, then G = {op, op’}, and G = {op’}. Say T contains the set of code-patteds, py}, and T,
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contains the set of code-patters}. Then to find the root-cause op, we letB = {op}, and observe tha® = C;
- Co. We perform thesameset-operations on the set of code-patternsrafid T, to obtain{pi}, which is then
reported as the root-causeay. This process is formalized in Algorith

Finding set-equations is, in general, a hard problem. More precisely, define a CNF-set-equation as a set-equation
expressed in conjunctive normal form, with’‘and ‘U’ as the conjunction and disjunction operators, respectively.
Each disjunct in the equation isckause It can be shown that theNF-set-equation problemwhich is a restricted
version of the general problem of finding set-equationslAscomplete.
Definition 2 (CNF-set-equation problem) Given aset S, aset B S, a collectiorC of subsets of S (as in Defini-
tion 1), and an integer k, does B have a CNF-set-equation with at most k clauses?

We currently use a simple brute-force algorithm to find set-equations. This works for us, because the number of
sets we have to examine (which is the number of traces we gather) is fortunately quite small (15 for the X server).

3.1.1 EvaLuatioN oF Roo1-CAuse-FINDING ALGORITHM

Trace name| A B C D E F ie H |
. Q5 S
Slde_-é)fect _ _ % g w5 %\
o) 0| Q2 |g3|®E|S52|EQ
. cE|gE |82 32|08 (88| cs/£8|<c3
Opeon |85 |85 |85|S5 |8 (85| BB (5L kS
Create O O O ad
Destroy O * O O *
Map 0 O O d
Unmap O * O O *
Chstack | | O g d
Getattr 0 ] [ [ ) g
Setattr [ O O ® * ad
Move * O * *
Enumerate * * O d O * d 0
InputEvent | O O g g
DrawEvent ad ] O O O O O ad
Distinct

Functions ‘ 115‘ 148‘ 251‘ 161 ‘ 68 ‘ 148‘ 96 ‘ 93 ‘ 166 ‘

Figure 4: Labeled traces of tangible side-ffects obtained from the X server.

We have implemented Algorithihin Aib. We use a modified version gtc to compile the server. During com-
pilation, instrumentation is inserted statically at statements which read and write to fields of critical data structures.
We log the field and the data structure that was read from, or written to, and the function name, file name, and the
line number at which this occurs. We then induce the modified server to perform a set of tangiblesitse-and
proceed as in Algorithm to find root-causes.

We applied this to find root-causes of security-sensitive operations in the X server. In particular, we recorded
reads and writes to fields of data structures suctilasnt, Window, Font, Drawable, Input, andxEvent. Figure 4
shows a portion of the result of performing liné3-(4) of Algorithm 1. Columns represent 9 tangible sid@eets,
and rows represent 11 security-sensitive operations omitidbw data structure. We manually labeled each tan-
gible side-&ect with the security-sensitive operations it performs. These entries are markagluie 4 using
[J ande. For example, opening atterm on the X server includes creating a windowirgdow_Create), map-
ping it onto the screenwindow_Map), placing it appropriately in the stack of windows that X server maintains
(Window_Chstack), getting and settting its attributew/indow_Getattr, Window_Setattr), and drawing the contents of
the window (vindow_DrawEvent). This trace of operations contains 115 calls to distinct functions in the X server, as
shown in the last row offigure 4

Figure 5shows the result of performing lineS)¢(8) of Algorithm 1 with the labeled traces obtained above. For
each operation, the set-equation used to obtain root-causes, the size of the resulting set, and the set of root-causes i
shown. Note that each security-sensitive operation can have more than one root-cause, as for example, is the case
with Window_Enumerate andwindow_Chstack.
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Operation Set Equation IRC | Root-cause

Create N(A,C,G)-D-H 9 | Call CreateWindow

Destroy N(B, D) -A 7 | CallDeleteWindow

Map N(A,C,G)-D-H 9 | WriteMapRequest to xEvent->union->type A Write MapNotify to xEvent->union->type

Unmap N(B, D) - A 7 | Write UnmapNotify to xEvent->union->type

Chstack NA,C,G,H,1)-D-E 6 | Call MoveWindowInStack, Call ReflectStackChange, Call WhereDoIGoInStack

Getattr NA,C,1)-(B,D,E, F) 25 | Call GetWindowAttributes

Setattr N(A,C,F1)-(B,D, E) 15 | Call ChangeWindowAttributes

Move F-(A/B,D,E,G) 38 | Call ProcTranslateCoords

Enumerate | N(C, D, F, H, ) 21 | ReadWindowPtr->firstChild A ReadWindowPtr->nextSib A WindowPtr#0,
ReadiWindowPtr->lastChild A ReadWindowPtr->prevSib

InputEvent | E-C 19 | Call CoreProcessPointerEvent, Call CoreProcessKeyboardEvent, ...

DrawEvent | N(A,B,C,D,E,F, G, H, ) 12 | Call DeliverEventsToWindow

Figure 5: Root-causes obtained using labeled traces fromigure 4.

To find errors in manual labeling of traces, we did the following. After finding root-causes of security-sensitive
operations, we checked each trace for the presence of these root-causes. Presence of a root-cause of a security
sensitive operation in a trace which is not labeled with that security-sensitive operation shows an error in manual
labeling; such entries are marks in Figure 4 For example, we did not label the trace generated by opening
anxterm with Window_Enumerate. On the other hand, absence of root-causes of a security-sensitive operation in a
trace which is labeled with the security-sensitive operation also shows an error in manual labeling; such entries are
markede in Figure 4 Thus for example, we did label the trace generated by moving a windovwirittow_Getattr,
whereas in fact, this operation is not performed when a window is moved.

We now evaluate &’s root-cause finding algorithm by answering the following questions:

1. How ¢gfective isAm at locating root-causes”Raw-traces generated by tangible-sidiees, have on average,
103967 code-patterns. HowevetpAirst abstracts each trace to function calls: it first identifies root-causes at the
function-call level; if necessary, it delves into the code-patterns exercised by the function. The number of distinct
functions called in each trace is shown in the last rowigiire 4 The third column ofigure 5shows, in terms
of the number of function calls, the size of RC, which is the result obtained by computing the set-equation for
each security-sensitive operation, to determine root-causes. Noteithaba able to achieve over one order of
magnitude reduction in terms of the number of distinct functions to be examined.

We examined each of the functions in RC to determine if it is indeed a root-cause. In most cases, we found
that for a security-sensitive operation, a single function in RC performs the operation. However, in some cases,
multiple functions in RC seemed to perform the security-sensitive operation. For exampl€abiathpwindow

and Call MapSubWindow, which were present in RC, perform&dndow_Map. In such cases, we examined the
traces generated bymto determine common code-patterns exercised by the call to these functions. Doing so for
Window_Map reveals that the common code-pattern®dpiindow andMapSubWindow are {Vrite MapRequest to
xEvent->union->type A Write MapNotify t0 xEvent->union->type). FOr security-sensitive operations such as
Window_Chstack, where the traces generated bw Alid not contain commonalities in the code-patterns exercised

by different functions, we deemed each of the function calls in RC to be root-causes of the operation.

2. How precise are the root-causes foundr each of the root-causes recovered hy far the X server, we have
manually verified that it is indeed a root-cause of the security-sensitive operation in question.
However, in general, & need not recover all the root-causes. Becausei\a runtime analysis, it can only
capture the root-causes of a security-sensitive operation exercised by the runtime traces, and othgmiags
to perform the operation. By collecting traces for a larger number of tangible fieletse and verifying the root-
causes collected byiAagainst these traces, confidence can be increased in the precision of root-causes obtained
by Am. In the future, we plan to investigate static techniques to identify root-causes to overcome this limitation.

3. How much ¢fort is involved in manual labeling of traces?n all, we collected 15 traces for fierent tangi-
ble side-&ects exercising dlierentwindow-related security-sensitive operations. It took us a couple of hours to
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manually label these traces with security-sensitive operations.

4. How ¢ffective is manual labeling of traces?n most cases, it is easy to reason about the security-sensitive
operations that are performed if a tangible siffed is induced. However, because this process is manual,
we may miss security-sensitive operations that may be perforskeentries inFigure 4, or label a trace with
security-sensitive operations that are not actually performed by the wam@ries). Our experience of manually
labeling traces for the X server shows that this process has an error rate of approximately 15%.

However, it must be noted that we were able to recover root-causes prdoiseite of labeling errors If a
security-sensitive operation is wrongly omitted from the labels of a tangible fidet-&hex case), then because

the same security-sensitive operation often appears in the labels of other tangiblfegitie-& set-equation can

still be formulated for the operation, and the root-cause can be recovered. On the other hand, if a security-sensitive
operation is wrongly added to the labels of a tangible sitiece(the® case), none of the functions in RC will
perform the tangible sideffiect. In this case, trace labels are refined, and the process is iterated until a root-cause
is identified.

3.2 | DENTIFICATION OF SECURITY-SENSITIVE L OCATIONS USING STATIC ANALYSIS

Having identified root-causes of security-sensitive operationsefploys static analysis to find all locations in the
code of the server where these root-causes occur.

A currently identifies security-sensitive locations at the granularity of function calls. Note that several, but not
all, root-causes are function callsi’considers root-causes that are not function calls, such as thegedofv_Map,
Window_Unmap, andwindow_Enumerate, and identifies functions which contain these code-patterns. The idea is that
by mediating calls to functions which contain these patterns, the corresponding security-sensitive operations are
mediated as well. This is done using a flow-insensitive, intraprodecural analysis, as described in Algontiom
first identifies the set of code-patterns that appear in the body of a function, and then checks to see if the root-causes
of a security-sensitive operation appear in this set. If so, the function is marked as performing the security-sensitive
operation. For a security-sensitive operation whose root-causes contain only function calls, Al@aritivks each
of these functions as performing the operation.

Algorithm . Finp_SecuriTy-sensiTive_L ocarions(X, S, RC)

Input : (i) X: Server to be retrofitted, (ii$: Set of security-sensitive operatioftp;, ..., opn}, and (i) RC: Set of root-cause setsyic. .,
rcy of opy, ..., opn, respectively.

Output : Opset:X — 25, where Opsefi) denotes the set of security-sensitive operations performed by a dalatiunction ofX.

/* Process root-causes with only function caliy;
foreach (root-cause set rén RC) do
rcset := Set of code-patterns injic
if (rcset == {Call £y, ..., Call £y))} then
foreach (f € {f1,..., fn}) do
| Opsetf) = Opsetf) U {opi};

RC = RC - {rc};

N oo WN PR

8 /* Process other root-causes/;
9 foreach (function f in X) do
10 Opsetf) := ¢;

11 CP(f) := Set of code-patterns ifi (as determined using the ASTs of statementg)in
12 foreach (root-cause set rin RC) do
13 L if (rcset € CP(f)) then Opset() := Opset() U {opi};

14 return Opset;
Algorithm 2: Finding functions which contain code-patterns that appear in root-causes.

Consider the functiofapSubWindows in the X server (se€igure 9. This function maps all children of a given
window (pParent in Figure 2 to the screen. Note that it contains code-patterns which constitute the root-cause of
bothwindow_Enumerate andwindow_Map. Thus, OpsefapSublWindows) = {Window_Map, Window_Enumerate}.

Aip uses a slightly more powerful variant of code-pattern languagegure 3to match code-patterns in function
bodies. In particular, it extendsigure 3with the ability to specify relations betweenfldirent instances of ASTs.
Thus, for example, it can match patterns suctRasdwindowPtr;->firstChild A ReadWindowPtr,->nextSib
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WherewindowPtr; # WindowPtr,. Note that for traversing the linked list of child windows, asHigure 2 the
parents firstChild field is read, followed byextSib of child windows. In the absence of this featurap Awill
also match functions in which thfirstChild andnextSib fields of the same window are read, which does not
correspond to linked-list traversal, and will thus result in extra functions reported as perfattinifugy_Enumerate.

Finally, A also helps identify the subject requesting, and the object upon which, the security-sensitive operation
is to be performed. To do so, itidentifies variables of the relevant types that are in scope. For example, in the X server,
the subject is always the client requesting the operation, which is a variable dfitérec data type, and the object
can be identified based upon the kind of operation requested. For window operations, the object is a variable of the
Window data type. This set is then manually inspected to recover the relevant subject and object at each location.

3.2.1 EVALUATION OF SECURITY-SENSITIVE L OCATION-FINDING ALGORITHM

We have implementediA's static analysis algorithm as a plugin to the CB0J toolkit. We evaluate Ap’s security-
sensitive location finding algorithm by answering two questions:

1. How precise are the security-sensitive locations found¥gorithm 2 precisely identifies the set of security-
sensitive operations performed by each function, with one exceptian.refsorts false positives for thein-
dow_Enumerate operationj.e., it reports that certain functions perform this operation, whereas in fact, they do not.
Out of 17 functions reported as performingndow_Enumerate, only 11 actually do.

We found that this was because of the inadequate expressive power of the code-pattern language. In particu-
lar, Aio matches functions which contain the code-patt@imglowPtr # 0, ReadWindowPtr->firstChild, and
ReadwindowPtr->nextSib, but do not perform linked-list traversal. These false positives can be eliminated by
enhancing the code-pattern language with more constructs (in particular, loop constructs).

2. How easy is it to identify subjects and object&® mentioned earlier, i also helps identify subjects and objects
by identifying variables of relevant data types in scope. This simple heuristic is ffigitéee: out of 24 functions,
calls to which were identified as security-sensitiveitidow operations, the subject and object were the unique
variables of the relevant typeslfient andwindow, respectively) in scope for 20 of them. In the remaining
functions, local variables of typ&indow were declared for manipulating the object within the function. However,
even in this case, manual inspection quickly revealed the oljadbw easily.

4  ALPEN: A T ooL T0 PROTECT SECURITY-SENSITIVE OPERATIONS

Locations identified as performing security-sensitive operationsibare protected by £eex using instrumentation.
Because 4 helps recover the complete description of security-events, adding instrumentation is straightforward,
and calls tqquery_refmon are inserted as describedSection 2 If the function to be protected is implemented in the
server itself (as opposed to a library call), as is the case with all the security-sensitive function calls in the X server,
calls toquery_refmon can be placed within the function body itself. Because the same variables that constitute the
security-event are also passethtery_refmon (i.e.,if (suly obj, op) is the security event, then the corresponding
call is query_refmon({suly obj, op))), and the data structures used to represent subjects and objects are internal to
the server, Apex avoids TOCTTOU bugs/] by construction.

ALPEN also generates a template implementatioguefry_refmon, as shown irFigure 6 The developer is then
faced with two tasks:

1. Implementing the policy consulterThe developer must insert appropriate calls from a policy management API
of his choice into the template implementationgokry_refmon, generated by £een. We impose no restrictions
on the policy language, or the policy management framewsigure 6shows an example: it shows a snippet of
code that is automatically generated byeén. Subject and object labels are stored as fieldsdl) in the data
structures representing them. The italicized statement, a functiopedakly lookup, must be changed by the
developer, and substituted with a call from the API of a policy-management framework of the developer’s choice.
Several @t-the-shelf policy-management tools are now available, including Tresys’ Polsd@emhich man-
ages policies written in the SELinux policy language. If this tool is used, the relevant API call to replace
policy_lookup iS avc_has_perm.
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bool query_refmon(Client *sub, Window *obj, Operation OP) {
switch (OP) {
case WINDOW_CREATE:
rc = policy_lookup(sub->label, NULL, WINDOW_CREATE);
if (rc == success) {
obj->label = sub->label;
return True;
} else { return False; }
case WINDOW_MAP:

by
Figure 6: Code fragment showing the implementation ofquery_refmon for Window _Create.

2. Implementing reference monitor state update$he developer must update the state of the reference monitor
based upon the state update functiofote thatu depends on the policy to be enforced; for example, the Chinese
Wall policy [8] requires labels to be updated if a client is authorized for an operation. Because the state update
functionu is dependent on the policy, policy-management tools such as Polserver also provide functionality to
determine how security-labels must change based upon whether the authorization request succeeds or fails, thus
relieving the developer of this task.

However, if this functionality is not available in the policy-management tool used, the developer must update the
state of the reference monitor manually. The fragment of code in bdbiure 6shows a simple example af

When a new window is created, its security-label is initialized with the security-label of the client that created it.
It is worth noting for this example that a pointer to the window is created only after memory has been allocated
for it (in the CreateWindow function of the X server). Thus we place the calkigry_refmon in CreateWindow

just after the statement that allocates memory for a window; if this call succeeds, the security-label of the window
is initialized. Otherwise, free the memory that was allocated, and return a NULL wiridoyhéndle failure

is implemented aseturn NULL;).

Finally, it remains to explain how we bootstrap security-labels in the server. As mentioned in the introduction,
we assume that the server runs on a machine with a security-enhanced operating system. We use operating systen
support to bootstrap security-labels based upon how clients connect to the server. For example, in an SELinux
system, all socket connections have associated security-labels, and X clients connect to the X server using a socket.
Thus, we use the security-label of the socket (obtained from the operating system) as the security-label of the
X client. We then propagate X client security-labels as they manipulate resources on the X server, as shown in
Figure § where the client’s security-label is used as the security-label for the newly-created window.

5 ENFORCING AUTHORIZATION POLICIES ON X CLIENTS USING A RETROFITTED X SERVER

We demonstrate how an X server retrofitted using @nd ALpen enforces authorization policies on X clients. We

run the retrofitted X server on a machine running SELjRexlora Core 4. Thus, we bootstrap security-labels in the

X server using SELinux security-labeisg(, a client gets the label of the socket it uses to connect to the server). For
brevity, we describe two attacks that are possible using the unsecured X server, and describe corresponding policies,
which when enforced by the retrofitted X server prevent these attacks. In each case we implemented the policy to be
enforced within thejuery_refmon function itself.

Attack I: Several well-known attacks against the X sena& fely on the ability of an X client to change properties

of windows belonging to other X clients, ferg.,by changing their background or content.

Policy I: “Disallow an X client from changing properties of windows that it does not own”. Note that this policy is
enforced more easily by the X server than by the operating system. The operating system will have to understand
several X server-specific details to enforce this policy. X clients communicate with each other (via the X server)
using the X protocol. To enforce this policy, the operating system will have to interpret X protocol messages to
determine which messages change properties of windows, and which do not. On the other hand, this policy is easily
enforced by the X server because opening a new window involves exercisimgridw@v_Chprop security-sensitive

November 15, 2005 14 UYZ STech. Report #1544



operation.

Enforcement I: The call toquery_refmon placed in thechangeProperty function of the X server mediatesin-
dow_Chprop. To enforce this policy, we check that the security-label of the subject requesting the operation, and the
security-label of the window whose properties are to be changed are equal.

Attack II: Operating systems can ensure that a file belonginghupasecretiser cannot be read by &inclassified

user (the Bell-LaPadula policys]). However, if both theTop-secretand Unclassifiedusers havecterms open on

an X server, then a ‘cut’ operation from tkeerm belonging to thelop-secreuser and a ‘paste’ operation into the
xterm Of the Unclassifieduser violates the Bell-LaPadula policy.

Policy II: “Ensure that ‘cut’ from a high-security X client window can only be ‘pasted’ into X client windows with
equal or higher security”. Note that the existing security mechanism in the X server (the X security extéddion [
cannot enforce this policy if there are more than two security-levels.

Enforcement II: The cut and paste operations correspond to the security-sensitive opgvatiow_Chselection of

the X server. Ao identifies the root-causes @findow_Chselection as calls to two function®rocSetSelectionOwner
andProcConvertSelection in the X server. It turns out that the former is responsible for the “cut” operation, and the
latter for the “paste” operation. Calls to theery_refmon placed in these functions are used to mediate the cut and
paste operations, respectively. We created three users on our machine with securityedpisssretConfidential
andUnclassified in decreasing order of security. The X clients created by these users inherit their security-labels.
We were able to successfully ensure that a cut operation from a high-security X client wiedpwOonfidentidl

can only result in a paste into X client windows of equal or higher secweity,(Top-secratr Confidentia).

5.1 PERFORMANCE OF THE RETROFITTED X SERVER

We measured the runtime overhead imposed by instrumentation by running an X server retrofitted with our instru-
mentation, and without, on 26 1perf [46] benchmarks. We ran the retrofitted X server with a null poli®y, all
authorization requests succeed, to measure overhead (defikEig gdetronited setveg 1 g _ 1 00). Overhead ranged

from 0% to 18% across the benchmarks, with an average overhead of 2%.

6 RELATED WORK

The research presented here is related to work in several other areas.
Techniques for Authorization Policy EnforcementReference monitors3] have traditionally been used to enforce
authorization policies, both when enforcement mechanisms are added proactively, or retroactively.

The Asbestos operating syste] is a good example of proactively adding security. Asbestos incorporates
several mechanisms, including security-labels, and techniques to isolate user data, so as to corffacisiué e
exploits. The operating system acts as the reference monitor, and enforces an authorization policy using security-
labels. Security-enhanced Linux (SELinu2g[ was also conceived with similar goals in mind, but startéicby
retrofitting the Linux kernel to enforce authorization policies. It is currently architected using the Linux Security
Modules framework (LSM)45]. LSM retrofits the Linux kernel to enforce mandatory access control policies. It
consists of a reference monitor implemented as a loadable module, which encapsulates a policy, and prasdents a
interface. These hooks are called from appropriate locations in the Linux kernel.

However, hooks are placed manually in LSM using adhoc techniques. Not surpisingly, vulnerabilities were found
in hook placementZ2, 49]. The hook placement was found to violate complete media®&h pnd the design of
the interface left room for TOCTTOU vulnerabilitieg,[49]. This example underscores the need for systematic
techniques to retrofit legacy code for reference monitoring.

Recently, Ganapathgt al. [18] have proposed automatic static analysis technigues to match-make hooks with
kernel locations. However, their techniqueffeus from two important limitations. First, they assume that the
reference monitor implementation is available, and use static analysis of the reference monitor to infer what operation
each hook authorizes. Second, they require manually-writiems which are akin to root-causes of security-
sensitive operations. We provide automatic techniques to generate the reference monitor, and to aid the developer in
finding root-causes of security-sensitive operations. Furtherc#@n be used to automatically identify idioms.

Java’s security mechanisrq] is also conceptually similar to the LSM framework; the reference monitor is im-
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plemented by an object of typecessController, andAccessController.checkPermission() calls are manually

inserted at appropriate locations within the code to enforce authorization policies. The techniques presented in this

paper are applicable to secure legacy Java applications as well.

Languages and Techniques for Safety Policy EnforcemeReference monitoring and code retrofitting techniques

have also been used to enforce safety policies in legacy code. Inlined reference monitors ({fRSRagd frame-

work) [13], Naccio [L5], and Polymer §] are three such frameworks, which have been used to enforce several

policies on legacy code, including stack inspectidd] [and control-flow integrity I]. The most important dier-

ence between our work and these tools is thay require the code-patterns that must be protected to be specified in

the policy For example, the PoEPSLang framework requires the names of security-sensitive Java methods to be

mentioned in the policy. Our work does not require code-patterns to be kagsiori; it uses Ap to recover them.
Several host-based intrusion detection techniques (HIDs) also use reference monitoring to compare the execution

of the application against an expected execution maggl,(1, 16, 17, 28, 36, 42]). Our techniques are applicable

here as well, to infer the event interface to be monitored (unless the event interface is obygjosigstem calls).

Root-cause AnalysisExtensive research has been conducted in the area of root-cause analysis. Most existing work

has focused on the root-cause of bugisld, 20, 27, 48]. These techniquesfiiérentiate between “good” and “bad”

executions of a program to find the root-cause of the bug. The most imporEaredce between these techniques

and Aw is that Aip uses a much richer set of labelsamely, arbitrary tangible sidefects, rather than just “good”

or “bad”, to classify the traces it generates. In contrast to prior work, which typically uses a program crash as the

only tangible side#ect, Aip traces use a variety of application-specific tangible sifiects. Another technique

used for root-cause analysis is dynamic slici@gd6, 50]. Using data-flow analysis, dynamic slicing techniques

can be used to work backwards from tHeeet of a vulnerability, such as a program crash, to the root-cause of the

vulnerability. Ao can also be adapted to use dynamic slicing; however, dynamic slicing requires construction of

program dependence graphs, whicip Aurrently does not do.

Security of the X serverinformation-flow attacks against the X server have long been kndgjn Feveral tech-

nigues have been proposed to prevent such attacks, including the X security extédkidadcribed in the intro-

duction. Uppuluriet al[41] propose a filtering technique to regulate information-flow between X clients—the filter

is a layer which interposes X client communication with the X server, and enforces policies on client interaction.

While this technique has the advantage that the X server does not have to be modified, as they note themselves, the

filter can be bypassed by malicious clients. Finally, manffakes are underway to retrofit the X server to enforce

SELinux-like policies 5]. The techniques proposed in this paper can help by formalizing and automating such

efforts, and in the process, reducing turnaround time.

7 CONCLUSIONS

It is becoming common practice to retrofit legacy code with extra security mechanisms. However, existing tech-
niques to do so are adhoc, and often lead to security holes in retrofitted applications. We formalized the problem
of retrofitting legacy server code for authorization policy enforcement, and presented program-analysis based tech-
niques to do so largely automatically. We demonstrated filxgaey of our techniques by using them to retrofit the

X server, and showed that the retrofitted server securely enforces authorization policies on its clients.
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